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8.1 Introduction

The C-method was born in the eighties in Clermont-Ferrandnée, from the need to solve
rigorously diffraction problems at corrugated periodicfaces in the resonance regime [1], [2],
[3]. The main difficulty of such problems is the matching obdaries conditions. It is ob-
vious that any method aimed at solving Maxwell’s equatioallishe more efficient since it is
able to fit the geometry of the problem. For that purpose, @aaon et al introduced the so
called translation coordinate system deduced from thee€iar coordinate systeryy,z) by
the relationsc = xt, y = x%, z= x3 + a(x!) wherea(x!) is a continuously differentiable function
describing the surface profile. Hence since the boundatyegblhysical problem coincides with
coordinate surfaces, writing boundary conditions is agpfenas it is for classical problems in
Cartesian, cylindrical, or spherical coordinates . Thithesfirst ingredient of C-method. The
second one is to write Maxwell’s equation under the covarfiarm. This formulation comes
from relativity where the use of curvilinear non orthogooabrdinate system is essential and
natural. The main feature of this formalism is that Maxvgediuations remain invariant in any
coordinate system, the geometry being shifted into thetttatige relations. Chandezon et al
derived their 3D formulation from the general 4D relatiidfRost’s formalism[[4] and evidently
used tensorial calculus. Although it is with no doubt the tebsgant and efficient way to deal
with electromagnetic in general curvilinear coordinates also probably the reason why the
theory appeared difficult to understand to many scientigts. third ingredient of C—method is
that it is a modal method. This nice property is linked with thanslation coordinate system in
which a diffraction problem may be expressed as an eigeewlyenvector problem with pe-
riodic boundary conditions. The last feature of C-methoithesnumerical method of solution.
The matrix operator is obtained by expanding field compaiend Floquet-Fourier harmonics
and by projecting Maxwell's equations onto periodic exptrad functions. The above four
features may be resumed by saying that C-method is a cuweailicoordinate modal method by
Fourier expansion [5]. Since the original papers, The Chmdhas gone through many stages
of extension and improvement. The original theory was fdatea for uncoated perfectly con-
ducting gratings in classical mount. Various authors ed¢eiithe method to conical diffraction
mountingsl[6]/[7]. Granet et &l[11], Li et al[12] and Presstl [13] allowed the various profiles
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of a stack of gratings to be different from each other, algtokeeping the periodicity. Solving
the vertical faces case in a simple manner, Plumey ét al [av¥é shown that the method can
be applied to overhanging gratings Preist et al obtaineddinge results by applying the usual
coordinate transformation to oblique coordinated [15].the@ numerical context, L [16] and
Cotter et al[[17] improved the numerical stability of the @ttmod by using the S-matrix prop-
agation algorithm for multilayer gratings. It is seen thain@thod has been applied to a large
class of surface relief gratings and multilayer coatediggat The key point of C-method is the
joint use of curvilinear coordinates and covariant forniolaof Maxwell’s equations. All the
new developments in the modelling of gratings like Adap®patial Resolutiori [18],[19],[20],
and Matched coordinate [21]derive from this fundamentakotation.
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8.2 C-Method

In Euclidean space with origin O and basis veetgrey, , e, , let us consider an infinite cylin-
drical surface%) whose elements are parallel to thexis. This surface separates two linear
homogeneous and isotropic media dendtBdand(2). In Cartesian coordinates such a surface
can be described by equatiar- a(x). Any electromagnetic field interacting with this partic-
ular geometry satisfies some boundary conditions. Fornagstahe tangential components of
the electric field vector and the normal component of theldcgment field vector are con-
tinuous at the surface. The point is that boundary conditiomolve quantities that obviously
depend on the position at which they are considered on thHacgur We are thus led to look
for a coordinate system which fits the problem and makes iemeadily solvable than it is
in a Cartesian framework. The so-called translation comtai systenix®, x?, x3) introduced
by Chandezon and defined from the Cartesian coordinatensystehe direct transformation
(curvilinear coordinates to Cartesian coordinates) :

x=xt,  y=x, z=x+a(x}) (8.1)

or the inverse transformation (Cartesian coordinates tailmear coordinates):

xt =X, X2 =Yy, X =z— a(x) (8.2)
is one such system. It makes the surféEg coincide with the coordinate surfagg = 0. A
point M(x,y,z= a(x) at the surfacgX) is now referenced by the tripl¢k',x?,0). The coor-
dinate surfacec = x5 is obtained by translating each point at surfé&¢ with vectorxge; ,
hence the name given by Chandezon to this particular coaelgystem: translation coordinate
system. The change of coordinates may also be consideredrasmge of variable. This view

>
X

Figure 8.1: Geometry of the problem: Two media are separaied cylindrical periodic surface, with periodd
described by the equation z=a(x)

point allows a better understanding of the numerical behavwf C-method and its connection
with Rayleigh expansions. There is actually no differemcéne way of deriving the elementary
solutions of the scalar Helmholtz equation in Cartesiarrdioates or in translation coordinate
systems. Both are eigenvectors of an eigenvalue problempsiudo-periodic boundary con-
ditions. In both cases, the operator eigenvalue problermamstormed into a matrix eigenvalue
problem thanks to the Galerkin method with pseudo periagictions as expansion and test
functions. Hence solving the scalar Helmholtz equationny eoordinate system is the very
first step when implementing C-method. In the next paragrapé shall focus on this issue
before solving a grating problem.
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8.2.1 Modal equation in the Cartesian coordinate system

Consider an homogeneous region with relative, possiblyptexn permittivity,e. In the har-
monic regime with a time dependence of éxpuwt), it is possible to construct general solutions
to the field equations once we have general solutions to thlarseelmholtz equation. So as
a first task, we are going to investigate elementary solatiorthe Helmholtz equation written
in the translation coordinate system. Let us start fromé&3sah coordinates in which 2D scalar
Helmholtz equation is

(02+02+Kk*) F =0 (8.3)

wherek = w, /o€ is the wave-number. The coefficients of the Helmholtz eguasire inde-
pendent oz so we seek solutions of the form (x, z) = exp(iyz)F (x) The Helmholtz equation
becomes:

(02 +K2F (x) = y°F(X) (8.4)

FunctionF (x) is thus an eigenmode of equatidn (8.4). The requirementigatigenmodes
satisfy the pseudo-periodicity conditiéi{x + d*) = exp(iapd?)F (x) is automatically fulfilled
by their expansion into Floquet-Fourier series:

F(x) = Jg Fmexp(iamX) (8.5)

2 . . : .
Om= ap+mKg, Ky = d—llT me N andag is some real parameter. By introducing (8.5) ifol(8.3)
and by projecting onto pseudo-periodic functions(&spgx), one obtains the matrix equation:

VF = [KI —a] F (8.6)

where F' is a column vector whose elements are Hyeand « is a diagonal matrix w hose
elements are the, and[ is the identity matrix. The solution to the above matrix eiggdue
equation is of course trivial since the matrix is diagonadt us introduce subscrigtto number
the eigenvalues and the eigenfunctions. The eigenvatuase deduced from their squared
number:

VG =K —ai (8.7)

and the eigenvectors are determinedray = dmq Where dnq is the Kronecker symbol. The
square root ovg is defined as follows:

VB it Rert

=9 /¥ if GER” (8.8)
(y&) 1/2 with positive imaginary part if yg eC

Finally ,.% (x,z) can be represented by superposition of eigenmodes
F(x,2)=F (X2 +F (x,2) (8.9)

with
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FT(x,2) = q:ZHOAé exp(iyy2) m_fw Omgexp(i amX) (8.10)
g=—o0 m=—o0
q:+oo mM=+o0

F(%,2) = Z Aq expl—iyg2) Z OmgeXP(i amX) (8.11)
g=—o0 m=—o0

There are two sets of modes, the number of which are equaketpmpagating or decay-
ing in the positive direction o and those propagating or decaying in the opposite direction
We denote these modes by superscripand —respectively. The dependence of an eigen-
mode is determined by function ep,z) By increasingzto z+ Az, exp(iygz) is multiplied by
exp(iygAz) = exp(il(yg)Az) x exp(—0(yq)Az) The real eigenvalues ha&y,) = 0 and corre-
spond therefore to forward modedif(yg) > 0 or backward modes ifl(y4) < 0. The complex
eigenvalues modes have a non-zero imaginary part and poatsb a non-zero real part. The
associated eigenmodes decay forward(ify) > 0 or backward ifJ(yy) > 0. These expansions
are known as Rayleigh expansions; they are linear combimati eigenvectors that we call
hereafter Rayleigh eigenvectdrs:

Mm=-+-co

Ry(X) = Z Omgexp(i amx) (8.12)

In Cartesian coordinates, the solutions to the Helmholtaggns may be regarded as the
eigenvectors of a matrix equation. The eigenvalygsire determined by the periodic lateral
boundary conditions of the problem and are obtained amaljjisince the matrix is diagonal.
The translation coordinate system preservegzth@nslation symmetry and also periodic lateral
boundary conditions. We may then expect a great formal gudé between solutions obtained
in each coordinate system.

8.2.2 Modal equation in terms of the new variables

In this section, we derive the master equation of C-methoddmgidering the change of coor-
dinates as a change of variables. For the change of varigblex, x> =y, x* = z— a(x) the
chain rule for derivatives has the form:

Ox = 01— @&03
oy = 0> (8.13)
02 - 03
Substituting the derivatives (8113) infa (B.3) gives:
((1+84)0% — 40105 — 01803 + 07 + K*) Z (x',x%) =0 (8.14)

the solution of which are the same as the solutiong of [8.4Bjessed in terms of the new
variables.
Fi(xE ) =72 (x=x, ¢ =z—a(x))

g=-+-o0 ] M=-+-00 ) . (815)
= 5 Ajexpi) Y dmaexplivga(x')) expliomx’)
g=—o0 m=—oo
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Fa (%) =7 (x=x, % =z—a(x))

e g Mt : : (8.16)
= 5 Agexp—ig®) S dmaexp(—iygalxt)) expliamx)
g=—o0 m=—oo

The subscripa indicates the profile dependence of functign

We call function exgf+iyga(x})) exp(iagx!) the generalized Rayleigh eigenvector of or-
derg. It is nothing more than plane wave éxfi yqz)exp(iaqxl) expressed in terms of the new
variables<! andx® and is closely linked with functioa(x!). Let us denote iR3

M=-+00

Rét,q = eXp(iiyqa(Xl)) exp(iorqxl) = Z RamleF(iamxl) (8.17)

It is assumed so far thatx') is periodic with periodi* hence:

p+eo 1
exp(iygalxt =y Ly ex (IanX) (8.18)
p_—oo
with: )
1 d . —i2mpx
L5 = @/o exp(ilyqa(xl))exp< dlp )dxl (8.19)

In physical space, the generalized Rayleigh eigenvectsdtrfrom the product of a periodic
function with a pseudo-periodic one. Thus, in Fourier spdeespectrum of thgthgeneralized
Rayleigh eigenvector is obtained by translating the spattf function exp-+iy,z) with vector
2mmg/dY, that is:

Ramg=Lam q (8.20)
Finally:
—-+o00 M=+o00
T (xtx3) = qz & exp(iypd) i Ldmqexp(iamx") (8.21)
A=-teo M=f-c0
Ty (xtx3) = > Aq exp(—iyeC) Y Lam q@piomx’) (8.22)
g=—o0 m=—oo

Functions[(8.211) and(8.22) give the general solutio t@4p. Indeed each element of
this solution is a generalized Rayleigh eigenvector assedito inde)q such thaly2 + a2 k2
and thus satisfids(8.14). The reason for that is obvious dbtain from IIBZ[IZ) in WhICh we
have introduced the same change of variable as the one thallbeved us to gef(8.14) from
(8.3). From a practical view point, one can only manipulatédisize expansions and it does
not make sense to speakl@f x1). That is why one may wonder if a generalized Rayleigh
eigenvector is still a valid a solutlon df (8]14) when only @it number of spatial Fourier
harmonics is retained to represent it. Let us assume forle i@ answer is yes and examine the
involvements of such a claim. Introducing an intelyerhereafter denoted truncation number,
and lettingm run from—M to M the truncated generalized Rayleigh eigenvector writes:

m=+M
Rag ()= S Rimqexpliamx!) (8.23)

m=—M
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Substitutingds with iy, we have:
~(1+aa)ygRa™ —i(ad+ aa)yRa ™ + (92 + KR M =0 (8.24)

where %(M) denotesyqﬁ’('v'). Replacinga by the coefficients of its Fourier serieg and
denotinga the toeplitz matrix whose elemerdg are theay_p, it is easy to see that the matrix
form of relatio 8.24 is:

KT —a? 0} {Raiq} {—da—ad I+dd} {Raiq}
29| =y 2 (8.25)
{ 0 I]| Ry I 0 Raq
whereR?;q and Raiq are column vectors formed by thé/i2+ 1 Fourier coefficients oRiEq(M)
+

. _ R . .

%cglvl) respectively. [(8.25) shows thgf and { Riq } are an eigenvalue and an eigenvector of
ag

the generalized matrix eigenequatidn) = p B. SinceRgfq is an exact eigenvector of (8114)

its truncated part can only approximate the solutiof of4Bahd consequently, mathematically
speakingq cannot be an eigenvalue 6f (81 25). It follows that our claiasvalse. Nevertheless,
elementary pseudo-periodic solutions[fo (8.14) do exidt\aa will derive them in the next
paragraph.

8.2.3 Fourier expansion of elementary waves in the trangtat coordinate system

In this paragraph, we derive the generalized eigenvalueneegrtor matrix equation starting
from (8.14) the only assumption being the pseudo periodiftthe field and we discuss the
obtained solutions. First, the propagation equation isiteam as a pair of first-order equations:

o Lo e [

0 1||oz 1 0 0n T (826)

The coefficients of this equation do not depend>drwhich allows to write thex® depen-
dence as exppx®). The parametep depends on the boundary conditions tRgx", x%) has
to satisfy along<* direction. For gratings, periodic with periatt alongx?, .7 (x! 4 d*,x3) =
expiapd?).Z (xt,x3) whereqg is some real parameteds.# verifies of course the same prop-
erty. The above requirements on the solution are all fulfiig expanding functior## andds.#
under the form:

Z (X1, x3) = exp(ipx®)Fa(xt) = exp(ipx®) miM Famexp(iamxt) (8.27)
m=—M
2.7 (XL, x3) = exp(ipx®)Fa(x}) = exp(ipx®) miM Famexp(iamxt) (8.28)
m=—M

dl
basis, we get the sought algebraic matrix eigenvalue emuéidm which eigenvaluegq and
eigenvectordy g are readily obtained thanks to standard computer libraries

KI—a® 0 ][ Faq —aa—aa I+aa ]| Faqg
[ 0 I] { g |~ Peo I 0 Faq (8.29)

. o L i2rmxt
Introducing the above expansions irfio (8.26) and projgdtie latter onto ex 27X )
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As in the Cartesian coordinate system, it is observed nwalgrithat there are two sets of
modes, the number of which are equal: those propagatingeayitey in the positive® direction
and those propagating or decaying in the opposite direcfiamthermore, it has been shown
numerically and analytically [8], that, as the truncatiammber increases, the computed real
eigenvalues converge to the real Rayleigh eigenvaltigs

; M
lim 4pgq = ESvA (8.30)

In the above relation, we have added an extra subddriptindicate the truncation dependence.
Indeed, the truncation ordét has to be chosen large enough so that the computed real eigen-
vectors coincide with a great accuracy with their Rayleigbrterpart. In that case, provided
that the eigenvalues are not degenerated, up to a multipkoeonstant coefficient, the asso-
ciated computed eigenvectors tend to the correspondimg plaves expressed in terms of the
new variablegx!, x?, x3).
lim Fag™ = R, (8.31)

Thus in the translation coordinate system defined'oy x, x> =y, xX* = z—a(x) as in the
Cartesian coordinate systédxyz linear combinations of elementary solutions to the Helltzho
equation allow us to express electromagnetic field whilengivt a physical meaning in terms
of forward and backward waves.We write numerically the sofuto the Helmholtz equation
as:

FH ) = Y AexplipipdRLG ) + Y Afexplipf(OFG(d)  (8.32)

geu gev+

F(xL3) = ZAqexp(lpaq CIRag () + Y A explig(0¢)Fag(d)  (8.33)

geu+ gev+

with:
m=-+M

F;q(xl): Z Fa%mqexﬁiamxl) (8.34)
m=—M

U*, VT denote the sets of indices for the propagating and decayitgy®in the positive and
negative direction respectively.

= {q/0(pagq) > 0 andd(paq) = 0} U~ ={qg/0(pagq) < 0andd(paq) =0} (8.35)

=1{0a/0(pag) >0} V™ ={a/0(paq) <0} (8.36)

8.3 Application to a grating problem

Let's come back to the one-dimensional grating problem.ditar the electromagnetic problem
in which two homogeneous non magnetic media are separatedyindrical periodic surface
with periodd! which is invariant along thg axis in the Cartesian coordinate syst®xyz Such

a surface, described by equatips a(x) is illuminated from above by a unit amplitude linear
polarized monochromatic plane wave with vacuum waveledgthrangular frequency and
vacuum wave numbdg = 271/Ag. The wave vector is inclined &to theOzaxis. Medium(1)



G. Granet: Coordinate Transformation Methods 8.9

Figure 8.2: Geometry of the diffraction problem. Sketchhef toefficients for scattering matrix

and medium(2) have relative permittivitg; ande, respectively. Time dependence is expressed
by the factor exp—iwt) Such a problem is reduced to the study of the two fundameasaiscof
polarisation and the unknown functich(x, z) is they component of the electric or the magnetic
field for TE and TM polarization respectively. We solved hié problem since we already
determined the general solution to the scalar Helmholtagogu as a linear combination of
elementary waves the coefficients of which remain to cateul@he situation is very common
in electromagnetic theory: the fields on both side of theiggaare expanded in terms of the
modes in the respective regions with unknown coefficientan&thod of solution known as
mode-matching method was developed in the context of guide®s in the micro-wave range.
The grating may be considered as a generalized multi-parseimputs are excited by waves
that propagate or decay towards it giving rise to a respon#eeaoutputs that consists of the
waves that propagate or decay away froni_it| [25],[24]. The encdupling is caused by the
modulation of the interface and by the different constteiparameters in either side of it. The
so-called scattering matri®, defined as

A+ AD)-

provides a linear relation between the output and inputfoerts. In a grating problem, the
vector formed by the amplitudes of the incoming waves hag onk non null component:
that corresponding to the incident wave which was assumfmiaad to one. The subscript
indicates that th& matrix depends on the profile functiaiix). We call.S; matrix an interface
scattering matrix. TheS, matrix is derived from boundary conditions at the surfate- xg
The change of variable makes it easy to write them. We haweddhe scalar Helmholtz
equation, the scalar field being a field component tangehteteurface;indee coincides with
Hy andEy in TM polarisation and TE polarisation respectively. Fanglicity, let us consider
TE polarisation where the non null components of the eletagnetic field areey, Hy, H,.
Boundary conditions require matching the tangential camepts of the magnetic and electric
field. We have already derived one of thel), we have to derive the tangential componint
of the electric field given by :

Hi=H.t (8.38)

wheret is the unit vector at poinP which is tangential to the grating profile function. It is
defined in terms of they ande; Cartesian unit vectors by:

1
V14&2

The square root in the denominator represents a normale&tctor that can be omitted since
at a given point, it is identical on both sides of the boundamface. let us introdud® such

t= (ex+ aey) (8.39)
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that:
Y =IZH t (8.40)
WhereZ = /ip/ € is the wave impedance. From Maxwells equation we haygHyx = —d;Ey
andiwpoH; = d«Ey thus :
1 .
9(x,z) = —E(azﬁ(x, z) —adk7 (X, 2)) (8.41)

substitutingds for d; andd, — ads for dyx we get:

G 3) = L (1+aa)ds —ady) F () (8.42)

Kk

Similarly to.%, ¥ depends on® as expipx®) and we may write:
7(xL,x3) = exp(ipx®)G(xh) (8.43)

We are now familiar with the operational rules that allow $s@ciate in Fourier space a matrix
with an operator. We have:

1+aa— I+aa, ad; — iaa (8.44)

From which we deduce:
iKGE = (I + aa) Fy pa— aaFy (8.45)

wherep is a diagonal matrix Whose elements are the eigenvadygs Writing the continuity
of ZW and 7@ and¥ /2D and¥(?) /2 atx® = X3 is straightforward and leads to the
following expression of thé&; matrix:

W+  2@- 17 - a2+
s.=| I3 Fa ] [Fa Fa ] (8.46)

Ggl)+ —ng)_ gl)— Gg2)+

The knowledge ofS; matrix allows to calculate the constant coefficients of ourig waves.
Since the spectrum of the solutions of the transformed Helimlequation include the gener-
alized Rayleigh eigenvectors associated to real Rayleggnealues the efficiencies may be
calculated in the very same way as in the Cartesian coodgyatem.

S
Ra= (A2 T, = AR 8.47)
Yo VO

with:

1 5 ino 21\ 2 2) 5 ind 21\ (8.48)
Vo' = /Kot~ (kovELsinG +ap | Vo' = /Ke2— ( kov/E1SinG +p 7 :

The values of integerg andq are such thayél) and yé,z) are real.
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8.3.1 Implementation of C-Method

The main interest to consider C-Method through a simple geasf variable is to make us
understand its numerical link with Rayleigh expansions ndalculate efficiencies as in the
Cartesian Coordinate system. Within the framework of fetim coordinate systems, starting
from Maxwell’s equations written under the covariant fomre have shown that all tangential
components of the field at surfacould be generated from the longitudinal covariant com-
ponents along the axis of invariance. Moreover,these coemis are solutions of the scalar
Helmholtz equation. Therefore, one clearly understandsfthding the elementary solutions
of the scalar Helmholtz equation is the kernel of C-method simmarize we may enunciate
the different steps for solving a grating problem with C-hwet:

» Define a translation coordinate system.

 Find the elementary waves of the Helmholtz equation. Fat plirpose use the Galerkin
method with expianx!) as expansion and test functions. Substitute the genetalize
Rayleigh eigenvectors for the computed eigenvectors adsddo real eigenvalues. Sort
the elementary waves into forward and backward waves.

» Write boundary conditions at surfacé and calculate efficiencies as in the Cartesian
coordinate system.

8.4 Variousformulations of C-method

So far, the Helmholtz equation in the translation coordirgtstem was derived by using the
chain rule for derivatives in the Helmholtz equation writi@ the translation coordinate sys-
tem. In this section,we start from the covariant Maxwelfisiations and we show that they lead
to several operators one of them being the propagation iequdh a homogeneous isotropic
medium with permittivitye and permeabilitys, with a time dependence efkpiwt),the sym-
metrized Maxwell equations write:

gaﬁVdBﬁy = k\/ggaﬁ% (8.49)
E9PYa%, =k /Go"P F4 '

wherek = w,/i€, the 7, and the¥ are the complex amplitudes of the electric field and of
a renormalized magnetic field respectively. We restrictanalysis to 1D problems in which
both the geometry and the solution are independegt &ractically this means thap is null

as well agy!?, g?1, g®2 andg?3. It follows that [8.49) decouple into two fully identical sgms
where the non null components ate, %, 43, and%,, .71, %3 respectively.The first set of
three components correspondsTt& polarisation, the second one TdM polarisation. Both
polarisations obey the same first order differential equatisystem written hereafter fore
polarisation:

—03.F> =K (,/99"% + /09"%s) (8.50a)
01.72 = k (/A0 % + /99>%5) (8.50b)
041 — 0193 = K\/GF°F> (8.50¢)
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For T M polarisation, it is enough to permuté and¥. Among the three components of each
system, two play a particular role. Let us assume tfat )% separates two isotropic homo-

geneous media. Then, iRE polarisation.7, and%1/ /% have to be continuous at surface

X3 = xg The same conclusions holds fgs/ % and.7, for TM polarisation. So, we have

to solve [8.5D) for the components labelled by two and by dbenethod is a Fourier based
method which means that constitutive relations have to beenrin Fourier space. In other
words a matrix is to be associated to each elerr\y@fﬁ of the constitutive tensors. The way
for doing so should follow the so-called "Fourier factotina" rules derived by Lil[2R][[23].
let us denote by\/gg"ﬁ) the matrix associated to coeﬁicie{)’gg"ﬁ. According to Li’s rules,

the (,/gg°P) write:
- 1t
(Vo = |

:@ ~1r13
- [
(/G = g_i] { @ ] - (8.51)

9 - o]+ (3] ][5

(vag) = [vog*]

The notation| f] designates the toeplitz matrix whose elemefipts are thefm,_, elements of
the Fourier series of function(x!). For the translation coordinat&!, x*, x?) such thaix = x*,
y=x%,z=x3+a(x}), we have:

(8.52)

In Fourier space, the derivative operafltis associated to the diagonal matrix the elements
of which are thea,, such that:

Om= 0o+ mi—? (8.53)
Setting

Fp(xt,x3) = msz Fom(x%) expliamx?) (8.54a)

m=—M
7 (Xt x3) = m:fM Gim(x®) expliamx?) (8.54b)

m=—M

m=+M
D) = 5 Gam(X) expliomx’) (8.54c)

m=—M

(8.54d)
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We are now able to writé (8.50) in Fourier space:

—05F> =k ((vag'") G1+ (199" G3) (8.55a)
iaF, =k((v3g®") G1+ (vag™) Gs) (8.55b)
03G1 —iaG3 =k (,/ag?) F» (8.55¢)

where F», G1 G3 are column vectors of sizeM2+ 1 whose components are tlﬁgmue’),
Gim(x®), Gam(X®) respectively:

() = [Fo-m(x°), Fa M+1(X3) F20083), -+, Fam_10¢), Bam(®)]T  (8.56a)
G1(X°) = [G1-m(x°), Gy, —m41(x°), - GlO(XS), -, Gim_108), GLm ()T (8.56b)
G3(%) = [Ga_m(X), Gg_m11(X°), -+ Ggo(x°), -++, Ggm-1(x°), Gam(x*)]"  (8.56¢)

where the exponernit is for the transposition.

8.4.1 Propagation equation in curvilinear coordinates
From Egs[(8.50a) an@ (8.50),; andG3 may be expressed in terms B
kG1=—(v/99%) 03F2 + (\/99") iaFy (8.57)

kG3(x®) = (/3G™) 3 F>(x°) + (vAgH) iaFa(x) (8.58)

(B8.50¢), in which we substitui®'s andG3 with expressiong (8.57) and (8]58), gives the propa-
gation equation:

(—a (vOg') o+ 05 (1/G9%°%) O3 +iex (v/GG™) 93+ 03 (1/AG) i + K (\/GG?) ) Fo(x°) =0

(8.59)
which is rewritten as a pair of first-order differential etjoa as:
: B3 | F>(x3)
1054 {—M:FZ(XSJ =B {—id:Fz(XS)} (8.60)
with: 13 13 &
Ao {a (vag )JIF(\/QQ ) o (\/QO )} (8.61)
B- {—a (vag) ot K (Vo) 2] (8.62)

Since the coefficients of matrice$ and B are independent of variabi€, we may seek
vectorsF>(x3), G1(x®),G3(x3) under the form:

Py (%) = Fyexp(ipx®) (8.63a)
—i03F5(x%) = Foexp(ipX®) (8.63b)
G1() = Gy exp(ipX®) (8.63c)
G3() = Gz exp(ipX®) (8.63d)
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This last step transformis (8]60) into a generalized eidapw&genvector matrix equation:

Ap Eﬂ =B Eﬂ (8.64)

Itis then easy to check that (8164) is the samé& as|(8.29)r Aftés determined, it remains
to deducei; from (8.57).

8.4.2 "Classical" C-method operator

We call "classical" operator the operator derived by Chaaden his early work. Fron(8.50b)
and taking into account (8.63) we find an expressiorGaras follows:

Gs =7 (vag®) tiaks - (vag®) " (vag) & (8.65)

SubstitutingGs in (8.50&) and(8.50c) with the above expression yields:

- (ved?) (vag®) T ik((vag) - (vag®) (vae®) " (vaet)) A
[ (Vo) ~ e (vag®) o) (89 (e G

(8.66)

8.5 Multilayer grating

The extension of C-method to multilayer gratings is strdmiward provided the interfaces
which separate the layers share the same periodicity. lissg generalization of the the-
ory of planar stratified media. As a canonical case, let usiden a layer made of isotropic
homogeneous media limited on the top by surface a; (x!) and on the bottom by surface
z=aj;1(x}) = a;(x}) —t;(x}). Whent;(x!) is constant the two surfaces are parallel to each
other. In homogeneous media the field is a superpositionrefdia and backward waves. The
only places where coupling occurs are the interfaces. Thedjave to describe two different
phenomena: on the one hand scattering at the interfacesratig @ther hand propagation or
attenuation in the layer. To summarize we assimilate amfade to a N-port local network
(N =4M+ 1, M being the truncation number) and a layer to a multi-chanips ponnecting
the 2N-ports of its input network and output netwofk [24]. We halready defined interface
scattering matrices which are local matrices in the sensg diepend on the profile. In other
words,in the context of C-method they depend on the cootelisgstem. Thus, for a layer
bounded by two non parallel surfaces, we have to solve twenegjue problems for each sur-
face which allows to calculate interface matri&§ andSaHl. It remains to define and to cal-
culate layer scattering matrices. Although two cases h@ale tonsidered according to whether
the layer separates two identical surfaces or not, the fimeasoning is the same. As already
mentioned, we have two coordinate systems suchzth—at?—i— aj(x') andz= x]?’+1+ ajr1(x).
They are linked by the following relation:

X =1 +aja(xt) —aj(xt) =54 —tj(x") (8.67)
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Figure 8.3: Schematic representation of diffraction at Sunfaces separated by a layer

In medium j, located in between surfaces= aj(x!) andz = aj,1(x'), we may express the
linear combination of forward and backard waves with ccmmtbx3 0 as local origin (that is

z=aj(x!) and write:

Ja, ZA‘ +exp(lpaJ q Fa, +ZA ‘& exp(lpall q ))F(j)({(xl) (8.68)

q

In the same mediumwe may also choos%rl = 0 as local origin (thatig= aj+1(x1)) which
gives:
zU) 3 — 5 ADF axpiotT 53 AR 1 A= axriot = 3 VB (1

aj+1( +l7 >) Z i+1,9 qupajﬂaq j+l> aj+17Q(X >+Z j+1,q Xr(lpaHLQ( j+l> aHl,q(X)

q q
_ _ (8.69)

The layer is considered as Al4- portswhich connects input Wave%}(lj‘)* andﬁa(lj‘lf to output
wavesﬁ}gjwr andﬁ’éjjzl_, hence the definition of the lay&matrix:

A+ Al)-
1,4 J,d
- | T G (8.70)
Ajiig Ajiig

At the input of the layer, that is zxf' = 0, the outgoing waves correspond to the incoming
wave of the output plane:

Za 06 =0)= 73] 0¢, 1 =1;() (8.71)
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Similarly, at the output of the layer, that ’§+1 = 0, the outgoing waves correspond to the
incoming waves of the input plane:

406,020 = 7406 =6 (8.72)
At this stage, we infer that layer S matrix looks like:
0 P+
Sij+1= { pi- 0 } (8.73)

The sought sub-matricd8())+, P)~ depend on whether the layer faces are parallel or not.

8.5.1 Layer with non parallel faces
Consider equation (8.¥5) and write it in terms of the eigetmes of both coordinate systems:
;%Agf%J“Féj{)nfqexmamxl) = ;%Agﬁiq exp(ip;rj+17qtj(x1))F§j’+)fq explianx!)  (8.74)

The left hand side purely consists of a linear combinatiorigénvectors expanded onto the
exp(iamx!) basis whereas the right hand side consists of a linear catibimof eigenvectors
each of which being multiplied by a periodic functions of tevariable. In order to get a

matrix relation between tha!’ ()q and theAg +)1 q e project[[8.74) onto exXpamxt). We get:
Z Z AR = % %Aj+1,qﬁaj+l.q expliamxt) (8.75)
with:
Ifa(jjjfmq: d—ll/odl (Z Féjj)l 1 EXPiaiX )) exp(ipfgjj)fl’qtj(xl))exp(—iormxl)dx1 (8.76)
Then, theP)* matrix is readily obtained as

. . 1 _,.
POt — (FI7) TR (8.77)

] j+1

WhereFall (respectlverFa +l) is the matrix formed by juxtaposition of vectolFé (re-
spectlverFaj 1q- Similarly we have:

ZZAEQLqFéjjﬂimlep(iamxl) = ZZA 24 eXp(Ip aiq (X 1))F§j"73j expliamxt)  (8.78)
mq m q

and _ _ o
Z ZA;ijl),qFéjj+)17mq = Z ZA% aj{g (8.79)
mq m q

Fals = / (Z a0 1q ©XPiax )) exp(—ipéfl_lvqtj(xl))exp(—iamxl)dxl (8.80)

from which we derive:

aj+1 j

. . 1 _,.
pli)- — (FU)*) - (8.81)
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8.5.2 Layer with parallel faces

In that case, the two coordinate systems are identicat;@r) is a constant. Equations (8]72)
and [8.75) reduce to:

Z ZAJ q+Fa, maeXp(i amxt) Z ZA +1qexp(|pa] q oY )Féj mqexp(la x1) (8.82)
> %AJ—LLqF&]{J -3 %Agf% exp(—ipt)y t)Fa ngexpliamxt) (8.83)
from which we easily deduce:
A%J“ = A%Biiqexp(ipéf?cftj) or P+ = diag(exp(ipéf?cftj)) (8.84)
Agziq exp( ipi)gt;) or P~ = diag(exp(—ipéf?&tﬂ) (8.85)

It should be noted that Wh%hq (respectivelypéf?g) is complex valued, its imaginary part

is negative (respectively positive) . Singeis positive, exponential functions expi péf?éttj)
associated to complex eigenvalues always decay when taettagkness increases.

8.5.3 Combination of S matrices

The final step for analysing reflection and transmission bgyar is to combine the two in-
terfaces S matrix and the layer S matrix. The tool for doing ihthe Redheffer star product
which gives the composition rules of two cascaded S matf@®js Consider two S matrices
and partition them into four blocks:

si-|oh ok | %% &) (8.86)
The star product is defined by:
S = 81 %S, (8.87)
SH = st 4 512 (1 - 831872 “telty g2t (8.88)
§12 = 512, (1 — 831822t x 512 (8.89)
§21 = §31x (I — 522831 "t x §21 (8.90)
S22 = §324 §31x (I— S2283) ' x 22 x )2 (8.91)

wherel is the identity matrix. The combinefl matrix of the top and bottom interfaces and of
the layer is given by:

S = SaJ *Sj7j+1*Saj+l == (Sa] * SJ]+1) * Saj+l == Sa] * (S]y]+1* Saj+l) (892)

and finally, it turns out that

511:S;j1+512P(j)+U pi-sit, (8.93)
§?=572PVU,S | (8.94)
52 =521 U PO~ 521 (8.95)
§%2 =832 +Si.P <> UL P >+522 (8.96)
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where
-1

aj+1 aj+1

. . -1 . .
Uy = (I—S;?P(JHSl.l P<J>—> U, = (1—51.1 P<l>—s§fp<l>+)
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8.6 Extensionsof C Method

The key idea of C-method as applied to diffraction by suradeef gratings is to map the
surface of the grating to a plane. Until now, we have only dbed profiles under the form
z=a(x). However, in Cartesian coordinatesy, z), a cylindrical surface whose generating line
is parallel to theDy axis may be described by the parametric equations:

x=f(xt) z=g(x}) (8.97)
wheref andg are two continuous functions. Now consider the followinigtiens:
x=f0) +epd y=x% z=g(xt) +x° (8.98)

wherec; is a real constant. They define an additive change of codrivehose metric tensor
is given by:
012f +afg 0 ci01f+019
gij = 0 1 0 (8.99)
c101f+019 O 1+ 6129
Actually, the above matrix corresponds to a change of coatds provided the Jacobian deter-
minantJ of the transformation does not go to zero.

611‘ C1
dlg 1

61x 53X

J= 012 032

=0,f —c1010 (8.100)

More over, the metric tensor is independent of coordin@t@hich means there exists a trans-
lation symmetry along® axis. Hence Equatioris(8198) define in a general way traoslabor-
dinate systems which allow to solve new classes of problems.

8.6.1 Oblique transformations

In Cartesian coordinates, usual coordinates lines of aepdaea two straight lines orthogonal
to each other. One can also imagine having straight linestwimiake an angle different from
1r/2. Consider the straight lint given byz = tan(¢@)x and let us callp the obliquity angle. The
following sets of relations define a coordinate systefmx®) in which lines parallel ta\ are
coordinate lines! = constantand lines = constant remain parallel ©x

X=xL+ ix3
tang (8.101)
z=x3

Such oblique transformation allow to model an extendedsatisurface shapes which would
otherwise be numerically inefficient (very blazed gratingseven impossible like overhanging
gratings. As an illustrative example, consider in the cowtk systenix!,x3) the symmetric
triangular function.

2x1 O<xl< 5
tx) ={21-x) 5<xt<1 (8.102)
0 elsewhere
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A x'=constant

3__
/ / , X =constant

>
X

Figure 8.4: Coordinate system in which coordinate linespaeallel to A and to Ox axis

Using an oblique transformation one gets:

X= x1+i(x3+t(x1))

tang (8.103)
z=x3+t(x})
=90
1
0.5
0 ‘ ‘
0 0.5 1 15 2
¢=63.4349
1
0.5
0 ‘ ‘
0 0.5 1 1.5 2
=40
1 T
0.5
0
0 0.5 1 15 2

Figure 8.5: Echelette grating in three different obliqueocdinate systems

Figure[8.5) shows three typical grating surfaces obtaimigl (8.103) and withp = 90,
63.4349 and 40 respectively, the latter demonstrating theemdroverhanging forms possible
for small @ without the double value problem implicit with Cartesiaroodinates.

8.6.2 Stretched coordinates

The essence of C-method is to choose a coordinate systefathiate the solution of a given
problem. Oblique transformations are a typical examplehefusefulness of this technique.
Indeed they provide an easy and elegant way to handle gsatiit one vertical facet and also
overhanging gratings. Similarly, we have believed for agléime that sharp edges were an
intrinsic limitation of the C method. Actually, it turns otitat transformations which stretch co-
ordinates around the edges overcome the problem. With @ddethe solution of Maxwell’s
equations is reduced to the solution of an algebraic eigeevaroblem in discrete Fourier
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space. The derivation of the matrix operator involves tvapst (1) The electromagnetic field
Is expanded into Floquet—Fourier series, and (2) the denevaf the grating profile function is
expanded into Fourier series. When the latter functionssahtinuous, the Fourier method is
known to converge slowly.This weakness remains even whegdlrect Fourier factorization
of products of discontinuous periodic functions, as givem.bis applied. The reason for slow
convergence is that the spatial resolution of the Fouripaegion remains uniform within a
grating period whatever the grating profile function may m the contrary, stretched coor-
dinates allow a mapping of space that increases spatidutesoaround the discontinuities of
the derivative of the profile function. For this reason thehteque is known as adaptive spatial
resolution.

8.6.3 Parametric C-method

Whether for mandatory reasons as is the case for overhaggatijpgs or simply to improve
convergence speed, the most general representation ofdiroaasional profile happens to be
a parametric one. Adding an additional degree of freedorh ant obliquity angle, a class of
translation coordinate systems has the form giveri by (8 ®@8¢ to the translational symmetry
along vectores = c1ex + ez, a numerical solution in terms of eigenvectors and eigemsls
possible. Equation§(8.98) describe a coordinate systemmendoordinates lines® = constant
coincide with functions which are periodic with peridd along directiorOx. Compared to the
non-oblique coordinate system, the periddand the direction of periodicity remain unaffected
by the introduction of parameteg. Thus, assuming an incident plane wave vegtsuch that

. . . 2
k.ex = ap thex! dependence is of the form efipmxt) with am = ag + m—71T. So we have all

the ingredients to determine the matrix from which eigetmescand eigenvalues will be sought.
In Fourier space, the matrices associated to the elemetite afetric tensor are:

(8.104)

(vag™)

(vag™) |

(og®) = [le +Q] [f;—Clg}
(,/O9*®) = f—Clg] +(c2+1) [le-i-g] [f—Clg]_l [le-l-g}
(vog*)

wheref andg designates the toeplitz matrices formed by the elementseofourier series of
o1 f anddig respectively.

8.6.4 Plane waves and parametric C-method

More over since the physics remains the same compared tollanie translation coordinate
systems, eigenvectors separate into forward and backwardsaas was already the case:

F(x'C) = 5 AgFy (X explipg x°) (8.105)

q

As in the classical translation coordinate system, we #ubsthe computed propagative for-
ward and backward eigenvectors with the correspondingtoamed plane waves . Consider
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plane waves
exp(ianX) exp(£iyhz)
such thatty, € R. Taking into account(8.98),their expression in obliquerdinates is:

exp(i(ancy £ vn)X®) exp(i(anf () £ yhg(x)) (8.106)

hence the following correspondences between propagativesin Cartesian coordinates and
their computed counterparts in oblique coordinates:

p(j;’)sw e (Eyptanc); Fi o(xh) < exp(ianf (x')£in(g(xh)) (8.107)
We have added an extra subsc(ip} and a superscrig) to indicate that we only care about
the above correspondence for propagative waves ang tti@pends on the truncation number.

8.6.5 lllustrative example

Consider a right angled triangular profile whose base isiatigpnOx. Other parameters are
periodd! and heighth. It is illuminated by a plane wave inclined éitto the Oz axis. In
the context of C-method we ask ourselves which coordinaséesy choosing for modelling
diffraction by such a grating. Here the main difficulty confiesn the vertical facet located at
x = d1. The operator associated with C-method involves the direvaf the profile function.
With a description of the profile by a function of the kiad- a(x), the derivative is constant
and everything happens as if the vertical did not exist. &hite vertical be replaced by a very
sloping facet, then a highly located and large discontyninithe derivative would appear. None
of the situation is satisfactory. An easy way to overcomepttadlem consists in introducing
an oblique coordinate system in which the vertical is trarmeed into a straight line with a
"reasonable” slope. Actually, doing so amounts to paramiegy the profile in the Cartesian
coordinate system.

8.6.5.1 Obliquity angle and parametrization of the profile

Since one of the facets of the grating is vertical, an incioeordinate system is needed. On the
one hand, the parameter is linked to the obliquity angle by c; = 1/tang and on the other
hand, according td_(8.100) it should satisfy the constrhint;da > 0 . Hence, in principlen
may be any angle such that tarc h/d Lett; be tar{g). On the first facet we have:

1 h
X=x'+-y, y=-xX (8.108)

1K} d

and on the second one 1
x=d, d:ﬁ+ry (8.109)

1

Thus the parametrization of the profile is:

f(xh) = xt g(xt) = xbif xk <

d—tzh d—tzh
1 1

f(xt) =d g(xt) = X

(8.110)

—d) if x> %3
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with ;

x5 =d (1-%2) (8.111)

Now that we have parametrized the profile, it remains to ddditanslation direction. The
direction which served to parametrize the profile is a nattinaice although not mandatory.
Once more, the only constraint is that the tangent of thearmobliquity angle is smaller than
h/d.

8.6.5.2 Stretched coordinates and parametrization of tmefpe

At xt = 0 andx! = x3, the parametric function§(x!) andg(x!) have jumps which can be
reduced if one introduces an additional change of coordfaitmed at increasing spatial reso-
lution around these points. Lgt be a function of a new variable x' = s(u). The chain rule
for derivative gives :

dx =01 f(x(s(u)dss,  duy = g(x}(s(u))dys (8.112)

Compared to the initial parametrization, spatial resoluis modulated by the multiplicative
factord,s. The smaller the latter, the higher the spatial resolutfopossible stretching function
is as follows :

Xo . (2mu :
" u_—nZHSIn(—Xo) ifO <u< X o119
s(u) = :
nd %) . (2mu—xo)\ o A
(U—Xg) — o sm( i~ ) if x;<u<d

The parameten between zero and one controls the density of coordinate &irmund the transi-
tion points. It allows to stretch space thinner where disioniities of coefficients in Maxwell’s
equations occur. The larger, the smallerd,s and thus the higher the spatial resolution. In
principle the parametey does not have to reach one because, in that case, the Jaamhilzh
be zero. Figurd (816) shows four possible parametrizatidineoconsidered right angle triangle.
Case (a) corresponds to the usual representation(x).



8.24

x( xl)

y(xh

x( xl)

y(xh

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

(@)xg=d,n=0

0.2 0.4 0.6 0.8

0.2 0.2 0.6 0.8

(c)x=.5858,n =0

Gratings: Theory and Numeric Applications, 2012

x(xl)

y(x)

x(xl)

y(xh

0.5¢

0.2 0.2 0.6 0.8 1

0.5¢

0.2 0.2 0.6 0.8 1

(b)xt=51n=0

0.5¢

0.2 0.4 0.6 0.8 1

0.5¢

0.2 0. 0.6 0.8 1

(d) x3.58581 = .95

Figure 8.6: Various parametric representations of a rigligée triangular profile

Finally, figure [8.7) shows the speed of convergence of tieewdpr reflected order for a

perfectly conducting right angle triangular profile for tdisferent parametrizations. It has to
be emphasized that modelling this kind of profile is out ocreéor the "classical" C-method
since it has a vertical facet.
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profile. Full line: 5t = .5, n = 0, dashed line: §= .4, n = .9. Other parameters ared = 25°, A =1L,h=d' =1
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Appendix 8.A: Curvilinear Coordinates

In Cartesian coordinates we deal with three mutually pedjperar families of planes: x=constant,
y=constant, z=constant. Imagine that we superimpose ansistem three other families
of surfaces. We may reference any variable pdihby the intersection of three planes in
Cartesian coordinates , ie by the triplety,z) or as the intersection of the three surfaces
that form our new, curvilinear coordinates. Describing thevilinear coordinates surfaces
by x! = constanpx? = constantx® = constantwe may identify our point by the triplet y, z as
well as byx!, x2,x3. This means that in principle we may define a curvilinear dowte system
from the Cartesian syste(w, y, z) by:

x=x" =x(x5,32, ),y =32 =x% (x1,%%,x%),z= % =& (x}, %, x) (8.114)
or by the inverse relations
xt = xl(xll,xz/,xs/),x2 = x2(x1/,x2/,x3/),x3 = x3(x1/,x2/,x3/) (8.115)

x¥' . x2 %3 respectivelyx,x2,x3 are regarded as independent and continuously differdatiab
functions ofx!, x2 andx3 respectively! xZ x3". letM denote a variable point referenced by the
rectangular coordinatés y, z).At M the so-called natural referentidd, e1, e», e3)is defined by
the the following basis vectors:
P=3oxF

eq = Py oxa ep (8.116)
with ey = e, &y = 6, 63 = &, &, 6, ande, being the unit vectors of an orthogonal Cartesian
referential. In a similar way we may write

P=3 oxB
€y — Z W@B (8117)
g=1
. N xP’ . . . .
Moreover introducing\y = e and Einsteins’ summation convention Eq(8]116) and Eq#.11
write: )
€q = /\g eB/ €q = /\geﬁ/ (8118)

vectorse, are tangent vectors along coordinate ci¥eThe matrix formed by the coefficiehﬁ/
is the Jacobian matrid of the change of coordinates. Since functishsx? x° are indepen-

dentJ is inverible and its inverse is formed by the coefﬁciehﬁs

/\{ /\i /\f N, N /\i,
J=| N N A J =1 A, N Ny (8.119)
7 / / 1 2
N NSNS Ny Ny Ny

One can also define basis vectefsthat are normal to coordinate surfac€s= constant by
oxv / /
a_ a ; a’ _
= e’ with e” = ey (8.120)

The vectorse, andef form a set of reciprocal basis wity.ef = 65, wherec‘iﬁ is the Kro-
necker delta. The representation of any veetan one of these bases is:

A:Aaea :Aaea (8121)
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. . 2 T
1
coordinate line x Ae

Figure 8.8: Curvilinear Coordinates:covariant and conti@iant components of a vector in a plane

The A% and theA, are the contravariant components and the covariant compooé vector
A respectively. The nullity of a component of vectdrmay be geometrically interpreted as
follows:

Aq = 0: A is orthogonal to the tangent at polvtto the coordinate ling?

A% = 0: A belongs to the tangential plane at pdihto coordinate surface”

In normalized orthogonal Cartesian coordinates diffeagmtcontravariant and covariant com-
ponents of a vector is generally not necessary. The Jacobarnx allows to express the
Cartesian componens® = A, of vector A in terms of its local contravariant components
AY = A.eY% or covariants componentg, = A.eq:

AT = Ay =AIAT  or  AT=A%A" (8.122)
A =NLA;,  or  Ag=A%Ay (8.123)
The quantities
Jap = €a-ep =G Nj Gorpy (8.124)
define the metric of the coordinate system. In matrix form aeeh
Q] =J'T (8.125)
and ,
g=det([gqp]) = det(J)? = det(/\g ) (8.126)

Theg,p establish a connexion between #éand theAg
Aq = eq. (Aﬁ.eﬁ) —gopAP o AP —gPop, (8.127)

Appendix 8.B: Transformation of Maxwell’s equations

We have seen that the natural referentiel gives the tookssityemaipulate tangential and normal
components of a vector field.Therefore, writting boundawpditions at a surface should be



G. Granet: Coordinate Transformation Methods 8.27

straightforward. We need now to express Maxwell’s equaitiothe new coordinate system.
For that purpose, we may follow a tensorial approach or stay &lementary level and make
a simple change of coordinates and components in the usual®lizgs equations. We present
briefly both points of view. A time dependence of the form exjaot) is assumed.

Vectorial approch

Let us start from one of the Maxwell’s curl equation writtertihe Cartesian coordinate system
and in an homogeneous medium with permittiatgnd permeabilityu

EVPY 9pHy = —iweEy (8.128)
where& @'Y stands for the Levi-Civita indicator :

o 1fora’pB’'y’ =123231,312
EABY — —1fora’B'y’ =321,213132 (8.129)
0 otherwise

Then let us change the coordinat@g: = /\g,dor and the components,, = /\/;,HB
£75Y NG 3, (Aﬁ,H@ — _iweEy (8.130)
The left hand side of the above equation is equal to:
RN, ! B 1N,/ B
Y NG, (/\V,ﬁaHB) +ETPYAG, (aa/\y,) Hg (8.131)

on the one hand we have
Ng0alN, = 0., (8.132)

and the other hand this term is symmetrical with respe@’tandy’. Thus by applying the
operatoré @A"Y’ which is antisymmetric with respect # andy’ we obtain 0. Thus, the
Maxwell curl equation reduces to:

fa’ﬁ’V’/\g,/\fj,aa Hp = —iweEq: (8.133)
let us multiply both sides by\g, and make summation on dummy index We obtain:
EV"Bdet</\g,> daHp = —iweN EY = —iweEY = —iwegPE, (8.134)
Finally we get:
EVP9aHp = —iwe\/Gg"PEg (8.135)
and
EVP 9, Ep = iwp /99" Hg (8.136)
setting

we then obtain a set of equations relating the complex augai of the field components where
the %4 and the?, play a fully symmetric role:

EBYp. T, = K /IS PGy

£P 0% = k9P Fa (8:138)

wherek = w,/HE
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Appendix 8.C: Summary of tensorial approach

In curvilinear coodinates systems, the Maxwell’s equatiare based on the tensorial formalism
deduced from relativity. If we consider only materials where stationary with respect to the

coordinate system, then the four-dimensional formalisretiged by Post can be simplified.

Maxwell equations are written :

EIPYGRE, = —BY
E9PYgsH, = DY +J°
aaDa :p

aaBa :O

(8.139)

Post’s formalism preserves the affine nature of Maxwell'aopns: their expression is indepen-
dent of the coordinate system. The geometry only appeatgicdnstitutive equations along
with the material’s properties

DY=¢%PE;  BY=pH, (8.140)
In a perfectly linear, isotropic media with permittivityand i, these relation ships become:
eP =g ge"P %P =¢ ggP (8.141)

whereg?? are the contravariant components of the metric tensor.

(0%F) = (9ap) " 9= (det)(Gap) (8.142)

In an arbitrary curvilinear coordinates systerfe if the surface separating two materials, de-
noted (1) and (2), coincides with a surface of coordinafes constant for example, then the
conditions of continuity are expressed quite simply

: o] @a(1) =aa(2)
tangential component continuity: 8.143
g p >{ s ue (8.143)
normal component continuity®(1) = a3(2) (8.144)

Assuming a time dependence of the form exjat), in a source free region if we substitute
the constitutive equations for the matdrial8]141 into Makwquations in the covariant form
8.139, setting

we then obtain a set of equations relating the complex autai of the field components where
the.%#4 and the?, play a fully symmetric role:

E9BYp. T, = K /ISP Yy

£9BY 00, — k) T (8.146)

wherek = w,/H€
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