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Strong Coordination with Polar Codes

Matthieu R. Bloch1, Laura Luzzi2, and Jörg Kliewer3

Abstract—In this paper, we design explicit codes for strong
coordination in two-node networks. Specifically, we consider a
two-node network in which the action imposed by nature is
binary and uniform, and the action to coordinate is obtained via a
symmetric discrete memoryless channel. By observing that polar
codes are useful for channel resolvability over binary symmetric
channels, we prove that nested polar codes achieve a subset of
the strong coordination capacity region, and therefore provide a
constructive and low complexity solution for strong coordination.

I. INTRODUCTION

The characterization of the information-theoretic limits of
coordination in networks has recently been investigated in [1].
The coordinated actions of nodes in the network are modeled
by joint probability distributions, and the level of coordination
is measured in terms of how well these joint distributions
approximate a target joint distribution. Two types of coordina-
tion have been introduced: empirical coordination, which only
requires the empirical distribution of coordinated actions to
approach a target distribution, and strong coordination, which
requires the total variational distance of coordinated actions
to approach a target distribution. The concept of coordination
sheds light into the fundamental limits of several problems,
such as distributed control or task assignment in a network.

The design of practical and efficient coordination schemes
approaching the fundamental limits predicted by information
theory has attracted little attention to date. One of the hurdles
faced for code design is that the metric to optimize is not
a probability of error but a variational distance between
distributions. Nevertheless, polar codes [2] have recently been
successfully adapted [3] for empirical coordination, with an
analysis based on results from lossy source coding with polar
codes [4]. In this paper, we construct polar codes that are
able to achieve strong coordination in some cases. Unlike the
construction in [3], which solely relies on source coding with
polar codes, our construction also exploits polar codes for
channel resolvability [5]. Channel resolvability characterizes
the bit rate required to simulate a process at the output of a
channel and plays a key role in the analysis of the common
information between random variables [6], secure communi-
cation over wiretap channels [7], [8], and coordination [1,
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Pontoise - CNRS), 6 Avenue du Ponceau, 95014 Cergy-Pontoise, France.
laura.luzzi@ensea.fr

3J. Kliewer is with the Klipsch School of Electrical and Computer En-
gineering, New Mexico State University, Las Cruces, NM, 88003, USA.
jkliewer@nmsu.edu

Lemma 19]. By remarking that polar codes can be used for
channel resolvability, we are able to provide a constructive
alternative to the information-theoretic proof in [1].

The remainder of the paper is organized as follows. Sec-
tion 2 sets the notation and recalls known results for polar
codes. Section 3 shows that polar codes provide channel re-
solvability for symmetric channels by leveraging results in [9].
Section 4 proves that polar codes achieve strong coordination
for simple two-node networks with symmetric actions. Finally,
Section 5 concludes the paper with a discussion of potential
improvements and extensions.

II. NOTATION AND PRELIMINARIES

First, a word about notation. Given a length n vector
x = (x1, · · · , xn) and i ∈ J1, nK, we use the notation xi

1

as a shorthand for the row vector (x1, · · · , xi). Similarly, for
any set F ∈ J1, nK, we denote by xF the vector of length
|F | containing the indices xi for i ∈ F . The distributions of
different random variables defined on the same alphabet X
are denoted by different symbols, e.g. pX, qX. For brevity, the
subscripts in the distributions may be dropped if the alphabet
is clear from the context or from the argument. We also use
D to denote the Kullback-Leibler divergence between two
distributions.

Next, we briefly review the concepts and notation related to
polar codes that will be used throughout the paper. The key
element in the polar coding construction is the decomposition
of n , 2m independent copies of a given binary-input discrete-
memoryless channel (X ,WY|X,Y) with capacity C(WY|X)
into n bit-channels which are essentially either error-free or
pure noise channels. Specifically, consider the transformation
Gn , G⊗n2 where

G2 ,

(
1 0
1 1

)
and ⊗ is the Kronecker product. A vector u ∈ {0, 1}n
is transformed into x = uGn. The i-th bit channel
({0, 1},W (i)

n ,Yn × {0, 1}i−1) is a composite channel that
combines the transformation Gn and the channel, and is
defined by its transition probabilities

W (i)
n (y,ui−1

1 |ui) ,
1

2n−1

∑
uni+1

WYn|Xn(y|uGn).

For n large enough, the bit channels polarize, i.e. they become
either completely noisy or noise-free. The exact measure of the
noise level will be specified in subsequent sections.



III. CHANNEL RESOLVABILITY WITH POLAR CODES

A. Channel resolvability

In its simplest formulation, the problem of channel resolv-
ability [6], [5] can be stated as follows. Consider a discrete
memoryless channel (X ,WY|X,Y) whose input is an i.i.d.
source distributed according to qX; the output of the channel
is then an i.i.d. process distributed according to qY . The aim
is to construct a sequence of codes {Cn}n>1 of rate R and
increasing block length n, such that the output distribution
pYn induced by a uniform choice of the codewords in Cn
approaches the distribution qYn ∼

∏n
i=1 qY in variational

distance, i.e.
lim

n→∞
V(pYn , qYn) = 0. (1)

In this case, the sequence {Cn}n>1 is called a sequence of
resolvability codes achieving resolution rate R for (WY|X, qX).
The channel resolvability of WY|X is then defined as the
minimum resolution rate such that resolvability codes exist
for any input source.

B. Coding scheme for channel resolvability

In this section, we leverage the results of [9] to construct
resolvability codes when (X ,WY|X,Y) is a binary-input sym-
metric DMC and qX is the uniform distribution on {0, 1},
i.e. qX ∼ B( 1

2 ); this result will be exploited in Section 4
for the problem of coordination. We use the notion of sym-
metry in [10], according to which there exists a permutation
π1 : Y → Y such that π1 = π−1

1 and

∀y ∈ Y, WY|X(y|0) = WY|X(π1(y)|1) (2)

In particular, the following property of symmetric channels
will be useful.

Lemma 1 ([10]): If (X ,WY|X,Y) is a memoryless sym-
metric channel and if qY is the output distribution correspond-
ing to the uniform input distribution qX on X , then

∀x ∈ X , C(WY|X) = D
(
WY|X=x‖qY

)
,

where WY|X=x is the output distribution induced by the fixed
symbol x.

Let W (i)
n denote the set of bit channels corresponding to

WY|X, and define the sets of “good bits” Gn and “bad bits”
Bn as

Gn ,
{
i ∈ J1, nK : C(W (i)

n ) > 2−n
β
}
,

and Bn , J1, nK \ Gn.

Our strategy to simulate the i.i.d. process distributed accord-
ing to qY is to send random uniform bits on the good bits, and
fixed bits on the bad bits. Intuitively, the uniform bits will be
preserved by the noiseless bit-channels, while the pure noise
bit-channels will produce almost-uniform bits for any input.
Formally, let r = |Gn| and consider the polar codes defined in
Section 2. We will use the (n, r,Gn,0n−r) coset code Cn [2]
obtained by using Gn as the set of information bits and Bn as
the set of frozen bits.

Proposition 1: If the channel (X ,WY|X,Y) is symmetric
and qX ∼ B( 1

2 ), then {Cn}n>1 is a sequence of resolvability
codes of resolution rate C(WY|X) for (WY|X, qX).

Proof:
We know from [9, Proposition 20] that

lim
n→∞

r

n
= C(WY|X),

so that the condition regarding the resolution rate is satis-
fied. Following [9], given two vectors xr ∈ {0, 1}r and
sn−r ∈ {0, 1}n−r, we let (xr, sn−r) denote the vector
vn ∈ {0, 1}n such that v|Gn = xr and v|Bn = sn−r. We
then define a composite channel ({0, 1}n−r,WYn|Sn−r ,Yn),
which includes the polar code and the random bits sent on the
good bits Gn, so that

WYn|Sn−r (yn|sn−r)

,
1

2r

∑
xr∈{0,1}r

WYn|Xn

(
yn

∣∣∣∣∣(xr, sn−r)Gn

)
.

It is shown in [9, Proposition 13] that WYn|Sn−r is symmetric
and that

C(WYn|Sn−r ) 6
∑
i∈Bn

C(W (i)
n ) 6 (n− r)2−n

β

.

We now show that this last inequality implies that {Cn}n>1

form a sequence of resolvability codes.
By the definition of coset codes [2], the output distribution

pYn induced by the code Cn coincides with the output dis-
tribution WYn|Sn−r=0n−r of the constant input 0n−r through
WYn|Sn−r . Moreover, since WYn|Sn−r is symmetric and Gn is
full-rank, the output of the channel WYn|Sn−r to a uniformly
distributed input on {0, 1}n−r has the desired output distribu-
tion qYn . Hence, applying Lemma 1 to the channel WYn|Sn−r ,
we find that

D(pYn‖qYn) = D
(
WYn|Sn−r=0n−r‖qYn

)
= C(WYn|Sn−r ),

so that limn→∞D(pYn‖qYn) = 0. Pinsker’s inequality then
ensures that

lim
n→∞

V(pYn , qYn) = 0

Remark 1: The choice of frozen bits set at 0n−r is arbitrary.
The choice of a different coset code characterized by uF in
place of 0n−r does not alter the reasoning. In particular, the
symmetry of the channel WYn|Sn−r and Lemma 1 still hold.

IV. STRONG COORDINATION WITH POLAR CODES

A. Strong coordination for a two-node network

The problem of strong coordination for the two-node net-
work [11] is illustrated in Figure 1. Node X with actions
distributed according to qXn ∼

∏n
i=1 qX and given by nature

wishes to coordinate with node Y to obtain the joint distribu-
tion of actions qXnYn ∼

∏n
i=1 qXY . Nodes X and Y have access

to an independent source of common randomness, which
provides uniform random numbers in J1, 2nR0K, and node



common randomness

Node Y YnNode X

Xn

R0

R

action of node XqX

R0

Fig. 1. Coordination for two-node network

X transmits messages in J1, 2nRK to node Y. Specifically, a
(2nR, 2nR0 , n) coordination code Cn for this network consists
of a stochastic encoding function

f : Xn × J1, 2nR0K→ J1, 2nRK

and of a stochastic decoding function

g : J1, 2nRK× J1, 2nR0K→ Yn.

We let U0 ∈ J1, 2nR0K denote the common randomness and
pXng(f(Xn,U0)) be the distribution induced by the coordination
code. A coordination qXY is achievable with rates (R,R0) if
there exists a sequence of (2nR, 2nR0 , n) coordination codes
{Cn}n>1 such that

lim
n→∞

V
(
pXng(f(Xn),U0), qXnYn

)
= 0

Let X and Y be the random variables with joint distribution
qXY . It is shown in [11] that the set of achievable rates (R,R0)
is the following.

Theorem 1 ([11, Theorem 3.1]): The set of achievable
rates (R,R0) for coordination qXY is⋃

X→V→Y

{
(R,R0) :

R+R0 > I(XY;V)
R > I(X;V)

}

In the sequel, we restrict our attention to the case where
X = {0, 1}, qX ∼ B(1/2), and the conditional distribution
of actions qY|X is symmetric.

B. Coding scheme for strong coordination

In this section, we describe the proposed scheme to achieve
strong coordination. Let X and Y be the random variables with
joint distribution qXY , and let V ∈ {0, 1} be a binary random
variable satisfying the following conditions.

C1: X→ V → Y forms a Markov chain;
C2: the transition probability WX|V corresponds to a binary

symmetric channel;
C3: the transition probability WY|V is symmetric.

By assumption, such a random variable V exists and is
distributed according to B(1/2).

We first construct polar codes of length n , 2m for the
channel with transition probabilities WYX|V as follows.

F3

BYX|V GYX|V

GX|VBX|V

F1 F2

Fig. 2. Illustration of partition sets F1, F2, F3 (after reordering of indices).

• For the symmetric channel WYX|V , and for i ∈ J1, nK,

we let W
(i)

n be the corresponding set of bit channels. We
define the sets

GYX|V ,
{
i ∈ J1, nK : C(W

(i)

n ) > 2−n
β
}
,

BYX|V , J1, nK \ GYX|V . (3)

• For the symmetric channel WX|V , and for i ∈ J1, nK, we
let W̃ (i)

n be the corresponding set of bit channels. We
define the sets

GX|V ,
{
i ∈ J1, nK : C(W̃ (i)

n ) > 2−n
β
}
,

BX|V , J1, nK \ GX|V . (4)

The sets defined in Eq. (3) and (4) satisfy the following
property.

Lemma 2: GX|V ⊂ GYX|V and BYX|V ⊂ BX|V .
Proof: The channel WX|V is physically degraded with

respect to the channel WYX|V . Therefore, [4, Lemma 21]
guarantees that, for all i ∈ J1, nK, W̃ (i)

n is degraded with
respect to W

(i)

n , so that

C(W̃ (i)
n ) 6 C(W

(i)

n ).

Consequently, the sets F1, F2 and F3 defined as

F1 , BYX|V ,
F2 , GYX|V ∩ BX|V ,
F3 , GYX|V ∩ GX|V .

form a partition of J1, nK, which is illustrated in Figure 2.
We now exploit these sets to construct a coordination

code. The bits in positions F1 are frozen bits with values
uF1

= 0F1
fixed at all times. The encoding and decoding

procedures are then the following.

Operation at node X. To encode a sequence of binary actions
x ∈ Xn provided by nature, node X performs successive-
cancellation (SC) encoding to determine the value of the bits
uF3

in F3, using the bits uF2
from the common randomness

in positions F2 and the frozen bits uF1
in position F1.

Specifically, the probability of obtaining a bit ui during SC



encoding is the following [4].

p̃(ui|x,ui−1
1 ) =



1 i ∈ F1, ui = (uF1
)i

0 i ∈ F1, ui 6= (uF1
)i

1
2 i ∈ F2

L(i)
n (x,ui−1

1 )

1+L
(i)
n (x,ui−1

1 )
i ∈ F3, ui = 0

1

1+L
(i)
n (x,ui−1

1 )
i ∈ F3, ui = 1

(5)

where

L(i)
n (x,ui−1

1 ) ,
W̃

(i)
n (x,ui−1

1 |0)

W̃
(i)
n (x,ui−1

1 |1)
.

The bits in F3 are then transmitted to node Y. Note that
the encoding complexity is that of SC encoding, which is
O(n log n).
Operation at node Y. To create a sequence of coordinated
actions y ∈ Yn, node Y creates a vector u with frozen bits
uF1 , common randomness bits uF2 , and received bits uF3 in
positions F1, F2, F3, respectively. It then computes the vector
uGn, and simulates its transmission over a memoryless chan-
nel with transition probabilities WY|V . The resulting vector y
is used as the sequence of coordinated actions. The encoding
complexity is again O(n log n).

Remark 2: Nodes X and Y require randomness to perform
either SC encoding or simulate a memoryless channel. The
evaluation of encoding complexity implicitly assumes that the
cost of generating randomness bit-wise is O(n) in both cases.
The constructed scheme operates at rate R , |F3|

n between
nodes X and Y and requires a rate R0 , |F2|

n of common ran-
domness. Our main result, which we establish in Section 4.3,
is the following.

Proposition 2: For any random variable V satisfying the
conditions C1, C2, and C3, the coordination qXY is achievable
with any rates (R,R0) such that

R+R0 > C(WYX|V) and R > C(WX|V)

C. Proof of Proposition 2

The proof is a constructive counterpart of the information-
theoretic proof in [11]. We first define the distribution p̃
induced by the encoding/decoding procedures described in
Section 4.2. By definition,

p̃(uF2 ,uF3 ,x,y)

,
1

2|F2|

∏
i∈F3

p̃(ui|x,ui−1
1 )qXn(x)WYn|Vn(y|uGn),

where the vector u is such that uF1
= 0F1

. We also define the
distribution p̂ induced by the nested polar code with uniform
inputs transmitted over the symmetric channel WYX|V (see
Section 3.2); we have

p̂(uF2
,uF3

,x,y)

,
1

2|F2|
1

2|F3|
WXn|Vn(x|uGn)WYn|Vn(y|uGn).

By applying the triangle inequality repeatedly, we upper
bound the variational distance between the induced distribution
p̃(x,y) and the target coordination q(x,y) as follows.∑

x,y

|p̃(x,y)− q(x,y)|

6
∑
x,y

|p̃(x,y)− p̂(x,y)|+
∑
x,y

|p̂(x,y)− q(x,y)|

6
∑

x,y,uF2
,uF3

|p̃(uF2
,uF3

,x,y)− p̂(uF2
,uF3

,x,y)|

+
∑
x,y

|p̂(x,y)− q(x,y)|

(a)
=

∑
x,uF2

,uF3

|p̃(uF2
,uF3

,x)− p̂(uF2
,uF3

,x)|

+
∑
x,y

|p̂(x,y)− q(x,y)|

, V
(
p̃UF2

UF3
Xn , p̂UF2

UF3
Xn
)

+ V(p̂XnYn , qXnYn), (6)

where equality (a) follows from the definition of p̂ and p̃. We
first establish that, as n goes to infinity, the coding scheme
operates at the sum rate in Proposition 2 and V(p̂XnYn , qXnYn)
vanishes.

Lemma 3: The sequence of coding schemes satisfies

lim
n→∞

R0 +R = C(WYX|V), (7)

and lim
n→∞

V(p̂XnYn , qXnYn) = 0. (8)

Proof: By recalling that F2 ∪ F3 , GXY|V and that
the bits in positions F2 and F3 are i.i.d B(1/2) random
bits, Proposition 1 guarantees that the coding scheme is a
resolvability code for (WYX|V , qX) with a resolution rate
satisfying limn→∞

1
n

∣∣GYX|V ∣∣ = C(WYX|V).
Next, we show that, as n goes to infinity, the coding scheme
achieves the communication rate R of Proposition 2 and
the average over all possible choices of frozen bits uF1 of
V
(
p̃UF2

UF3
Xn , p̂UF2

UF3
Xn
)

vanishes, as well.

Lemma 4: The sequence of coding schemes satisfies

lim
n→∞

R = C(WX|V), (9)

and lim
n→∞

EUF1

(
V
(
p̃UF2

UF3
Xn , p̂UF2

UF3
Xn
))

= 0. (10)

Proof: Since F3 , GX|V and since the bits in position
F3 are i.i.d. B(1/2) random bits, Proposition 1 and Remark 1
ensure that limn→∞

1
n

∣∣GX|V ∣∣ = C(WX|V).
We now define two new distributions on Un×Xn as follows.

P̂ (u,x) ,
1

2|F1|
1

2|F2|
1

2|F3|
WXn|Vn(x|uGn), (11)

P̃ (u,x) , qXn(x)

n∏
i=1

P̃ (ui|xui−1
1 ), (12)

where

P̃ (ui|xui−1
1 ) ,

{
1
2 for i ∈ F1 ∪ F2

p̃(ui|xui−1
1 ) for i ∈ F3.



Remark 3: An important property shown in [4] is that, for
i ∈ F3, we have

P̃ (ui|xui−1
1 ) , p̃(ui|xui−1

1 ) = P̂ (ui|xui−1
1 ).

One can check that

EUF1

(
V
(
p̃UF2

UF3
Xn , p̂UF2

UF3
Xn
))

= V
(
P̃UnXn , P̂UnXn

)
.

We now develop an upper bound for V
(
P̃UnXn , P̂UnXn

)
.

Note that

V
(
P̃UnXn , P̂UnXn

)
=
∑
u,x

∣∣∣∣∣q(x)

n∏
i=1

P̃ (ui|x,ui−1
1 )− P̂ (x)

n∏
i=1

P̂ (ui|x,ui−1
1 )

∣∣∣∣∣
6
∑
u,x

∣∣∣q(x)− P̂ (x)
∣∣∣ n∏
i=1

P̃ (ui|x,ui−1
1 )︸ ︷︷ ︸

,An

+
∑
u,x

P̂ (x)

∣∣∣∣∣
n∏

i=1

P̃ (ui|x,ui−1
1 )−

n∏
i=1

P̂ (ui|x,ui−1
1 )

∣∣∣∣∣︸ ︷︷ ︸
,Bn

(13)

Since P̂Un is uniform on Un and since Gn defines a bijective
map from Un to Xn, the distribution P̂Xn is also uniform
and the term An on the right-hand side of Eq. (13) is zero.
By applying a telescoping equality to the term Bn as in
the proof of [4, Lemma 4], and by recalling that ∀i ∈ F3,
P̂ (ui|x,ui−1

1 ) = P̃ (ui|x,ui−1
1 ), and that ∀i ∈ F1 ∪ F2,

P̂ (ui|x,ui−1
1 ) = 1

2 , we obtain

Bn 6
∑

i∈F1∪F2

∑
ui,u

i−1
1 ,x

P̂ (x)P̂ (ui−1
1 |x)

∣∣∣∣12 − P̂ (ui|ui−1
1 x)

∣∣∣∣
=

∑
i∈F1∪F2

∑
ui,u

i−1
1 ,x

∣∣∣∣12 P̂ (ui−1
1 ,x)− P̂ (ui,u

i−1
1 x)

∣∣∣∣
=

1

2

∑
i∈F1∪F2

∑
ui,u

i−1
1 ,x

∣∣∣P̂ (ui−1
1 ,x)− W̃ (i)

n (x,ui−1
1 |ui)

∣∣∣
,

1

2

∑
i∈F1∪F2

∑
ui

V
(
P̂XnUi−1

1
, W̃XnUi−1

1 |Ui=ui

)
(14)

By noting that

P̂ (ui−1
1 ,x) =

1

2

∑
u∈{0,1}

W̃ (i)
n (x,ui−1

1 |ui = u),

and since the bit-channels W̃ (i)
n are symmetric [2, Proposition

13], we can argue as in the proof of Proposition 1 that for any
u ∈ {0, 1} and i ∈ F1 ∪ F2,

D
(
W̃XnUi−1

1 |Ui=u‖P̂XnUi−1
1

)
= C(W̃ (i)

n ) 6 2−n
β

.

Using Pinsker’s inequality, we obtain

V
(
P̂XnUi−1

1
, W̃XnUi−1

1 |Ui=u

)
6 2−

1
2n

β√
2 ln 2,

and we conclude that Bn 6 n2−
1
2n

β√
2 ln 2. Therefore,

lim
n→∞

V
(
P̃UnXn , P̂UnXn

)
6 lim

n→∞
Bn = 0.

Finally we show that V
(
p̃UF2

UF3
XnYn , p̂UF2

UF3
XnYn

)
is in-

dependent of the value of the frozen bits uF1
.

Lemma 5:

EUF1

(
V
(
p̃UF2

UF3
XnYn , p̂UF2

UF3
XnYn

))
= V

(
p̃UF2

UF3
XnYn , p̂UF2

UF3
XnYn

)
. (15)

Proof: Since the channel WX|V is symmetric, there exists
a permutation π1 : X → X such that π1 = π−1

1 and

∀x ∈ X , WX|V(x|0) = WX|V(π1(x)|1). (16)

Defining the identity π0 : X → X allows us to define an
action {0, 1} × X → X given by

v · x = πv(x).

This can be extended component-wise to an action {0, 1}n ×
Xn → Xn as

(v1, . . . , vn) · (x1, . . . , xn) = (πv1(x1), . . . , πvn(xn)).

Therefore, we have ∀v,w ∈ {0, 1}n, ∀x ∈ Xn,

WXn|Vn(x|v) = WXn|Vn(w · x|v ⊕w) (17)

Lemma 8 in [4] shows that ∀i ∈ J1, nK

L(i)
n (w · x, (wG−1

n )i−1
1 ⊕ ui−1

1 )

=

{
L

(i)
n (x,ui−1

1 ) if (wG−1
n )i = 0

(L
(i)
n (x,ui−1

1 ))−1 if (wG−1
n )i = 1

(18)

Now, consider the two SC encodings corresponding to two
values of the frozen bits ŭF1

and ūF1
.

p̆(ui|x,ui−1
1 ) =



1 i ∈ F1, ui = (ŭF1
)i

0 i ∈ F1, ui 6= (ŭF1
)i

1
2 i ∈ F2

L(i)
n (x,ui−1

1 )

1+L
(i)
n (x,ui−1

1 )
i ∈ F3, ui = 0

1

1+L
(i)
n (x,ui−1

1 )
i ∈ F3, ui = 1

(19)

p̄(ui|x,ui−1
1 ) =



1 i ∈ F1, ui = (ūF1
)i

0 i ∈ F1, ui 6= (ūF1
)i

1
2 i ∈ F2

L(i)
n (x,ui−1

1 )

1+L
(i)
n (x,ui−1

1 )
i ∈ F3, ui = 0

1)

1+L
(i)
n (x,ui−1

1 )
i ∈ F3, ui = 1

(20)



Using (18) and following the proof of Lemma 9 in [4], one
can show by induction that if w ∈ {0, 1}n is such that

ūF1 ⊕ ŭF1 = (wG−1
n )F1 , (21)

then ∀i ∈ J1, nK, ∀ui ∈ {0, 1}, we have

p̆(ui|x,ui−1
1 )

= p̄(ui ⊕ (wG−1
n )i|w · x, (wG−1

n )i−1
1 ⊕ ui−1

1 ). (22)

Note that, given ŭF1
and ūF1

, a w satisfying (21) always
exists since Gn is one-to-one.

Similarly to Lemma 10 in [4], where it is shown that the
average distortion is independent of the choice of frozen bits,
we prove that the variational distance is independent of the
choice of the frozen bits uF1

. Consider two resolvability codes
for the channel WX|V obtained by transmitting i.i.d. B(1/2)
random bits on F2 and F3 and by freezing the bits in F1 to
ūF1

and ŭF1
, respectively. Denote the induced distribution by

p̂XnUn|UF1
=ūF1

and p̂XnUn|UF1
=ŭF1

, respectively. Our goal
is to show that

V
(
p̄XnUn , p̂XnUn|UF1

=ūF1

)
= V

(
p̆XnUn , p̂XnUn|UF1

=ŭF1

)
.

In fact, we have

V
(
p̄XnUn , p̂XnUn|UF1

=ūF1

)
=
∑
x,u

1

2|F2|
1{uF1

=ūF1}

∣∣∣∣∣q(x)
∏
i∈F3

p̄(ui|x,ui−1
1 )

− 1

2|F3|
WXn|Vn(x|uGn)

∣∣∣∣ .
(23)

Consider the change of variables u = v⊕wG−1
n and x = w·z,

where w satisfies (21). Equation (23) becomes∑
z,v

1

2|F2|
1{vF1

=ŭF1}∣∣∣∣∣q(w · z)
∏
i∈F3

p̄(vi ⊕ (wG−1
n )i|w · z,vi−1

1 ⊕ (wG−1
n )i−1

1 )

− 1

2|F3|
WXn|Vn(w · z|vGn ⊕w)

∣∣∣∣
Using Eq. (22) and Eq. (17), this further simplifies as∑

z,v

1

2|F2|
1{vF1

=ŭF1}

∣∣∣∣∣q(w · z)
∏
i∈F3

p̆(vi|z,vi−1
1 )

− 1

2|F3|
WXn|Vn(z|vGn)

∣∣∣∣
= V

(
p̆XnUn , p̂XnUn|UF1

=ŭF1

)
,

where the last inequality follows because qXn is the uniform
distribution on Xn.
Combining the results of Lemma 3, Lemma 4, and Lemma 5
with Eq. (6), we conclude that the proposed coding scheme is
a resolvability code.
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Fig. 3. Example of achievable rates for coordination with and without polar
codes.

V. DISCUSSION

In general, the achievable coordination region with polar
codes given in Proposition 2 is strictly smaller than the
coordination capacity region given in Theorem 1 because of
the constraints C1, C2, and C3, on the random variable V (see
Section 4.2).

As a first illustration, consider the situation in which X =
{0, 1}, Y = {0, ?, 1}, qX ∼ B( 1

2 ) and qY|X corresponds to
the concatenation of a binary symmetric channel with cross-
over probability p with a binary erasure channel with erasure
probability ε. In other words, the transition probability matrix
corresponding to qY|X is(

(1− p)(1− ε) ε p(1− ε)
p(1− ε) ε (1− p)(1− ε)

)
Because of condition C2 (see Section 4.2), one can show
that the boundary of the region of achievable rates (R,R0)
is characterized by

R > 1−Hb (q)

R0 +R > (1− ε)
(
Hb (p)−Hb

(
p− q
1− 2q

))
+ 1−Hb (q)

for q ∈ [0,min( 1
2 , p)]. On the other hand, it is not difficult

to show that the following rates are also admissible by
Theorem 1.

R > (1− ν)(1−Hb (p))

R0 +R > Hb (ε) + (1− ε)Hb (p) + (1− ν)Hb

(
ε− ν
1− ν

)
+ (1− ν)(1−Hb (p))

for ν ∈ [0,min(1, ε)]. The regions achievable with and without
polar codes are illustrated in Figure 3, for the case ε = 0.4
and p = 0.15.

As a second illustration, consider the situation in which
X = {0, 1}, Y = {0, ?, 1}, and qY|X corresponds to binary
erasure channel with erasure probability ε. The coordination
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Fig. 4. Example of achievable rates for coordination with and without polar
codes.

capacity region for this model is characterized in [11], and it
is shown that the optimal choice of V such that X→ V → Y
forms a Markov chain is a ternary random variable. In contrast,
one can check that the only possible choice of such a V satis-
fying the constraints C1, C2, and C3 is V = X. Consequently,
the achievable coordination rate with polar codes is the trivial
region {(R,R0) : R0 > 0, R > 1, which is achievable without
any coding. The regions are illustrated in Figure 4.

The generalization of the results beyond binary actions at
node X can be carried out by leveraging known results about
non-binary polar codes. However, the generalization to non-
uniform actions and asymmetric channels seems much more
challenging, since the proofs used in this paper heavily rely
on the symmetry properties and uniformity of the actions to
coordinate. Finding an explicit coordination scheme in a more
general case remains an open problem and will be the topic
of future research.
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