Asymptotic normality and efficiency of the maximum likelihood estimator for the parameter of a ballistic random walk in a random environment - Archive ouverte HAL Access content directly
Journal Articles Mathematical Methods of Statistics Year : 2014

Asymptotic normality and efficiency of the maximum likelihood estimator for the parameter of a ballistic random walk in a random environment

Abstract

We consider a one dimensional ballistic random walk evolving in a parametric independent and identically distributed random environment. We study the asymptotic properties of the maximum likelihood estimator of the parameter based on a single observation of the path till the time it reaches a distant site. We prove an asymptotic normality result for this consistent estimator as the distant site tends to infinity and establish that it achieves the Cramér-Rao bound. We also explore in a simulation setting the numerical behaviour of asymptotic confidence regions for the parameter value.
Fichier principal
Vignette du fichier
MLEAsymNormalityBallisticRWRE_Revised.pdf (291.71 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00783980 , version 1 (02-02-2013)
hal-00783980 , version 2 (14-11-2013)

Identifiers

Cite

Mikael Falconnet, Dasha Loukianova, Catherine Matias. Asymptotic normality and efficiency of the maximum likelihood estimator for the parameter of a ballistic random walk in a random environment. Mathematical Methods of Statistics, 2014, 23 (1), pp.1-19. ⟨10.3103/S1066530714010013⟩. ⟨hal-00783980v2⟩
281 View
629 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More