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Pre-pro
essings and Linear-De
ompositionAlgorithm to Solve the k-Colorability Problem?C. Lu
et1, F. Mendes1, A. Moukrim21 LaRIA EA 2083, 5 rue du Moulin Neuf 80000 Amiens, Fran
e2 HeuDiaSyC UMR CNRS 6599 UTC, BP 20529 60205 Compi�egne, Fran
e(Corinne.Lu
et, Floren
e.Mendes)�laria.u-pi
ardie.frAziz.Moukrim�hds.ut
.frAbstra
t. We are interested in the graph 
oloring problem. We stud-ied the e�e
tiveness of some pre-pro
essings that are spe
i�
 to the k-
olorability problem and that promise to redu
e the size or the diÆ
ultyof the instan
es. We propose to apply on the redu
ed graph an exa
tmethod based on a linear-de
omposition of the graph. We present someexperiments performed on literature instan
es, among whi
h DIMACSlibrary instan
es.1 Introdu
tionThe Graph Coloring Problem 
onstitutes a 
entral problem in a lot of appli-
ations su
h as s
hool timetabling, s
heduling, or frequen
y assignment [5, 6℄.This problem belongs to the 
lass of NP-hard problems [10℄. Various heuristi
sapproa
hes have been proposed to solve it (see for instan
e [2, 8, 9, 11, 13, 17,19, 21℄). EÆ
ient exa
t methods are less numerous: impli
it enumeration strate-gies [14, 20, 22℄, 
olumn generation and linear programming [18℄, bran
h-and-bound [3℄, bran
h-and-
ut [7℄, without forgetting the well-known exa
t versionof Brelaz's DSATUR [2℄.A 
oloring of a graph G = (V;E) is an assignment of a 
olor 
(x) to ea
hvertex su
h that 
(x) 6= 
(y) for all edges (x; y) 2 E. If the number of 
olorsused is k, the 
oloring of G is 
alled a k-
oloring. The minimum value of k forwhi
h a k-
oloring is possible is 
alled the 
hromati
 number of G and is denoted�(G). The graph 
oloring problem 
onsists in �nding the 
hromati
 number ofa graph. Our approa
h to solve this problem is to solve for di�erent values of kthe k-
olorability problem: \does there exist a k-
oloring of G ?".We propose to experiment the e�e
tiveness of some pre-pro
essings that aredire
tly related to the k-
olorability problem. The aim of these pro
essings is toredu
e the size of the graph by deleting verti
es and to 
onstrain it by addingedges. Then we apply a linear-de
omposition algorithm on the redu
ed graphin order to solve the graph 
oloring problem. This method is strongly relatedto notions of tree-de
omposition and path-de
omposition, well studied by Bod-laender [1℄. Linear-de
omposition has been implemented eÆ
iently by Carlier,? with the support of Conseil R�egional de Pi
ardie and FSE



Lu
et and Manouvrier to solve various NP-hard problems [4, 15, 16℄ and has formain advantage that the exponential fa
tor of its 
omplexity depends on thelinearwidth of the graph but not on its size.Our paper is organized as follows. We present in Se
t. 2 some pre-pro
es-sings related to the k-
olorability problem and test their e�e
tiveness on variousben
hmark instan
es. In Se
t. 3, we des
ribe our linear-de
omposition algorithm.We report the results of our experiments in Se
t. 4. Finally, we 
on
lude anddis
uss about the perspe
tives of this work.2 Pre-pro
essingsIn this se
tion, we present several pre-pro
essings to redu
e the diÆ
ulty of a k-
olorability problem. These pre-pro
essings are iterated until the graph remainsun
hanged or the whole graph is redu
ed.2.1 De�nitionsAn undire
ted graph G is a pair (V;E) made up of a vertex set V and an edgeset E � V � V . Let N = jV j and M = jEj. A graph G is 
onne
ted if forall verti
es w; v 2 V (w 6= v), there exists a path from w to v. Without loss ofgenerality, the graphs we will 
onsider in the following of this paper will be onlyundire
ted and 
onne
ted graphs. Given a graph G = (V;E) and a vertex x 2 V ,let #(x) = fy 2 V=(x; y) 2 Eg. #(x) represents the neighborhood of x in G. Thesubgraph of G = (V;E) indu
ed by I � V , is the graph G(I) = (I; EI) su
h thatEI = E \ (I � I). A 
lique of G = (V;E) is a subset C � V su
h that everytwo verti
es in C are joined by an edge in E. Let E = (V � V ) n E be the setmade up of all pairs of verti
es that are not neighbors in G = (V;E). Let d bethe degree of G, i.e. the maximal vertex degree among all verti
es of G.2.2 Redu
tion 1A vertex redu
tion using the following property of the neighborhood of theverti
es 
an be applied to the representative graph before any other 
omputationwith time 
omplexity O(jEj � d), upper bounded by O(N3). Given a graph G,for ea
h pair of verti
es x; y 2 V su
h that (x; y) =2 E, if #(y) � #(x) theny and its adja
ent edges 
an be erased from the graph. Indeed, suppose thatk � 1 
olors are needed to 
olor the neighbors of x. The vertex x 
an take thekth 
olor. Verti
es x and y are not neighbors. Moreover, the neighbors of y arealready 
olored with at most k � 1 
olors. So, if G n fyg is k-
olorable then Gis k-
olorable as well and we 
an delete y from the graph. This prin
iple 
an beapplied re
ursively as long as verti
es are removed from the graph.2.3 Redu
tion 2Suppose that we are sear
hing for a k-
oloring of a graph G = (V;E). Then we
an use the following property: for ea
h vertex x, if the degree of x is stri
tly



lower than k, x and its edges 
an be erased from the graph [11℄. Assume xhas k � 1 neighbors. In the worst 
ase, those neighbors must have di�erent
olors. Then the vertex x 
an take the kth 
olor. It does not interfere in the
oloring of the remaining verti
es be
ause all its neighbors have already been
olored. Therefore we 
an 
onsider from the beginning that it will take a 
olorunused by its neighbors and delete it from the graph before the 
oloring. Thetime 
omplexity of this redu
tion is O(N). We apply this prin
iple re
ursivelyby examining the remaining verti
es until having totally redu
ed the graph orbeing enable to delete any other vertex.2.4 Vertex FusionSuppose that we are sear
hing for a k-
oloring of G = (V;E) and that a 
liqueC of size k has been previously determined. For ea
h 
ouple of non-adja
entverti
es x; y 2 V su
h that x =2 C and y 2 C, if x is adja
ent to all verti
esof C n y then x and y 
an be merged by the following way: ea
h neighbor ofx be
omes a neighbor of y, then x and its adja
ent edges are erased from thegraph. Indeed, sin
e we are sear
hing for a k-
oloring, x and y must have thesame 
olor. Then 8z 2 #(x) 
(y) 6= 
(z) and the edge (y; z) 
an be added to G.Then #(x) � #(y) and x 
an be erased from the graph (
f Se
t. 2.2). The time
omplexity of this pre-pro
essing is O(N � k).2.5 Edge AdditionSuppose that we are sear
hing for a k-
oloring of G = (V;E) and that a 
lique Cof size k has been previously determined. For ea
h 
ouple of non-adja
ent verti
esx; y 2 V , if 8z 2 C we have (x; z) 2 E or (y; z) 2 E, then the edge (x; y) 
an beadded to the graph. Ne
essarly, x must take a 
olor from the 
olors of C n #(x).Sin
e #(y) � C n #(x), 
(x) 6= 
(y). This 
onstraint 
an be represented by anedge between x and y. The time 
omplexity of this pre-pro
essing is O(jEj � k),upper bounded by O(N2 � k).Algorithm 1 Pre-pro
essingsInput: a graph G and an integer kOutput: a graph G0 k-
olorable if and only if G is k-
olorablerepeatredu
tion 1redu
tion 2if 9 at least 1 
lique of size k thenapply vertex fusion and edge addition on Gend ifuntil there is no more 
hange in GG0 = G



2.6 Pre-pro
essing ExperimentsOur algorithms have been implemented on a PC AMD Athlon Xp 2000+ in Clanguage. The method used is as follows. To start with, we apply on the entrygraph G a fast 
lique sear
h algorithm: as long as the graph is not triangulated,we remove a vertex of smallest degree, and then we 
olor the remaining triangu-lated graph by determining a perfe
t elimination order [12℄ on the verti
es of G.The size of the 
lique provided by this algorithm, denoted LB, 
onstitutes a lowerbound of the 
hromati
 number of G. Then we apply on G the pre-pro
essingsdes
ribed in Algorithm 1, supposing that we are sear
hing for a k-
oloring of thegraph with k = LB. We performed tests on ben
hmark instan
es used at the
omputational symposium COLOR02, in
luding well-known DIMACS instan
es(see des
ription of the instan
es at http://mat.gsia.
mu.edu/COLOR02). Re-sults are reported in Table 1. For ea
h graph, we indi
ate the initial numberof verti
es N and the number of edges M . The 
olumn LB 
ontains the sizeof the maximal 
lique found. The per
entage of verti
es deleted by the pre-pro
essings is reported in 
olumn Del. The number of remaining verti
es afterthe pre-pro
essing step is reported in 
olumn new N . Remark that some of theinstan
es are totally redu
ed by the pre-pro
essings when k = LB, and thatsome of them are not redu
ed at all.Table 1: Pre-pro
essings resultsGraph N M LB new N Del Graph N M LB new N Del1-FullIns3 30 100 3 15 50% 1-FullIns4 93 593 3 35 62%1-FullIns5 282 3247 3 75 73% 2-FullIns3 52 201 4 9 81%2-FullIns4 212 1621 4 41 81% 2-FullIns5 852 12201 4 89 90%3-FullIns3 80 346 5 11 86% 3-FullIns4 405 3524 2 51 87%3-FullIns5 2030 33751 2 107 95% 4-FullIns3 114 541 6 13 89%4-FullIns4 690 6650 2 58 92% 5-FullIns3 154 792 7 15 90%5-FullIns4 1085 11395 2 65 94% fpsol2.i.1 496 11654 65 228 54%fpsol2.i.2 451 8691 30 175 61% fpsol2.i.3 425 8688 30 149 65%inithx.i.1 864 18707 54 443 49% inithx.i.2 645 13979 31 215 67%inithx.i.3 621 13969 31 190 69% mulsol.i.1 197 3925 49 60 70%mulsol.i.2 188 3885 31 88 53% mulsol.i.3 184 3916 31 83 55%mulsol.i.4 185 3946 31 85 54% mulsol.i.5 186 3973 31 84 55%s
hool1 385 19095 14 360 6% s
hool1 nsh 352 14612 14 331 6%3-Inser 3 56 110 2 56 0% 4-Inser 3 79 156 2 79 0%le450 25a 450 8260 20 297 34% le450 25b 450 8263 25 294 35%anna 138 493 11 0 100% david 87 812 11 0 100%homer 561 1629 13 0 100% jean 80 508 10 0 100%mug100-1 100 166 3 100 0% mug100-25 100 166 3 100 0%mug88-1 88 146 3 88 0% mug88-25 88 146 3 88 0%miles250 128 387 7 34 73% miles500 128 2340 20 0 100%miles750 128 4226 31 0 100% miles1000 128 6432 42 0 100%miles1500 128 10396 73 0 100% DSJR500 1 500 3555 12 28 94%zeroin.i.1 211 4100 49 86 59% zeroin.i.2 211 3541 30 55 74%zeroin.i.3 206 3540 30 50 76% games120 120 638 9 0 100%



3 Linear-De
omposition Applied to the k-ColorabilityProblemIn this se
tion, we propose a method whi
h uses linear-de
omposition mixedwith Dsatur heuristi
 in order to solve the k-
olorability problem.3.1 De�nitionsWe will 
onsider a graph G = (V;E). Let N = jV j and M = jEj. A vertex linearordering of G is a bije
tionN : V ! f1; : : : ; Ng. For more 
larity, we denote i thevertex N�1(i). Let Vi be subset of V made of the verti
es numbered from 1 to i.Let Hi = (Vi; Ei) be the subgraph of G indu
ed by Vi. Let Fi = fj 2 V=9(j; l) 2E j � i < lg 8i 2 f1; : : : ; jV jg. Fi is the boundary set of Hi. Let H 0i = (V 0i ; E0i)be the subgraph of G su
h that V 0i = (V n Vi)[ Fi and E0i = E \ (V 0i � V 0i ). Theboundary set Fi 
orresponds to the set of verti
es joining Hi to H 0i (see Fig. 1).3 94 152 8 10 165 141 7 11 176 1312 18G = (V;E)3 942 8 1051 76
158 10 16147 11 171312 18H10 H 010Fig. 1. A subgraph H10 of G and its boundary set F10 = f7; 8; 10gThe linearwidth of a vertex linear ordering N is Fmax(N ) = maxi2V (jFij).We use a vertex linear ordering of the graph to resolve the k-
olorability problem



with a linear-de
omposition. The resolution method is based on a sequentialinsertion of the verti
es, using a vertex linear ordering previously determined.This will be developed in the following se
tion.3.2 Linear-De
omposition AlgorithmThe details of the implementation of the linear-de
omposition method are re-ported in Algorithm 2. The verti
es of G are numbered a

ording to a linearordering N : V ! f1; : : : ; Ng. Then, during the 
oloring, we will 
onsider Nsubgraphs H1; : : : ; HN and the N 
orresponding boundary sets F1; : : : ; FN , asde�ned in Se
t. 3.1.Algorithm 2 k-
olorabilityInput: a graph G and an integer kOutput: Result : True if and only if G is k-
oloriableH1 = (f1g; ;)F1 = f1gC(H1; 1) = [1℄i = 2Result = Truewhile i � N and Result doResult = FalseBuild Hi and Fifor ea
h 
on�guration C(Hi�1; x) of Fi�1 dofor j = 1 to number of blo
ks of C(Hi�1; x) doif i does not have any neighbor in the blo
k j thenResult = Truepart = C(Hi�1; x)insert i in the blo
k j of partgenerate the 
on�guration C(Hi; y) 
orresponding to partval(C(Hi; y)) = min(val(C(Hi; y)); val(C(Hi�1; x)))end ifend forif number of blo
ks of C(Hi�1; x) < k thenResult = Truepart = C(Hi�1; x)add to part a new blo
k 
ontaining ival(part) = max(val(C(Hi�1; x)), number of blo
ks of part)generate the 
on�guration C(Hi; y) 
orresponding to partval(C(Hi; y)) = min(val(C(Hi; y)); val(part))end ifend fori = i + 1end whileThe 
omplexity of the linear-de
omposition is exponential with respe
t toFmax(N ), so it is ne
essary to make a good 
hoi
e when numbering the verti
es



of the graph. Unfortunately, �nding an optimal vertex linear ordering in orderto obtain the smallest linearwidth is a NP-
omplete problem [1℄. After someexperiments on various heuristi
s of vertex numbering, we 
hoose to begin thenumbering from the biggest 
lique provided by our 
lique sear
h heuristi
 (
fSe
t. 2.6). Then we order the verti
es by de
reasing number of already numberedneighbors.Starting from a vertex linear ordering, we build at �rst iteration a subgraphH1 whi
h 
ontains only the vertex 1, then at ea
h step the next vertex and its
orresponding edges are added, until HN . To ea
h subgraph Hi 
orresponds aboundary set Fi 
ontaining the verti
es of Hi whi
h have at least one neighbor inH 0i . The boundary set Fi is built from Fi�1 by adding the vertex i and removingthe verti
es whose neighbors have all been numbered with at most i. Several
olorings of Hi may 
orrespond to the same 
oloring of Fi. Moreover, the 
olorsused by the verti
es VinFi do not interfere with the 
oloring of the verti
es whi
hhave an ordering number greater than i, sin
e no edge exists between them. So,only the partial solutions 
orresponding to di�erent 
olorings of Fi have to bestored in memory. This way, several partial solutions on Hi may be summarizedby a unique partial solution on Fi, 
alled 
on�guration of Fi.A 
on�guration of the boundary set Fi is a given 
oloring of the verti
es ofFi. This 
an be represented by a partition of Fi, denoted B1; : : : ; Bj , su
h thattwo verti
es u; v of Fi are in the same blo
k B
 if they have the same 
olor.The number of 
on�gurations of Fi depends obviously on the number of edgesbetween the verti
es of Fi. The minimum number of 
on�gurations is 1. If theverti
es of Fi form a 
lique, only one 
on�guration is possible: B1; : : : ; BjFij,with exa
tly one vertex in ea
h blo
k. The maximal number of 
on�gurationsof Fi equals the number of possible partitions of a set with jFij elements. Whenno edge exists between the boundary set verti
es, all the partitions are to be
onsidered. Their number T (Fi) grows exponentially a

ording to the size ofFi. Their ordering number x, in
luded between 1 and T (Fi), is 
omputed by analgorithm a

ording to their number of blo
ks and their number of elements. Thisalgorithm uses the re
ursive prin
iple of Stirling numbers of the se
ond kind.The partitions of sets with at most four elements and their ordering numberare reported in Table 2. Let C(Hi; x) be the xth 
on�guration of Fi for thesubgraph Hi. Its value, denoted val(C(Hi; x)) equals the minimum number of
olors ne
essary to 
olor Hi for this 
on�guration.At step i, fortunately we do not examine all the possible 
on�gurations of thestep i� 1, but only those whi
h have been 
reated at pre
edent step, it meansthose for whi
h there is no edge between two verti
es of the same blo
k. Forea
h 
on�guration of Fi�1, we introdu
e the vertex i in ea
h blo
k su

essively.Ea
h time the introdu
tion is possible without breaking the 
oloring rules, the
orresponding 
on�guration of Fi is generated. Moreover, for ea
h 
on�gurationof Fi�1 with value stri
tly lower than k � 1, we generate also the 
on�gurationobtained by adding a new blo
k 
ontaining the vertex i.In order to improve the linear-de
omposition, we apply the Dsatur heuristi
evenly on the remaining graph H 0i , for di�erent 
on�gurations of Fi. If Dsatur



Table 2. Classi�
ation of the partitions of sets 
ontaining from 1 to 4 elementsj=1 j=2 j=3 j=4 T (i)i=1 1 [1℄ T (1) = 1i=2 1 [12℄ 2 [1℄[2℄ T (2) = 2i=3 1 [123℄ 2 [13℄[2℄ 5 [1℄[2℄[3℄3 [1℄[23℄4 [12℄[3℄ T (3) = 5i=4 1 [1234℄ 2 [134℄[2℄ 9 [14℄[2℄[3℄ 15 [1℄[2℄[3℄[4℄3 [13℄[24℄ 10 [1℄[24℄[3℄4 [14℄[23℄ 11 [1℄[2℄[34℄5 [1℄[234℄ 12 [13℄[2℄[4℄6 [124℄[3℄ 13 [1℄[23℄[4℄7 [12℄[34℄ 14 [12℄[3℄[4℄8 [123℄[4℄ T (4) = 15�nds a k-
oloring then the pro
ess ends and the result of the k-
oloring is yes.Otherwise the linear-de
omposition 
ontinues until a 
on�guration is generatedat step N, in this 
ase the graph is k-
olorable, or no 
on�guration 
an begenerated from the pre
edent step, in this 
ase the graph is not k-
olorable. The
omplexity of the linear-de
omposition algorithm, upper bounded by N � 2Fmax ,is exponential a

ording to the linearwidth of the graph, but linear a

ording toits number of verti
es.3.3 Example of Con�guration ComputingAssume that we are sear
hing for a 3-
oloring of the graph G of Fig. 2. Sup-pose that at step i � 1 we had Fi�1 = fu; vg. The 
on�gurations of Fi�1 wereC(Hi�1; 1) = [uv℄ of value � and C(Hi�1; 2) = [u℄[v℄ of value �. The value of �is 2 or 3, sin
e the 
orresponding 
on�guration has 2 blo
ks and k = 3.
uv iHi�1 GFig. 2. Constru
tion of Hi = (Vi�1 [ fig; Ei�1 [ f(u; i)g)



Suppose that at step i, vertex u is deleted from the boundary set (we sup-pose that it has no neighbor in H 0i), so Fi = fv; ig. We want to generate the
on�gurations of Fi from the 
on�gurations of Fi�1. The insertion of i in theunique blo
k of C(Hi�1; 1) is impossible, sin
e u and i are neighbors. It is possi-ble to add a new blo
k, it provides the partition [uv℄[i℄ of 2 blo
ks, 
orrespondingto the 
on�guration C(Hi; 2) = [v℄[i℄ with val(C(Hi; 2)) = max(�; 2). Vertex i
an be introdu
ed in the se
ond blo
k of C(Hi�1; 2). It provides the partition[u℄[vi℄ 
orresponding to the 
on�guration C(Hi; 1) = [vi℄ with value �. It is alsopossible to add a new blo
k to C(Hi�1; 2), it provides the partition [u℄[v℄[i℄ of3 blo
ks 
orresponding to the 
on�guration C(Hi; 2) = [v℄[i℄. This 
on�gurationalready exists, so val(C(Hi; 2)) = min(val(C(Hi; 2));max(�; 3)). Thus two 
on-�gurations are provided at step i, they are used to determine the 
on�gurationsof the following step, and so on until the whole graph is 
olored.4 k-Colorability ExperimentsWe performed experiments on the redu
ed instan
es of Table 1. Obviously, wedid not test instan
es that were already solved by pre-pro
essings. Results ofthese experiments are reported in Table 3. For ea
h instan
e, we tested su

es-sive k-
olorings, k starting from LB and in
reasing by step 1 until a 
oloringexists. We report the result and 
omputing time of our linear-de
omposition al-gorithm kColor, for one or two relevant values of k. We give also in 
olumn Fmaxthe linearwidth of the vertex linear ordering 
hosen Fmax(N ). Most of these in-stan
es are easily solved. Con�gurations generated by instan
e 2-FullIns5 for a6-
oloring ex
eeded the memory 
apa
ity of our 
omputer, so we give for thisinstan
e the results for a 5-
oloring and for a 7-
oloring. Instan
es 2-FullIns4, 3-FullIns4, 4-FullIns4, 5-FullIns4 and 4-Inser3 are solved exa
tly, whereas no exa
tmethod had been able to solve them at the COLOR02 
omputational symposium(see http://mat.gsia.
mu.edu/COLOR02/ summary.htm for all results).Table 3: k-
olorability resultsProblem Fmax k kColor Time k kColor Time1-FullIns3 17 3 no 0.00 4 yes 0.001-FullIns4 46 4 no 0.02 5 yes 0.021-FullIns5 132 5 no 436.17 6 yes 0.052-FullIns3 22 4 no 0.00 5 yes 0.002-FullIns4 93 5 no 0.02 6 yes 0.022-FullIns5 359 5 no 29.50 7 yes 0.153-FullIns3 36 5 no 0.00 6 yes 0.003-FullIns4 200 6 no 0.03 7 yes 0.034-FullIns3 49 6 no 0.00 7 yes 0.004-FullIns4 302 7 no 0.08 8 yes 0.135-FullIns3 64 7 no 0.00 8 yes 0.00
ontinued on next page




ontinued from previous pageProblem Fmax k kColor Time k kColor Time5-FullIns4 447 8 no 0.22 9 yes 0.203-Inser3 16 3 no 29.27 4 yes 0.004-Inser3 20 3 no 1772.95 4 yes 0.00mug88-1 8 3 no 0.00 4 yes 0.00mug88-25 8 3 no 0.00 4 yes 0.00mug100-1 7 3 no 0.02 4 yes 0.00mug100-25 8 3 no 0.00 4 yes 0.00miles250 16 7 no 0.00 8 yes 0.00le450-25a 293 24 no 0.00 25 yes 0.98le450-25b 303 25 yes 0.00fpsol2.i.1 82 65 yes 0.00fpsol2.i.2 50 30 yes 0.00fpsol2.i.3 50 30 yes 0.00inithx.i.1 69 54 yes 0.00inithx.i.2 42 31 yes 0.00inithx.i.3 42 31 yes 0.00mulsol.i.1 61 49 yes 0.00mulsol.i.2 45 31 yes 0.00mulsol.i.3 46 31 yes 0.00mulsol.i.4 45 31 yes 0.00mulsol.i.5 47 31 yes 0.00s
hool1 291 14 yes 0.00s
hool1 nsh 258 14 yes 0.00zeroin.i.1 62 49 yes 0.00zeroin.i.2 45 30 yes 0.00zeroin.i.3 45 30 yes 0.00DSJR500 1 68 12 yes 0.025 Con
lusionsIn this paper, we have presented some pre-pro
essings that are e�e
tive to re-du
e the size of some of diÆ
ult 
oloring instan
es. We presented also an originalmethod to solve the graph 
oloring problem by an exa
t way. This method hasthe advantage of solving easily large instan
es whi
h have a bounded linearwidth.The 
omputational results obtained on literature instan
es are very satisfa
tory.We 
onsider using the linear-de
omposition mixed with heuristi
s approa
h todeal with unbounded linearwidth instan
es. We are also looking for more redu
-tion te
hniques to redu
e the size or the diÆ
ulty of these instan
es.Referen
es1. H. L. Bodlaender. A tourist guide through treewidth. A
ta Cyberneti
a, 11:1{21,1993.
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