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Dense grain flows in nature consist of a mixture of solid constituents that are immersed in an ambient fluid. In
order to obtain a good representation of these flows, the interaction mechanisms between the different constituents
of the mixture should be considered. In this article, we study the dynamics of a dense granular flow composed of
a binary mixture of small and large grains immersed in an ambient fluid. In this context, we extend the two-phase
approach proposed by Meruane et al. [J. Fluid Mech. 648, 381 (2010)] to the case of flowing dense binary
mixtures of solid particles, by including in the momentum equations a constitutive relation that describes the
interaction mechanisms between the solid constituents in a dense regime. These coupled equations are solved
numerically and validated by comparing the numerical results with experimental measurements of the front
speed of gravitational granular flows resulting from the collapse, in ambient air or water, of two-dimensional
granular columns that consisted of mixtures of small and large spherical particles of equal mass density. Our
results suggest that the model equations include the essential features that describe the dynamics of grains flows
of binary mixtures in an ambient fluid. In particular, it is shown that segregation of small and large grains can
increase the front speed because of the volumetric expansion of the flow. This increase in flow speed is damped
by the interaction forces with the ambient fluid, and this behavior is more pronounced in water than in air.

DOI: 10.1103/PhysRevE.86.026311 PACS number(s): 45.70.Mg, 45.70.Ht, 81.05.Rm

I. INTRODUCTION

Most dense grain flows in nature, such as debris avalanches,
pyroclastic flows, landslides, and submarine avalanches, in-
volve solid particles having a wide range of sizes and that
are immersed in an ambient fluid [1]. The influence of the
interactions among the solid constituents on the dynamics
of these dense heterogeneous flows has not been studied
extensively yet [2,3], and a better understanding of this issue
is required to improve the representation of these natural
phenomena [4].

Granular flows of binary mixtures often exhibit a nonuni-
form spatial distribution of particles owing to the nature of
the flow and the properties of their constituents [5,6]. For
instance, dry granular avalanches of small and large grains are
very efficient at sorting particles by size as the small particles
commonly percolate downward and the large ones rise up to
the free surface of the flow [5,6]. This segregation mechanism
may compete against the diffusive remixing mechanism that
occurs in rapid avalanches [7–9], or against the mass effect
mechanism in the case of large grain size ratios as large grains
sink toward the bottom because of their greater mass [10].
Moreover, when the large particles have a higher internal
friction coefficient than the small ones, segregation causes
fingering instability of the avalanche front [11] or spontaneous
stratification in two-dimensional silos [12]. Furthermore, the
interactions between the particles and their ambient fluid may
also have an influence on the mixture flow dynamics, as shown
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UMR Unversité Blaise Pascal, 5 rue Kessler, 63038 Clermont-
Ferrand, France.

for homogeneous granular flows [13]. In water, front fingering
instability and inverse vertical segregation are damped in
binary mixtures of small and large particles [14,15]. In air,
spontaneous segregation caused by vertical vibration may
occur in binary mixtures of particles of equal size but different
density as a consequence of an internal air flow [16,17].

Another notable feature of granular flows of binary mixtures
is their high mobility, commonly defined as the ratio between
the runout distance to the fall height, compared to cases
involving only one grain size. This difference has been reported
in laboratory experiments [18,19] and in soft particle discrete
element numerical simulations [20], and it was established
that this high mobility reaches a maximum for small grains
fractions of about 30% [18]. This increase in mobility has
been attributed to a thin layer of small grains at the flow base
formed by percolation, which changes from sliding to rolling
the frictional dynamics at the base of the granular flow [19,20];
however, this hypothesis is not able to explain the high mobility
of granular avalanches in nature where the flows occur over
rough terrains, so that the physical origin of the high mobility
of natural granular flows remains controversial [21].

The examples described above show that in order to obtain a
good representation of dense granular flows of binary mixtures,
the solid-solid and solid-fluid interaction mechanisms between
the different constituents of the mixture should be considered.
In this context, the mixture theory is a useful tool for
describing the dynamics of these flows [22,23]. This concept
was addressed recently by Refs. [8,24,25], where the mixture
theory was used to describe particle-size segregation and
diffusive remixing in granular avalanches of two or three
constituents. These models consist of a single equation for
the volume fraction of the smaller particles, and are closely
related to the models proposed by Refs. [5,7]. Although these
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approaches are promising for predicting segregation in dense
granular avalanches, they do not include empirical relations
that account for the segregation and remixing fluxes as well
as their dependence with the particles and flow properties [8].
In particular, these models do not consider the feedback that
exists between the particle-size distribution and the dynamics
of the flow [26]. In this context, [13] recently used the
mixture theory to develop a conceptual model for representing
compressible monodisperse granular flows of solid particles
in an ambient fluid, in which the dynamics of each phase
was solved separately. As this two-phase approach is based
on the mixture theory, it can be extended to the case of two
solid constituents by including the corresponding constitutive
relation that describes the interactions between the solid
components. An advantage of extending this model is that the
feedback between the spatial variations of the volume fractions
of the solids and the dynamics of the mixture arises as a natural
consequence of the approach.

The aim of the present work is to study the dynamics of a
dense granular flow composed of a binary mixture of small and
large grains and immersed in an ambient fluid. In this context,
we extend the two-phase approach proposed by Ref. [13] to
the case of binary mixtures, by including in the momentum
equations a constitutive relation that describes the interaction
mechanisms between the solids constituents in a dense regime.
Although the governing equations are general for any binary
mixture of solid constituents in a dense regime, we focus on
mixtures of small and large spherical particles of equal mass
density and surface roughness. For this case, the dynamics of
the granular flow is analyzed experimentally and numerically
for the collapse and spreading of two-dimensional granular
columns in air or water, for different grain size ratios of the
solid particles and column height-to-length ratios.

This article is organized as follows. In Sec. II the derivation
of the governing equations is detailed. The experimental
and numerical methods for the collapse and spreading of a
two-dimensional granular column are described in Sec. III.
The results are presented in Sec. IV, in which the model
equations are validated by comparing directly the numerical
results with the experimental measurements using the front
speed to describe the flow. Finally, in Sec. V we discuss the
results and show that segregation of the granular flow increases
the front speed, which is damped by the ambient fluid effects
that in turn decreases the speed of the grains.

II. GOVERNING EQUATIONS

A. Three-phase framework

The two-phase approach proposed by Ref. [13] is extended
here to obtain the governing equations for a dense granular
flow consisting of binary mixtures of small and large grains
and immerse in an ambient fluid.

In order to identify the components of the mixture, the
subindex α = 0 is defined for the fluid phase and α = 1,2 are
defined for the solid components, with α = 1 denoting small
grains and α = 2 denoting large grains. The mixture occupies
a reference volume V , which is large compared to the particles
size, and the constituent α occupies a volume Vα within V such
as V = ∑

α Vα . Each constituent has a material density γα , a

velocity uαi , and a volumetric concentration cα . The partial
density is defined as ρα ≡ cαγα .

The mass and momentum conservation equations for each
constituent in a dense regime can be written as [13]

∂ρα

∂t
+ ∂(ραuαi)

∂xi

= 0, α = 0,1,2, (1)

∂ρ0u0i

∂t
+ ∂(ρ0u0ju0i)

∂xj

= ρ0gi + ∂

∂xj

[
(μ0 + μT )

(
∂u0i

∂xj

+ ∂u0j

∂xi

)]
− c0

∂p0

∂xi

−
2∑

β=1

Kβ(u0i − uβi), (2)

∂ραuαi

∂t
+ ∂(ραuαjuαi)

∂xj

= ραgi − ∂pα

∂xi

+ sij

∂pα

∂xj

tan ϕα − cα

∂p0

∂xi

+Kα(u0i − uαi) + m̂αβi, α �= β = 1,2, (3)

where xi correspond to the ith direction; pα is the pressure
of the constituent α; ϕα is the internal friction angle of
the solid constituent α and sαij ≡ sgn(∂uαi/∂xj ); Kα is a
well constrained phenomenological drag function [27] that
is described in detail in Ref. [13]; μ0 and μT are the dynamic
and turbulent viscosity of the fluid phase, with μT obtained
from a standard turbulence energy-dissipation model (k − ε

model [28]), which includes the work done by the fluid drag
force as a production term in both k and ε equations [29], and
it is presented in detail in Ref. [13]; finally, m̂αβi = −m̂βαi

represents the reciprocal forces between the solid components
in a dense regime, whose representation is the focus of this
article.

The system of equations (1)–(3) is closed with the saturation
constraint

∑2
α=0 cα = 1 and with the solid pressure closure

proposed by Ref. [13]. In this closure, the solid pressure
is defined as the reaction force that arises in response to
the constraint of incompressibility when the solid particles
are packed, which in the static case can be interpreted as
the fraction of the weight of the solids that is sustained by
direct contacts among solid particles or at boundaries. Here
we extend that definition and interpret the solid pressure of the
constituent α as the reaction force related to the constraint of
incompressibility when the particles of the solid constituent α

are packed, which can be mathematically represented by

pα =
{

pα cα � c∗
α,

0 cα < c∗
α,

α = 1,2, (4)

where c∗
α is the loose packing concentration of the solid

constituent α, which depends on the relative particle diameter
and concentration of the solid constituents of the mixture, as
discussed later in this section.

Note that the collisional stresses are not considered in
Eq. (3) as [13] showed that these can be neglected for
dense granular flows at the laboratory scale considered.
Nevertheless, the rate-dependent collisional part for the dilute
and intermediate regimes may be included in future works, and
the kinetic theory may help to investigate this issue [30,31].
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B. Constitutive relation for the interaction force between solid
constituents in a dense regime

As demonstrated in the Appendix, the interaction force
between the solid components m̂αβi = −m̂βαi can be math-
ematically expressed as

m̂βαi = −m̂αβi = cα

∂T̂
β

αij

∂xj

− cβ

∂T̂ α
βij

∂xj

. (5)

where T̂
β

αij represents the tensor of superficial forces acting
on the surface of the constituent α due to the other solid
component β. In this section, we derive the constitutive relation
for this tensor of superficial forces.

First, let us concentrate on the first component of Eq. (5)
cα∂T̂

β

αij /∂xj , which represents the action force of β on α.

Defining T̂
β

αij as the sum of a compression part −p̂β
α , and a

shear stress part τ̂
β

αij , so that T̂
β

αij = −p̂β
α δij + τ̂

β

αij , this term
is written as

cα

∂T̂
β

αij

∂xj

= −cα

∂p̂β
α

∂xi

+ cα

∂τ̂
β

αij

∂xj

. (6)

In Eq. (6), the normal interaction term −cα∂p̂β
α/∂xi can be

interpreted as a buoyancy force, as it represents the normal
force exerted by the constituent β on the surface of the
constituent α, so that p̂β

α is the pressure of the constituent β, i.e.,
p̂β

α = pβ . The shear interaction term of Eq. (6), cα∂τ̂
β

αij /∂xj ,
on the other hand, represents the tangential force exerted
by the constituent β on the surface of the constituent α,
so that by analogy to the homogeneous dense flow regime,
the shear stress component τ̂

β

αij can be represented by the
Mohr-Coulomb condition with an isotropic solid pressure
assumption, which states that the compressive and shear
stresses acting in a particular plane over a particular point
are related by (e.g., [32])∣∣τ̂ β

αij

∣∣ = (1 − δij )
∣∣p̂β

α

∣∣ tan ϕβ
α = (1 − δij )|pβ | tan ϕβ

α , (7)

where ϕβ
α represents the friction angle between the constituents

β and α. Note that we have assumed isotropic solid pressure,
which means that for the dynamic case the ratio between the
shear to normal stresses is the same along any plane. This
assumption is justified by the fact that granular flows behave
more like a fluid than a solid, as shown by several works that
considered the isotropic assumption (e.g., [33–36]).

Finally, the action force of the constituent β on α in a dense
regime is represented by

cα

∂T̂
β

αij

∂xj

= −cα

∂pβ

∂xi

− s
β

αij cα

∂pβ

∂xj

tan ϕβ
α , (8)

with s
β

αij ≡ sgn[∂(uβi − uαi)/∂xj ], which ensures that the
tangential force exerted by the constituent β on α is opposite
to the movement of α; therefore, it transfers momentum from
α to β.

In the same way, the second component of Eq. (5),
−cβ∂T̂ α

βij /∂xj , which represents the reaction force of the
constituent β on α due to the action force of α on β, is

represented by

−cβ

∂T̂ α
βij

∂xj

= cβ

∂pα

∂xi

+ sα
βij cβ

∂pα

∂xj

tan ϕα
β . (9)

Hence, the reciprocal interaction force between the solid
components has the form of a multicomponent Mohr-Coulomb
yield criterion with an isotropic solid pressure assumption, due
to

m̂βαi = −m̂αβi

= −cα

∂pβ

∂xi

− s
β

αij cα

∂pβ

∂xj

tan ϕβ
α + cβ

∂pα

∂xi

+ sα
βij cβ

∂pα

∂xj

tan ϕα
β , (10)

where s
β

αij = −sα
βij and ϕβ

α = ϕα
β .

C. Packing concentration, solid pressure, and percolation
of small grains

For obtaining the pressure of each solid component in the
solid pressure closure (4), the loose packing concentration of
each solid constituent c∗

α has to be determined. For doing this,
we present a function for the loose packing concentration of
the mixture c∗, which is a general relation that allows us to
determine c∗

α . Then, we analyze two mechanisms that generate
percolation of small grains: the kinetic sieving mechanism and
the sifting of small grains. The way for representing these two
mechanisms is by modifying the representation of the packing
limits of the two species in the solid pressure equation (4),
which is discussed below.

Regarding the loose packing concentration of the mixture
c∗, it is well known that mixtures of small and large grains can
pack to higher concentrations than assemblages of monosized
particles, and the improvement on the packing concentration
depends on the size ratio d1/d2, and on the fractional solid
concentration of each constituent Xα = cα/(c1 + c2), α = 1,2
(pp. 135–163 of Ref. [37]). Several models account for the
influence of these parameters on the mixture packing (pp.
135–163 of Ref. [37]), and we chose the empirical formula of
Ref. [38], which for bimodal spheres of the same composition
and packing concentration can be written as

c∗ (d1/d2,X2)

=
{

(1 − √
d1/d2)c(1 − c)(2 − c)X2 + c X2 � 1/(2 − c),

(1 − √
d1/d2)c(2 − c)(1 − X2) + c X2 > 1/(2 − c),

(11)

where c is the loose packing concentration of monosized
particles that is equal to about 0.6 for spheres (e.g., [13,39]).
Equation (11) indicates that when both constituents of spher-
ical particles have the same size, i.e., d1/d2 = 1, the loose
packing concentration of the mixture is equal to the loose
packing concentration of monosized particles, i.e., c∗ = c. On
the contrary, if the spherical particles have different sizes, the
loose packing concentration of the mixture is greater than the
packing concentration of monosized particles, i.e., c∗ > c. In
this case, the packing concentration is strongly dependent on
the relative concentration of small grains. An example of this
dependence is shown in Fig. 1, where optimal packing occurs
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Optimal packing
(small grains = 28.5%)

c∗
(c

1
,c

2
,d

1
/
d
2
)

small grains (%)

0 20 40 60 80 100
0.6

0.7

0.8

FIG. 1. Calculated loose packing concentration of binary mix-
tures of small and large grains using (11) and c = 0.6, d1/d2 = 0.067
(solid line), and d1/d2 = 0.233 (dashed line). Adapted from Ref. [37].

at ∼28% of small grains, when small grains fill optimally the
voids of the large spheres network (p. 140 of Ref. [37]).

Furthermore, the loose packing concentration of one solid
component can be calculated by considering that c∗ = c∗

1 + c∗
2;

therefore, when the mixture is packed, the space left by one
solid component in the mixture packing is the loose packing
limit of the other solid component, which can be written as

c∗
α = c∗ − cβ, α �= β = 1,2. (12)

The inclusion of the loose packing limits of Eq. (12) in the solid
pressure closure (4) means that for mixture concentrations less
than c∗ both small and large particles lose their contacts and
fall down, if there are no other forces that can support their
weight. However, it is well known that below a critical value of
the mixture concentration, only the small particles fall down
while the large particles remain packed [5]. This percolation
of small grains is due to the kinetic sieving mechanism, which
is explained by the fact that once the mixture is in motion and
consequently expands, small grains have a greater probability
than the large ones of finding a hole in which they can fall into
Ref. [5]. This means that there is a critical value of the mixture
concentration, smaller than c∗, for which only small grains fall
down while the large particles remain packed.

The way for representing the kinetic sieving of small grains
is by modifying the packing limits of small and large grains,
particularly by decreasing the packing limit of the large grains;
therefore, we make two assumptions: first, c∗ is the limit
under which (i.e., c1 + c2 < c∗) the small particles percolate
downward while the large particles remain packed; and second,
ηc∗ is the limit under which (i.e., c1 + c2 < ηc∗) both large and
small particles fall down, with η � 1 an empirical parameter.

In other words, once the mixture expands, there is an interval
for the mixture concentration (ηc∗ < c1 + c2 < c∗) for which
small grains percolate between the large ones. In this way,
for including percolation of small grains, the loose packing
concentration used in the pressure closure (4) for small and
large particles is represented by

c∗
1 = c∗ − c2, c∗

2 = ηc∗ − c1. (13)

The empirical function η has to preserve the physical limit
of η = 1 when c1 = 0 or c2 = 0 or d1 = d2 (one of the two
species is absent or they have the same size), and it should
increase with d1/d2 as percolation is more likely to occur for
small values of d1/d2. Based on this, we propose the following
expression:

η(c1,c2,d1/d2) = exp(−σc1c2[1 − d1/d2]), (14)

with σ the kinetic sieving coefficient, which is an empirical
constant order 1 that is discussed in the results section.

Another mechanism that produces the percolation of small
grains is the sifting of small grains, which occurs when
d1/d2 < (2/

√
3 − 1) ≈ 0.15 that corresponds to the Apollo-

nian ratio for which a small particle exactly fits inside a hole
between three tangent spheres in the network of the larger
particles [40]. This means that when d1/d2 < 0.15 and the
large particles are in point contact with one another, i.e.,
c2 � c, percolation of small particles occurs spontaneously as
long as the interstitial voids between the large particles are not
filled. In the context of the pressure closure (4) and the mixture
packing limit (11), this means that c∗

1 = (1 − √
d1/d2)c(1 − c)

if c2 � c.

D. Dimensionless variables for the granular dam-break problem

We use the governing equations for studying the collapse
and spreading of two-dimensional granular columns in air
or water (i.e., the granular dam-break problem), for different
binary mixtures of small and large spherical particles of equal
mass density and surface roughness (i.e., γ1 = γ2 and ϕ2

1 =
ϕ1 = ϕ2 = ϕ). The characteristics scales for this particular
problem were derived by Ref. [13] and are as follows: the
characteristic time scale T = √

ho/g′, where g′ = g(γα −
γ0)/γα is the reduced gravity and ho is the initial column
height; the characteristic horizontal and vertical velocity scale
U = V = √

g′ho; and the characteristic horizontal and vertical
length scale L = H ∼ UT ∼ ho. Using the loose packing
density of the mixture c∗γα , and the material density of the
fluid γ0, as density scales, then the following dimensionless
variables are obtained:

t̃ = t

√
g′

ho

, x̃i = xi

ho

, ũαi = uαi√
g′ho

,

(15)
p̃0 = p0

γ0g′ho

, p̃α = pα

c∗γ1g′ho

α = 1,2,

where x1 = x, x2 = y are the horizontal and vertical direc-
tions, respectively, and ∼ denotes scaled variables.
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h2
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l (m)

FIG. 2. (a) Sketch of the experimental setup: a perspex rectan-
gular channel of 1.5 m long, 0.5 m deep, and 0.1 m wide, with a
initial column of grains of aspect ratio ho/xo. (b) Sketch of the final
deposit in water. (c) Sketch of the initial column of grains for mixtures
A (d1/d2 = 0.067) listed in Table II, with h1 and h2 the column height
of small and large grains, respectively. (d) Sketch of the initial column
of grains for mixtures B (d1/d2 = 0.233) listed in Table II.

III. METHODS

A. Experimental procedure

Experiments were conducted in a 1.5-m-long perspex
rectangular channel, 0.5 m deep and 0.1 m wide, by suddenly
opening a vertical sluice gate that initially hold a granular
column of glass beads (with ϕ = 26◦) in air or water, as
sketched in Fig. 2(a) (the water depth was 0.45 m). We
used glass beads because they are denser than the ambient
fluids and their subspherical shape makes comparison between
experiments and numerical results easier. The initial column
aspect ratio ho/xo (with xo the initial reservoir length) was
in the range 2–8, with xo = 0.1 m for ho/xo = {2,3,4} and
xo = 0.05 m for ho/xo = {6,8}. For each aspect ratio, we
used two types of binary mixtures of small and large glass
beads (d1 = 0.2 mm and d2 = 3.0 mm, d1 = 0.7 mm and
d2 = 3.0 mm), which led to a total of four sets of experiments
listed in Table I. It is important to mention that each sample
of particles of diameter 0.2, 0.7, and 3.0 mm was slightly
polydisperse and well sorted. The actual grain size ranges
were 0.125–0.250 mm for particles of 0.2 mm, 0.6–0.8 mm
for particles of 0.7 mm, and 2.8–3.2 mm for particles of 3 mm.

TABLE I. Laboratory and numerical experiments of binary
mixtures in air and water, with d1 and d2 the diameter of small
and large grains, and ν0 the kinematic viscosity of the fluid phase.
For each set, γ1 = γ2 = 2.5 × 103 kg m−3, ϕ1 = ϕ2 = 26◦, c = 0.6,
xo = 0.1 m for ho/xo = {2,3,4}, and xo = 0.05 m for ho/xo = {6,8},
�x = �y = 7.14 × 10−3 m, and �t = 2.5 × 10−3 s.

(d1, d2) γ0 ν0

Set (×10−3 m) d1/d2 (kg m−3) (×10−5 m2 s−1)

A1 (in air) (0.2, 3.0) 0.067 1.2 1.7
B1 (in air) (0.7, 3.0) 0.233 1.2 1.7
A2 (in water) (0.2, 3.0) 0.067 1000 0.1
B2 (in water) (0.7, 3.0) 0.233 1000 0.1

Each set of experiments was carried out by varying the
proportion of small and large glass beads. In the case of
mixtures with d1/d2 � 0.15 (sets B1 and B2 in Table I) we
used homogeneous mixtures with four initial relative solid
concentrations of small particles equal to 0, 25, 50, and 100%.
The homogeneity of the mixture was achieved by adding small
volumes of material into the reservoir as the ambient fluid was
present inside the channel as shown in Fig. 2(a). In contrast,
for mixtures with d1/d2 < 0.15 (sets A1 and A2 in Table I),
for which percolation of small particles between the voids of
large particles occurred spontaneously, different proportions of
small and large particles were achieved by varying the height of
the column of large particles [h2 in Table II and Fig. 2(c)], and
filling at different levels [h1 in Table II and Fig. 2(c)] the inter-
stices between them (without forcing the large particles apart).

The experimental procedure can be summarized as follows.
The glass beads were placed into the reservoir without
agitation or vibration. The channel was illuminated with
diffuse back lighting that provided a good contrast for video
analysis, and a video camera was carefully aligned along
the horizontal direction. The sluice gate was then manually
removed rapidly to release the granular mass that spread into
the horizontal channel until it came to rest, while the flow
was recorded with the video camera at 50 frames per second.
Finally, the movie was processed with MATLAB R© in order to
track the free surface and position of the front of the granular

TABLE II. Experimental setup for initial columns of exper-
iments listed in Table I. h1 and h2 are the column height of
small and large grains, respectively, and % of small grains ≡
100(hoxo)−1

∫ ho

0

∫ xo

0 (c1/[c1 + c2])t=0dxdy.

Sets Experiment h1 h2 Small grains (%)

A1 and A2 1 ho 0
2 1/3ho ho 11
3 2/3ho ho 20
4 ho ho 27
5 ho 2/3ho 47
6 ho 1/3ho 70
7 ho 100

B1 and B2 1 ho ho 25
2 ho ho 50
3 ho ho 75
4 ho 100
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flow. This procedure was done for each column aspect ratio of
the experiments described in Table II, so that each experiment
was repeated five times.

As the effect of gate removal was not considered in the
numerical simulations, we verified the time of opening and
found that it was ∼0.1 s, which was less than about 5% and
10% of the typical flow duration in water and air, respectively.
Furthermore, the error in the front velocity was ±0.05 m s−1,
which corresponded to less than about 4% and 8% of the
typical flow front velocity in air and water, respectively.

B. Numerical solution

Governing equations were solved in a closed rectangular
domain with the same horizontal dimensions as the experi-
ments. As the pressure fields for each constituent were not
known, following [13] we applied the implicit finite volume
pressure-correction scheme proposed by Ref. [41] to each
constituent, which is an iterative procedure for calculating the
flow and pressure fields that is described in detail in Ref. [13].

Regarding the boundary conditions, the grid was arranged
such that the wall coincided with a control volume face, thus
requiring only specifying the flow across the wall as a boundary
condition to the pressure-correction equation (pp. 129–130
of Ref. [41]), which was equal to zero since the domain
was closed. Additionally, the no-slip boundary condition was
considered for the fluid, so that the fluid velocity parallel to
the walls was equal to zero. A zero momentum flux across
the walls was assumed for the solid constituents, so that the
gradient of the solids velocity parallel to the walls was equal to
zero, which means that solid particles can slip along the walls.
Finally, a wall friction equal to the inner Coulomb friction ϕ

was assumed.

The solution algorithm for one time step can be summarized
as follows. (i) Start the calculation of the fields at the new time
step with the solution of the previous time step. (ii) Solve
the discretized momentum equations for the fluid. (iii) Solve
the discretized momentum equations for the small particles.
(iv) Solve the discretized momentum equations for the large
particles. (v) Solve the pressure-correction equation for the
fluid, and correct fluid pressure and velocities (underrelaxed).
(vi) Solve the pressure-correction equation for the small parti-
cles, and correct solid pressure and velocities (underrelaxed).
(vii) Solve the pressure-correction equation for the large parti-
cles, and correct solid pressure and velocities (underrelaxed).
(vii) Solve the discretized conservation of mass equation for
the small particles. (viii) Solve the discretized conservation of
mass equation for the large particles. (ix) Solve the discretized
k − ε equations for the fluid. (x) With the new fields, return to
step (ii) until a converged solution for both the continuity and
momentum equations is satisfied to an acceptable tolerance
(difference in velocity between two successive iterations less
than 1 mm s−1) for each constituent.

We solved numerically the four sets of experiments pre-
sented in Table I. The horizontal dimension of the compu-
tational domain L was given by the experimental facility
(i.e., L = 1.5 m); whereas the vertical dimension H was
chosen as H = 2ho, as we verified that for H larger than
∼1.5ho the influence of the boundary condition at the top
of the computational grid was negligible. For simplification
and because the horizontal dimension of the domain was
fixed, independent of the experiment, we used a fixed grid
size of �x = �y = 7.14 × 10−3 m (i.e., L/�x = 210), and a
time step of �t = 2.5 × 10−3 s (i.e.,

√
Lg−1/�t = 156), such

as �x/�t = 2.9 m s−1 was about twice the maximum front
propagation speed. The details of the numerical setup for each
simulation are also summarized in Table I.
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ỹ

0

0.3

0.6

0.9
(a)

X1 = 25% , ˜t = 1.3

ỹ
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FIG. 3. Results of granular column collapse and spreading in air with grains size of 3 mm and columns with ho/xo = 3. Numerical
experiments were carried out by varying the proportions of the same solid constituent between 25% and 75%. (a),(b) Contour graphs of the

dimensionless solid pressures p̃1 and p̃2, respectively, and experimental (——) and computed c−1
∫ H̃

0 [c1(̃x,̃y) + c2(̃x,̃y)]dỹ (– – –) free surface
of the granular flow. (c),(d) Spatial variation of the magnitude (contour) and direction (arrows) of the solid velocities ũ 1 and ũ 2, respectively.
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IV. RESULTS

A. Validation of the model equations

To validate the new constitutive relation (10) that describes
the interactions between solid constituents in a dense regime,
we first conducted numerical experiments for the collapse and
spreading of a granular column composed by two solid species,
named 1 and 2, with equal material density and diameter (i.e.,
γ1 = γ2 and d1 = d2) in air. In this condition, the three-phase
flow dynamics is identical to the monodisperse counterpart
(i.e., two-phase flows) validated by Ref. [13]. We also carried
out these numerical experiments with the larger particles in
air (experiment A1.1 of Table II), for which the fluid effects
are less important [13], and we varied the relative solid
fractions Xα = cα/(c1 + c2) between (X1,X2) = (0%, 100%),
(25%, 75%), and (50%, 50%). The results of this analysis are
presented in Figs. 3 and 4 that also show a comparison with
the experimental measurements. It is shown that the total solid
pressure is partitioned according to the relative solid fraction
of each component [Figs. 3(a) and 3(b)], and is equal to the
simulated solid pressure of one solid constituent [Fig. 4(a)].
Furthermore, in the three-constituent simulations, both solid
components have the same solid velocity [Figs. 3(c) and 3(d)]
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FIG. 4. Results of granular column collapse and spreading in air
with grains size of 3 mm and columns with ho/xo = 3. The numerical
experiments were carried out by varying the proportions of the same
solid constituent between (0%, 100%), (25%, 75%), and (50%, 50%).
(a) Time series of the total solid pressure at the left bottom corner
of the column p̃b = p̃1

b + p̃2
b (gray lines) and the column height at

the left top yt/ho (black lines). (b) Comparison between measured
(◦) and simulated time series of the dimensionless front position
(xF − xo)/ho for (0%, 100%) (——), (25%, 75%) (− · − ·), and
(50%, 50%) (– – –).

and front speed [Fig. 4(b)], thus preserving the mixture force
balance independent of the fractions of the components, which
validates the solid interaction closure (10), as the two solid
constituents simulations give the same numerical results as for
the case of a single constituent.

Note that Fig. 4(b) shows that during the deceleration stage
at the end of the granular flow, the agreement between simula-
tions and experiments is not as good as during earlier stages.
This is because when the flow decelerates in experiments,
some particles escape from the surface of the granular flow,
which does not occur in simulations, thus leading to a larger
runout distance in experiments than in numerical simulations.
It is important to note that this difference between experiments
and simulations does not exceed 10% of ho.

Before validating the constitutive relation (10) for the case
of binary mixtures of small and large grains, it is necessary
to analyze the kinetic sieving coefficient σ � 0, introduced in
the empirical function η(σ ) of Eq. (14) in order to address the
kinetic sieving of small grains in the solid pressure closure (4).

σ
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FIG. 5. (a) Ratio between simulated and measured front speed
us

F /um
F , as a function of σ for experiments A1.4 (•) and B1.1 (�)

of Table II and ho/xo = 2. (b) Image of the experimental deposit of
A1.4. (c),(d) Numerical results showing the contour graph of the solid
concentration of small particles c1 for simulated deposits of A1.4 with
σ = 1.4 (c) and σ = 0.0 (d). White dashed line marks the separation
between the layer with small and large grains at the bottom of the
deposit and the layer rich in large grains at the surface (in where
c1 < 0.1), and the black dashed line represents the free surface of the
deposit.
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Following [13], the front speed in the constant velocity regime
uF = max(dxF /dt), is used as a control parameter to compare
the numerical results with the experimental measurements. We
chose the front speed because we verified that it was the most
sensitive parameter that allowed us to validate the theory.

A sensitivity analysis of the front speed depending on
σ is presented in Fig. 5(a), which shows the ratio between
simulated and measured front speed us

F /um
F , for experiments

A1.4 and B1.1 of Table II. The simulated front speed is
smaller than the experimental measurements when σ = 0, but
approaches those measurements when σ increases [Fig. 5(a)].
The final deposit morphology is also fairly well simulated
when increasing σ [compare Figs. 5(c) and 5(d) with Fig. 5(b)],
although the fit of the deposit morphology is not as good as
in the case of only one solid species [see comparison between
measured and simulated free surface of the granular flow in
Figs. 3(a) and 3(b)].

The influence of σ can be explained by the expansion of
the granular network induced by particle segregation. This
is shown in Figs. 5(b)–5(d) by comparing the measured
[Fig. 5(b)] and simulated deposits of A1.4 in cases of σ = 1.4
[Fig. 5(c)] and σ = 0.0 [Fig. 5(d)]. Percolation of the small
grains induces the segregation of the large particles at the top
of the flow [Figs. 5(b) and 5(c)], which in turn decreases the
mixture concentration. This is because in the cases analyzed
here, the relative concentration of small grains is close to
28%, which corresponds to the optimal packing (see Fig. 1)
so that any change in the relative concentration of small
grains (increase or decrease) produces a decrease in the loose
packing mixture concentration, thus increasing the mixture
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FIG. 6. Experimental results for experiments A1.4 (d1/d2 =
0.067 in air) and ho/xo = 2. (a) Dimensionless front speed,
uF /

√
g′ho, and (b) maximum increase of mixture volume (Vmax −

Vo)/Vo, as a function of the initial relative concentration of small
grains. The experimental tendency is represented by the dashed line.
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FIG. 7. Simulated, ũs
F , versus modelled, ũm

F , dimensionless front
speed for the four sets of experiments of Table I with ho/xo = 3 and
σ = 1.4.

volume. This volumetric expansion is then reflected in the front
speed as the kinetic energy is proportional to both the solid
concentration and square velocity, so that by conservation of
energy a decrease in solid concentration is compensated with
an increase in speed. Experimental measurements in air are
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FIG. 8. Froude number Fr = uF /
√

2g′he as a function of the
initial volume fraction of small grains for sets A1 (in air, 
) and
A2 (in water, �) (a), and B1 (in air, ◦) and B2 (in water, ∇)
(b) of Table I. White marks are experimental measurements with
ho/xo = {2,3,4,6,8}; and black marks are simulation results with
ho/xo = 6 and σ = 1.4. The experimental tendency is represented
by the dashed line.
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used to test this hypothesis, and the main results are shown in
Fig. 6 that presents the dimensionless front speed uF /

√
g′ho

and the maximum increase of mixture volume (Vmax − Vo)/Vo

as a function of the initial relative concentration of small
grains, with Vo = xoho and Vmax = max[

∫ L

0 hs(x,t)dx] where
hs is the experimental free surface of the granular flow. The
experimental results show that when the initial volume fraction
of small grains increases until ∼28%, both the front speed and
the mixture volume increase.

The results described above can be explained in terms of
the governing equations. In particular, the segregation of small
and large grains that explains the increase in front speed in
Fig. 5(a) is modulated by σ , explained as follows. When σ

increases, the empirical function η(σ ) of Eq. (14) decreases,
so that accordingly with Eqs. (4) and (13), there is an interval
of the mixture concentration (ηc∗ < c1 + c2 < c∗) for which
the solid pressure of large grains exists and the solid pressure
of small grains is set to zero. Once the solid pressure of small
grains is set to zero, the force balance is broken and the small
grains fall down, thus generating percolation and the resulting
segregation of the granular flow. Moreover, as a consequence
of segregation, there is an expansion of the flow because of the
decrease in mixture concentration [see (11) and Fig. 1, which

shows that when the proportion of small grains increases above
28%, the mixture concentration decreases], which produces
the increase in front speed that is observed in the experimental
measurements of Fig. 6 and in the simulation results. It is
argued that this increase in flow speed may be explained in
terms of the kinetic energy of the flow, which is proportional to
both the solid concentration and the square of the flow velocity,
so that a decrease in solid concentration is compensated by an
increase in speed. In contrary, when σ approaches 0, η(σ ) is
closer to 1, so that there is no practical difference between
large and small grains in terms of solid pressure. Hence,
there is neither segregation nor expansion of the granular
flow, and consequently the front speed stays invariant with
respect to the situation described by a homogeneous granular
flow.

Using σ = 1.4 in Eq. (14), for which us
F /um

F ≈ 1, to
model the kinetic sieving of small grains, the four sets of
experiments summarized in Table I were simulated and the
results for ho/xo = 3 are presented in Fig. 7. A good agreement
between simulated and measured front speed is observed,
thus validating the system of governing equations for dense
granular flows of binary mixtures of small and large spherical
particles of equal mass density in an ambient fluid.
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FIG. 9. Results for experiments A1.4 at t̃ = 1.9 (in air, left panels) and A2.4 at t̃ = 3.1 (in water, right panels). (a),(b) Experimental image.
(c),(d) Contour graph of the total solid concentration, c1 + c2, and the streamlines of fluid velocity (→→). (e),(f) Dimensionless horizontal
fluid velocity, ũ0 (− · − ·), and drag force, F̃x drag (→), profiles in the front area.
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B. On the dynamics of three-phase dense granular flows

In order to verify that the results obtained from experiments
are independent of the initial column aspect ratio, we repeated
each set of experiments with columns of ho/xo = {2,3,4,6,8}.
For comparison of the results, we used the equivalent height
he = he(tan ϕ,ho/xo), introduced by Ref. [13] to subtract the
effects of tan ϕ and ho/xo, which for the case of monosized
glass beads (ϕ = 26◦) is

he

ho

=
{

0.4 1 � ho/xo � 3,

0.76(ho/xo)−0.58 3 < ho/xo � 16,
(16)

such that the front speed can be written generically as

uF = Fr
√

2g′he, (17)

where Fr is a Froude number that is independent of tan ϕ and
ho/xo, so that the dimensionless front speed or Froude number
Fr = uF /

√
2g′he collapses to a single value when considering

the same conditions of ambient fluid and solids mixture but
different column aspect ratio.

Figure 8 shows Fr as a function of the initial volume
fraction of small grains for the four sets of experiments of
Table I. For the case of experiments in air (experiments A1
and B1 in Fig. 8), the front speed increases when the initial
volume fraction of small grains increases until ∼28% (Fig. 8),
which according to Eq. (11) corresponds to the optimal or
maximum packing concentration of the mixture (see Fig. 1).
As discussed in the previous section, this behavior could be
caused by particle segregation that increases the solid mixture
volume, and it is more important for binary mixtures with
d1/d2 = 0.067 < 0.15 [experiments A1 in Fig. 8(a)] than
for binary mixtures with d1/d2 = 0.233 [experiments B1 in
Fig. 8(b)]. When repeating the same experiments in water, the
increase in front speed due to particle segregation is damped,
and the maximum value of the front speed is shifted toward
smaller relative concentration of small grains [see experiments
A2 in Fig. 8(a)]. This behavior can be attributed to the nature
of the ambient fluid, and can be explained by the competition
between particle segregation and ambient fluid effects. In fact,
the front speed decreases when the particle diameter decreases,
and this effect is enhanced in water [13].

The effect of the ambient fluid is illustrated in Fig. 9 that
presents a comparison of the results for experiments in air
and in water. Although in both cases drag forces coupled
with wall fluid viscous effects counteract the movement of
the solids [see Figs. 9(e) and 9(f) and discussion in Ref. [13]],
the ambient fluid effects are more important in water than in
air. Furthermore, Figs. 9(a)–9(d) show that, in general, there
is a good agreement between the experimental and numerical
morphologies of the granular flow. Apparent discrepancies
are observed, however, in the case of ambient water for
which experiments show that suspended particles at the top
of the granular flow are concentrated in eddies [Fig. 9(b)],
whereas numerical simulations reveal a smooth region with
low concentration of particles [Fig. 9(d)]. This is because the
experimental image corresponds to just one realization and
the results of the model equations correspond to an average
over many realizations. In fact, by using the equivalent height
he described in Eq. (17) to scale the images of experiments
A2.4 of Table II with the same dimensionless time t

√
2g′/he,
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FIG. 10. (a) Experimental average image of experiments A2.4
at t

√
2g′/he = 8.5. The gray solid line delimits the simulated area

with c1 + c2 � 0.6. (b) Simulated contour graph of the total solid
concentration of experiment A2.4 and ho/xo = 6 at t

√
2g′/he = 8.5.

a better fit is observed in terms of the flow morphology as
shown in Fig. 10. This figure shows that after averaging the
experimental images, the eddies associated to the suspended
particles at the top of the flow are also averaged, thus leading
to the same smooth region as in the simulations. Also, this
figure validates the use of he as scaling parameter when using
different ho/xo, because not only the front speed (Fig. 8) but
also the flow morphology collapses to a single value when
considering the same conditions of ambient fluid and solids
mixture but different ho/xo.

V. DISCUSSION AND CONCLUSIONS

The coupled dynamics of the constituents of a dense
granular flow composed of a binary mixture of small and
large grains and immersed in an ambient fluid was studied.
For doing this, we extended the two-phase approach proposed
by Ref. [13] to the case of flowing dense binary mixtures
of solid particles by including in the momentum equations a
constitutive relation that describes the interaction mechanisms
between the solid constituents in a dense regime. This
theory was validated by comparing the numerical results
with experimental measurements of flows resulting from the
collapse, in ambient air or water, of two-dimensional granular
columns that consisted of mixtures of small and large spherical
particles of equal mass density.

Our results suggest that the model equations include the
essential features that describe the dynamics of dense granular
flows of mixtures of small and large spherical particles of equal
mass density and surface roughness (Fig. 7). The key feature of
the model equations is the new constitutive relation (10), which
correctly represents the interactions between the solid species
in a dense regime, since one species can be split into several
subconstituents and the resulting dynamics is independent of
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that subdivision (see Figs. 3 and 4). With this new constitutive
relation, the effect of difference in diameter between the two
solid constituents is only taken into account in the model
through the interactions with the ambient fluid. However, the
dynamics of these binary mixtures is incompletely accounted
for unless the kinetic sieving of small grains is included
(Fig. 5). For doing this, the empirical function η(σ ) of Eq. (14)
was introduced to represent the fact that under a critical value
of the mixture concentration, only the small particles fall
down while the large particles remain packed [5]. The direct
effect of Eq. (14) in the solid pressure closure (4) was the
segregation of the constituents [compare Figs. 5(c) and 5(d)],
which can be explained by the squeeze expulsion mechanism,
proposed first in Ref. [5] and later by Refs. [14,24], for
which percolation of small grains produces force imbalances
at the base of the flow and forces the large particles to move
upward. This mechanism was a natural result of the model
equations.

An important consequence of the segregation in the granular
flow is the increase of the volume of the binary mixture because
of the decrease of the mixture concentration, which is then
reflected in an increase of the front speed (see Fig. 5). This is
because in the cases analyzed here, the relative concentration
of small grains is close to 28%, which corresponds to the
optimal packing (see Fig. 1), so that any change of the
spatial variation of the relative concentration of small grains
(increase or decrease) produces a decrease in the loose packing
mixture concentration, thus increasing the mixture volume.
This volumetric expansion is then reflected in the front speed
as the kinetic energy of the flow is proportional to both
the solid concentration and the square of the flow velocity,
so that a decrease in solid concentration is compensated
by an increase in speed. The increase in flow mobility for
binary mixtures having small amounts of small grains has
been reported in experiments [18,19] and in soft particle
discrete element numerical simulations [20]. In these studies,
the mobility increase was attributed to a thin layer of small
particles that may change the frictional dynamics at the base
of the flow [19,20]. However, the results of Fig. 5 suggest that
the increase in flow speed caused by the volumetric expansion
of the flow related to the particle segregation can also explain
the enhanced mobility. This relation between mobility and
segregation may be in contradiction with Ref. [19] who found
that a deposit of a granular flow with high mobility appears to
have less segregation than a deposit of a flow with low mobility.
However, our results agree with that of Refs. [18–20] as the
maximum flow mobility occurs for mixture concentrations
close to the maximum packing concentration (∼28% of
fraction of small grains; see curves A1 and B1 of Fig. 8),
for which the increase in volume due to segregation is greater
[see Eq. (11) and Fig. 1]. Hence, the increase in flow front
speed and mobility may be the result of both the expansion of
the granular mixture and the lubrication at the base of the flow,
although other effects could also contribute to the increase
in front speed. For instance, chaos was introduced into our
system A as particles could not return to their near-perfect
initial state, whereas the initial state of our system B was closer
to a natural system in terms of initial preparation. Further
experimental analysis is required to elucidate this issue.
These results, however, show the necessity of considering

small and large grains in the analyses of granular flows in
nature.

Regarding the ambient fluid effects, [13] showed that in
the context of dense granular flows, the main forces that
describe the interactions between fluid and solid particles are
the hydrodynamic fluid pressure (or pore pressure) and the drag
forces. This is because hydrodynamic fluid pressure can hold
the reduced weight of the solids, thus inducing a transition from
dense-compacted to dense-suspended granular flows, whereas
drag forces counteract the solids movement, especially within
the near-wall viscous layer. Also, [13] showed that fluid
turbulence is particularly important and has to be considered in
the analysis. This is explained by the fact that fluid turbulence
contributes to the solid-phase force balance, as fluid turbulence
decreases the fluid velocity, thus increasing drag forces that
finally counteract the gravity in the solid-phase force balance.
As a consequence, small grains are more resistant to flow than
large grains, so that the front speed decreases when the grain
size decreases, and this behavior is more pronounced in water
than in air. In the case of the three-constituent granular flow
analyzed here, these ambient fluid effects help to explain the
results of Fig. 8, which shows that the increase in flow speed
due to the volumetric expansion is damped in water compared
to the case in air [compare experiments A1 and A2 of Fig. 8(a)].
As shown in Figs. 9(e) and 9(f), this occurs because the drag
forces coupled with the wall fluid viscous effects counteract the
movement of the solid particles. Therefore, although a mixture
of small and large grains may segregate and the front speed
may increase, fluid drag forces can counteract the movement
of the solids, thus competing with segregation.
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APPENDIX: DERIVATION OF THE MATHEMATICAL
REPRESENTATION OF THE CONSTITUTIVE RELATION
BETWEEN SOLID CONSTITUENTS IN A DENSE REGIME

For obtaining the constitutive relation that represents the
interaction force between the solid components in a dense
regime m̂βαi = −m̂αβi , we follow the second guiding principle
proposed by Ref. [22] to describe the motion of a constituent.
This principle states that we may, in abstraction, isolate a
constituent from the rest of the mixture as long as the effects of
the other components are considered as forces acting upon it. In
this context, let us do the abstraction of a volume Vα , containing
only particles of the solid constituent α and surrounded by a
mixture that contains all the other components [Fig. 11(a)].
This abstraction allows us to interpret the action of the other
solid component β on the constituent α as superficial forces
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∂Vα

(a)
V −Vα

Vα

T̂β
αij

∂Vβ

(b)
V −Vβ

Vβ

T̂α
βij

FIG. 11. In abstraction the solid constituents α and β are isolated from the rest of the mixture. (a)
∫

∂Vα
T̂

β

αij nj dS corresponds to the action
force of the solid constituent β acting on the surface ∂Vα of Vα , and in response there is an equivalent and opposite force acting on β,
− ∫

∂Vα
T̂

β

αij nj dS. (b) In the same way,
∫

∂Vβ
T̂ α

βij nj dS corresponds to the action force of the solid constituent α acting on the surface ∂Vβ of

Vβ , and in response there is an equivalent and opposite force acting on α, − ∫
∂Vβ

T̂ α
βij nj dS. Thus, the mutual actions between constituents are

represented by
∫

V
m̂βαidV = − ∫

V
m̂αβidV = ∫

∂Vα
T̂

β

αij nj dS − ∫
∂Vβ

T̂ α
βij nj dS.

acting on the surface ∂Vα of Vα , such that this action can be
represented by a tensor of superficial forces T̂

β

αij acting on
∂Vα . In this way, the action force of the constituent β on α

is
∫
∂Vα

T̂
β

αijnj dS, with nj the outward normal vector, and in
response there is an equivalent and opposite force acting on
β, − ∫

∂Vα
T̂

β

αij nj dS. Similarly, if we now consider the same
abstraction for the constituent β [Fig. 11(b)], then the action
force of the solid constituent α on β is

∫
∂Vβ

T̂ α
βij nj dS, and in

response there is an equivalent and opposite force acting on α,
− ∫

∂Vβ
T̂ α

βij nj dS.
Thus, the reciprocal interaction force between the solid

constituents α and β has two components, one representing
the action force of the constituent β on α that is applied on the
border ∂Vα , and another representing the reaction force of the
constituent β on α that is applied on the border ∂Vβ , such that

the reciprocal force is represented by∫
V

m̂βαi dV = −
∫

V

m̂αβi dV

=
∫

∂Vα

T̂
β

αij nj dS −
∫

∂Vβ

T̂ α
βij nj dS. (A1)

Applying the divergence theorem and since dVα = cα dV , so
that∫

∂Vα

T̂
β

αij nj dS =
∫

Vα

∂T̂
β

αij

∂xj

dVα =
∫

V

cα

∂T̂
β

αij

∂xj

dV, (A2)

(A1) is then written as

m̂βαi = −m̂αβi = cα

∂T̂
β

αij

∂xj

− cβ

∂T̂ α
βij

∂xj

. (A3)
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