
HAL Id: hal-00783894
https://hal.science/hal-00783894v1

Submitted on 1 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comparison of Several Gradient Based Optimization
Algorithms for PAPR Reduction in OFDM Systems

Badreddin Koussa, Smail Bachir, Clency Perrine, Claude Duvanaud,
Rodolphe Vauzelle

To cite this version:
Badreddin Koussa, Smail Bachir, Clency Perrine, Claude Duvanaud, Rodolphe Vauzelle. A Compar-
ison of Several Gradient Based Optimization Algorithms for PAPR Reduction in OFDM Systems.
2nd International Conference on Communications, Computing and Control Applications, Dec 2012,
Marseille, France. �hal-00783894�

https://hal.science/hal-00783894v1
https://hal.archives-ouvertes.fr


A Comparison of Several Gradient Based
Optimization Algorithms for PAPR Reduction in

OFDM Systems

Badreddin Koussa, Smail Bachir, Clency Perrine, Claude Duvanaud, Rodolphe Vauzelle

University of Poitiers, XLIM-SIC Laboratory, UMR CNRS 7252
URL : http://www.sic.sp2mi.univ-poitiers.fr/

Email: badreddin.koussa@univ-poitiers.fr

Abstract—The aim of this paper is to evaluate and
compare different optimization algorithms for Peak to
Average Power Ratio (PAPR) reduction in Orthogonal
Frequency Division Multiplexing (OFDM) systems. Based
on Tone Reservation (TR) method, we exploit the un-
used subcarriers of the studied standard to generate the
peak canceling signal without data rate loss. Gradient,
Conjugate-Gradient with two directions search and Quasi-
Newton methods have been investigated and evaluated on
the basis of spectral regrowth, convergence speed and
ability to improve the high peak-to-average reduction in
multicarriers systems. As an example, the simulations are
performed in the case of Local Area Network WLAN
(IEEE 802.11a standard). Simulation results show that a
PAPR reduction gain around 3 dB can be achieved.

Index Terms—OFDM system, PAPR reduction, Tone
Reservation, Gradient based optimization methods.

I. INTRODUCTION

OFDM for (Orthogonal Frequency Division Multi-
plexing) modulation is an attractive technique to mitigate
interference problems and delay spread due to frequency
selective channels [1]. It offers a high spectral efficiency
for data transmission. Accordingly, it has been widely
adopted for many telecommunication standards such
as DVB, WIMAX , LTE and IEEE 802.11a/g WLAN.
Unfortunately, OFDM signals present a high fluctuations
due to the destructive and constructive sum of many
orthogonal subcarriers in time domain. These temporal
fluctuations of transmitted signal can be described by a
high Peak to Average Power Ratio (PAPR) value which is
currently the most used term. A high PAPR value affects
performance of non nonlinear devices [2], especially the
High Power Amplifier (HPA), introducing Intersymbol
Interference (ISI) caused by the In-Band and Out-Of-
Band distortions. The overall quality of transmission
system is then degraded, which leads to poor Bit Error
Rate (BER) performance.
High PAPR value problem could be reduced by operating
in the linear region of the HPA transfer characteristic

by allowing a large enough amplifier back-off. However,
this solution is not efficient in terms of HPA power
consumption. In fact, the high efficiency region of HPA
corresponds to its saturation zone, where nonlinear ef-
fects are the most severe[3]. Another mostly used solu-
tion to improve the power efficiency and avoid nonlinear
distorsion, is to reduce the PAPR of the signal. Based on
this principle, numerous solutions have been proposed
in the literature. These methods include Clipping [4][5],
Clipping with filtering [6][7], Coding [8], Partial Trans-
mit Sequence (PTS) [9][10] and Select Mapping (SLM)
[11][12].

Based on the principle of adding signal technique,
[13] proposed another method called Tone Reservation
(TR). Originally, the main idea is to reserve a subset
of subcarriers called Peak Reduction Tones (PRT), to
generate a time domain signal which cancels the peak
and minimizes the PAPR. This subset of subcarriers does
not carry any information data. Moreover, transmitter and
receiver must agree on the number and the position of
the reserved subcarriers before transmission by sending
Side Information (SI), which decreases the useful Bit
rate. To deal with this problem, [14] proposed the use
of unused subcarriers defined in the DVB-T standards.
Furthermore, this work showed the trade-off between
the number of dedicated subcarriers for TR method, the
PAPR reduction gain and the spectral efficiency .

The generation of the appropriate time signal for
PAPR reduction by TR method has been formulated
as a convex optimization problem [13]. To solve this
problem, the classical Gradient algorithm has been
used in [13][15]. However, this algorithm gives a good
performance to the detriment of a slow convergence
speed. In parameter identification context, recent re-
searchs [16][17] have shown the importance of per-
forming minimization methods to improve the conver-
gence speed and increase the solution accuracy. In this
paper, we investigate the performance of the follow-
ing gradient-based methods: classical Gradient [13] ,



Fletcher-Reeves Conjugate-Gradient [18], Polak-Ribiére
Conjugate-Gradient [19] and the Quasi-Newton method
especially Marquardt’s algorithm [20]. These four op-
timization solvers are studied and compared on the
basis of spectral regrowth, ability to reduce PAPR, and
convergence speed. As an example, we report the results
in the case of Wireless Local Area Network WLAN
IEEE 802.11a standard where we exploit the 12 unused
subcarriers to generate the peak canceling signal, thus
avoiding the useful data rate loss.

The remainder of this paper is organized as follow:
section II gives a brief overview of OFDM system and
PAPR definition. In section III, we review the principle
of TR method, while section IV explains the studied
optimization algorithms, their formulas and characteris-
tics. Simulation results and comparison are provided in
section V. Finally, Section VI concludes the paper and
gives some prospects.

II. OVERVIEW OF OFDM SYSTEM

An OFDM signal is described as the sum of many
independent orthogonal subcarriers which have the same
frequency bandwidth∆f . If we note the data sym-
bols Xk, k = 0, 1, · · · , N − 1 as a vectorX =
[X0,X1, ...,XN−1], whereN is the number of subcar-
riers. The representation of the OFDM signal in the
baseband is given by [1]

x(t) =
1√
N

N−1
∑

k=0

Xk e
j2πk∆ft, 0 < t ≤ T (1)

whereXk is the data symbol carried by thekth subcarrier,
andT is the OFDM symbol duration.

At the transmitter, the data signalx(t) is generated
by the Inverse Fast Fourier Transform (IFFT) of the
vector X. Then, the generalization of equation (1) for
one OFDM symbol can be written as

x = Q ·X (2)

whereQ is the IFFT matrix of sizeN .
It is necessary to oversample the OFDM signal by a

factor of at least4 [21] to enable accurate peak detection
and give a good time domain representation. According
to the central-limit theorem, the OFDM time domain
signal follows a Gaussian distribution, which explains
the presence of some high peaks in the signal [1]. To
evaluate these peaks, the PAPR of the OFDM signal
defined below is used

PAPR(x)dB = 10. log10

(

max 0<t≤T |x(t)|2
E (|x(t)|2)

)

(3)

where E(·) is the mathematical expectation and
E
(

|x(t)|2
)

represents the average power of the signal.
We can notice from equation (1) that the PAPR increases
with the number of subcarriers.

III. T ONE RESERVATION TECHNIQUE

The main idea of Tone Reservation technique is to add
a time domain signalc to the original signalx to reduce
its peaks as shown in figure 1. The resulting PAPR(x+c)
will be lower than the original PAPR(x).

Fig. 1. TR technique using unused subcarriers

From equation (2) we can write [13]

x+ c = Q · (X + C) (4)

whereC is the verctor of corrective symbols. Therefore,
a set of subcarriers is reserved for corrective signalc.
These subcarriers are dedicated only for peak reduction
and do not carry information data. In practical OFDM
systems, not all subcarriers are used to transmit useful
data, in that case, they can be used for PAPR reduction.

To get the TR as a downward compatible method [22],
i.e. reliable without additional information between the
transmitter and the receiver,Xk andCk must be carried
in disjoint frequency subcarriers. Then, we can write

Xk + Ck =

{

Xk if k ∈ RDATA

Ck if k ∈ RPRT (5)

whereRDATA represents the subset of data bearing and
RPRT represents the subset of subcariers used for PAPR
reduction such asRDATA ∩RPRT = ∅

To reduce the PAPR ofx + c we must optimize the
time domain vectorc that minimizes the maximum peak
value.

IV. OPTIMIZATION ALGORITHMS

In [13], authors propose the TR method based on
signal to clipping noise power ratio to reduce the com-
plexity of the minimization procedure. According to
this principle, we can define the cost functionJ to be
minimized such as

J =
1

2

∑

|xi+ci|>A

ε2i =
1

2

∑

|xi+ci|>A

(|xi + ci| −A)2 (6)



whereεi = |xi + ci| −A is the error between corrected
signalx+ c and the predefined thresholdA.
In this cost function, called also quadratic criterion, we
consider only samplesi exceeding the targetedA.

In this context, the optimization problem is to find an
optimum value of corrective signalc that minimizes the
criterion J . In this paper, we evaluate and compare the
performance of four iterative optimization algorithms,
namely, the Gradient, Conjugate-Gradient with two dif-
ferent directions search and Quasi-Newton methods.

A. Gradient method

The Gradient algorithm, also called steepest descent
method [23][24], is a minimization technique based on a
line search in the negative direction of the first derivative
of the cost functionJ , also called the gradient. Letck be
the corrective vector atkth iteration, we proceed to the
next correction step ofck+1 to minimize the criterionJ
according to

ck+1 = ck − µ · J ′
k (7)

whereJ ′
k =

[

∂J
∂c

]

c=ck
is the value of gradient at the point

c = ck andµ is the monitoring coefficient.
From relation (6), we can deduce by analytical deriva-

tion the expression of the gradient such as [13]

J ′
k =

∑

|xi+ck
i
|>A

ej. arg(xi+ck
i
) εki Qqrowi (8)

and the iterative algorithm to updatec become

ck+1 = ck − µ
∑

|xi+ck
i
|>A

ej arg(xi+ck
i
) εki Qqrowi (9)

whereej. arg(xi+ck
i
) is the sign function of the complex

variable andarg(·) the angle function. Vectorqrowi

denotes theith row of the iFFT matrixQ.

B. Conjugate-Gradient method

The conjugate gradient method [25][26][27] find an
optimal direction search by a combination of the negative
gradient at the current iteration and the previous direc-
tion. At the (k + 1)th iteration, we updateck according
to

ck+1 = ck + λk · d k (10)

with λk is conjugate gradient’s step, anddk denotes the
conjugate gradient direction given as

d k = −J ′
k + ρk.d k−1 (11)

Let us notice that the search directiond k takes into
account a previous oned k−1 for more efficiency and
high convergence speed.

Conjugate gradient methods vary in their computation
of the scale parameterρk, which is used to construct

the search directiond k. In this paper, two methods are
evaluated: The Fletcher-Reeves [18] and Polak-Ribiére
methods [24][19] whereρk can be written as follow

• Fletcher-Reeves method

ρk =
J

′T
k · J ′

k

J
′T
k−1 · J ′

k−1

(12)

• Polak-Ribiére method

ρk =
(J ′

k − J ′
k−1)

T · J ′
k

J
′T
k−1 · J ′

k−1

(13)

with (·)T denotes transposition function.

C. Quasi-Newton Method

Quasi-Newton methods are one of the most effective
methods for finding a minimizer of a convex nonlinear
function [20][25]. These methods include the curvature
along the sequence search directions using the second-
derivative information, also called Hessian. The optimal
direction search is a vector describing the angle of the
direction according to the inverse of the Hessian. Among
these methods, Marquardt’s algorithm [26][28] was used
to ensure an efficient and rapid convergence. In the case
of PAPR reduction, the corrective signalc to be estimated
are updated as follows

ck+1 = ck − [J ′′
k + µ · IN ]−1.J ′

k (14)

J ′′
k =

[

∂2J
∂c2

]

c=ck
is the value of Hessian of criterionJ .

IN represents the identity matrix of sizeN .

In OFDM context, the expression of the Hessian
depends on the IFFT matrixQ and the number of used
subcarriers such as :

J ′′
k =

∑

|xi+ck
i
|>A

Q ·QT (15)

V. SIMULATIONS AND RESULTS

In this section, we present results from different nu-
merical experiments designed to determine which among
the four studied algorithms are preferred according to
their convergence speed, PAPR reduction gain and Spec-
tral regrowth.

The simulations are performed using IEEE 802.11a
standard. This standard is an extension of the IEEE
802.11 which provides up to 54 Mbps in the 5GHz band.
It uses an OFDM encoding scheme with 64 subcarriers,
in which 48 are reserved for information data, 4 reserved
for pilots and the remaining 12 are unused [29]. We use
these 12 subcarriers to generate the corrective signalc.
Note that, the proposed algorithms based on TR method
can be applied in the case of other standards using
OFDM modulation such as IEEE 802.11g/n and LTE,
for instance.
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Fig. 2. OFDM data symbol generation and TR scheme for 802.11.a standard

Figure 2 shows the scheme of the simulation, which is
carried out for 5000 OFDM symbols modulated by the
16 QAM modulation.The initialization of the corrective
signalc is a critical point. Therefore, it is initialized by
zero for each OFDM symbol during simulation, allowing
a fair comparison of the 4 solvers. Another solution
involves updatingci from ci−1, where i is the OFDM
symbol index’s. However, this solution suffers from the
problem of algorithm divergence, due to difference of
temporal variations from one OFDM symbol to another.

We compare these algorithms through different met-
rics such as convergence speed, PAPR reduction and
spectral regrowth.

Throughout this section, abbreviationGrad denotes
the Gradient algorithm (IV-A),Conj-Grad1 and Conj-
Grad2 denote the Conjugate-Gradient with respectively
Fletcher-Reeves and Polak-Ribiére methods (IV-B).
Quasi-Newton algorithm with Marquardt’s version is
notedQ-Newton(IV-C).

A. Convergence speed

To give a quantitative measure of the improvement of
convergence speed, we use the normalized mean square
error (NMSE), as

NMSEdB = 10 log10





∑

|xi+ci|>A

(|xi + ci| −A)2

A2



 (16)

wherei is the index of the sample exceeding the thresh-
old A. The choice of theA value is related to the
temporal fluctuations of the OFDM signal (see figure 4),
and the characteristic of the HPA to be used. Therefore,
it should be between the maximum of amplitude and the
average power of OFDM signal.

To evaluate the convergence speed, the maximum
number of iterations is fixed at 50 and the NMSE is
computed for the thresholdA = 1.1. Figure 3 shows
the NMSE descent during iterations for the 4 studied
algorithms.

As shown, all algorithms converge towards the same
value and allow an improvement of 7dB according to
the initial state, except the gradient algorithm, which
requires more iterations to achieve the same NMSE
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Fig. 3. Comparison of NMSE descent and convergence speed

value. In term of convergence speed, the two versions of
conjugate gradient converge and minimize the quadratic
error faster than the other algorithms. We can see that
minimal value of NMSE is achieved around 10 iterations.

Fig. 4. OFDM time-domain signal with and without optimization

Figure 4 shows the effect of peaks reduction for
one OFDM symbol signal in time domain. We can
observe that during 3.2µs, corresponding to an OFDM
Symbol duration specified in the IEEE 802.11a standard
before insertion of Guard Interval (GI), the number and
the amplitude of peaks have been significantly reduced
according to the predefined thresholdA.

Figure 5 shows the constellation of an OFDM symbol,
before and after optimization. We can observe that the
peak reducing signal points do not affect the data modu-



lated symbols, which agrees with the down compatibility
principle [22].
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Fig. 5. OFDM symbol constellation for 16QAM modulation

B. PAPR reduction

Generally, Cumulative Complementary Distribution
Function (CCDF) is used to show the variations of PAPR.
The CCDF is given by the probability that the PAPR
exceeds a given threshold PAPR0 in dB such as

CCDF(PAPR0) = Pr(PAPR> PAPR0) (17)

where Pr(·) denotes probability function.
The following figures show the CCDF of PAPR reduc-

tion, the interest is to relate with the descent of NMSE
results.
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Fig. 6. PAPR reduction comparison of the 4 optimization algorithms
after 10 iterations

Figure 6 depicts the CCDF of PAPR reduction after
10 iterations, for the 4 optimization algorithms. It shows
that the two versions of conjugate gradient algorithm
achieve a good PAPR reduction in fast convergence,
compared to Quasi-Newton and gradient algorithms.
Figure 7 compares the CCDF of PAPR reduction be-
tween the gradient alogrithm and the first version of
conjugate gradient algorithm (IV-B) after 5, 10 and 20
iterations respectively. The CCDF curves of conjugate
gradient remain nearly unchanged from the 5th iteration,

compared to others gradient CCDF curves. Accordingly,
the conjugate gradient algorithm reduces PAPR faster
than the gradient algorithm. From this figure, we can
observe the importance of the convergence speed to get
a good PAPR reduction. These results are directly related
to the results of the NMSE descent shown in the Figure
3.

Also, as shown in these figures, the TR method
with the two versions of conjugate gradient algorithms
achieve a PAPR reduction gain around 3 dB at CCDF of
10−3. These results are directly related to results of the
NMSE descent shown in the Figure 3.
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C. Spectral regrowth

In practical system, unused subcarriers are reserved
to avoid the problem of adjacent channel interference.
Generally, these subcarriers are located on the edge of
dedicated frequency band. We study the effect of the
proposed algorithms for PAPR reduction on the output
power spectrum. Figure 8 shows the resulting Power
Spectral Density (PSD) for the proposed algorithms.
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As shown, we can see that TR technique does not
affect the PSD distortion, compared to the spectral mask



defined by IEEE 802.11a standard [29]. Similar results
have been obtained, which prove the feasibility of this
technique under other frequency specifications [14].

VI. CONCLUSION

In this paper, the study and the evaluation of four op-
timization solvers are presented, to minimize the PAPR
in the context of OFDM modulation. These proposed
solutions are based on the TR method with adding
correction in the time domain to the OFDM signal,
in order to reduce its peaks. The corrective signal is
estimated via these four optimization solvers, namely,
Gradient algorithm, Fletcher-Reeves and Polak-Ribiére
Conjugate-Gradient and Quasi-Newton methods. Simu-
lation results on the IEEE 802.11a standard show that
conjugate gradient solver provides better performance in
term of PAPR reduction gain and convergence speed
compared to Quasi-Newton and Gradient algorithms.
The latter one is commonly used in the literature for TR
technique. The power spectrum specifications defined by
the standard are respected in all versions of optimization
algorithms.

From this study, we can conclude that the investigated
optimization algorithms are suitable for PAPR reduction.
Our next work is to study and evaluate the impact of
these solvers on the HPA power efficiency, which is
closely related to green communication development.
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