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Asymptotic normality and efficiency of the
maximum likelihood estimator for the parameter

of a ballistic random walk in a random
environment

Mikael FALCONNET∗ Dasha LOUKIANOVA† Catherine MATIAS∗

February 2, 2013

Abstract

We consider a one dimensional ballistic random walk evolving in a para-
metric independent and identically distributed random environment. We
study the asymptotic properties of the maximum likelihood estimator of
the parameter based on a single observation of the path till the time it
reaches a distant site. We prove an asymptotic normality result for this
consistent estimator as the distant site tends to infinity and establish that
it achieves the Cramér-Rao bound. We also explore in a simulation setting
the numerical behaviour of asymptotic confidence regions for the param-
eter value.

Key words : Asymptotic normality, Ballistic random walk, Confidence regions,
Cramér-Rao efficiency, Maximum likelihood estimation, Random walk in ran-
dom environment. MSC 2000 : Primary 62M05, 62F12; secondary 60J25.

1 Introduction

Random walks in random environments (RWRE) are stochastic models that al-
low two kinds of uncertainty in physical systems: the first one is due to the het-
erogeneity of the environment, and the second one to the evolution of a particle
in a given environment. The first studies of one-dimensional RWRE were done
by Chernov (1967) with a model of DNA replication, and by Temkin (1972) in
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the field of metallurgy. From the latter work, the random media literature in-
herited some famous terminology such as annealed or quenched law. The lim-
iting behaviour of the particle in Temkin’s model was successively investigated
by Kozlov (1973); Solomon (1975) and Kesten et al. (1975). Since these pioneer
works on one-dimensional RWRE, the related literature in physics and proba-
bility theory has become richer and source of fine probabilistic results that the
reader may find in recent surveys including Hughes (1996) and Zeitouni (2004).

The present work deals with the one-dimensional RWRE where we investigate
a different kind of question than the limiting behaviour of the walk. We adopt
a statistical point of view and are interested in inferring the distribution of the
environment given the observation of a long trajectory of the random walk. This
kind of questions has already been studied in the context of random walks in
random colorings ofZ (Benjamini and Kesten, 1996; Matzinger, 1999; Löwe and Matzinger,
2002) as well as in the context of RWRE for a characterization of the environ-
ment distribution (Adelman and Enriquez, 2004; Comets et al., 2012). Whereas
Adelman and Enriquez deal with very general RWRE and present a procedure
to infer the environment distribution through a system of moment equations,
Comets et al. provide a maximum likelihood estimator (MLE) of the parame-
ter of the environment distribution in the specific case of a transient ballistic
one-dimensional nearest neighbour path. In the latter work, the authors estab-
lish the consistency of their estimator and provide synthetic experiments to as-
sess its effective performances. It turns out that this estimator exhibits a much
smaller variance than the one of Adelman and Enriquez. We propose to estab-
lish what the numerical investigations of Comets et al. suggested, that is, the
asymptotic normality of the MLE as well as its asymptotic efficiency (namely,
that it asymptotically achieves the Cramér-Rao bound).

This article is organised as follows. In Section 2.1, we introduce the framework
of the one dimensional ballistic random walk in an independent and identi-
cally distributed (i.i.d.) parametric environment. In Section 2.2, we present the
MLE procedure developed by Comets et al. to infer the parameter of the en-
vironment distribution. Section 2.3 recalls some already known results on an
underlying branching process in a random environment related to the RWRE.
Then, we state in Section 2.5 our asymptotic normality result in the wake of ad-
ditional hypotheses required to prove it and listed in Section 2.4. In Section 3,
we present three examples of environment distributions which are already in-
troduced in Comets et al. (2012), and we check that the additional required as-
sumptions of Section 2.4 are fulfilled, so that the MLE is asymptotically normal
and efficient in these cases. The proof of the asymptotic normality result is pre-
sented in Section 4. We apply to the score vector sequence a central limit the-
orem for centered square-integrable martingales (Section 4.1) and we adapt to
our context an asymptotic normality result for M-estimators (Section 4.2). To
conclude this part, we provide in Section 4.3 the proof of a sufficient condition
for the non-degeneracy of the Fisher information. Finally, Section 5 illustrates

2



our results on synthetic data by exploring empirical coverages of asymptotic
confidence regions.

2 Material and results

2.1 Properties of a transient random walk in a random environment

Let us introduce a one-dimensional random walk (more precisely a nearest neigh-
bour path) evolving in a random environment (RWRE for short) and recall its el-
ementary properties. We start by considering the environment defined through
the collection ω = {ωx }x∈Z ∈ (0,1)Z of i.i.d. random variables, with parametric
distribution ν=νθ that depends on some unknown parameter θ ∈Θ. We further
assume that Θ⊂R

d is a compact set. We let Pθ = ν⊗Z
θ

be the law on (0,1)Z of the

environment ω and E
θ be the corresponding expectation.

Now, for fixed environment ω, let X = {Xt }t∈N be the Markov chain on Z starting
at X0 = 0 and with (conditional) transition probabilities

Pω(Xt+1 = y |Xt = x) =






ωx if y = x +1,
1−ωx if y = x −1,
0 otherwise.

The quenched distribution Pω is the conditional measure on the path space of X

given ω. Moreover, the annealed distribution of X is given by

Pθ(·) =
∫

Pω(·)dPθ(ω).

We write Eω and Eθ for the corresponding quenched and annealed expectations,
respectively. In the following, we assume that the process X is generated under
the true parameter value θ⋆, an interior point of the parameter space Θ, that
we aim at estimating. We shorten to P⋆ and E⋆ (resp. P⋆ and E

⋆) the annealed
(resp. quenched) probability Pθ⋆

(resp. Pθ⋆

) and corresponding expectation Eθ⋆

(resp. Eθ
⋆

) under parameter value θ⋆.

The behaviour of the process X is related to the ratio sequence

ρx =
1−ωx

ωx
, x ∈Z. (1)

We refer to Solomon (1975) for the classification of X between transient or re-
current cases according to whether Eθ(logρ0) is different or not from zero (the
classification is also recalled in Comets et al., 2012). In our setup, we consider
a transient process and without loss of generality, assume that it is transient to
the right, thus corresponding to E

θ(logρ0) < 0. The transient case may be fur-
ther split into two sub-cases, called ballistic and sub-ballistic that correspond to
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a linear and a sub-linear speed for the walk, respectively. More precisely, letting
Tn be the first hitting time of the positive integer n,

Tn = inf{t ∈N : Xt =n}, (2)

and assuming E
θ(logρ0) < 0 all through, we can distinguish the following cases

(a1) (Ballistic). If Eθ(ρ0) < 1, then, Pθ-almost surely,

Tn

n
−−−−→
n→∞

1+E
θ(ρ0)

1−Eθ(ρ0)
. (3)

(a2) (Sub-ballistic). If Eθ(ρ0) ≥ 1, then Tn/n → +∞, Pθ-almost surely when n

tends to infinity.

Moreover, the fluctuations of Tn depend in nature on a parameter κ ∈ (0,∞],
which is defined as the unique positive solution of

E
θ(ρκ

0 ) = 1

when such a number exists, and κ = +∞ otherwise. The ballistic case corre-
sponds to κ> 1. Under mild additional assumptions, Kesten et al. (1975) proved
that

(aI) if κ≥ 2, then Tn has Gaussian fluctuations. Precisely, if c denotes the limit
in (3), then n−1/2(Tn−nc) when κ> 2, and (n logn)−1/2(Tn−nc) when κ= 2
have a non-degenerate Gaussian limit.

(aII) if κ< 2, then n−1/κ(Tn−dn) has a non-degenerate limit distribution, which
is a stable law with index κ.
The centering is dn = 0 for κ < 1, dn = an logn for κ = 1, and dn = an for
κ ∈ (1,2), for some positive constant a.

2.2 A consistent estimator

We briefly recall the definition of the estimator proposed in Comets et al. (2012)
to infer the parameter θ, when we observe X[0,Tn ] = {Xt : t = 0,1, . . . ,Tn}, for
some value n ≥ 1. It is defined as the maximizer of some well-chosen criterion
function, which roughly corresponds to the log-likelihood of the observations.

We start by introducing the statistics {Ln
x }x∈Z, defined as

Ln
x :=

Tn−1∑

s=0
1{Xs=x; Xs+1=x−1},

namely Ln
x is the number of left steps of the process X[0,Tn ] from site x. Here, 1{·}

denotes the indicator function.
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Definition 2.1. Let φθ be the function from N
2 to R given by

φθ(x, y) = log
∫1

0
ax+1(1−a)y dνθ(a). (4)

The criterion function θ 7→ ℓn(θ) is defined as

ℓn(θ) =
n−1∑

x=0
φθ(Ln

x+1,Ln
x ). (5)

We now recall the assumptions stated in Comets et al. (2012) ensuring that the
maximizer of criterion ℓn is a consistent estimator of the unknown parameter.

Assumption I. (Consistency conditions).

i) (Transience to the right). For any θ ∈Θ,Eθ| logρ0| <∞ and E
θ(logρ0) < 0.

ii) (Ballistic case). For any θ ∈Θ, Eθ(ρ0) < 1.

iii) (Continuity). For any (x, y)∈N
2, the map θ 7→φθ(x, y) is continuous on the

parameter set Θ.

iv) (Identifiability). For any (θ,θ′) ∈Θ
2, νθ 6=νθ′ ⇐⇒ θ 6= θ′.

v) The collection of probability measures {νθ : θ ∈Θ} is such that

inf
θ∈Θ

E
θ[log(1−ω0)] >−∞.

According to Assumption I point i i i ), the function θ 7→ ℓn(θ) is continuous on
the compact parameter set Θ. Thus, it achieves its maximum, and the estimator
θ̂n is defined as one maximizer of this criterion.

Definition 2.2. An estimator θ̂n of θ is defined as a measurable choice

θ̂n ∈ Argmax
θ∈Θ

ℓn(θ). (6)

Note that θ̂n is not necessarily unique. As explained in Comets et al. (2012),
with a slight abuse of notation, θ̂n may be considered a MLE. Moreover, under
Assumption I, Comets et al. (2012) establish its consistency, namely its conver-
gence in P⋆-probability to the true parameter value θ⋆.

2.3 The role of an underlying branching process

We introduce in this section an underlying branching process with immigration
in random environment (BPIRE) that is naturally related to the RWRE. Indeed, it
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is well-known that for an i.i.d. environment, under the annealed law P⋆, the se-
quence Ln

n ,Ln
n−1, . . . ,Ln

0 has the same distribution as a BPIRE denoted Z0, . . . , Zn ,
and defined by

Z0 = 0, and for k = 0, . . . ,n −1, Zk+1 =
Zk∑

i=0
ξ′k+1,i , (7)

with {ξ′
k ,i }k∈N∗;i∈N independent and

∀m ∈N, Pω(ξ′k ,i = m) = (1−ωk )mωk ,

(see for instance Kesten et al., 1975; Comets et al., 2012). Let us introduce through
the function φθ defined by (4) the transition kernel Qθ on N

2 defined as

Qθ(x, y)=
(

x + y

x

)

eφθ(x,y) =
(

x + y

x

)∫1

0
ax+1(1−a)y dνθ(a). (8)

Then for each value θ ∈ Θ, under annealed law Pθ the BPIRE {Zn}n∈N is an ir-
reducible positive recurrent homogeneous Markov chain with transition ker-
nel Qθ and a unique stationary probability distribution denoted by πθ. More-
over, the moments of πθ may be characterised through the distribution of the
ratios {ρx }x∈Z. The following statement is a direct consequence from the proof
of Theorem 4.5 in Comets et al. (2012) (see Equation (16) in this proof).

Proposition 2.3 (Theorem 4.5 in Comets et al. (2012)). The invariant probabil-

ity measure πθ is positive on N and satisfies

∀ j ≥ 0,
∑

k≥ j+1

k(k −1). . .(k − j )πθ(k)= ( j +1)! Eθ
[( ∑

n≥1

n∏

k=1

ρk

) j+1]
.

In particular, πθ has a finite first moment in the ballistic case.

Note that the criterion ℓn satisfies the following property

ℓn(θ) ∼
n−1∑

k=0
φθ(Zk , Zk+1) under P⋆, (9)

where ∼ means equality in distribution. For each value θ ∈ Θ, under annealed
law Pθ the process {(Zn , Zn+1)}n∈N is also an irreducible positive recurrent ho-
mogeneous Markov chain with unique stationary probability distribution de-
noted by π̃θ and defined as

π̃θ(x, y)=πθ(x)Qθ(x, y), ∀(x, y)∈N
2. (10)

For any function g : N2 → R such that
∑

x,y π̃θ(x, y)|g (x, y)| < ∞, we denote by
π̃θ(g ) the quantity

π̃θ(g ) =
∑

(x,y)∈N2

π̃θ(x, y)g (x, y). (11)
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We extend the notation above for any function g = (g1, . . . , gd ) : N2 → R
d such

that π̃θ(‖g‖) <∞, where ‖·‖ is the uniform norm, and denote by π̃θ(g ) the vector
(π̃θ(g1), . . . , π̃θ(gd )). The following ergodic theorem is valid.

Proposition 2.4. (Theorem 4.2 in Chapter 4 from Revuz, 1984). Under point i ) in

Assumption I, for any function g : N2 → R
d , such that π̃θ(‖g‖) <∞ the following

ergodic theorem holds

lim
n→∞

1

n

n−1∑

k=0
g (Zk , Zk+1) = π̃θ(g ),

P⋆-almost surely and in L
1(P⋆).

2.4 Assumptions for asymptotic normality

Assumption I is required for the construction of a consistent estimator of the
parameter θ. It mainly consists in a transient random walk with linear speed
(ballistic regime) plus some regularity assumptions on the model with respect
to θ ∈Θ. Now, asymptotic normality result for this estimator requires additional
hypotheses.

In the following, for any function gθ depending on the parameter θ, the symbols
ġθ or ∂θgθ and g̈θ or ∂2

θ
gθ denote the (column) gradient vector and Hessian ma-

trix with respect to θ, respectively. Moreover, Y ⊺ is the row vector obtained by
transposing the column vector Y .

Assumption II. (Differentiability). The collection of probability measures {νθ :
θ ∈Θ} is such that for any (x, y) ∈N

2, the map θ 7→φθ(x, y) is twice continuously

differentiable on Θ.

Assumption III. (Regularity conditions). For any θ ∈ Θ, there exists some q > 1
such that

π̃θ

(
‖φ̇θ‖2q

)
<+∞. (12)

For any x ∈N, ∑

y∈N
Q̇θ(x, y) = ∂θ

∑

y∈N
Qθ(x, y) = 0. (13)

Assumption IV. (Uniform conditions). For any θ ∈Θ, there exists some neighbor-

hood V (θ) of θ such that

π̃θ

(
sup

θ′∈V (θ)
‖φ̇θ′‖2

)
<+∞ and π̃θ

(
sup

θ′∈V (θ)
‖φ̈θ′‖2

)
<+∞. (14)

Assumptions II and III are technical and involved in the proof of a central limit
theorem (CLT) for the gradient vector of the criterion ℓn , also called score vector
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sequence. Assumption IV is also technical and involved in the proof of asymp-
totic normality of θ̂n from the latter CLT. Note that Assumption III also allows us
to define the matrix

Σθ = π̃θ

(
φ̇
θ
φ̇
⊺

θ

)
. (15)

Combining the definitions (8),(10),(11) and (15) with Assumption III, we obtain
the equivalent expression for Σθ

Σθ =
∑

x∈N

∑

y∈N
πθ(x)

1

Qθ(x, y)
Q̇θ(x, y)Q̇θ(x, y)⊺

=−
∑

x∈N

∑

y∈N
πθ(x)

(
Q̈θ(x, y)−

1

Qθ(x, y)
Q̇θ(x, y)Q̇θ(x, y)⊺

)

=− π̃θ(φ̈θ). (16)

Assumption V. (Fisher information matrix). For any value θ ∈Θ, the matrix Σθ

is non singular.

Assumption V states invertibility of the Fisher information matrix Σθ⋆ . This as-
sumption is necessary to prove asymptotic normality of θ̂n from the previously
mentioned CLT on the score vector sequence.

2.5 Results

Theorem 2.5. Under Assumptions I to III, the score vector sequence ℓ̇n(θ⋆)/
p

n is

asymptotically normal with mean zero and finite covariance matrix Σθ⋆ .

Theorem 2.6. (Asymptotic normality). Under Assumptions I to V, for any choice

of θ̂n satisfying (6), the sequence {
p

n(θ̂n −θ⋆)}n∈N converges in P⋆-distribution

to a centered Gaussian random vector with covariance matrix Σ
−1
θ⋆ .

Note that the limiting covariance matrix of
p

nθ̂n is exactly the inverse Fisher
information matrix of the model. As such, our estimator is efficient. Moreover,
the previous theorem may be used to build asymptotic confidence regions for θ,
as illustrated in Section 5. In this section, we also explain how to estimate the
Fisher information matrix Σθ⋆ . Indeed, Σθ⋆ is defined via the invariant distribu-
tion π̃θ⋆ which possesses no analytical expression. To bypass the problem, we
rely on the observed Fisher information matrix as an estimator of Σθ⋆ .

Remark 2.7. We observe that the fluctuations of the estimator θ̂n are unrelated

to those of Tn or those of Xt , see (aI)-(aII). Though there is a change of limit law

from Gaussian to stable as Eθ(ρ2
0) decreases from larger to smaller than 1, the MLE

remains asymptotically normal in the full ballistic region (no extra assumption is

required in Example I introduced in Section 3). We illustrate this point by consid-

ering a naive estimator at the end of Subsection 3.1.
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We conclude this section by providing a sufficient condition for Assumption V
to be valid, namely ensuring that Σθ is positive definite.

Proposition 2.8. For the covariance matrix Σθ to be positive definite, it is suffi-

cient that the linear span in R
d of the gradient vectors φ̇θ(x, y), with (x, y) ∈N

2 is

equal to the full space, or equivalently, that

Vect
{
∂θE

θ(ωx+1
0 (1−ω0)y ) : (x, y)∈N

2
}
=R

d .

Section 4 is devoted to the proof of Theorem 2.6 where Subsections 4.1 and 4.3
are concerned with the proofs of Theorem 2.5 and Proposition 2.8, respectively.

3 Examples

3.1 Environment with finite and known support

Example I. Fix a1 < a2 ∈ (0,1) and let νp = pδa1 + (1− p)δa2 , where δa is the

Dirac mass located at value a. Here, the unknown parameter is the proportion

p ∈Θ⊂ [0,1] (namely θ = p). We suppose that a1, a2 and Θ are such that points i )
and i i ) in Assumption I are satisfied.

This example is easily generalized to ν having m ≥ 2 support points namely νθ =∑m
i=1 pi ai , where a1, . . . , am are distinct, fixed and known in (0,1), we let pm =

1−
∑m−1

i=1 pi and the parameter is now θ = (p1, . . . , pm−1).

In the framework of Example I, we have

φp (x, y)= log[pax+1
1 (1−a1)y + (1−p)ax+1

2 (1−a2)y ], (17)

and

ℓn(p) := ℓn(θ) =
n−1∑

x=0
log

[
pa

Ln
x+1+1

1 (1−a1)
Ln

x + (1−p)a
Ln

x+1+1
2 (1−a2)

Ln
x

]
. (18)

Comets et al. (2012) proved that p̂n =Argmaxp∈Θℓn(p) converges in P⋆-probability
to p⋆. There is no analytical expression for the value of p̂n . Nonetheless, this es-
timator may be easily computed by numerical methods. We now establish that
the assumptions needed for asymptotic normality are also satisfied in this case,
under the only additional assumption that Θ⊂ (0,1).

Proposition 3.1. In the framework of Example I, assuming moreover that Θ ⊂
(0,1), Assumptions II to IV are satisfied.
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Proof. The function p 7→ φp (x, y) given by (17) is twice continuously differen-
tiable for any (x, y). The derivatives are given by

φ̇p (x, y) = e−φp (x,y)[ax+1
1 (1−a1)y −ax+1

2 (1−a2)y ],

φ̈p (x, y) =−φ̇p (x, y)2.

Since exp[φp (x, y)] ≥ pax+1
1 (1−a1)y and exp[φp (x, y)] ≥ (1−p)ax+1

2 (1−a2)y , we
obtain the bounds

|φ̇p (x, y)| ≤
1

p
+

1

1−p
.

Now, under the additional assumption that Θ⊂ (0,1), there exists some A ∈ (0,1)
such that Θ⊂ [A,1− A] and then

sup
(x,y)∈N2

|φ̇p (x, y)| ≤
2

A
and sup

(x,y)∈N2
|φ̈p (x, y)| ≤

4

A2
, (19)

which yields that (12) and (14) are satisfied.

Now, noting that

Q̇θ(x, y)=
(

x + y

x

)

[ax+1
1 (1−a1)y −ax+1

2 (1−a2)y ],

and that
∞∑

y=0

(
x + y

x

)

ax+1(1−a)y = 1, ∀x ∈N, ∀a ∈ (0,1), (20)

yields (13).

Proposition 3.2. In the framework of Example I, the covariance matrix Σθ is pos-

itive definite, namely Assumption V is satisfied.

Proof of Proposition 3.2. We have

E
p (ω0) = p(a1 −a2)+a2,

with derivative a1 − a2 6= 0, which achieves the proof thanks to Proposition 2.8.

Thanks to Theorem 2.6 and Propositions 3.1 and 3.2, the sequence {
p

n(p̂n−p⋆)}
converges in P⋆-distribution to a non degenerate centered Gaussian random
variable, with variance

Σ
−1
p⋆ =

{ ∑

(x,y)∈N2

πp⋆ (x)

(
x + y

x

)
[ax+1

1 (1−a1)y −ax+1
2 (1−a2)y ]2

p⋆ax+1
1 (1−a1)y + (1−p⋆)ax+1

2 (1−a2)y

}−1
.
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Remark 3.3. (Temkin model, cf. Hughes (1996)) With a ∈ (1/2,1) known and

θ = p ∈ (0,1) unknown, we consider νθ = pδa + (1−p)δ1−a . This is a particular

case of Example I. It is easy to see that transience to the right and ballistic regime,

respectively, are equivalent to

p > 1/2, p > a,

and that in the ballistic case, the limit c = c(p) in (3) is given by

c(p)=
a +p −2ap

(2a −1)(p −a)
.

We construct a new estimator p̃n of p solving the relation c(p̃n) = Tn/n, namely

p̃n =
a

2a −1
×

(2a −1)Tn +n

Tn +n
.

This new estimator is consistent in the full ballistic region. However, for all a > 1/2
and p > a but close to it, we have κ ∈ (1,2), the fluctuations of Tn are of order n1/κ,

and those of p̃n are of the same order. This new estimator is much more spread

out than the MLE p̂n .

3.2 Environment with two unknown support points

Example II. We let νθ = pδa1 + (1− p)δa2 and now the unknown parameter is

θ = (p, a1, a2) ∈Θ, where Θ is a compact subset of

(0,1)× {(a1, a2) ∈ (0,1)2 : a1 < a2}.

We suppose that Θ is such that points i ) and i i ) in Assumption I are satisfied.

The function φθ and the criterion ℓn(·) are given by (17) and (18), respectively.
Comets et al. (2012) have established that the estimator θ̂n is well-defined and
consistent in probability. Once again, there is no analytical expression for the
value of θ̂n . Nonetheless, this estimator may also be easily computed by nu-
merical methods. We now establish that the assumptions needed for asymp-
totic normality are also satisfied in this case, under a mild additional moment
assumption.

Proposition 3.4. In the framework of Example II, assuming moreover that Eθ(ρ3
0) <

1, Assumptions II to IV are satisfied.

Proof. In the proof of Proposition 3.1, we have already controled the derivative
of θ 7→φθ(x, y) with respect to p . Hence, it is now sufficient to control its deriva-
tives with respect to a1 and a2 to achieve the proof of (12) and (14). We have

∂a1φθ(x, y)= e−φθ(x,y)pax
1 (1−a1)y−1[(x +1)(1−a1)− y a1],

∂a2φθ(x, y)= e−φθ(x,y)(1−p)ax
2 (1−a2)y−1[(x +1)(1−a2)− y a2].
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Since

e−φθ(x,y)pax
1 (1−a1)y−1 ≤

1

a1(1−a1)
,

and

e−φθ(x,y)(1−p)ax
2 (1−a2)y−1 ≤

1

a2(1−a2)
,

we can see that there exists a constant B such that

|∂a j
φθ(x, y)| ≤

∣∣∣
x +1

a j
−

y

1−a j

∣∣∣≤ B (x +1+ y), for j = 1,2. (21)

Now, we prove that (12) is satisfied with q = 3/2. From (21), it is sufficient to
check that ∑

k∈N
k3πθ(k)<∞,

which is equivalent to

∑

k≥3

k(k −1)(k −2)πθ(k)= 6Eθ
[( ∑

n≥1

n∏

k=1

ρk

)3]
<∞,

where the last equality comes from Proposition 2.3. From Minkowski’s inequal-
ity, we have

E
θ
[( ∑

n≥1

n∏

k=1
ρk

)3]
≤

{ ∑

n≥1

[
E
θ
( n∏

k=1
ρ3

k

)]1/3}3
=

{ ∑

n≥1
[Eθ(ρ3

0)]n/3
}3

,

where the right-hand side term is finite according to the additional assumption
that Eθ(ρ3

0) < 1. Since the bound in (21) does not depend on θ and πθ possesses
a finite third moment, the first part of condition (14) on the gradient vector is
also satisfied.

Now, we turn to (13). Noting that

∂a1Qθ(x, y) =
(

x + y

x

)

pax
1 (1−a1)y−1[(x +1)(1−a1)− y a1],

∂a2Qθ(x, y) =
(

x + y

x

)

(1−p)ax
2 (1−a2)y−1[(x +1)(1−a2)− y a2],

that
∞∑

y=0
y

(
x + y

x

)

ax+1(1−a)y = (x +1)
1−a

a
, ∀x ∈N, ∀a ∈ (0,1), (22)

and using (20) yields (13).

12



The second order derivatives of φθ are given by

∂2
pφθ(x, y)=−[∂pφθ(x, y)]2,

∂p∂a1φθ(x, y)= [∂a1φθ(x, y)]×
(

1

p
−∂pφθ(x, y)

)
,

∂a1∂a2φθ(x, y)=−[∂a1φθ(x, y)]× [∂a2φθ(x, y)],

∂2
a1
φθ(x, y)= [∂a1φθ(x, y)]×

[
−∂a1φθ(x, y)+

x

a1
−

y −1

1−a1

−
x +1+ y

(x +1)(1−a1)− y a1

]
,

and similar formulas for a2 instead of a1. The second part of (14) on the Hessian
matrix thus follows from the previous expressions combined with (19), (21) and
the existence of a second order moment for πθ.

Proposition 3.5. In the framework of Example II, the covariance matrix Σθ is

positive definite, namely Assumption V is satisfied.

Proof of Proposition 3.5. We have

E
θ[ωx+1

0 (1−ω0)x ] = pax+1
1 (1−a1)x + (1−p)ax+1

2 (1−a2)x .

The determinant of
(
∂θE

θ[ωk+1
0 (1−ω0)k ]

)

k=0,1,x
is given by

∣∣∣∣∣∣

a1−a2 a2
1(1−a1)−a2

2(1−a2) ax+1
1 (1−a1)x−ax+1

2 (1−a2)x

p pa1(2−3a1) pax
1 (1−a1)x−1[x(1−2a1)+1−a1]

1−p (1−p)a2(2−3a2) (1−p)ax
2 (1−a2)x−1[x(1−2a2)+1−a2]

∣∣∣∣∣∣

and we denote it by Det. As we have a1 6= a2 and p ∈ (0,1), we show that this de-
terminant is non zero for large x. This will complete the proof, thanks to Propo-
sition 2.8.

We first consider the case of a1(1−a1) 6= a2(1−a2), i.e. of a2 6= 1−a1 since a1 < a2.
Without loss of generality, we assume a1(1− a1) < a2(1− a2). In this case, the
leading terms as x →∞ in Det are

Det = p(1−p)ax
2 (1−a2)x−1×

∣∣∣∣∣∣

a1−a2 a2
1(1−a1)−a2

2(1−a2) −a2(1−a2)
1 a1(2−3a1) 0
1 a2(2−3a2) [x(1−2a2)+1−a2]

∣∣∣∣∣∣

+o(ax
2 (1−a2)x ).

The sign of Det is determined by that of the above, new determinant. By tran-
sience of the walk to +∞, it holds a2 > 1/2, and we see in this new determinant

13



that the coefficient of x, namely (a2 − a1)2(1− 2a2)(1− 2a1 − a2), and the con-
stant term a2(a2−1)(a2−a1)[2−3a1−3a2+(a2−a1)(1−2a1−a2)] do not vanish
simultaneously. Therefore, Det 6= 0 for large x.

In the case a2 = 1−a1, with some algebra we find

Det = p(1−p)ax
1 (1−a1)x (a2 −a1)3(1−2a2)a1a2x +O (ax

1 (1−a1)x ),

with a nonzero leading term. Hence Det 6= 0 for large x.

Thanks to Theorem 2.6 and Propositions 3.4 and 3.5, under the additional as-
sumption that Eθ(ρ3

0) < 1, the sequence {
p

n(θ̂n−θ⋆)} converges in P⋆-distribution
to a non degenerate centered Gaussian random vector.

3.3 Environment with Beta distribution

Example III. We let ν be a Beta distribution with parameters (α,β), namely

dν(a)=
1

B(α,β)
aα−1(1−a)β−1da, B(α,β) =

∫1

0
tα−1(1− t )β−1dt .

Here, the unknown parameter is θ = (α,β) ∈Θ where Θ is a compact subset of

{(α,β) ∈ (0,+∞)2 : α>β+1}.

As E
θ(ρ0) = β/(α− 1), the constraint α > β+ 1 ensures that points i ) and i i ) in

Assumption I are satisfied.

In the framework of Example III, we have

φθ(x, y) = log
B(x +1+α, y +β)

B(α,β)
(23)

and

ℓn(θ) =−n log B(α,β)+
n−1∑

x=0
log B(Ln

x+1 +α+1,Ln
x +β)

=
n−1∑

x=0
log

(Ln
x+1+α)(Ln

x+1+α−1). . .α× (Ln
x +β−1)(Ln

x +β−2). . .β

(Ln
x+1+Ln

x +α+β−1)(Ln
x+1+Ln

x +α+β−2). . . (α+β)
.

In this case, Comets et al. (2012) proved that θ̂n is well-defined and consistent
in probability. We now establish that the assumptions needed for asymptotic
normality are also satisfied in this case.

Proposition 3.6. In the framework of Example III, Assumptions II to IV are satis-

fied.

14



Proof of Proposition 3.6. Relying on classical identities on the Beta function, it
may be seen after some computations that

φθ(x, y)=
x∑

k=0

log(k +α)+
y−1∑

k=0

log(k +β)−
x+y∑

k=0

log(k +α+β).

As a consequence, we obtain

∂αφθ(x, y) =
x∑

k=0

1

k +α
−

x+y∑

k=0

1

k +α+β
(24)

=
x∑

k=0

β

(k +α)(k +α+β)
−

y∑

k=1

1

k +x +α+β
.

The fact that Θ is a compact set included in (0,+∞)2 yields the existence of a
constant A independent of θ, x and y such that both

x∑

k=0

β

(k +α)(k +α+β)
≤

+∞∑

k=0

β

(k +α)(k +α+β)
≤ A,

and

y∑

k=1

1

k +x +α+β
≤

y∑

k=1

1

k +α+β
≤ A log(1+ y).

The same holds for ∂βφθ(x, y). Hence, we have

|∂αφθ(x, y)| ≤ A′ log(1+ y) and |∂βφθ(x, y)| ≤ A′ log(1+x), (25)

for some positive constant A′. Since there exists a constant B such that for any
integer x

log(1+x) ≤ B 4
p

x,

we deduce from (25) that there exists C > 0 such that

|∂αφθ(x, y)|2q ≤C y and |∂βφθ(x, y)|2q ≤C x, (26)

where q = 2. From Proposition 2.3, we know that πθ possesses a finite first mo-
ment, and together with (26), this is sufficient for (12) to be satisfied. Since the
bound in (26) does not depend on θ, the first part of condition (14) on the gradi-
ent vector is also satisfied.

Now, we prove that it is possible to exchange the order of derivation and sum-
mation to get (13). To do so, we prove that

∑

y

‖Q̇θ(x, y)‖<∞, (27)

for any integer x. Define θ0 = (α0,β0) with

α0 = inf(proj1(Θ)) and β0 = inf(proj2(Θ)),
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where proji , i = 1,2 are the two projectors on the coordinates. Note that θ0 does
not necessarily belong to Θ. However, it still belongs to the ballistic region {α >
β+1}. For any a ∈ (0,1) and any integers x and y , we have

ax+1+α−1(1−a)y+β−1 ≤ ax+1+α0−1(1−a)y+β0−1,

which yields
B(x +1+α, y +β) ≤ B(x +1+α0, y +β0),

as well as

Qθ(x, y) ≤
B(α0,β0)

B(α,β)
Qθ0 (x, y).

Using the fact that the beta function is continuous on the compact set Θ yields
the existence of a constant C such that

Qθ(x, y)≤CQθ0 (x, y),

for any integers x and y . Now recall that Q̇θ(x, y) = Qθ(x, y)φ̇θ(x, y). Hence,
using the last inequality and (26), it is sufficient to prove that

∑

y

yQθ0 (x, y)<∞, (28)

to get (27). We have

∑

x

(∑

y

yQθ0 (x, y)
)
πθ0 (x) =

∑

y

yπθ0(y) <∞,

where the last inequality comes from the fact that θ0 lies in the ballistic region
and thus πθ0 possesses a finite first moment. Hence, (28) is satisfied for any
integer x which proves that (27) is satisfied.

The second order derivatives of φθ are given by

∂2
αφθ(x, y) =−

x∑

k=0

1

(k +α)2
+

x+y∑

k=0

1

(k +α+β)2
,

∂α∂βφθ(x, y) =
x+y∑

k=0

1

(k +α+β)2
,

and similar formulas for β instead of α. Thus, the second part of condition (14)
for the Hessian matrix follows by arguments similar to those establishing the
first part of (14) for the gradient vector.

Proposition 3.7. In the framework of Example III, the covariance matrix Σθ is

positive definite, namely Assumption V is satisfied.
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Proof of Proposition 3.7. One easily checks that

φ̇θ(x, x) =





1
α+x

+ 1
α+x−1 +·· ·+ 1

α
− 1

α+β+2x
− 1

α+β+2x−1 −·· ·− 1
α+β

1
β+x−1 +

1
β+x−2 +·· ·+ 1

β
− 1

α+β+2x
− 1

α+β+2x−1 −·· ·− 1
α+β



 .

Hence, φ̇θ(0,0) is collinear to (β,−α)⊺ and φ̇θ(x, x) → (− log 2,− log 2)⊺ as x →
∞. This shows that φ̇θ(x, x), x ∈ N, spans the whole space, and Proposition 2.8
applies.

Thanks to Theorem 2.6 and Propositions 3.6 and 3.7, the sequence {
p

n(θ̂n−θ⋆)}
converges in P⋆-distribution to a non degenerate centered Gaussian random
vector.

4 Asymptotic normality

We now establish the asymptotic normality of θ̂n stated in Theorem 2.6. The
most important step lies in establishing Theorem 2.5 that states a CLT for the
gradient vector of the criterion ℓn (see Section 4.1). As a consequence, we obtain
the asymptotic normality of θ̂n , following the proof of Theorem 5.23 in van der Vaart
(1998). This latter reference deals with i.i.d. observations only, but may be easily
generalized to our context as explained in Section 4.2. Finally Section 4.3 estab-
lishes the proof of Proposition 2.8 stating a condition under which the Fisher
information matrix is non singular.

4.1 A central limit theorem for the gradient of the criterion

In this section, we prove Theorem 2.5, that is, the existence of a CLT for the score
vector sequence ℓ̇n(θ⋆). Note that according to (9), we have

1
p

n
ℓ̇n(θ⋆) ∼

1
p

n

n−1∑

k=0

φ̇θ⋆ (Zk , Zk+1), (29)

where {Zk }0≤k≤n is the Markov chain introduced in Section 2.3. First, note that
under Assumption III this quantity is integrable and centered with respect to P⋆.
Indeed, recall that φ̇θ(x, y)= Q̇θ(x, y)/Qθ(x, y), thus we can write for all x ∈N,

E⋆(φ̇θ⋆ (Zk , Zk+1)|Zk = x)=
∑

y∈N

Q̇θ⋆ (x, y)

Qθ⋆ (x, y)
Qθ⋆(x, y) = ∂θ

( ∑

y∈N
Qθ(x, y)

)∣∣∣
θ=θ⋆

= ∂θ(1)
∣∣∣
θ=θ⋆

= 0, (30)

where we have used (13) to interchange sum and derivative. Then,

E⋆(φ̇θ⋆(Zk , Zk+1)) = 0.
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Now, we rely on a CLT for centered square-integrable martingales, see Theorem
3.2 in Hall and Heyde (1980). We introduce the quantities

∀1 ≤ k ≤ n, Un,k =
1
p

n
φ̇θ⋆ (Zk−1, Zk ) and Sn,k =

k∑

j=1
Un, j ,

as well as the natural filtration Fn,k = Fk := σ(Z j , j ≤ k). According to (30),
{Sn,k ,1 ≤ k ≤ n,n ≥ 1} is a martingale array with differences Un,k . It is also cen-
tered and square integrable from Assumption III. Thus according to Theorem
3.2 in Hall and Heyde (1980), as soon as we have

max
1≤i≤n

‖Un,i ‖ −−−−−→
n→+∞

0 in P⋆-probability, (31)

n∑

i=1
Un,iU

⊺

n,i −−−−−→n→+∞
Σθ⋆ in P⋆-probability, (32)

and {E⋆( max
1≤i≤n

Un,iU
⊺

n,i )}n∈N is a bounded sequence, (33)

with Σθ⋆ a deterministic and finite covariance matrix, then the sum Sn,n con-
verges in distribution to a centered Gaussian random variable with covariance
matrix Σθ⋆ , which proves Theorem 2.5. Now, the convergence (32) is a direct
consequence of the ergodic theorem stated in Proposition 2.4. Moreover the
limit Σθ⋆ is given by (15) and is finite according to Assumption III. Note that
more generally, the ergodic theorem (Proposition 2.4) combined with Assump-
tion III implies the convergence of {

∑
1≤i≤n ‖Un,i ‖2}n to a finite deterministic

limit, P⋆-almost surely and in L1(P⋆). Thus, condition (33) follows from this
L1(P⋆)-convergence, combined with the bound

‖E⋆( max
1≤i≤n

Un,iU
⊺

n,i )‖ ≤
n∑

i=1
E⋆(‖Un,i ‖2).

Finally, condition (31) is obtained by writing that for any ε> 0 and any q > 1, we
have

P⋆( max
1≤i≤n

‖Un,i ‖≥ ε) = P⋆( max
1≤i≤n

‖φ̇θ⋆ (Zi−1, Zi )‖ ≥ ε
p

n)

≤
1

nqε2q
E⋆( max

1≤i≤n
‖φ̇θ⋆(Zi−1, Zi )‖2q )

≤
1

nqε2q

n∑

i=1
E⋆(‖φ̇θ⋆ (Zi−1, Zi )‖2q ),

where the first inequality is Markov’s inequality. By using again Assumption III
and the ergodic theorem (Proposition 2.4), the right-hand side of this inequality
converges to zero whenever q > 1. This achieves the proof.
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4.2 Proof of asymptotic normality

We follow the proof of asymptotic normality result for M-estimators stated in
Theorem 5.23 in van der Vaart (1998) in a i.i.d. context. Indeed, our estima-
tor θ̂n maximizes the function θ 7→ ℓn(θ) =

∑n−1
x=0 φθ(Ln

x+1,Ln
x ) and converges in

P⋆-probability to θ⋆. Moreover, it is shown in Comets et al. (2012) that the nor-
malised criterion ℓn/n satisfies

1

n
ℓn(θ) −−−−−→

n→+∞
ℓ(θ) := π̃θ⋆(φθ),

in P⋆-probability and the limiting function ℓ has a unique maximum at θ⋆ (see
Theorem 4.1 and Section 4.4 in Comets et al., 2012). Under Assumption III, we
obtain the following

1) The function θ 7→φθ(x, y) is differentiable at θ⋆ for all (x, y) and there ex-
ists some positive function φ̇ : N2 →R

d such that

π̃θ⋆(φ̇ φ̇⊺) <+∞

and for any θ1,θ2 in a neighborhood of θ⋆, for any (x, y) ∈N
2, we have

|φθ1 (x, y)−φθ2 (x, y)| ≤ ‖φ̇(x, y)‖ ·‖θ1 −θ2‖.

2) The map θ 7→ ℓ(θ) admits a second order Taylor expansion at its maxi-
mum θ⋆.

If we moreover assume that the Fisher information matrix Σθ⋆ = −π̃θ⋆ (φ̈θ⋆ ) is
non singular, then we have

p
n(θ̂n −θ⋆) =Σ

−1
θ⋆

1
p

n

n−1∑

x=0
φ̇θ⋆ (Ln

x+1,Ln
x )+oP (1), (34)

where oP (1) is a remainder term that converges in P⋆-probability to 0. The proof
of the latter fact is a simple rewriting of the proof of Theorem 5.23 in van der Vaart
(1998) and is therefore omitted. The main point is that the usual empirical pro-
cess Gn appearing in the original proof should be replaced here by its counter-
part in our framework, namely the operator

G̃n(φ) :=
1
p

n

n−1∑

x=0

{
φ(Ln

x+1,Ln
x )− π̃θ(φ)

}
,

for any φ : N2 7→ R or R
d such that π̃θ(‖φ‖) < +∞. Combining the equality in

distribution between Ln
n ,Ln

n−1, . . . ,Ln
0 and the positive recurrent Markov chain

{Zk }0≤k≤n with the ergodic theorem (Proposition 2.4) applied to this latter Markov
chain, the operator G̃n satisfies

1
p

n
G̃n(φ) = oP (1),
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which is the main ingredient of the proof.

Finally, combining (34) with Theorem 2.5, we obtain the convergence in P⋆- dis-
tribution of {

p
n(θ̂n−θ⋆)} to a centered Gaussian random vector with covariance

matrix Σ
−1
θ⋆Σθ⋆Σ

−1
θ⋆ =Σ

−1
θ⋆ .

4.3 Non degeneracy of the Fisher information

We now turn to the proof of Proposition 2.8. Let us consider a deterministic
vector u ∈R

d . We have
u⊺

Σθu = π̃θ(‖u⊺φ̇θ‖2).

We recall that according to Proposition 2.3, the invariant probability measure πθ

is positive as well as π̃θ . As a consequence, the quantity u⊺
Σθu is non negative

and equals zero if and only if

∀x, y ∈N, u⊺φ̇θ(x, y)= 0.

Let us assume that the linear span in R
d of the gradient vectors φ̇θ(x, y), (x, y) ∈

N
2 is equal to the full space, or equivalently, that

Vect
{
∂θE

θ(ωx+1
0 (1−ω0)y ) : (x, y)∈N

2
}
=R

d .

Then, the equality u⊺φ̇θ(x, y)= 0 for any (x, y) ∈N
2 implies u = 0. This concludes

the proof.

5 Numerical performances

In Comets et al. (2012), the authors have investigated the numerical performances
of the MLE and obtained that this estimator has better performances than the
one proposed by Adelman and Enriquez (2004), being less spread out than the
latter. In this section, we explore the possibility to construct confidence regions
for the parameter θ, relying on the asymptotic normality result obtained in The-
orem 2.6. Indeed, the limiting covariance Σ

−1
θ⋆ may be approximated by the ob-

served Fisher information matrix

Σ̂n =−
1

n

n−1∑

x=0
φ̈
θ̂n

(Ln
x+1,Ln

x ). (35)

The consistency of θ̂n combined with Proposition 2.4, Theorem 2.6 and Slutsky’s
Lemma first gives the convergence of Σ̂n to Σθ⋆ and then the convergence in
distribution p

nΣ̂
1/2
n (θ̂n −θ⋆) −−−−−→

n→+∞
Nd (0, I d ) under P⋆,
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where Nd (0, I d ) is the centered and normalised d-dimensional normal distri-
bution. When d = 1, we thus consider confidence intervals of the form

IC γ,n =
[
θ̂n −

q1−γ/2
p

nΣ1/2
n

; θ̂n +
q1−γ/2
p

nΣ1/2
n

]
, (36)

where 1−γ is the asymptotic confidence level and qz the z-th quantile of the
standard normal one-dimensional distribution. In higher dimensions (d ≥ 2),
the confidence regions are more generally built relying on the chi-square distri-
bution, namely

Rγ,n = {θ ∈Θ : n‖Σ̂1/2
n (θ̂n −θ)‖2 ≤ χ1−γ}, (37)

where 1−γ is still the asymptotic confidence level and nowχz is the z-th quantile
of the chi-square distribution with d degrees of freedom χ2(d ). Note that the
two definitions (36) and (37) coincide when d = 1. Moreover, the confidence
region (37) is also given by

Rγ,n = {θ ∈Θ : n(θ̂n −θ)⊺Σ̂n(θ̂n −θ) ≤χ1−γ}.

We present three simulation settings corresponding to the three examples de-
veloped in Section 3 and already explored in Comets et al. (2012). For each of
the three simulation settings, the true parameter value θ⋆ is chosen according
to Table 1 and corresponds to a transient and ballistic random walk. We rely on
1000 iterations of each of the following procedures. For each setting and each
iteration, we first generate a random environment according to νθ⋆ on the set of
sites {−104, . . . ,104}. Note that we do not use the environment values for all the
104 negative sites, since only few of these sites are visited by the walk. However
this extra computation cost is negligible. Then, we run a random walk in this
environment and stop it successively at the hitting times Tn defined by (2), with
n ∈ {103k : 1 ≤ k ≤ 10}. For each stopping value n, we compute the estimators
θ̂n , Σ̂n and the confidence region Rγ,n for γ= {0.01;0.05;0.1}.

Simulation Fixed parameter Estimated parameter
Example I (a1, a2) = (0.4,0.7) p⋆ = 0.3
Example II - (p⋆, a⋆

1 , a⋆

2 )= (0.3,0.4,0.7)
Example III - (α⋆,β⋆) = (5,1)

Table 1: Parameter values for each experiment.

We first explore the convergence of Σ̂n when n increases. We mention that the
true value Σθ⋆ is unknown even in a simulation setting (since π̃θ⋆ is unknown).
Thus we can observe the convergence of Σ̂n with n but cannot assess any bias
towards the true value Σθ⋆ . The results are presented in Figures 1, 2 and 3 cor-
responding to the cases of Examples I, II and III, respectively. The estimators
appear to converge when n increases and their variance also decreases as ex-
pected. We mention that in the cases of Examples I and II, we have 1% and 1.3%
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respectively of the total 10∗1000 experiments for which the numerical maximi-
sation of the likelihood did not give a result and thus for which we could not
compute a confidence region.

1 2 3 4 5 6 7 8 9 10

1.5
0

1.5
5

1.6
0

1.6
5

1.7
0

1.7
5

Figure 1: Boxplot of the estimator Σ̂n obtained from 1000 iterations and for val-
ues n ranging in {103k : 1 ≤ k ≤ 10} in the case of Example I.

Now, we consider the empirical coverages obtained from our confidence re-
gions Rγ,n in the three examples and with γ ∈ {0.01,0.05,0.1} and n ranging in
{103k : 1 ≤ k ≤ 10}. The results are presented in Table 2. For the three examples,
the empirical coverages are very accurate. We also note that the accuracy does
not significantly change when n increases from 103 to 104. As a conclusion, we
have shown that it is possible to construct accurate confidence regions for the
parameter value.

Example I Example II Example III
n 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

1000 0.994 0.952 0.899 0.992 0.953 0.909 0.977 0.942 0.901
2000 0.989 0.952 0.903 0.994 0.953 0.910 0.978 0.928 0.884
3000 0.988 0.942 0.901 0.990 0.938 0.886 0.981 0.940 0.889
4000 0.991 0.944 0.896 0.991 0.951 0.894 0.988 0.945 0.900
5000 0.990 0.942 0.896 0.993 0.942 0.891 0.986 0.941 0.883
6000 0.983 0.948 0.901 0.987 0.951 0.888 0.988 0.937 0.897
7000 0.986 0.950 0.900 0.992 0.951 0.900 0.986 0.942 0.898
8000 0.987 0.956 0.898 0.988 0.950 0.903 0.981 0.946 0.903
9000 0.990 0.959 0.913 0.990 0.949 0.893 0.985 0.939 0.901

10000 0.987 0.954 0.908 0.990 0.949 0.899 0.983 0.944 0.892

Table 2: Empirical coverages of (1−γ) asymptotic level confidence regions, for
γ ∈ {0.01,0.05,0.1} and relying on 1000 iterations.
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Figure 2: Boxplots of the values of the matrix Σ̂n obtained from 1000 iterations
and for values n ranging in {103k : 1 ≤ k ≤ 10} in the case of Example II. The
parameter is ordered as θ = (θ1,θ2,θ3) = (p, a1, a2) and the figure displays the
values: Σ̂n(1,1); Σ̂n (2,2); Σ̂n (3,3); Σ̂n (1,2); Σ̂n (1,3) and Σ̂n(2,3), from left to right
and top to bottom.
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