N
N

N

HAL

open science

Pre-processings and Linear-Decomposition Algorithm to
Solve the k-Colorability Problem

Corinne Lucet, Florence Mendes, Aziz Moukrim

» To cite this version:

Corinne Lucet, Florence Mendes, Aziz Moukrim. Pre-processings and Linear-Decomposition Algo-
rithm to Solve the k-Colorability Problem. International Workshop on Experimental and Efficient

Algorithms WEA’2004, May 2004, Brazil. pp.315-325. hal-00783886

HAL Id: hal-00783886
https://hal.science/hal-00783886v1
Submitted on 6 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00783886v1
https://hal.archives-ouvertes.fr

Pre-processings and Linear-Decomposition
Algorithm to Solve the k-Colorability Problem*

C. Lucet!, F. Mendes', A. Moukrim?

! LaRIA EA 2083, 5 rue du Moulin Neuf 80000 Amiens, France
? HeuDiaSyC UMR CNRS 6599 UTC, BP 20529 60205 Compiégne, France
(Corinne.Lucet, Florence.Mendes)@laria.u-picardie.fr
Aziz.Moukrim@hds.utc.fr

Abstract. We are interested in the graph coloring problem. We stud-
ied the effectiveness of some pre-processings that are specific to the k-
colorability problem and that promise to reduce the size or the difficulty
of the instances. We propose to apply on the reduced graph an exact
method based on a linear-decomposition of the graph. We present some
experiments performed on literature instances, among which DIMACS
library instances.

1 Introduction

The Graph Coloring Problem constitutes a central problem in a lot of appli-
cations such as school timetabling, scheduling, or frequency assignment [5,6].
This problem belongs to the class of NP-hard problems [10]. Various heuristics
approaches have been proposed to solve it (see for instance [2,8,9,11,13,17,
19, 21]). Efficient exact methods are less numerous: implicit enumeration strate-
gies [14,20,22], column generation and linear programming [18], branch-and-
bound [3], branch-and-cut [7], without forgetting the well-known exact version
of Brelaz’s DSATUR [2].

A coloring of a graph G = (V, E) is an assignment of a color ¢(x) to each
vertex such that ¢(z) # ¢(y) for all edges (z,y) € E. If the number of colors
used is k, the coloring of G is called a k-coloring. The minimum value of k for
which a k-coloring is possible is called the chromatic number of G and is denoted
X(G). The graph coloring problem consists in finding the chromatic number of
a graph. Our approach to solve this problem is to solve for different values of &
the k-colorability problem: “does there exist a k-coloring of G 7”.

We propose to experiment the effectiveness of some pre-processings that are
directly related to the k-colorability problem. The aim of these processings is to
reduce the size of the graph by deleting vertices and to constrain it by adding
edges. Then we apply a linear-decomposition algorithm on the reduced graph
in order to solve the graph coloring problem. This method is strongly related
to notions of tree-decomposition and path-decomposition, well studied by Bod-
laender [1]. Linear-decomposition has been implemented efficiently by Carlier,

*

with the support of Conseil Régional de Picardie and FSE



Lucet and Manouvrier to solve various NP-hard problems [4,15,16] and has for
main advantage that the exponential factor of its complexity depends on the
linearwidth of the graph but not on its size.

Our paper is organized as follows. We present in Sect. 2 some pre-proces-
sings related to the k-colorability problem and test their effectiveness on various
benchmark instances. In Sect. 3, we describe our linear-decomposition algorithm.
We report the results of our experiments in Sect. 4. Finally, we conclude and
discuss about the perspectives of this work.

2 Pre-processings

In this section, we present several pre-processings to reduce the difficulty of a k-
colorability problem. These pre-processings are iterated until the graph remains
unchanged or the whole graph is reduced.

2.1 Definitions

An undirected graph G is a pair (V, E) made up of a vertex set V and an edge
set E C VxV.Let N=|V|and M = |E|. A graph G is connected if for
all vertices w,v € V(w # v), there exists a path from w to v. Without loss of
generality, the graphs we will consider in the following of this paper will be only
undirected and connected graphs. Given a graph G = (V, E) and a vertex z € V,
let 9(z) = {y € V/(z,y) € E}. 9(z) represents the neighborhood of z in G. The
subgraph of G = (V, E) induced by I C V, is the graph G(I) = (I, E}) such that
Er =ENn(I xI). A cligue of G = (V,E) is a subset C C V such that every
two vertices in C' are joined by an edge in E. Let E = (V x V) \ E be the set
made up of all pairs of vertices that are not neighbors in G = (V, E). Let d be
the degree of GG, i.e. the maximal vertex degree among all vertices of G.

2.2 Reduction 1

A vertex reduction using the following property of the neighborhood of the
vertices can be applied to the representative graph before any other computation
with time complexity O(|E| * d), upper bounded by O(N?). Given a graph G,
for each pair of vertices z,y € V such that (z,y) ¢ E, if ¥(y) C ¥(z) then
y and its adjacent edges can be erased from the graph. Indeed, suppose that
k — 1 colors are needed to color the neighbors of z. The vertex = can take the
kth color. Vertices  and y are not neighbors. Moreover, the neighbors of y are
already colored with at most & — 1 colors. So, if G \ {y} is k-colorable then G
is k-colorable as well and we can delete y from the graph. This principle can be
applied recursively as long as vertices are removed from the graph.

2.3 Reduction 2

Suppose that we are searching for a k-coloring of a graph G = (V, E). Then we
can use the following property: for each vertex z, if the degree of z is strictly



lower than k, z and its edges can be erased from the graph [11]. Assume z
has k — 1 neighbors. In the worst case, those neighbors must have different
colors. Then the vertex z can take the k** color. It does not interfere in the
coloring of the remaining vertices because all its neighbors have already been
colored. Therefore we can consider from the beginning that it will take a color
unused by its neighbors and delete it from the graph before the coloring. The
time complexity of this reduction is O(N). We apply this principle recursively
by examining the remaining vertices until having totally reduced the graph or
being enable to delete any other vertex.

2.4 Vertex Fusion

Suppose that we are searching for a k-coloring of G = (V, E) and that a clique
C of size k has been previously determined. For each couple of non-adjacent
vertices z,y € V such that x ¢ C and y € C, if z is adjacent to all vertices
of C'\ y then z and y can be merged by the following way: each neighbor of
x becomes a neighbor of y, then z and its adjacent edges are erased from the
graph. Indeed, since we are searching for a k-coloring, z and y must have the
same color. Then Vz € ¥(z) c¢(y) # ¢(z) and the edge (y, z) can be added to G.
Then 9(z) C ¥(y) and = can be erased from the graph (cf Sect. 2.2). The time
complexity of this pre-processing is O(N # k).

2.5 Edge Addition

Suppose that we are searching for a k-coloring of G = (V, E) and that a clique C
of size k has been previously determined. For each couple of non-adjacent vertices
z,y € V,if Vz € C we have (z,2) € E or (y,2) € E, then the edge (z,y) can be
added to the graph. Necessarly, z must take a color from the colors of C'\ ¥(z).
Since d(y) D C \ ¥(z), c(z) # c(y). This constraint can be represented by an
edge between x and y. The time complexity of this pre-processing is O(|E| x k),
upper bounded by O(N? x k).

Algorithm 1 Pre-processings
Input: a graph G and an integer k
Output: a graph G’ k-colorable if and only if G is k-colorable
repeat
reduction 1
reduction 2
if 3 at least 1 clique of size k then
apply vertex fusion and edge addition on G
end if
until there is no more change in G
G =G




2.6 Pre-processing Experiments

Our algorithms have been implemented on a PC AMD Athlon Xp 2000+ in C
language. The method used is as follows. To start with, we apply on the entry
graph G a fast clique search algorithm: as long as the graph is not triangulated,
we remove a vertex of smallest degree, and then we color the remaining triangu-
lated graph by determining a perfect elimination order [12] on the vertices of G.
The size of the clique provided by this algorithm, denoted LB, constitutes a lower
bound of the chromatic number of G. Then we apply on G the pre-processings
described in Algorithm 1, supposing that we are searching for a k-coloring of the
graph with £ = LB. We performed tests on benchmark instances used at the
computational symposium COLOR02, including well-known DIMACS instances
(see description of the instances at http://mat.gsia.cmu.edu/COLORO02). Re-
sults are reported in Table 1. For each graph, we indicate the initial number
of vertices N and the number of edges M. The column LB contains the size
of the maximal clique found. The percentage of vertices deleted by the pre-
processings is reported in column Del. The number of remaining vertices after
the pre-processing step is reported in column new_N. Remark that some of the
instances are totally reduced by the pre-processings when k = LB, and that
some of them are not reduced at all.

Table 1: Pre-processings results

| Graph || N | M |LB|new_N| Del || Graph || N| M |LB|new_N| Del|
1-Fulllns3|| 30 | 100 | 3 | 15 |50% || 1-Fulllns4 || 93| 593 | 3 | 35 |62%

1-Fulllnsb|| 282 [ 3247 | 3 | 75 |73% || 2-Fulllns3 || 52 | 201 | 4 9 81%
2-Fulllns4|[ 212 [ 1621 | 4 | 41 | 81% || 2-Fulllns5 (|852{12201| 4 | 89 |90%
3-Fulllns3|| 80 | 346 | 5| 11 |86% || 3-Fulllns4 [|405| 3524 | 2 | 51 |87%
3-Fulllns5([2030(33751| 2 | 107 |95% || 4-Fulllns3 [|114| 541 | 6 | 13 |89%
4-FullIns4|| 690 | 6650 | 2 | 58 |92% || 5-Fulllns3 [|154| 792 | 7 | 15 |90%

5-Fulllns4([1085|11395| 2 | 65 |94% || fpsol2.i.1 |[496|11654|65| 228 | 54%
fpsol2.i.2 || 451 | 8691 |30 | 175 |61% || fpsol2.i.3 ||425| 8688 |30 | 149 |65%
inithx.i.1 || 864 [18707| 54| 443 |49% || inithx.i.2 (|645(13979|31| 215 |67%
inithx.i.3 || 621 {13969 31| 190 | 69% || mulsol.i.1 [|197]| 3925 |49| 60 |70%
mulsol.i.2|| 188 | 3885 |31 | 88 |53% || mulsol.i.3 ||184| 3916 [31| 83 |55%
mulsol.i.4|| 185 | 3946 |31| 85 |54% | mulsol.i.5 [|186|3973 [31| 84 |55%
schooll || 385 [19095|14| 360 | 6% |lschooll_nsh|[352|14612|14| 331 | 6%
3-Inser 3 || 56 | 110 | 2 | 56 0% || 4-Inser3 || 79| 156 | 2| 79 0%
le450_25a || 450 | 8260 [ 20| 297 | 34% || 1e450_25b [|450| 8263 | 25| 294 | 35%

anna 138 | 493 |11 0 |100% david 871 812 |11 0 |100%
homer || 5611629 (13| 0 [100% jean 80| 508 [10| 0 |100%
mugl00-1|/ 100 | 166 | 3 | 100 | 0% || mugl00-25 (100 166 | 3 | 100 | 0%
mug88-1 || 88 | 146 | 3 | 88 0% || mug88-25 || 88| 146 | 3 | 88 0%
miles250 || 128 | 387 | 7| 34 |73% | miles500 |([128]2340 20| 0 |100%
miles750 || 128 | 4226 | 31 0 |100%]|| miles1000 ||128| 6432 42| 0 |100%
miles1500(| 128 [10396| 73| 0 [100%||DSJR500_1|[500| 3555 | 12| 28 |94%
zeroin.i.1l || 211 [ 4100 | 49| 86 59% || zeroin.i.2 |[211| 3541 |30| 55 74%
zeroin.i.3 || 206 | 3540 30| 50 |76% || games120 |[120| 638 | 9 0 |100%




3 Linear-Decomposition Applied to the k-Colorability
Problem

In this section, we propose a method which uses linear-decomposition mixed
with Dsatur heuristic in order to solve the k-colorability problem.

3.1 Definitions

We will consider a graph G = (V, E). Let N = |V| and M = |E|. A vertez linear
ordering of G is a bijection N : V' — {1, ..., N'}. For more clarity, we denote i the
vertex N "1(i). Let V; be subset of V' made of the vertices numbered from 1 to i.
Let H; = (V;, E;) be the subgraph of G induced by V;. Let F; = {j € V/3(4,1) €
Ej<i <l}Vie{l,...,|V|}. F;is the boundary set of H;. Let H] = (V/, E})
be the subgraph of G such that V/ = (V\V;)UF; and E; = EN(V/ x V). The
boundary set F; corresponds to the set of vertices joining H; to H (see Fig. 1).

Fig. 1. A subgraph Hio of G and its boundary set Fio = {7,8,10}

The linearwidth of a vertex linear ordering N is Fpax(N) = mazicv (|F).
We use a vertex linear ordering of the graph to resolve the k-colorability problem



with a linear-decomposition. The resolution method is based on a sequential
insertion of the vertices, using a vertex linear ordering previously determined.
This will be developed in the following section.

3.2 Linear-Decomposition Algorithm

The details of the implementation of the linear-decomposition method are re-
ported in Algorithm 2. The vertices of G are numbered according to a linear
ordering ' : V. — {1,...,N}. Then, during the coloring, we will consider N
subgraphs Hy,..., Hy and the N corresponding boundary sets Fi,...,Fy, as
defined in Sect. 3.1.

Algorithm 2 k-colorability

Input: a graph G and an integer k
Output: Result : True if and only if G is k-coloriable

Hy = ({1}, 0)
F={1}
C(H1,1) = 1]
i=2

Result = True
while i < N and Result do
Result = False
Build H; and F;
for each configuration C'(H;—1,z) of F;—; do
for j =1 to number of blocks of C(H;_1,z) do
if i does not have any neighbor in the block j then
Result = True
part = C(H;—1,x)
insert ¢ in the block j of part
generate the configuration C'(H;,y) corresponding to part
val(C'(Hi, y)) = min(val(C(Hi,y)),val(C(Hi-1,z)))
end if
end for
if number of blocks of C'(H;—1,z) < k then
Result = True
part = C(H;—1,x)
add to part a new block containing ¢
val(part) = maz(val(C(H;—1,x)), number of blocks of part)
generate the configuration C'(H;,y) corresponding to part
val(C(H;,y)) = min(val(C(H;,y)), val(part))
end if
end for
t=1t+1
end while

The complexity of the linear-decomposition is exponential with respect to
Fraz(N), so it is necessary to make a good choice when numbering the vertices



of the graph. Unfortunately, finding an optimal vertex linear ordering in order
to obtain the smallest linearwidth is a NP-complete problem [1]. After some
experiments on various heuristics of vertex numbering, we choose to begin the
numbering from the biggest clique provided by our clique search heuristic (cf
Sect. 2.6). Then we order the vertices by decreasing number of already numbered
neighbors.

Starting from a vertex linear ordering, we build at first iteration a subgraph
H; which contains only the vertex 1, then at each step the next vertex and its
corresponding edges are added, until Hx. To each subgraph H; corresponds a
boundary set F; containing the vertices of H; which have at least one neighbor in
H]. The boundary set Fj is built from F;_; by adding the vertex ¢ and removing
the vertices whose neighbors have all been numbered with at most i. Several
colorings of H; may correspond to the same coloring of F;. Moreover, the colors
used by the vertices V; \ F; do not interfere with the coloring of the vertices which
have an ordering number greater than 7, since no edge exists between them. So,
only the partial solutions corresponding to different colorings of F; have to be
stored in memory. This way, several partial solutions on H; may be summarized
by a unique partial solution on Fj, called configuration of F;.

A configuration of the boundary set F; is a given coloring of the vertices of
F;. This can be represented by a partition of Fj, denoted By,..., Bj, such that
two vertices u,v of F; are in the same block B. if they have the same color.
The number of configurations of F; depends obviously on the number of edges
between the vertices of F;. The minimum number of configurations is 1. If the
vertices of F; form a clique, only one configuration is possible: By,..., B|g,,
with exactly one vertex in each block. The maximal number of configurations
of F; equals the number of possible partitions of a set with |F;| elements. When
no edge exists between the boundary set vertices, all the partitions are to be
considered. Their number T'(F;) grows exponentially according to the size of
F;. Their ordering number z, included between 1 and T'(F}), is computed by an
algorithm according to their number of blocks and their number of elements. This
algorithm uses the recursive principle of Stirling numbers of the second kind.
The partitions of sets with at most four elements and their ordering number
are reported in Table 2. Let C(H;,z) be the zt" configuration of F; for the
subgraph H;. Its value, denoted val(C(H;,x)) equals the minimum number of
colors necessary to color H; for this configuration.

At step i, fortunately we do not examine all the possible configurations of the
step ¢ — 1, but only those which have been created at precedent step, it means
those for which there is no edge between two vertices of the same block. For
each configuration of F;_;, we introduce the vertex i in each block successively.
Each time the introduction is possible without breaking the coloring rules, the
corresponding configuration of F; is generated. Moreover, for each configuration
of F;_, with value strictly lower than k — 1, we generate also the configuration
obtained by adding a new block containing the vertex i.

In order to improve the linear-decomposition, we apply the Dsatur heuristic
evenly on the remaining graph H/, for different configurations of F;. If Dsatur



Table 2. Classification of the partitions of sets containing from 1 to 4 elements

L [i=t [=2 =3 li=4 [ 7G) |
=11 [1] T =1
i=2(1[12] 212 T(2) =2
i=3||T [123] |2 [13][2] |5 [2I[3]

3 [1][23]

4 [12][3] T3) =5
i=4][1 [1234]2 [134][2]|9 [T4]2I3] |15 [2B1A]

3 [13][24]| 10 [1][24][3]
4 [14][23]11 [1][2][34]
5 [1][234]12 [13][2][4]
6 [124][3]13 [1][23][4]
7 [12][34]| 14 [12][3][4]
8 [123][4] T(4) =15

finds a k-coloring then the process ends and the result of the k-coloring is yes.
Otherwise the linear-decomposition continues until a configuration is generated
at step N, in this case the graph is k-colorable, or no configuration can be
generated from the precedent step, in this case the graph is not k-colorable. The
complexity of the linear-decomposition algorithm, upper bounded by N % 2fmaz
is exponential according to the linearwidth of the graph, but linear according to
its number of vertices.

3.3 Example of Configuration Computing

Agsume that we are searching for a 3-coloring of the graph G of Fig. 2. Sup-
pose that at step ¢ — 1 we had F;_y = {u,v}. The configurations of F;_; were
C(H;_1,1) = [uv] of value a and C(H;_1,2) = [u][v] of value 8. The value of 3
is 2 or 3, since the corresponding configuration has 2 blocks and k£ = 3.

Fig. 2. Construction of H; = (Vi1 U {i}, Ei—1 U {(u,i)})



Suppose that at step ¢, vertex u is deleted from the boundary set (we sup-
pose that it has no neighbor in H}), so F; = {v,i}. We want to generate the
configurations of F; from the configurations of F;_;. The insertion of 7 in the
unique block of C'(H;_1,1) is impossible, since u and i are neighbors. It is possi-
ble to add a new block, it provides the partition [uv][i] of 2 blocks, corresponding
to the configuration C'(H;,2) = [v][{] with val(C(H;,2)) = maz(a,2). Vertex i
can be introduced in the second block of C'(H;—1,2). It provides the partition
[u][vi] corresponding to the configuration C'(H;, 1) = [vi] with value §. It is also
possible to add a new block to C'(H;_1,2), it provides the partition [u][v][i] of
3 blocks corresponding to the configuration C'(H;,2) = [v][i]. This configuration
already exists, so val(C(H;,2)) = min(val(C(H;,2)),maz(3,3)). Thus two con-
figurations are provided at step i, they are used to determine the configurations
of the following step, and so on until the whole graph is colored.

4 k-Colorability Experiments

We performed experiments on the reduced instances of Table 1. Obviously, we
did not test instances that were already solved by pre-processings. Results of
these experiments are reported in Table 3. For each instance, we tested succes-
sive k-colorings, k starting from LB and increasing by step 1 until a coloring
exists. We report the result and computing time of our linear-decomposition al-
gorithm kColor, for one or two relevant values of k. We give also in column F},, 4,
the linearwidth of the vertex linear ordering chosen Fj,,. (A). Most of these in-
stances are easily solved. Configurations generated by instance 2-Fulllns5 for a
6-coloring exceeded the memory capacity of our computer, so we give for this
instance the results for a 5-coloring and for a 7-coloring. Instances 2-Fulllns4, 3-
Fulllns4, 4-Fulllns4, 5-Fulllns4 and 4-Inser3 are solved exactly, whereas no exact
method had been able to solve them at the COLORO02 computational symposium
(see http://mat.gsia.cmu.edu/COLOR02/ summary.htm for all results).

Table 3: k-colorability results

| Problem ||Fm[m|| k |kColor| Time || k |kColor|Time|

1-Fulllns3 || 17 [[3| no 0.00 ||[4| yes |0.00
1-Fulllns4 || 46 [[4| no 0.02 ||5| yes |0.02
1-Fulllns5 || 132 ||5| no |436.17( 6| yes |0.05
2-Fulllns3 || 22 ||4| no 0.00 ||5] yes |0.00
2-Fulllns4 || 93 ||5| no 0.02 ||6] yes |0.02
2-Fulllns5 || 359 || 5| no 29.50 || 7| yes |0.15
3-Fulllns3 || 36 ||5| no 0.00 ||6] yes |0.00
3-Fulllns4 || 200 ||6| no 0.03 ||7| yes |0.03
4-Fulllns3 || 49 ||6| no 0.00 ||7| yes |0.00
4-Fulllns4 || 302 || 7| no 0.08 ||8] yes |0.13
5-Fulllns3 || 64 || 7| no 0.00 ||8] yes |0.00

continued on next page




continued from previous page

Problem ||Fmaz||k|k0010r| Time ||k|kColor|Time
5-Fulllns4 || 447 || 8| no 0.22 ||9| yes |[0.20

3-Inser3 16 ||3| no | 29.27 ||4| yes |0.00
4-Inser3 20 (|3 no |1772.95||4| yes |0.00
mug88-1 8 ||3] no 0.00 ||4| yes |0.00
mug88-25 || 8 ||3| no 0.00 ||4| yes |0.00
mugl00-1 7 ||3| no 0.02 ||4| yes |[0.00
mugl00-25| 8 ||3| no 0.00 ||4| yes |0.00
miles250 || 16 ||7| no 0.00 || 8| yes |[0.00
le450-25a || 293 ||24| no 0.00 ||25] yes |0.98

le450-25b || 303 ||25| yes 0.00
fpsol2.i.1 || 82 ||65 yes 0.00
fpsol2.i.2 || 50 ||30| yes 0.00
fpsol2.i.3 || 50 ||30| yes 0.00
inithx.i.1 || 69 ||54| yes 0.00
inithx.i.2 || 42 ||31| yes 0.00
inithx.i.3 42 ||31| yes 0.00
mulsol.i.1 || 61 |49| yes 0.00
mulsol.i.2 || 45 ||31| yes 0.00
mulsol.i.3 || 46 ||31| yes 0.00
mulsol.i.4 || 45 ||31| yes 0.00
mulsol.i.5 || 47 ||31| yes 0.00
schooll 291 ||14| yes 0.00
schooll_nsh|| 258 ||14| yes 0.00
zeroin.i.l || 62 ||49| yes 0.00
zeroin.i.2 || 45 ||30| yes 0.00
zeroin.i.3 || 45 ||30| yes 0.00
DSJR500_1|| 68 |[12| yes 0.02

5 Conclusions

In this paper, we have presented some pre-processings that are effective to re-
duce the size of some of difficult coloring instances. We presented also an original
method to solve the graph coloring problem by an exact way. This method has
the advantage of solving easily large instances which have a bounded linearwidth.
The computational results obtained on literature instances are very satisfactory.
We consider using the linear-decomposition mixed with heuristics approach to
deal with unbounded linearwidth instances. We are also looking for more reduc-
tion techniques to reduce the size or the difficulty of these instances.

References

1. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1-21,
1993.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. D. Brelaz. New methods to color the vertices of a graph. Communications of the

ACM, 22(4):251-256, april 1979.

M. Caramia and P. Dell’Olmo. Vertex coloring by multistage branch-and-bound.
In Computational Symposium on Graph Coloring and its Generalizations, Corneil
University, september 2002.

. J. Carlier and C. Lucet. A decomposition algorithm for network reliability evalu-

ation. Discrete Appl. Math., 65:141-156, 1996.

D. de Werra. An introduction to timetabling. FEuropean Journal of Operation
Research, 19:151-162, 1985.

D. de Werra. On a multiconstrained model for chromatic scheduling. Discrete
Appl. Math., 94:171-180, 1999.

I. Mendez Diaz and P. Zabala. A branch-and-cut algorithm for graph coloring.
In Computational Symposium on Graph Coloring and its Generalizations, Corneil
University, september 2002.

N. Funabiki and T. Higashino. A minimal-state processing search algorithm for
graph coloring problems. [EICE Transactions on Fundamentals, E83-A(7):1420—
1430, 2000.

P. Galinier and J.K. Hao. Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3(4):379-397, 1999.

M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

F. Glover, M. Parker, and J. Ryan. Coloring by tabu branch and bound. In Trick
and Johnson [23], pages 285-308.

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

A. Hertz and D. De Werra. Using tabu search techniques for graph coloring.
Computing, 39:345-351, 1987.

M. Kubale and B. Jackowski. A generalized implicit enumeration algorithm for
graph coloring. Communications of the ACM, 28(4):412-418, 1985.

C. Lucet. Méthode de décomposition pour [’évaluation de la fiabilité des réseaut.
PhD thesis, Université de Technologie de Compiegne, 1993.

J.F. Manouvrier. M¢éthode de décomposition pour résoudre des problémes combi-
natoires sur les graphes. PhD thesis, Université de Technologie de Compiegne,
1998.

B. Manvel. Extremely greedy coloring algorithms. In F. Harary and J.S. Maybee,
editors, Graphs and applications: Proceedings of the First Colorado Symposium on
Graph Theory, pages 257-270, New York, 1985. John Wiley & Sons.

A. Mehrotra and M. A. Trick. A column generation approach for graph coloring.
INFORMS Journal on Computing, 8(4):344-354, 1996.

C. A. Morgenstern. Distributed coloration neighborhood search. In Trick and
Johnson [23], pages 335-357.

T. J. Sager and S. Lin. A pruning procedure for exact graph coloring. ORSA
Journal on Computing, 3:226-230, 1991.

S. Sen Sarma and S. K. Bandyopadhyay. Some sequential graph colouring algo-
rithms. International Journal of Electronic, 67(2):187-199, 1989.

E. Sewell. An improved algorithm for exact graph coloring. In Trick and Johnson
[23], pages 359-373.

Michael A. Trick and David S. Johnson, editors. Cliques, Coloring, and Satisfi-
ability: Proceedings of the Second DIMACS Implementation Challenge. American
Mathematical Society, 1993.



