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Pre-proessings and Linear-DeompositionAlgorithm to Solve the k-Colorability Problem?C. Luet1, F. Mendes1, A. Moukrim21 LaRIA EA 2083, 5 rue du Moulin Neuf 80000 Amiens, Frane2 HeuDiaSyC UMR CNRS 6599 UTC, BP 20529 60205 Compi�egne, Frane(Corinne.Luet, Florene.Mendes)�laria.u-piardie.frAziz.Moukrim�hds.ut.frAbstrat. We are interested in the graph oloring problem. We stud-ied the e�etiveness of some pre-proessings that are spei� to the k-olorability problem and that promise to redue the size or the diÆultyof the instanes. We propose to apply on the redued graph an exatmethod based on a linear-deomposition of the graph. We present someexperiments performed on literature instanes, among whih DIMACSlibrary instanes.1 IntrodutionThe Graph Coloring Problem onstitutes a entral problem in a lot of appli-ations suh as shool timetabling, sheduling, or frequeny assignment [5, 6℄.This problem belongs to the lass of NP-hard problems [10℄. Various heuristisapproahes have been proposed to solve it (see for instane [2, 8, 9, 11, 13, 17,19, 21℄). EÆient exat methods are less numerous: impliit enumeration strate-gies [14, 20, 22℄, olumn generation and linear programming [18℄, branh-and-bound [3℄, branh-and-ut [7℄, without forgetting the well-known exat versionof Brelaz's DSATUR [2℄.A oloring of a graph G = (V;E) is an assignment of a olor (x) to eahvertex suh that (x) 6= (y) for all edges (x; y) 2 E. If the number of olorsused is k, the oloring of G is alled a k-oloring. The minimum value of k forwhih a k-oloring is possible is alled the hromati number of G and is denoted�(G). The graph oloring problem onsists in �nding the hromati number ofa graph. Our approah to solve this problem is to solve for di�erent values of kthe k-olorability problem: \does there exist a k-oloring of G ?".We propose to experiment the e�etiveness of some pre-proessings that arediretly related to the k-olorability problem. The aim of these proessings is toredue the size of the graph by deleting verties and to onstrain it by addingedges. Then we apply a linear-deomposition algorithm on the redued graphin order to solve the graph oloring problem. This method is strongly relatedto notions of tree-deomposition and path-deomposition, well studied by Bod-laender [1℄. Linear-deomposition has been implemented eÆiently by Carlier,? with the support of Conseil R�egional de Piardie and FSE



Luet and Manouvrier to solve various NP-hard problems [4, 15, 16℄ and has formain advantage that the exponential fator of its omplexity depends on thelinearwidth of the graph but not on its size.Our paper is organized as follows. We present in Set. 2 some pre-proes-sings related to the k-olorability problem and test their e�etiveness on variousbenhmark instanes. In Set. 3, we desribe our linear-deomposition algorithm.We report the results of our experiments in Set. 4. Finally, we onlude anddisuss about the perspetives of this work.2 Pre-proessingsIn this setion, we present several pre-proessings to redue the diÆulty of a k-olorability problem. These pre-proessings are iterated until the graph remainsunhanged or the whole graph is redued.2.1 De�nitionsAn undireted graph G is a pair (V;E) made up of a vertex set V and an edgeset E � V � V . Let N = jV j and M = jEj. A graph G is onneted if forall verties w; v 2 V (w 6= v), there exists a path from w to v. Without loss ofgenerality, the graphs we will onsider in the following of this paper will be onlyundireted and onneted graphs. Given a graph G = (V;E) and a vertex x 2 V ,let #(x) = fy 2 V=(x; y) 2 Eg. #(x) represents the neighborhood of x in G. Thesubgraph of G = (V;E) indued by I � V , is the graph G(I) = (I; EI) suh thatEI = E \ (I � I). A lique of G = (V;E) is a subset C � V suh that everytwo verties in C are joined by an edge in E. Let E = (V � V ) n E be the setmade up of all pairs of verties that are not neighbors in G = (V;E). Let d bethe degree of G, i.e. the maximal vertex degree among all verties of G.2.2 Redution 1A vertex redution using the following property of the neighborhood of theverties an be applied to the representative graph before any other omputationwith time omplexity O(jEj � d), upper bounded by O(N3). Given a graph G,for eah pair of verties x; y 2 V suh that (x; y) =2 E, if #(y) � #(x) theny and its adjaent edges an be erased from the graph. Indeed, suppose thatk � 1 olors are needed to olor the neighbors of x. The vertex x an take thekth olor. Verties x and y are not neighbors. Moreover, the neighbors of y arealready olored with at most k � 1 olors. So, if G n fyg is k-olorable then Gis k-olorable as well and we an delete y from the graph. This priniple an beapplied reursively as long as verties are removed from the graph.2.3 Redution 2Suppose that we are searhing for a k-oloring of a graph G = (V;E). Then wean use the following property: for eah vertex x, if the degree of x is stritly



lower than k, x and its edges an be erased from the graph [11℄. Assume xhas k � 1 neighbors. In the worst ase, those neighbors must have di�erentolors. Then the vertex x an take the kth olor. It does not interfere in theoloring of the remaining verties beause all its neighbors have already beenolored. Therefore we an onsider from the beginning that it will take a olorunused by its neighbors and delete it from the graph before the oloring. Thetime omplexity of this redution is O(N). We apply this priniple reursivelyby examining the remaining verties until having totally redued the graph orbeing enable to delete any other vertex.2.4 Vertex FusionSuppose that we are searhing for a k-oloring of G = (V;E) and that a liqueC of size k has been previously determined. For eah ouple of non-adjaentverties x; y 2 V suh that x =2 C and y 2 C, if x is adjaent to all vertiesof C n y then x and y an be merged by the following way: eah neighbor ofx beomes a neighbor of y, then x and its adjaent edges are erased from thegraph. Indeed, sine we are searhing for a k-oloring, x and y must have thesame olor. Then 8z 2 #(x) (y) 6= (z) and the edge (y; z) an be added to G.Then #(x) � #(y) and x an be erased from the graph (f Set. 2.2). The timeomplexity of this pre-proessing is O(N � k).2.5 Edge AdditionSuppose that we are searhing for a k-oloring of G = (V;E) and that a lique Cof size k has been previously determined. For eah ouple of non-adjaent vertiesx; y 2 V , if 8z 2 C we have (x; z) 2 E or (y; z) 2 E, then the edge (x; y) an beadded to the graph. Neessarly, x must take a olor from the olors of C n #(x).Sine #(y) � C n #(x), (x) 6= (y). This onstraint an be represented by anedge between x and y. The time omplexity of this pre-proessing is O(jEj � k),upper bounded by O(N2 � k).Algorithm 1 Pre-proessingsInput: a graph G and an integer kOutput: a graph G0 k-olorable if and only if G is k-olorablerepeatredution 1redution 2if 9 at least 1 lique of size k thenapply vertex fusion and edge addition on Gend ifuntil there is no more hange in GG0 = G



2.6 Pre-proessing ExperimentsOur algorithms have been implemented on a PC AMD Athlon Xp 2000+ in Clanguage. The method used is as follows. To start with, we apply on the entrygraph G a fast lique searh algorithm: as long as the graph is not triangulated,we remove a vertex of smallest degree, and then we olor the remaining triangu-lated graph by determining a perfet elimination order [12℄ on the verties of G.The size of the lique provided by this algorithm, denoted LB, onstitutes a lowerbound of the hromati number of G. Then we apply on G the pre-proessingsdesribed in Algorithm 1, supposing that we are searhing for a k-oloring of thegraph with k = LB. We performed tests on benhmark instanes used at theomputational symposium COLOR02, inluding well-known DIMACS instanes(see desription of the instanes at http://mat.gsia.mu.edu/COLOR02). Re-sults are reported in Table 1. For eah graph, we indiate the initial numberof verties N and the number of edges M . The olumn LB ontains the sizeof the maximal lique found. The perentage of verties deleted by the pre-proessings is reported in olumn Del. The number of remaining verties afterthe pre-proessing step is reported in olumn new N . Remark that some of theinstanes are totally redued by the pre-proessings when k = LB, and thatsome of them are not redued at all.Table 1: Pre-proessings resultsGraph N M LB new N Del Graph N M LB new N Del1-FullIns3 30 100 3 15 50% 1-FullIns4 93 593 3 35 62%1-FullIns5 282 3247 3 75 73% 2-FullIns3 52 201 4 9 81%2-FullIns4 212 1621 4 41 81% 2-FullIns5 852 12201 4 89 90%3-FullIns3 80 346 5 11 86% 3-FullIns4 405 3524 2 51 87%3-FullIns5 2030 33751 2 107 95% 4-FullIns3 114 541 6 13 89%4-FullIns4 690 6650 2 58 92% 5-FullIns3 154 792 7 15 90%5-FullIns4 1085 11395 2 65 94% fpsol2.i.1 496 11654 65 228 54%fpsol2.i.2 451 8691 30 175 61% fpsol2.i.3 425 8688 30 149 65%inithx.i.1 864 18707 54 443 49% inithx.i.2 645 13979 31 215 67%inithx.i.3 621 13969 31 190 69% mulsol.i.1 197 3925 49 60 70%mulsol.i.2 188 3885 31 88 53% mulsol.i.3 184 3916 31 83 55%mulsol.i.4 185 3946 31 85 54% mulsol.i.5 186 3973 31 84 55%shool1 385 19095 14 360 6% shool1 nsh 352 14612 14 331 6%3-Inser 3 56 110 2 56 0% 4-Inser 3 79 156 2 79 0%le450 25a 450 8260 20 297 34% le450 25b 450 8263 25 294 35%anna 138 493 11 0 100% david 87 812 11 0 100%homer 561 1629 13 0 100% jean 80 508 10 0 100%mug100-1 100 166 3 100 0% mug100-25 100 166 3 100 0%mug88-1 88 146 3 88 0% mug88-25 88 146 3 88 0%miles250 128 387 7 34 73% miles500 128 2340 20 0 100%miles750 128 4226 31 0 100% miles1000 128 6432 42 0 100%miles1500 128 10396 73 0 100% DSJR500 1 500 3555 12 28 94%zeroin.i.1 211 4100 49 86 59% zeroin.i.2 211 3541 30 55 74%zeroin.i.3 206 3540 30 50 76% games120 120 638 9 0 100%



3 Linear-Deomposition Applied to the k-ColorabilityProblemIn this setion, we propose a method whih uses linear-deomposition mixedwith Dsatur heuristi in order to solve the k-olorability problem.3.1 De�nitionsWe will onsider a graph G = (V;E). Let N = jV j and M = jEj. A vertex linearordering of G is a bijetionN : V ! f1; : : : ; Ng. For more larity, we denote i thevertex N�1(i). Let Vi be subset of V made of the verties numbered from 1 to i.Let Hi = (Vi; Ei) be the subgraph of G indued by Vi. Let Fi = fj 2 V=9(j; l) 2E j � i < lg 8i 2 f1; : : : ; jV jg. Fi is the boundary set of Hi. Let H 0i = (V 0i ; E0i)be the subgraph of G suh that V 0i = (V n Vi)[ Fi and E0i = E \ (V 0i � V 0i ). Theboundary set Fi orresponds to the set of verties joining Hi to H 0i (see Fig. 1).3 94 152 8 10 165 141 7 11 176 1312 18G = (V;E)3 942 8 1051 76
158 10 16147 11 171312 18H10 H 010Fig. 1. A subgraph H10 of G and its boundary set F10 = f7; 8; 10gThe linearwidth of a vertex linear ordering N is Fmax(N ) = maxi2V (jFij).We use a vertex linear ordering of the graph to resolve the k-olorability problem



with a linear-deomposition. The resolution method is based on a sequentialinsertion of the verties, using a vertex linear ordering previously determined.This will be developed in the following setion.3.2 Linear-Deomposition AlgorithmThe details of the implementation of the linear-deomposition method are re-ported in Algorithm 2. The verties of G are numbered aording to a linearordering N : V ! f1; : : : ; Ng. Then, during the oloring, we will onsider Nsubgraphs H1; : : : ; HN and the N orresponding boundary sets F1; : : : ; FN , asde�ned in Set. 3.1.Algorithm 2 k-olorabilityInput: a graph G and an integer kOutput: Result : True if and only if G is k-oloriableH1 = (f1g; ;)F1 = f1gC(H1; 1) = [1℄i = 2Result = Truewhile i � N and Result doResult = FalseBuild Hi and Fifor eah on�guration C(Hi�1; x) of Fi�1 dofor j = 1 to number of bloks of C(Hi�1; x) doif i does not have any neighbor in the blok j thenResult = Truepart = C(Hi�1; x)insert i in the blok j of partgenerate the on�guration C(Hi; y) orresponding to partval(C(Hi; y)) = min(val(C(Hi; y)); val(C(Hi�1; x)))end ifend forif number of bloks of C(Hi�1; x) < k thenResult = Truepart = C(Hi�1; x)add to part a new blok ontaining ival(part) = max(val(C(Hi�1; x)), number of bloks of part)generate the on�guration C(Hi; y) orresponding to partval(C(Hi; y)) = min(val(C(Hi; y)); val(part))end ifend fori = i + 1end whileThe omplexity of the linear-deomposition is exponential with respet toFmax(N ), so it is neessary to make a good hoie when numbering the verties



of the graph. Unfortunately, �nding an optimal vertex linear ordering in orderto obtain the smallest linearwidth is a NP-omplete problem [1℄. After someexperiments on various heuristis of vertex numbering, we hoose to begin thenumbering from the biggest lique provided by our lique searh heuristi (fSet. 2.6). Then we order the verties by dereasing number of already numberedneighbors.Starting from a vertex linear ordering, we build at �rst iteration a subgraphH1 whih ontains only the vertex 1, then at eah step the next vertex and itsorresponding edges are added, until HN . To eah subgraph Hi orresponds aboundary set Fi ontaining the verties of Hi whih have at least one neighbor inH 0i . The boundary set Fi is built from Fi�1 by adding the vertex i and removingthe verties whose neighbors have all been numbered with at most i. Severalolorings of Hi may orrespond to the same oloring of Fi. Moreover, the olorsused by the verties VinFi do not interfere with the oloring of the verties whihhave an ordering number greater than i, sine no edge exists between them. So,only the partial solutions orresponding to di�erent olorings of Fi have to bestored in memory. This way, several partial solutions on Hi may be summarizedby a unique partial solution on Fi, alled on�guration of Fi.A on�guration of the boundary set Fi is a given oloring of the verties ofFi. This an be represented by a partition of Fi, denoted B1; : : : ; Bj , suh thattwo verties u; v of Fi are in the same blok B if they have the same olor.The number of on�gurations of Fi depends obviously on the number of edgesbetween the verties of Fi. The minimum number of on�gurations is 1. If theverties of Fi form a lique, only one on�guration is possible: B1; : : : ; BjFij,with exatly one vertex in eah blok. The maximal number of on�gurationsof Fi equals the number of possible partitions of a set with jFij elements. Whenno edge exists between the boundary set verties, all the partitions are to beonsidered. Their number T (Fi) grows exponentially aording to the size ofFi. Their ordering number x, inluded between 1 and T (Fi), is omputed by analgorithm aording to their number of bloks and their number of elements. Thisalgorithm uses the reursive priniple of Stirling numbers of the seond kind.The partitions of sets with at most four elements and their ordering numberare reported in Table 2. Let C(Hi; x) be the xth on�guration of Fi for thesubgraph Hi. Its value, denoted val(C(Hi; x)) equals the minimum number ofolors neessary to olor Hi for this on�guration.At step i, fortunately we do not examine all the possible on�gurations of thestep i� 1, but only those whih have been reated at preedent step, it meansthose for whih there is no edge between two verties of the same blok. Foreah on�guration of Fi�1, we introdue the vertex i in eah blok suessively.Eah time the introdution is possible without breaking the oloring rules, theorresponding on�guration of Fi is generated. Moreover, for eah on�gurationof Fi�1 with value stritly lower than k � 1, we generate also the on�gurationobtained by adding a new blok ontaining the vertex i.In order to improve the linear-deomposition, we apply the Dsatur heuristievenly on the remaining graph H 0i , for di�erent on�gurations of Fi. If Dsatur



Table 2. Classi�ation of the partitions of sets ontaining from 1 to 4 elementsj=1 j=2 j=3 j=4 T (i)i=1 1 [1℄ T (1) = 1i=2 1 [12℄ 2 [1℄[2℄ T (2) = 2i=3 1 [123℄ 2 [13℄[2℄ 5 [1℄[2℄[3℄3 [1℄[23℄4 [12℄[3℄ T (3) = 5i=4 1 [1234℄ 2 [134℄[2℄ 9 [14℄[2℄[3℄ 15 [1℄[2℄[3℄[4℄3 [13℄[24℄ 10 [1℄[24℄[3℄4 [14℄[23℄ 11 [1℄[2℄[34℄5 [1℄[234℄ 12 [13℄[2℄[4℄6 [124℄[3℄ 13 [1℄[23℄[4℄7 [12℄[34℄ 14 [12℄[3℄[4℄8 [123℄[4℄ T (4) = 15�nds a k-oloring then the proess ends and the result of the k-oloring is yes.Otherwise the linear-deomposition ontinues until a on�guration is generatedat step N, in this ase the graph is k-olorable, or no on�guration an begenerated from the preedent step, in this ase the graph is not k-olorable. Theomplexity of the linear-deomposition algorithm, upper bounded by N � 2Fmax ,is exponential aording to the linearwidth of the graph, but linear aording toits number of verties.3.3 Example of Con�guration ComputingAssume that we are searhing for a 3-oloring of the graph G of Fig. 2. Sup-pose that at step i � 1 we had Fi�1 = fu; vg. The on�gurations of Fi�1 wereC(Hi�1; 1) = [uv℄ of value � and C(Hi�1; 2) = [u℄[v℄ of value �. The value of �is 2 or 3, sine the orresponding on�guration has 2 bloks and k = 3.
uv iHi�1 GFig. 2. Constrution of Hi = (Vi�1 [ fig; Ei�1 [ f(u; i)g)



Suppose that at step i, vertex u is deleted from the boundary set (we sup-pose that it has no neighbor in H 0i), so Fi = fv; ig. We want to generate theon�gurations of Fi from the on�gurations of Fi�1. The insertion of i in theunique blok of C(Hi�1; 1) is impossible, sine u and i are neighbors. It is possi-ble to add a new blok, it provides the partition [uv℄[i℄ of 2 bloks, orrespondingto the on�guration C(Hi; 2) = [v℄[i℄ with val(C(Hi; 2)) = max(�; 2). Vertex ian be introdued in the seond blok of C(Hi�1; 2). It provides the partition[u℄[vi℄ orresponding to the on�guration C(Hi; 1) = [vi℄ with value �. It is alsopossible to add a new blok to C(Hi�1; 2), it provides the partition [u℄[v℄[i℄ of3 bloks orresponding to the on�guration C(Hi; 2) = [v℄[i℄. This on�gurationalready exists, so val(C(Hi; 2)) = min(val(C(Hi; 2));max(�; 3)). Thus two on-�gurations are provided at step i, they are used to determine the on�gurationsof the following step, and so on until the whole graph is olored.4 k-Colorability ExperimentsWe performed experiments on the redued instanes of Table 1. Obviously, wedid not test instanes that were already solved by pre-proessings. Results ofthese experiments are reported in Table 3. For eah instane, we tested sues-sive k-olorings, k starting from LB and inreasing by step 1 until a oloringexists. We report the result and omputing time of our linear-deomposition al-gorithm kColor, for one or two relevant values of k. We give also in olumn Fmaxthe linearwidth of the vertex linear ordering hosen Fmax(N ). Most of these in-stanes are easily solved. Con�gurations generated by instane 2-FullIns5 for a6-oloring exeeded the memory apaity of our omputer, so we give for thisinstane the results for a 5-oloring and for a 7-oloring. Instanes 2-FullIns4, 3-FullIns4, 4-FullIns4, 5-FullIns4 and 4-Inser3 are solved exatly, whereas no exatmethod had been able to solve them at the COLOR02 omputational symposium(see http://mat.gsia.mu.edu/COLOR02/ summary.htm for all results).Table 3: k-olorability resultsProblem Fmax k kColor Time k kColor Time1-FullIns3 17 3 no 0.00 4 yes 0.001-FullIns4 46 4 no 0.02 5 yes 0.021-FullIns5 132 5 no 436.17 6 yes 0.052-FullIns3 22 4 no 0.00 5 yes 0.002-FullIns4 93 5 no 0.02 6 yes 0.022-FullIns5 359 5 no 29.50 7 yes 0.153-FullIns3 36 5 no 0.00 6 yes 0.003-FullIns4 200 6 no 0.03 7 yes 0.034-FullIns3 49 6 no 0.00 7 yes 0.004-FullIns4 302 7 no 0.08 8 yes 0.135-FullIns3 64 7 no 0.00 8 yes 0.00ontinued on next page



ontinued from previous pageProblem Fmax k kColor Time k kColor Time5-FullIns4 447 8 no 0.22 9 yes 0.203-Inser3 16 3 no 29.27 4 yes 0.004-Inser3 20 3 no 1772.95 4 yes 0.00mug88-1 8 3 no 0.00 4 yes 0.00mug88-25 8 3 no 0.00 4 yes 0.00mug100-1 7 3 no 0.02 4 yes 0.00mug100-25 8 3 no 0.00 4 yes 0.00miles250 16 7 no 0.00 8 yes 0.00le450-25a 293 24 no 0.00 25 yes 0.98le450-25b 303 25 yes 0.00fpsol2.i.1 82 65 yes 0.00fpsol2.i.2 50 30 yes 0.00fpsol2.i.3 50 30 yes 0.00inithx.i.1 69 54 yes 0.00inithx.i.2 42 31 yes 0.00inithx.i.3 42 31 yes 0.00mulsol.i.1 61 49 yes 0.00mulsol.i.2 45 31 yes 0.00mulsol.i.3 46 31 yes 0.00mulsol.i.4 45 31 yes 0.00mulsol.i.5 47 31 yes 0.00shool1 291 14 yes 0.00shool1 nsh 258 14 yes 0.00zeroin.i.1 62 49 yes 0.00zeroin.i.2 45 30 yes 0.00zeroin.i.3 45 30 yes 0.00DSJR500 1 68 12 yes 0.025 ConlusionsIn this paper, we have presented some pre-proessings that are e�etive to re-due the size of some of diÆult oloring instanes. We presented also an originalmethod to solve the graph oloring problem by an exat way. This method hasthe advantage of solving easily large instanes whih have a bounded linearwidth.The omputational results obtained on literature instanes are very satisfatory.We onsider using the linear-deomposition mixed with heuristis approah todeal with unbounded linearwidth instanes. We are also looking for more redu-tion tehniques to redue the size or the diÆulty of these instanes.Referenes1. H. L. Bodlaender. A tourist guide through treewidth. Ata Cybernetia, 11:1{21,1993.
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