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DECOMPOSITION OF SINGULAR MATRICES INTO

IDEMPOTENTS

ADEL ALAHMADI, S. K. JAIN, AND ANDRÉ LEROY

Abstract. In this paper we provide concrete constructions of idempotents to
represent typical singular matrices over a given ring as a product of idempo-
tents and apply these factorizations for proving our main results.

We generalize works due to Laffey ( Products of idempotent matrices. Lin-
ear Multilinear A. 1983) and Rao (Products of idempotent matrices. Linear
Algebra Appl. 2009) to noncommutative setting and fill in the gaps in the
original proof of Rao’s main theorems. We also consider singular matrices
over Bézout domains as to when such a matrix is a product of idempotent
matrices.

1. Introduction and definitions

It was shown by Howie [10] that every mapping from a finite set X to itself with
image of cardinality ≤ cardX − 1 is a product of idempotent mappings. Erdös [7]
(cf. also [14]) showed that every singular square matrix over a field can be expressed
as a product of idempotent matrices and this was generalized by several authors to
certain classes of rings, in particular, to division rings and euclidean domains [12].
Turning to singular elements let us mention two results: Rao [3] characterized,
via continued fractions, singular matrices over a commutative PID that can be
decomposed as a product of idempotent matrices and Hannah-O’Meara [9] showed,
among other results, that for a right self-injective regular ring R, an element a is a
product of idempotents if and only if Rr.ann(a) = l.ann(a)R= R(1− a)R.

The purpose of this paper is to provide concrete constructions of idempotents to
represent typical singular matrices over a given ring as a product of idempotents
and to apply these factorizations for proving our main results. Proposition 14 and
Theorem 22 fill in the gaps in Rao’s proof of a decomposition of singular matrices
over principal ideal domains (cf. [3], Theorems 5 and 7), and simultaneously gener-
alize these results. We show that over a local ring R (not necessarily commutative),
if every 2 × 2 matrix A with r.ann(A) 6= 0 is a product of idempotent matrices,
then R must be a domain (Theorem 9). We prove the existence of a decomposi-
tion into product of idempotents for any matrix A with l.ann(A) 6= 0, over a local
domain (not necessarily commutative) with Jacobson radical J(R) = gR such that
∩nJ(R)n = 0 (Theorem 10).

Let R be a Bézout domain such that every 2× 2 singular matrix is a product of
idempotent matrices. Theorem 22 shows that if every 2×2 invertible matrix over R
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is a product of elementary matrices and diagonal matrices with invertible diagonal
entries then every n× n singular matrix is a product of idempotent matrices;
The converse of Theorem 22 is true for commutative Bézout domain, that is, if
every n×n singular matrix over such a domain is a product of idempotent matrices
then every 2× 2 invertible matrix is a product of elementary matrices and diagonal
matrices with invertible diagonal entries (Corollary 21). Finally, Theorem 24 studies
the condition when each right singular element of the endomorphism ring of an
injective module is a product of projections. This shows, in particular, that each
linear transformation of a vector space, which is right singular, is a product of
projections if and only if the vector space is finite-dimensional.

Let us now give the main definitions and fix our terminology.
All rings considered are nonzero rings with an identity element denoted by 1, and

need not be commutative. A ring R is called a local ring if it has a unique maximal
right ideal (equivalently, unique maximal left ideal). For example, power series ring
F [[x]] over a field F and the localization Z(p) of the ring of integers Z are local
rings. A ring R is called projective-free if each finitely generated projective right
(equivalently, left) module is free of unique rank. Every local ring is projective-free.
A ring R is a principal right (left) ideal ring if each right (left) ideal is principal. A
right R-module M is called injective if every R-homomorphism from a right ideal
of R to M can be extended to an R-homomorphism from R to M. Clearly, every
vector space over a field is injective. A ring R is called right self-injective if it is
injective as a right R-module. A ring R is called von Neumann regular if for each
element a ∈ R, there exists an element x ∈ R such that axa = a. A ring R is called
unit regular if for each element a ∈ R, there exists an invertible element u such
that aua = a. A ring R is called Dedekind finite if for all a, b ∈ R, ab = 1 implies
ba = 1.

An n × n matrix is called elementary if it is of the form In + ceij , c ∈ R with
i 6= j. A ring R has a stable range 1 if for any a, b ∈ R with aR + bR = R, there
exists x ∈ R such that a+ bx ∈ U(R), where U(R) is the set of invertible elements
of R. A ring R is right (left) Bézout if any finitely generated right (left) ideal of R
is principal. Hermite rings have been defined differently by different authors in the
literature. Following Kaplansky, we call R to be a right (left) Hermite ring, if for
any two elements a, b ∈ R there exists a 2 × 2 invertible matrix P and an element
d ∈ R such that (a, b)P = (d, 0) (P (a, b)t = (d, 0)t). Lam ([14], section I, 4) calls
this ring as K-Hermite ring. By a Hermite (Bézout) ring we mean a ring which
is both right and left Hermite (Bézout). Amitsur showed that a ring R is a right
(left) Hermite domain if and only if R is a right (left) Bézout domain. Theorem 16
in this paper provides an alternative proof of Amitsur’s theorem.

A ring R is GE2 if any invertible 2×2 matrix is a product of elementary matrices
and diagonal matrices with invertible diagonal entries.

A right unimodular row is a row (a1, . . . , an) ∈ Rn with the condition
∑n

i=1 aiR =
R. A right unimodular row is completable if it is a row (equivalently, the bottom
row) of an invertible matrix.

An element a in a ring R will be called right (left) singular if r.ann (a) 6= 0
(l.ann (a) 6= 0). An element is singular if it is both left and right singular. U(R)
will denote the set of invertible elements of a ring R. Mn×m(R) stands for the set
of n×m matrices over the ring R. The ring of n×n matrices over R will be denoted
by Mn(R). The group of n× n invertible matrices over R is denoted by GLn(R).
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2. Preliminaries.

We begin with an elementary lemma which works like our reference table for
the proofs of our results. Note that one can obtain additional factorizations from
a given factorization into idempotent matrices by taking conjugations.

Lemma 1. (Table of factorizations) Let R be any ring and let a, b, c ∈ R. Then

(a)

(
a 0
0 0

)
=

(
1 a
0 0

)(
0 0
0 1

)(
1 0
1 0

)
,

(a′)

(
0 0
a 0

)
=

(
0 0
a 1

)(
1 0
0 0

)(
1 0
1 0

)
,

(b)

(
a ac
0 0

)
=

(
1 a
0 0

)(
0 0
0 1

)(
1 0
1 0

)(
1 c
0 0

)
,

(b′)

(
a 0
ca 0

)
=

(
1 0
c 0

)(
1 1
0 0

)(
0 0
0 1

)(
1 0
a 0

)
,

(c)

(
ac a
0 0

)
=

(
1 a
0 0

)(
0 0
c 1

)
,

(c′)

(
ca 0
a 0

)
=

(
0 c
0 1

)(
1 0
a 0

)
,

(d) with b ∈ U(R),

(
a b
0 0

)
=

(
b(b−1a) b

0 0

)
can be factorized as in (c) and

(
a 0
b 0

)
=

(
(ab−1)b 0

b 0

)
can be factorized as in (c′),

(e) with a ∈ U(R),

(
a b
0 0

)
=

(
a a(a−1b)
0 0

)
can be factorized as in (b) and

(
a 0
b 0

)
=

(
a 0

(ba−1)a 0

)
can be factorized as in (b′).

In the next lemma, we consider factorizations of n× n matrices:

Lemma 2. Let R be any ring and A ∈ M2(R) be either

(a) an elementary matrix,

(b)

(
0 1
1 0

)
,

(c) a diagonal matrix,

(d)

(
a b
0 0

)
or

(
a 0
b 0

)
, a, b ∈ R.

Then, for n ≥ 3, the n×n matrix

(
A 0
0 0

)
is a product of idempotent matrices,

where zero blocs are of appropriate sizes.

Proof. We will treat the case when n = 3. The general case is similar.
(a) Let us, for instance, choose an elementary matrix A = I2 + ae12.

A =

(
1 a
0 1

)
. Then



1 a 0
0 1 0
0 0 0


 =



1 0 0
0 1 0
0 0 0






1 a 1
0 1 0
0 −a 0






1 0 0
0 1 0
0 0 0


.

(b)



0 1 0
1 0 0
0 0 0


 =



1 0 0
0 1 0
0 0 0







0 1 1
1 0 −1
−1 1 2






1 0 0
0 1 0
0 0 0


.
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(c)



a 0 0
0 b 0
0 0 0


 =



1 0 −1
0 1 0
0 0 0







1 0 0
0 1 0

1− a 0 0






1 0 0
0 1 −1
0 0 0






1 0 0
0 1 0
0 1− b 0


.

(d) Let us consider the case



a 0 0
b 0 0
0 0 0


 =



1 0 a
0 1 b
0 0 0






0 0 0
0 0 0
0 0 1






1 0 0
1 0 0
1 0 0


.

�

Lemma 3. Let R be a ring. If each right (left) singular element is a product of
idempotents, then R is Dedekind finite.

Proof. Let a, b ∈ R be such that ab = 1. Then l.ann(a) = 0. If r.ann(a) = 0
then a(ba − 1) = 0 implies ba = 1, and we are done. In case r.ann(a) 6= 0 then
by hypothesis a is a product of idempotents. This implies that l.ann(a) 6= 0, a
contradiction. Therefore, r.ann(a) = 0 and so as above ba = 1. �

The following lemma is well-known (cf. [11], Theorem 7.1).

Lemma 4. If R is right (left) Hermite domain then each right (left) unimodular
row is completable.

Lemma 5. Let A ∈ Mn(R) be a square matrix with coefficients in a right Bézout
domain R. Let 0 6= u ∈ Rn be such that uA = 0. Then there exists an invertible
matrix P ∈ GLn(R) such that PAP−1has its last row equal to zero.

Proof. By hypothesis, for some u ∈ Rn uA = 0. Since R is a right Bézout domain
we may assume that the vector u is right unimodular. Since right Bézout domain
are right Hermite we know that there exists an invertible matrix P such that the
last row of P is the vector u. Of course, this implies that the last row of PA is the
zero row and this is true as well for the last row of PAP−1. �

Next, we list some properties and results for rings with stable range 1 which
will be referred to in the proofs. Let us first mention a well-known theorem by
Vaserstein which shows that the notion of stable range is left-right symmetric.

Lemma 6. Let a, a′, b, b′, x, d ∈ R and u ∈ U(R) be such that a+ bx = du, a = da′

and b = db′. Then

(a)

(
a b
0 0

)
= E

(
1 0
−x 1

)
, where E is a product of idempotent matrices,

(b) There exists an invertible matrix P ∈ M2(R) such that
(

a b
−x 1

)
P =

(
d 0
0 1

)
.

Proof. (a) Indeed we have:

(
a b
0 0

)
=

(
d 0
0 0

)(
u b′

0 0

)(
1 0
−x 1

)
and the first

two matrices on the right side are products of idempotent matrices as shown in the
table of factorizations given in Lemma 1.

(b) The matrix P is given by P =

(
u−1 −u−1b′

xu−1 1− xu−1b′

)
. �

Rings with stable range 1 possess many properties. The next lemma mentions
two of them that are particularly relevant to our study.

Lemma 7. Let R be a ring with stable range 1. Then
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(a) R is GE2, and
(b) any unimodular row (a, b) is completable.

Proof. (a) Let A =

(
a b
c d

)
be an invertible matrix with coefficients in R. We thus

have, in particular, that aR+ bR = R and the stable range 1 hypothesis shows that
there exists x ∈ R such that a+ bx = u ∈ U(R). Let us put v := d− (c+ dx)u−1b.
We then have

A =

(
b u
d c+ dx

)(
−x 1
1 0

)
=

(
u 0

c+ dx v

)(
u−1b 1
1 0

)(
−x 1
1 0

)
.

Since A is invertible, v is a unit. This finally gives us

A =

(
u 0
0 v

)(
1 0

v−1(c+ dx) 1

)(
u−1b 1
1 0

)(
−x 1
1 0

)
,

as required.
(b) If aR + bR = R then there exists x ∈ R such that a + bx = u ∈ U(R). In this
case Lemma 6 shows that the unimodular row (a, b) is completable. �

3. Local Rings

Firstly, as a consequence of our table of factorizations in Lemma 1, we give a very
simple proof of the celebrated theorem that every singular matrix over a division
ring is a product of idempotent matrices. The proof given below is for a singular
2 × 2 matrix over a division ring. However, as a consequence of Theorem 22, the
proposition holds for any n× n singular matrix.

Proposition 8. Every 2× 2 singular matrix over a division ring can be factorized
as a product of idempotent matrices.

Proof. Let A =

(
a c
b d

)
be a singular matrix. Then the columns

(
a
b

)
and

(
c
d

)
are linearly dependent. Suppose

(
c
d

)
=

(
a
b

)
α.

Then

(
a aα
b bα

)
=

(
a 0
b 0

)(
1 α
0 0

)
. If b = 0, then Lemma 1 gives fac-

torization of the first factor whereas the second factor is already an idempotent. If
b 6= 0, then one can use Lemma 1 (d) to conclude the result. �

Next, we show that if each right (resp. each left) singular matrix over a local
ring R is a product of idempotent matrices then the ring R must be a domain. Let
us recall that a local ring is projective-free. For an idempotent matrix E ∈ Mn(R),
n > 1, where R is projective-free, there exist matrices A ∈ Mn×r(R) and B ∈

Mr×n(R) with r < n such that E = AB and BA = Ir (See Cohn [5], Proposition
0.4.7, p. 24).

Theorem 9. Let R be a local ring such that each right (resp. each left) singular
2 × 2 matrix over R can be expressed as a product of idempotents. Then R is a
domain.
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Proof. We assume that every right singular matrix is a product of idempotents.
Let a ∈ R. Suppose r.ann(a) 6= 0. Since the matrix

A =

(
a 0
0 1

)

is right singular it can be expressed as a product of idempotent matrices, say
A = E1 . . . En. Since a belongs to the Jacobson radical of R, it cannot be itself an
idempotent and hence we must have n > 1. The property of idempotent matrices
recalled in the paragraph preceding this theorem shows that A can be written as
A = P1Q1 . . . PnQn where Qi ∈ M1×2(R), Pi ∈ M2×1(R) are such that QiPi = 1.
Set P1 = (α, β)t, Q1P2Q2 . . . Pn = γ ∈ R and Qn = (δ, ǫ). Then a = αγδ, 0 = αγǫ,
0 = βγδ, and 1 = βγǫ. Let us set Pn = (x, y)t. Since QnPn = 1, we obtain
δx+ ǫy = 1. Furthermore,

(
ax
y

)
=

(
a 0
0 1

)(
x
y

)
=

(
α
β

)
γ
(
δ ǫ

)(x
y

)
=

(
αγ
βγ

)
.

This leads to ax = αγ and y = βγ. We then easily get 1 = βγǫ = yǫ and since
R is Dedekind finite we also have ǫy = 1. This leads consecutively to δx = 0,
ax = αγδx = 0, αγ = ax = 0 and finally a = αγδ = 0, as desired. �

The following theorem gives sufficient conditions for singular 2× 2 matrices over
local rings to be a product of idempotents.

Theorem 10. Let R be a local domain such that its radical J(R) = gR with
∩n(J(R))n = 0. Let S be the 2 × 2 matrix ring over R. Then each matrix A ∈ S
with l.ann(A) 6= 0 is a product of idempotent matrices.

Proof. Since J = gR with ∩n(J(R))n = 0, we note that for any nonzero elements
x, y ∈ R there exist positive integers n, l such that x = gnu and y = glv, for
some invertible elements u, v ∈ U(R), where U(R) denotes the set of invertible
elements in R. If n ≥ l we can write x = yc with c := v−1gn−lu. Clearly, c 6= 0.
Since l.ann(A) 6= 0, we can assume that there exists (x, y) 6= (0, 0) such that
(x, y)A = (0, 0). Furthermore, since x = yc, y 6= 0 and R is a domain, we have

(c, 1)A = (0, 0). This shows that UA has bottom row zero where U =

(
1 0
c 1

)
and

so does the matrix UAU−1. Since for every pair (x, y) 6= (0, 0), one of them is a
multiple of the other by invoking Lemma 1 (b), we obtain that A = U−1E1...EkU,
where Ei are idempotents and hence A = (U−1E1U)(U−1E2U)...(U−1EkU) is a
product of idempotents. �

Remark 11. If the matrix A is such that r.ann(A) 6= 0 then the same proof will

hold if we assume J = Rg and ∩i≥0J(R)
i

= 0.

4. Construction of Idempotents and Representation of singular

matrices

The following lemma completes our ”table” of Lemma 1 in an interesting way.
The lemma proved below provides a further useful tool while working with idem-
potent matrices over a projective-free ring.

Lemma 12. Let a, b, c, d be elements in a ring R.
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(a) If ca+ db = 1, then the matrix

E =

(
ac ad
bc bd

)

is an idempotent matrix. If R is a domain and the matrix E is nonzero,
then the converse is also true.

(b) The matrix

(
ab+ u a

0 0

)
, u a unit, is a product of idempotent matrices.

(c) If there exists x ∈ R such that a+ bx ∈ U(R) then the matrix

(
a b
0 0

)

is a product of idempotent matrices.

Proof. (a) This is easily checked.

(b)

(
ab+ u a

0 0

)
=

(
u 0
0 0

)(
u−1ab+ 1 u−1a

−b(u−1ab+ 1) −bu−1a

)
.

(c) By hypothesis, there exist x ∈ R and u ∈ U(R) such that a + bx = u. Hence
va = vb(−x) + 1 where v = u−1. Using our previous table the conclusion follows

since one can write

(
a b
0 0

)
=

(
u 0
0 0

)(
va vb
0 0

)
. Statement (b) above now yields

the result. �

Remark 13. The form of the 2× 2 idempotent matrix that appears in Lemma 12
(a) is the only kind to consider in the case when the ring R is projective-free. Indeed

in this case any 2× 2 idempotent matrix A can be written as A =

(
a
b

)(
c d

)
with

the condition that ca+ db = 1 (cf. the comments before Theorem 9).

In view of this remark we look at the representation of a singular 2 × 2 matrix
as product of idempotent matrices of the form PQt where P and Q are columns
vectors such QtP = 1.

The next proposition translates the decomposition of a singular 2×2 matrix into
a product of idempotents in terms of a family of equations. This generalizes Rao’s
theorem ([3], Theorem 5) to noncommutative domains and at the same time fills
in the gaps in his original arguments (cf. [4]).

Proposition 14. Let a, b be nonzero elements in a domain R such that aR+ bR =
R. Then the following are equivalent:

(i) There exist an integer n > 0 and elements ai, bi, ci, di ∈ R, i = 1, . . . , n
such that a1 = c1 = 1, b1 = 0, cn = a, dn = b, ciai + dibi = 1, 1 ≤ i ≤ n
and ciai+1 + dibi+1 = 1, 1 ≤ i ≤ n− 1.

(ii) There exist an integer n > 0 and elements ai, bi, ci, di ∈ R, 1 ≤ i ≤ n, such

that the matrix

(
a b
0 0

)
can be written as a product E1 . . . En of idempotent

matrices E2
i = Ei, where Ei =

(
aici aidi
bici bidi

)
=

(
ai
bi

)
(ci, di).

.
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Proof. (i) ⇒ (ii): Lemma 12 (a) shows that for 1 ≤ i ≤ n, the matrix Ei =(
aici aidi
bici bidi

)
is an idempotent. Moreover, we have

E1 · · ·En =

(
a1
b1

)
(c1, d1)

(
a2
b2

)
(c2, d2) · · ·

(
an
bn

)
(cn, dn),

and since ciai+1 + dibi+1 = 1, 1 ≤ i ≤ n− 1 and a1 = 1, b1 = 0, cn = a, dn = b, we

obtain E1E2 · · ·En =

(
a b
0 0

)
.

(ii) ⇒ (i): We will construct elements a′i, b
′
i, c

′
i, d

′
i satisfying the conditions stated

in (i). Since R is a domain and Ei 6= 0, Lemma 12 (a) shows that for any 1 ≤ i ≤ n
we have ciai + dibi = 1. We can thus write

(
a b
0 0

)
=

(
a1
b1

)
(c1, d1) · · ·

(
an
bn

)
(cn, dn),with ciai + dibi = 1, 1 ≤ i ≤ n.

If s stands for the product s :=
∏n−1

i=1 (ciai+1 + dibi+1), then we have a = a1scn
b = a1sdn, b1scn = 0 and b1sdn = 0. Since R is a domain, we easily get b1 = 0 and

a1c1 = 1 = c1a1. Thus E1 =

(
1 a1d1
0 0

)
. We set a′1 = c′1 = 1, b′1 = 0, d′1 = a1d1.

Then we have(
a b
0 0

)
=

(
1
0

)
(1, d′1)

(
a2
b2

)
· · ·

(
an
bn

)
(cn, dn), with ciai + dibi = 1 for 1 ≤ i ≤ n.

By comparing the entries on both sides we get a = rcn, b = rdn, where r :=

(a2 + d′1b2)
∏n−1

i=2 (ciai+1 + dibi+1). By hypothesis, there exist x, y ∈ R such that
ax + by = 1. This implies rcnx + rdny = 1. This shows that r ∈ U(R). Set
u1 = (a2 + d′1b2) ∈ U(R), a′2 = a2u

−1
1 , b′2 = b2u

−1
1 , c′2 = u1c2 and d′2 = u1d2. The

matrix E2 can be written E2 =

(
a′2
b′2

)
(c′2, d

′
2). As per our definition c′1 = 1 and so

we have c′1a
′
2 + d′1b

′
2 = a2u

−1
1 + d1b2u

−1
1 = 1. Once again Lemma 12 (a) shows that

c′2a
′
2 + d′2b

′
2 = 1 (this can of course, be checked directly, as well). We then define

u2 := (1, d1)E2

(
a3
b3

)
= (1, d1)

(
a′2
b′2

)
(c′2, d

′
2)

(
a3
b3

)
= c′2a3+d′2b3 = u1(c2a3+d2b3) ∈

U(R) (since u2 is a factor of r). Set a′3 = a3u
−1
2 , b′3 = b3u

−1
2 , c′3 = u2c3 and

d′3 = u2d3. The matrix E3 can be written as E3 =

(
a′3
b′3

)
(c′3, d

′
3). This gives

c′3a
′
3 + d′3b

′
3 = 1 and c′2a

′
3 + d′2b

′
3 = u1(c2a3 + d2b3)u

−1
2 = 1. We continue this

process by defining u3 := (1, d1)E2E3

(
a4
b4

)
= c′3a4 + d′3b4 = u2(c3a4 + d3b4),

a′4 = a4u
−1
3 , b′4 = b4u

−1
3 , c′4 = u3c4, d

′
4 = u3d4 and so on. In general, we define for

any 1 ≤ i ≤ n−1, ui := ui−1(ciai+1+dibi+1), a factor of r and hence ui ∈ U(R). Set
a′i+1 := ai+1u

−1
i , b′i+1 = bi+1u

−1
i , c′i+1 := uici+1 and d′i+1 := uidi+1. The elements

a′i, b
′
ic

′
i, d

′
i, where i ≥ 2, together with a′1 = 1 = c′1, b

′
1 = 0, d′1 = a1d1 will satisfy

the required equalities. �

Corollary 15. Let a, b ∈ R be elements in a projective-free domain R such that

aR + bR = R. Then the matrix

(
a b
0 0

)
is a product of idempotent matrices if

and only if there exist an integer n > 0 and elements ai, bi, ci, di ∈ R, i = 1, . . . , n
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such that a1 = c1 = 1, b1 = 0, cn = a, dn = b, ciai + dibi = 1, 1 ≤ i ≤ n and
ciai+1 + dibi+1 = 1, 1 ≤ i ≤ n− 1.

Proof. By the above proposition we know that the conditions mentioned in the
corollary are sufficient. Since any idempotent 2 × 2 matrix with coefficients in a

projective-free domain is of the form

(
a
b

)
(c, d) with ca + db = 1, the implication

(ii) ⇒ (i) in above Proposition shows that the conditions are also necessary. �

5. Singular matrices over Bézout domains

We first mention the classical facts that for any two elements a, b in a right
Bézout domain R both aR+ bR and aR ∩ bR are principal right ideals and such a
domain is a right Ore domain. The next theorem is due to Amitsur [1]. We provide
a different proof of this theorem. This proof is inspired by results of Cohn (cf. [6]).

Theorem 16. A domain R is right Hermite if and only if it is right Bézout.

Proof. Suppose R is right Hermite. Then for a, b ∈ R there exist d ∈ R and
P ∈ GL2(R) such that (a, b)P = (d, 0). Hence we have dR ⊆ aR + bR. Since we
also have (d, 0)P−1 = (a, b), we conclude that aR+ bR = dR ≃ R. This yields R is
right Bézout.
Conversely, suppose R is right Bézout and so it is a right Ore domain. Let a, b ∈ R.
We first consider the case when aR + bR = R. We know aR ∩ bR is a principal
right ideal, say, mR. Let x, y, u, v ∈ R be such that ax+ by = 1 and au = m = bv.
We then obtain a(xa − 1) = −bya ∈ mR and so there exists c ∈ R such that
xa− 1 = uc, vc = −ya. Similarly, from axb = b(1− yb) ∈ mR, we get d ∈ R such
that xb = ud and 1− yb = vd. Let us then consider the matrices

A :=

(
a b
c d

)
and X :=

(
x −u
y v

)
.

We can check that the above relations give XA = I and so AX = I, since R is
embeddable in a division ring. This, in turn, leads to (a, b)X = (1, 0).
In the general case, we have aR + bR = dR. We can write a = da′, b = db′ and
then since R is a domain, a′R+ b′R = R. So R is right Bézout as shown above. �

Definition 17. We say that a ring R has the IP2 property if every 2× 2 singular
matrix is a product of idempotent matrices.

Of course, every ring for which singular matrices are products of idempotent
matrices has IP2. In particular, every commutative euclidean domain has the IP2

property as shown by Laffey (cf. [12]).

Lemma 18. A left (right) Bézout domain with stable range 1 has the IP2 property.

Proof. Let A ∈ M2(R) be a singular matrix. By Lemma 5 we may assume that

the matrix has a bottom row equal to zero. Since matrices of the form

(
a 0
0 0

)
are

products of idempotent matrices (cf. Lemma 1 ), we may further assume that the
first row of A is unimodular. The hypothesis of stable range 1 and Lemma 12 (c)
show that R has the IP2 property. �
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In the case of a commutative Bézout domain we can replace the stable range
1 hypothesis by the IP2 property and still get strong conclusions as shown in
Proposition 19 and Corollary 21. Indeed proposition 19 provides a relationship
between a decomposition of a singular matrix into a product of idempotent matrices
and Bézout (equivalently, Hermite) domains.

Proposition 19. Let a, b be elements in a commutative Bézout domain R with
aR+ bR = R. Then the following are equivalent.

(i)

(
a b
0 0

)
is a product of n idempotent matrices.

(ii) There exist elements r0, r1 . . . r2n−2 ∈ R such that

(a, b) = (1, 0)

(
r2n−2 1
1 0

)(
r2n−3 1
1 0

)
· · ·

(
r0 1
1 0

)(
0 −1
1 0

)
.

Proof. (i) ⇒ (ii): Since a right Bézout domain is projective-free, Corollary 15
shows that there exist elements ai, bi, ci, di ∈ R, i = 1, . . . , n such that a1 = c1 =
1, b1 = 0, cn = a, dn = b, ciai + dibi = 1 for 1 ≤ i ≤ n and ciai+1 + dibi+1 = 1,
1 ≤ i ≤ n− 1. Write

(
a b
0 0

)
=

(
a1
b1

)
(c1, d1)

(
a2
b2

)
(c2, d2) · · ·

(
an
bn

)
(cn, dn).

Let us put r2n−2 = cndn−1− cn−1dn and r2n−3 = an−1bn−anbn−1. We then write,
successively,

(
cn dn
0 0

)
=

(
1 0
0 0

)(
cn dn
bn −an

)
=

(
1 0
0 0

)(
r2n−2 1
1 0

)(
bn −an

cn−1 dn−1

)
,

and
(
a b
0 0

)
=

(
cn dn
0 0

)
=

(
1 0
0 0

)(
r2n−2 1
1 0

)(
r2n−3 1
1 0

)(
cn−1 dn−1

bn−1 −an−1

)
.

Continuing this process we put, for 1 ≤ i ≤ n−1, r2(n−i) = cn−i+1dn−i−cn−idn−i+1

and r2(n−i)−1 = an−ibn−i+1 − an−i+1bn−i. With these notations one gets:
(
a b
0 0

)
=

(
1 0
0 0

)(
r2n−2 1
1 0

)
· · ·

(
r1 1
1 0

)(
c1 d1
b1 −a1

)
,

where c1 = 1, b1 = 0, a1 = 1. Hence
(
c1 d1
b1 −a1

)
=

(
1 d1
0 −1

)
=

(
−d1 1
1 0

)(
0 −1
1 0

)
.

This, finally, yields that
(
a b
0 0

)
=

(
1 0
0 0

)(
r2n−2 1
1 0

)
· · ·

(
r1 1
1 0

)(
r0 1
1 0

)(
0 −1
1 0

)
,

completing the proof with r0 = −d1.
(ii) ⇒ (i): We are given 2n − 1 elements ri, 0 ≤ i ≤ 2n − 2, and we want

to produce 4n elements aj , bj, cj , dj , 1 ≤ j ≤ n, satisfying the relations given
in the Proposition 14. Let us show how to retrace our steps. First, we have
a1 = 1 = c1, b1 = 0, d1 = −r0, and a1c1 + d1b1 = 1. Suppose that we have
constructed aj, bj , cj , dj satisfying the necessary relations for all 1 ≤ j ≤ i and let
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us show how to construct ai+1, bi+1, ci+1, di+1. We determine ai+1 and bi+1 via the
system of equations:

aibi+1 − biai+1 = r2i−1,(1)

dibi+1 + ciai+1 = 1.(2)

Since aici + dibi = 1, the above system has a unique solution. To determine ci+1

and di+1 we use the following equations,

dici+1 − cidi+1 = r2i,(3)

ai+1ci+1 + bi+1di+1 = 1.(4)

Then dibi+1 + ciai+1 = 1 gives that the above system has a unique solution. �

The next corollary gives another proof of Lemma 2 in Laffey’s paper [12].

Corollary 20. Let R be a euclidean domain. Then R has the IP2 property.

Proof. We have to show that any singular matrix A ∈ M2(R) is a product of

idempotent matrices. Lemma 5 shows that we may assumeA is of the form

(
a b
0 0

)
.

Let d ∈ R be such that aR+bR = dR and write a = da′, b = db′ for some a′, b′ ∈ R.
We have (

a b
0 0

)
=

(
d 0
0 0

)(
a′ b′

0 0

)
.

Since matrices

(
d 0
0 0

)
are always product of idempotent matrices, we may assume

without loss of generality that aR + bR = R. The euclidean algorithm provides
sequences of elements q0, q1, . . . , qn, qn+1 and r0, r1, . . . , rn in R such that −b =
aq0 + r0, a = r0q1 + r1, . . . , rn−2 = rn−1qn + 1, rn−1 = qn+1. We then have:

(−b, a) = (a, r0)

(
q0 1
1 0

)
= (r0, r1)

(
q1 1
1 0

)(
q0 1
1 0

)
,

and finally

(−b, a) = (1, 0)

(
qn+1 1
1 0

)(
qn 1
1 0

)
· · ·

(
q0 1
1 0

)
.

Right multiplying this equality by the matrix

(
0 −1
1 0

)
and using Proposition

19, we conclude that the matrix

(
a b
0 0

)
is a product of idempotent matrices, as

required. �

Corollary 21. If R is a commutative Bézout domain with the IP2 property then
every 2 × 2 invertible matrix is a product of elementary matrices and diagonal
matrices with invertible diagonal entries.

Proof. Let A =

(
a b
c d

)
∈ GL2(R). We thus have aR + bR = R and the IP2

property shows that the matrix

(
a b
0 0

)
is a product of n idempotent matrices, for

some n. Proposition 19 then shows that (a, b) = (1, 0)U , where

U =

(
r2n−2 1
1 0

)(
r2n−3 1
1 0

)
· · ·

(
r0 1
1 0

)(
0 −1
1 0

)
∈ GL2(R).
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Since for r ∈ R we have:(
r 1
1 0

)
=

(
1 r
0 1

)(
1 0
1 1

)(
1 0
0 −1

)(
1 1
0 1

)(
1 0
−1 1

)
,

we conclude that matrices of the form

(
r 1
1 0

)
and hence also the matrix U are prod-

ucts of elementary and diagonal matrices with invertible diagonal entries. Let us

writeAU−1 =

(
1 0
c′ d′

)
for some c′, d′ ∈ R. We then haveA =

(
1 0
c′ 1

)(
1 0
0 d′

)
U .

This shows that A is a product of elementary matrices and diagonal matrices with
invertible diagonal entries, as desired. �

We say that a ring R has the IP property if every singular square matrix over
R can be written as a product of idempotent matrices. Of course, the IP property
implies the IP2 property. Theorem 22 shows that in certain situations the converse
is true, that is: IP2 property implies IP property. The proof of this result follows
the pattern of Laffey’s proof [12].

Theorem 22. Let R be a Bézout domain satisfying the IP2 property. Then every
singular matrix is a product of idempotent matrices if R has the GE2 property. In
particular, a Bézout domain with stable range 1 has the IP property.

Proof. Let A ∈ Mn(R) be a singular matrix. Lemma 5 shows that we may assume
that the bottom row of A is zero. Let us write

A =

(
B C
0 0

)
,

where B ∈ Mn−1(R) and other matrices are of appropriate sizes.
We now proceed by induction on n. The case n = 1 is trivial since R is a domain.

If n = 2 this is the IP2 property. Let n ∈ N be such that n > 2. Write

A =

(
In−1 C
0 0

)(
B 0
0 1

)
.

If B is singular, we apply induction hypothesis on B and we obtain A as a
product of idempotents. So let us assume, B is nonsingular. Since R is left Bézout
and hence left Hermite, by invoking GE2 we can find a sequence of elementary
matrices E1, . . . , El ∈ Mn−1(R) such that D := E1 · · ·ElB is an upper triangular

matrix. For M ∈ Mn−1(R), we define M̂ ∈ Mn(R) by

M̂ :=

(
M 0
0 0

)
∈ Mn(R).

We then have

A =

(
E−1

1 · · ·E−1
l D C

0 0

)
= Ê−1

1 Ê−1
2 · · · Ê−1

l

(
D El · · ·E1C
0 0

)
.

Lemma 2 shows that Ê−1
1 , Ê−1

2 , · · · , Ê−1
l are products of idempotent matrices. We

thus have to show that the matrix(
D El · · ·E1C
0 0

)
=

(
d1

(
d2 .. .. dn

)

0 D1

)

is a product of idempotents. The last row of the triangular matrix D1 is zero
and hence our induction hypothesis shows that there exist idempotent matrices
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Y1, . . . , Ym such that D1 = Y1 · · ·Ym. We may assume Ym 6= In−1 and, since
D1Ym = D1, we can write

(
d1

(
d2 .. .. dn

)

0 D1

)
=

(
1 0
0 D1

)(
d1 (d2 · · · dn)
0 Ym

)
.

The first left factor matrix on the right hand side is a product of idempotent
matrices. Thus we only need show that the second factor matrix on the right hand
side is a product of idempotent matrices. Now, since R is projective-free we know
that Ym is similar to a diagonal matrix with only ones and zeros on the diagonal (cf.
[5], Proposition 0.4.7.). We claim that the number, say h, of ones on this diagonal
is strictly positive or, in other words, we claim that Ym 6= 0. Indeed, if Ym = 0
then D1 = D1Ym = 0 and a row of the matrix D is zero (since n ≥ 3). Hence
D = E1 · · ·ElB is singular, this implies that B is singular, a contradiction since B
is non singular. We are thus reduced to show that a matrix of the form




d1
(
d2 .. .. dh+1

)
... dn

0 Ih 0 0
.. .. .. ..
0 0 0 0


 ,

for some h > 0 is a product of idempotent matrices. This matrix is similar to the
following: 



Ih 0 0 · · · 0
(d2, . . . , dh+1) d1 dh+2 · · · dn

· · · · · · · · · · · · · · ·

0 0 0 0 0


 .

Performing row elementary operations on the first h+ 1 rows we reduce the above
matrix to the following:




Ih 0 0 · · · 0
0 d1 dh+2 · · · dn
· · · · · · · · · · · · · · ·

0 0 0 0 0


 =

(
Ih 0
0 ∗

)
,

where the bloc matrix * is an (n − h) × (n − h) matrix with the last row zero.
Since these operations can be accomplished by multiplying on the left by products
of idempotent matrices the induction hypothesis applied to the matrix * completes
the proof.

The proof of the particular case is clear since Lemma 7 and 18 show that stable
range 1 implies GE2 and IP2, respectively. �

As a special case of the above theorem, the following corollary, parts (a) and (c),
gives Laffey’s theorem (cf. [12]) and Rao’s theorem (cf. [3], Theorem 2), respectively.

Corollary 23. Let R be a domain which is any one of the following types:

(a) a euclidean domain,
(b) a local domain such that its radical J = Rg = gR with ∩Rgn = 0,
(c) a commutative principal ideal domain with IP2, or
(d) a local Bézout domain.

Then every singular matrix over R is a product of idempotent matrices (in other
words, R has the IP property).
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Proof. (a) It is clear that a euclidean domain is Bézout. On the other hand, Corol-
laries 20 and 21 show that R has the IP2 as well as the GE2 property. Therefore,
by the above theorem R has the IP property.

(b) It is clear that a local ring has stable range 1 and by our hypothesis R is
a valuation domain (as in the proof of Theorem 10), and hence a Bézout domain.
The particular case mentioned in the above theorem yields the result.

(c) This follows from the above theorem and from Corollary 21.
(d) Since a local domain has stable range 1, the result follows from the particular

case of the theorem. �

6. Endomorphisms of Injective Modules

Finally, we consider the endomorphism ring S of an injective module M . Recall,
from the introduction, that an element s ∈ S is called right singular if rann(s) 6= 0.
We know that if any ring has the IP property, then it need not be of stable range
1. However, for the endomorphism ring of an injective (or even quasi-injective)
module, we have the following theorem. Its proof is straightforward.

Theorem 24. Let MR be an injective module and S = End(MR). If each right
singular element s ∈ S can be expressed as a product of idempotents, then S has
stable range 1.

Proof. Let J = J(S) denote the Jacobson radical of S = End(MR). Lemma 3
shows that S is Dedekind finite. It is a folklore that S/J is also Dedekind finite.
We provide its proof for reference only. For x ∈ S, let us write x := x+J . If a, b ∈ S
are such that ab = 1 then 1− ab ∈ J and hence 1− (1− ab) = ab ∈ U(S), the set of
units of S. Since S is Dedekind finite, we also have ba ∈ U(S). Thus there exists
c ∈ S such that bac = 1 and we get bac = 1. Since (ba− 1)b = 0, we obtain by post

multiplying this by ac, ba = 1, as desired. It is well-known that S/J is a regular
right self-injective ring (cf. [13], Theorem 13.1). Because a von Neumann regular
right self-injective Dedekind finite ring is a unit regular ring (cf. [8], Theorem 9.17),
it follows that S/J(S) is a unit regular ring. This implies S/J(S) has stable range
1.

We now prove S has stable range 1. Let aS + bS = S. Then (a + J(S))(S +
J(S))+(b+J(S))(S+J(S)) = S+J(S). This gives (a+J(S))+(b+J(S))(u+J(S))
is invertible for some u+J(S) in S/J(S). This implies that there exists v ∈ S such
that (a + bu)v − 1 ∈ J(S) and hence (a + bu)v is invertible. Since S is Dedekind
finite a+ bu is invertible. This concludes the proof that S is of stable range 1. �

Remark 25. Since the endomorphism ring of an infinite dimensional vector space
is not of stable range 1, it follows that every right singular (equivalently non monomor-
phism) endomorphism can be expressed as a product of projections if and only if
the vector space is of finite dimension.
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