
HAL Id: hal-00783884
https://hal.science/hal-00783884

Submitted on 6 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tabu Search to Plan Schedules in a Multiskill Customer
Contact Center

Florence Mendes, Corinne Lucet, Aziz Moukrim

To cite this version:
Florence Mendes, Corinne Lucet, Aziz Moukrim. Tabu Search to Plan Schedules in a Multiskill
Customer Contact Center. ICSSSM’06, Oct 2006, France. pp.1126-1131. �hal-00783884�

https://hal.science/hal-00783884
https://hal.archives-ouvertes.fr

Tabu Search to Plan Schedules in a Multiskill Customer Contact Center∗

F. Mendes1, C. Lucet1 and A. Moukrim 2

1LaRIA EA 2083, 5 rue du Moulin Neuf 80000 Amiens, France ((Florence.Mendes, Corinne.Lucet)@laria.u-picardie.fr)
2HeuDiaSyC UMR CNRS 6599 UTC, BP 20529 60205 Compiègne, France (Aziz.Moukrim@hds.utc.fr)

ABSTRACT

We have studied a realistic case of scheduling problem in a customer contact center, dealing with multiskill agents. Our model
combines the last two steps of the standard approach by determining shifts and by assigning them to agents at the same time
(scheduling and rostering). Moreover, we have considered realistic vacations, according to legal constraints and preferences
of agents. We have envisioned entire weeks of work, with variable meal times and meal durations, without overtime. In this
paper, we define the problem and describe a Tabu search based solution.
Keywords: Scheduling, Call Center, Tabu Search

1. INTRODUCTION

A call center handles by phone the customer contacts of
several customer companies. If the call center uses also
other means of communication such as email or post, it is
called a customer contact center (CCC) or outsourcer. The
main part of CCC’s operating costs is labor costs, so it is
an important advantage to optimize these costs. We are in-
terested in a particular scheduling problem in a customer
contact center, dealing with several services and multiskill
agents. First we define the kind of scheduling problem that
we want to resolve and recall some general characteristics
and solution methods proposed in literature. In the third
section, we present our modeling and describe a greedy
algorithm that provides a first solution. In section four,
we describe the neighborhood of a solution and improve
the first solution with an algorithm based on Tabu search.
Finally computational results obtained on real-world in-
stances are discussed.

2. PREVIOUS WORK AND PROBLEM
DESCRIPTION

The scheduling problem that is considered here consists in
determining work schedules of CCC’s agents for a given
time horizon. The main part of operating costs in CCC
is due to personnel[3], so good scheduling algorithms can
substantially reduce the costs. Scheduling problems are
deeply studied in litterature, but there is often a gap be-
tween models and the complexity of typical call centers
design.

2.1. Previous work

A scheduling problem is generally decomposed into steps
that are solved separately. Tien and Kamiyama [15] pro-
posed three main stages to solve a scheduling problem,
once the predictions of load are known. First step, named
allocation, computes the number of agents needed for each
period of the planning. It determines also the minimum
number of agents to employ over the entire planning period.
Second step, namedoff day scheduling, consists in assign-
ing off days to agents according to off day and work stretch
constraints. Third step, namedshift assignment, consists in
assigning shifts to the schedule according to shift assign-

∗1-4244-0451-7/06/$20.00c©2006 IEEE

ment constraints and load predictions.

Ger Koole and al. [6] defined four standard steps that occur
in many software packages: call volume estimation, calcu-
lation of minimum number of agents, determining shifts,
assigning agents to shifts.

The first set-covering formulation for shift scheduling
problem has been developed by Dantzig [8]:

Min z =
m∑

j=1

CjXj

m∑
j=1

AijXj ≥ Bi, with i = 1, . . . , n and Xj ≥ 0, Xj integer,

wheren corresponds to the number of time intervals dur-
ing the planning horizon,m is the number of valid shifts,
Cj is the cost induced by the assignment of vacationj, Aij

equals 1 if intervali is a work period of shiftj and 0 oth-
erwise,Bi is the number of required employees during the
period i andXj is the number of employees assigned to
vacationj. First line minimizes the number of agents to
employ and second line ensures that the number of agents
assigned is enough for each time interval. This model
has been improved to take into account other constraints
such as multiple breaks or multiskill capacities[13, 5, 4, 7].
Gartner and Miksch proposed a CSP [10], Fukunaga and
al. combined a CSP with AI techniques [9]. Avramidis and
l’Ecuyer [3] proposed Mathematical Programming formu-
lation of the multiskill staffing and the multiskill schedul-
ing problems.

Another interesting way to find good solutions to difficult
problems is to apply metaheuristics such as methods based
on local search. Local search has been used efficiently by
Musliu and al. [11, 14] to design shifts in a single-skill call
center. We have chosen to use a similar model. Details
of problem modeling and a greedy algorithm to construct
a feasible solution are given in the next paragraph of this
paper.

We tackle the combined problem of designing and assign-
ing shifts and off days at the same time, as it has been done
for other scheduling problems.

2.2. Preliminary assumptions

In our problem, the number of available agents and terms
of their employment contracts are fixed. As the center is a
multiskill CCC, some agents have multiple skills, and can
be assigned to several tasks on one single day of work. We
suppose that each agent has at least one skill. The total
length of the scheduling, named time horizon, is divided
into weeks, days, and time intervals of the same length
(typically 10 or 15 minutes).

We suppose that the first step of the scheduling, consist-
ing in determining for each skill and each time interval the
number of required agents to ensure a certain service level,
has already been computed ([1][2]). This is done by using
the standard Erlang formulae, raised by a percentage that
is daily determined by taking into account average absen-
teism for this kind of day or average load for similar days
(the planner agent plays a part in this determination).

2.3. Problem constraints

Constraints of the problem can be divided into hard con-
straints and soft constraints. Hard constraints contain le-
gal regulations, due to work laws and collective bargain-
ing agreements: work duration per day, per week, and
per month for each agent, minimal and maximal working
time before meal break, minimal and maximal length of
lunch breaks, etc. Moreover, some of the agents’ individ-
ual preferences that are contractually defined have to be
enforced: it includes off day constraints, shift change con-
straints and work stretch constraints. Hard constraints in-
clude also some technical constraints: agents haven’t got
the same skills and cannot be assigned to all tasks. Soft
constraints include constraints that are relative to agents’
wellbeing by trying to take into account the equity between
agents : for each agent, we watch the number of working
schedules per week, the number of skills used per day, the
average length of the meal period, etc. We assume that
agents have 2 or 3 off days, according to their employment
contract. No overtime is allowed, and the working time of
an agent for one week is always the same.

2.4. Feasible scheduling solution

A vacationrepresents one day of work, for one agent. The
solution of the scheduling problem is a schedule of the va-
cations of each agent on a given planning horizon: weekly
or monthly. The schedule indicates also the different skills
that will be used by the agent during his working days. Af-
ter scheduling, for each skill and each time period, we ob-
tain the number of agents ideally necessary and the num-
ber of agents effectively planned. Acovering curvecan
be designed, showingexcessandshortageintervals. Our
main objective is to obtain at least minimal service levels
for minimal costs, by using flexibility in task assignments.
Multiskill agents are scheduled for one or several skills dur-
ing their day of work. Moreover,equitybetween agents has
to be maintained, notably in assignment of the off days and
in the average length of meal periods. These parameters
are evaluated by measuring standard deviation with regard
to average values over all agents.

3. PROBLEM MODELING AND CONSTRUCTION
OF A FEASIBLE SOLUTION

In this section, we present our modeling of the CCC
scheduling problem.We start with some definitions and de-
scribe in next paragraph a simple algorithm to construct a
feasible solution.

3.1. Problem modeling

We considerweeks(W1, ...,WNBW), days (D1, ..., D7)
andtime intervals(I1, ..., INBI) whereNBW is the total
number of weeks in the planning horizon andNBI is the
number of time intervals during one day (24 hours). We are
given (A1, ..., ANBA) agents, (C1, ..., CNBC) work con-
tracts and (SK1, ..., SKNBSK) different skills. To each
agent corresponds one contract and a set of skills. Let an
Activity be a set of tasks that requires certain skill for the
agents. Activities are numbered fromAct1 to ActNBAct.
We are givenNBAct Charge curvessuch that, ifAct is an
Activity with inbound calls, thenCh(Act,W,D, I) is the
number of agents ideally necessary at time intervalI of the
weekW and the dayD for Activity Act. We assume that
for each other kind of Activity, the number of tasks that
have to be done per day is known. Let avacation typebe
defined by:

• earliest and latest startS min andS max,

• a lengthL,

• earliest and latest meal period startM min and
M max,

• minimal and maximal length of meal periodML min
andML max

The vacation types are numbered fromV T1 to V TNBV T .
An example of vacation types is given in table 1. Avaca-
tion VWi,Dj,Ai = (V beg, V length,M beg,M length)
represents one day of work, for one agent.V beg corre-
sponds to the beginning interval of the vacation,V length
corresponds to the length of the vacation,M beg is the first
interval of meal break andM length its length. In the sim-
ple skill case, to a vacation corresponds also the skill that
will be used by the agent during the day. For a given week,
all vacations of one agent must belong to the same vacation
type. A valid vacationis a vacation that respects law con-
straints and technical constraints. Let ashift for a week, a
day, and an agent be defined by an interval of working time
intervals and an Activity:sW,d,a,x = ([Ibeg, Iend], Acta).
For a given week, each agent is assigned toXa shifts. Each
vacation corresponds to a set of shifts (the sum of the length
of shifts for a day and an agent equals theV length value
of the vacation) and the intersection of shifts for one day
and one agent is empty (an agent is assigned to at most one
Activity during an interval). Shifts allow us to compute
NBAct Presence curvessuch thatPre(Act,W,D, I) =
the number of agents assigned to the Activity Act during
the time interval I of the week W and the day D.

undercoverandovercovercurves list for each activity ev-
ery period of shortage or excess of agents, by comparing
for each time interval the number of agents needed and the
number of agents assigned.

uc[Act, W, d, i] = Ch[Act, W, d, i] − Pre[Act, W, d, i]

if Ch[Act, W, d, i] > Pre[Act, W, d, i], 0 otherwise.
oc[Act, W, d, i] = Pre[Act, W, d, i] − Ch[Act, W, d, i] if
Ch[Act, W, d, i] < Pre[Act, W, d, i], 0 otherwise.

A scheduling solutionfor a weekW is made of the union
of all shifts of all agents.

SW =
⋃

a=A1 to AN BA,d=1to7,x=1 to Xa

sW,d,a,x

In the scheduling solution, the sum of shortages, orUnder-
Cover(UC) has to be minimized.

UC(SW) =
∑

Act=1toNBAct

∑
d=1toNBD

∑
i=1toNBI

uc[Act,W, d, i]

We use boolean variablesSoff to evaluate equity between
agents.Soff(Ai,Wj) = 1 if agentAi works on Saturday
for weekWj , 0 otherwise. LetNS(Ai,Wj) be the number
of Saturdays-off for agentAi between weekW1 and week
Wj :

NS(Ai,Wj) =
∑

k=1toj

Soff(Ai,Wj)

Let NS(Wj) be the average number of Saturdays-off for
all agents between weeksW1 andWj . SE(SWj) is the
Saturday Equityparameter value for solutionSWj :

SE(SWj) =
∑

i=1toNBA |NS(Wj)−NS(Ai,Wj)|
NBA ∗ j

Let NM(Ai,Wj) be the number of meal breaks taken by
agentAi between weeksW1 andWj . LetDM(Ai,Wj) be
the average length of meal break taken by agentAi between
weeksW1 andWj . Let (DM(Wj) be the average length
of meal break for all agents between weeksW1 andWj .
ME(SWj

) is theMeal Equityparameter value for solution
SWj

:

ME(SWj) =
∑

i=1toNBA |DM(Wj)−DM(Ai,Wj)|
NBA

Table 1: Example of vacation types

VT S min S max L M min M max ML min ML max

1 08:00 10:00 07:20 11:00 14:10 00:40 01:10
2 09:00 11:00 07:20 11:00 14:10 00:40 01:10
3 10:00 12:00 07:20 11:00 14:10 00:40 01:10
4 12:00 14:00 07:20 16:00 18:00 00:30 00:30
5 13:00 15:00 07:20 16:00 18:10 00:30 00:30
6 14:00 15:40 07:20 17:00 19:30 00:30 00:30

3.2. Priority algorithm to generate a scheduling solu-
tion

A first solution to the scheduling problem is constructed
with a greedy algorithm (see algorithm 1). This algorithm
considers each week separately. We consider for each agent
a number of working vacations according to his employ-
ment contract. First, agents are randomly numbered, then
vacations of agents are determined according to this order,
agent by agent, for the entire week. For each agent, the va-
cation typeV T (Ai,Wj) for the week and the off days are
determined according to the maximal shortage of agents
among all the skills of the agent. For each vacation and

each Activity that is in the skills of the agent, the sum of
undercovers

∑
i uc[Act,W, d, i] for time intervalsi corre-

sponding to the vacation typeV T is determined. Activity
Act that involves the maximal sum of undercovers is cho-
sen. Agent vacations (V beg,M beg,M length) are deter-
mined successively according to priority rules, inspired by
the heuristic [14] : a good shift starts when requirements
increase and ends when requirements decrease. So, when
evaluating different starting intervals for a vacation, the
maximal value is given when working hours correspond to
a load increasing of ActivityAct. Finally, shifts of agents
that have been constructed correspond to a scheduling so-
lution SW and the UnderCover of the solutionUC(SW) is
known.

Algorithm 1 Greedy algorithm
Input: agents contraints and charge courbes for weekW
Output: SW andUCSW

Order agents from1 to NBA
FOR each Activity, each Day,and each IntervalDO

uc[Act,W,D, I] = Ch[Act,W,D, I];
END FOR
FOR each agentA DO

Determine a vacation typeV T
Order days fromD1 to D7

FOR D = D1 to DNbV acations(A) DO
Determine activityAct;
DetermineV beg,M beg andM length;
VW,D,A = (V beg, V length,M beg,M length);
sW,D,A,1 = ([V beg,M beg], Act);
sW,D,A,2 = ([M beg + M length, V beg +
V length + M length], Act);
FOR each time intervalI of the vacationDO

Computeuc(Act,W,D, I);
END FOR

END FOR
END FOR
ComputeUCSW

4. TABU SEARCH METHOD

The greedy algorithm produces non satisfying solutions. It
assigns agents to only one Activity per day and does not
bother about Equity constraints. Solutions involve Under-
Cover on some Activities whereas some agents are in ex-
cess on other Activities. We want to improve iteratively the
quality of our scheduling solution, by choosing at each step
a solution that is near from the current solution and that is
of better quality : considering first the UnderCover value,
and then the equity parameters (see algorithm 2).

The moves that are allowed when exploring the neighbor-
hood of the current solution are based on agents or activ-
ities. Some of these moves aim at improving the Under-
Cover value (UC), the others aim at improving equity val-
uesME andSE. Four kinds of moves are used to gen-
erate the neighborhood : changing the starting interval of
a vacation for an agent, changing the Activity assigned to
an agent during a set of time intervals, swap all the vaca-
tions between two agents, swap one vacation between two
agents.

Algorithm 2 Evaluation of the neighbor solution

Input: S andS′ two neighbor solutions
Output: The best solutionBest

IF UC(S) < UC(S′) THEN
Best = S

ElSE
IF (UC(S) = UC(S′)and(SE(S) < SE(S′))
THEN

Best = S
ElSE

IF (UC(S) = UC(S′))and(SE(S) =
SE(S′))and(ME(S) < ME(S′)) THEN

Best = S
ElSE

Best = S′

END IF
END IF

END IF

4.1. Exploring the neighborhood

We don’t generate all the neighbors of a solution, because
the entire neighborhood would be too large. Some con-
ditions are common before applying any move : the new
vacations obtained after the move must be valid vacations
and correspond to the same vacation type as the initial va-
cation. So, only the moves that allow to construct a feasi-
ble scheduling solution are generated. At each step and for
each move a set of agents is selected and moves are applied
only to agents of this set. When no better solution is found
after a number of iterations, the number of selected agents
is increased.

Move Vacation: Moves MoveV acationLeft and
MoveV acationRight consist in changing the starting
interval of a vacation, without changing its length. This
moves are applied when the starting or ending period of
vacation shifts corresponds to a shortage of workers. The
shifts are moved of one time interval in order to minimize
undercover.

Selection of agents for an earlier beginning :
Consider agent Ai with vacation VW,Dj ,Ai =
(V beg, V length,M beg,M length). V end =
V beg + V length andM end = M beg + M length.
Let S′

W be the solution obtained by applying
MoveV acationLeft to solutionSW and agentAi. We
obtain a new vacationV ′

W,Dj ,Ai
with V ′ beg = V beg−1,

V ′ end = V end − 1, M ′ beg = M beg − 1 and
M ′ end = M end− 1.

• If oc[Act,W,D, V beg − 1] > 0,
oc[Act,W,D,M end − 1] > 0,
uc[Act,W,D,M beg] > 0 and
uc[Act,W,D, V end] > 0 then UC(S′

W) <
UC(SW)

• If oc[Act,W,D, V beg − 1] ≥ 0 and
oc[Act,W,D,M end − 1] ≥ 0 then UC(S′

W) ≥
UC(SW)

The move is applied only to a restricted number of agents.
Agents corresponding to the first item are chosen. If

such agents don’t exist, agents who don’t correspond to
the second item are randomly chosen. The same reason-
ing is used for the selection of agents before applying
MoveV acationRight.

Change Activity: This move consists in assigning to an
agent another Activity during a given time period. It allows
us to use the multiple skills of the agents. The application
of this move reduces the undercover for an Activity, with-
out inducing undercover on any other activities. A shift of
the agent is split into several shifts implying several skills.

Selection of agents : If we change the Activity assigned to
an agent which may be needed for his initial Activity, the
gain obtained on the second Activity may not compense the
undercover induced on the first Activity. So, the best gain
is expected when the move satisfies these conditions :

• During the shift period, there exists a shortage of
workers for another Activity.

• The agent is in excess in his Activity during this period
of his shift.

• The Activity which is in shortage belongs to the skills
of the agent.

For each agent we restrict the exploration to moves that
allow a maximal swap length.

Change Week: This move consists in exchanging shifts
of all the days of weekW between agentsAi andAj , in
order to minimize theSE parameter.ChangeWeek move
does not affectUC value.

Selection of agents : To produce a valid scheduling, skills
used by agentAi(resp. Aj) during weekW have to be in
the skills of agentAj(resp. Aj). Let SW be the initial
scheduling solution andS′

W the scheduling solution ob-
tained after applyingChangeWeek betweenAi andAj .
If both agentsAi and Aj work on Saturday (or do not
work on Saturday), thenSE(S′

W) = SE(SW). Other-
wise, if NS(Ai,W) < NS(W) < NS(Aj ,W) then
SE(S′

W) < SE(SW). The move is applied priorly to
agents that ensure to improveSE.

Change Day: This move consists in swapping vacations
between agentsAi andAj for a given dayD in order to
minimize theME parameter.ChangeDay does not affect
UC andSE values.

Selection of agents : LetSW be the initial schedul-
ing solution andS′

W the scheduling solution obtained af-
ter applyingChangeDay betweenAi and Aj . Agents
are selected according to the following property : if
DM(Ai,W) > DM(W), DM(Aj ,W) < DM(W),
M length(Ai, D) > DM(W) andM length(Aj , D) <

DM(W) thenME(S′
W) < ME(SW).

4.2. Tabu algorithm

Tabu search method has been introduced by Glover in 1977
and is based on local search(see [12] for a complete de-
scription). The main interest of this method is to avoid cy-
cles during the local search. We maintain a general Tabu

list composed by the latest moves that led to the current
solution and which runs as a FIFO list.

The moves are applied successively to the current solution,
as far as it can be improved and provided the maximal num-
ber of iterations authorized is not reached. At each step,
the neighborhood of the current solution is explored, but is
never totally generated. For each move, only few neighbors
are evaluated. The best solution which is not tabu or which
improves the solutionSbest becomes the new current solu-
tion. The current solution replaces the best solution, other-
wise the algorithm stops after a few number of attempts.

The algorithm ends when the maximal number of iterations
has been met or when no improvement is found during
MAX ITER iterations.

Algorithm 3 Tabu Search algorithm
Input: initial solutionSinit

Output: improved solutionSbest

i = 0;M = 0; Sbest = Sinit;Scurr = Sinit;
WHILE i ≤ MAX ITER DO

i = i + 1;M = M + 1(mod5);
Apply MoveM to NBSelect agents
Choose the newScurr

Add move to tabu list
IF Scurr is better thanSbest THEN

replace it
END IF

END WHILE

4.3. Numeric Results

We have implemented and tested the Tabu Search Algo-
rithm on real-world instances. Results of these experiments
are reported in Table 2 and Table 3. For each move, at
most 100 neighbors are visited. At most 25000 solutions
are tested. We consider two Activities. The first Activ-
ity is open from 8am to 8pm from Mondays to Saturdays,
the second one is open from 8am to 11pm from Mondays
to Saturdays. We use time intervals of 10 minutes. We
had to generate schedules for 120 agents, during 6 weeks
of work. Some of the agents have a working contract that
specifies working periods from 8am to 8pm, whereas others
can work up to 11pm.

Table 2: Cover Results of Tabu Search algorithm

Act1 Act2 Global Cover
W G TS G TS G TS

1 92.21% 98.78% 86.73% 97.01% 90.09% 98.09%
2 80.66% 86.94% 84.21% 88.32% 82.81% 87.78%
3 81.54% 88.47% 85.02% 89.73% 83.69% 89.25%
4 85.59% 93.36% 87.39% 91.12% 86.63% 92.07%
5 85.08% 92.89% 86.81% 91.03% 86.09% 91.80%
6 83.20% 91.26% 88.39% 92.32% 86.48% 91.93%

Table 2 shows the cover results obtained on ActivitiesAct1
and Act2, by algorithms Greedy (columnsG) and Tabu
Search (columnsTS). The last columns indicate the global
percentage of charge load that is covered by each algo-

Table 3: Equity Results of Tabu Search algorithm

ME S E
W G TS G TS

1 2.61 2.44 0.42 0.42
2 1.32 0.56 0.28 0.23
3 0.57 0.27 0.18 0.07
4 0.32 0.17 0.14 0.12
5 0.21 0.17 0.10 0.04
6 0.18 0.13 0.09 0.08

rithm. To each line of the table corresponds one week of
work.

Table 3 shows the equity results obtained for each week
by algorithms Greedy and Tabu Search. ColumnsME in-
dicate the Meal Equity parameter values and columnsSE
indicate the Saturday Equity parameter values.

Tabu Search improves largely the quality of solutions, as
well for the load covering as for equity between agents.
Equity between agents has been improved by the moves
Change Week and Change Day. After 6 weeks the aver-
age length of meal periods are very near (we obtain almost
equality if we consider an historical record of 10 weeks).
Results about Saturday off days are also satisfying : after 6
weeks, each agent has had 2 or 3 Saturdays off.

We have compared our schedules with the schedules used
currently in the Customer Contact Center. The schedules
provided by our Tabu algorithm are better than the manual
ones, improving the global cover of at least 5 to 13 per-
cents.

5. CONCLUSIONS

In this paper, we have presented our work about shift
scheduling in a multiskill customer contact center. The res-
olution method, based on local search, allowed us to pro-
vide to the CCC an automated solution to its scheduling
problem. The quality of our algorithm solutions is better
than the ones computed manually until today in this CCC.
However, we hope to improve the quality of our solutions
by introducing new moves in the neighbourhood of a solu-
tion.

REFERENCES

[1] J. Atlason, M.A. Epelman, and S.G. Henderson.
Call center staffing with simulation and cutting plane
methods.Annals of Operations Research, 127:333–
358, 2004.

[2] A.N. Avramidis, A. Deslauriers, and P. L’Ecuyer.
Modeling daily arrivals to a telephone call center.
Management Science, 50(7):896–908, 2004.

[3] A.N. Avramidis and P. L’Ecuyer. Modeling and simu-
lation of call centers. InProceedings of the 2005 Win-
ter Simulation Conference, Orlando, FL USA, 2005.

[4] T. Aykin. Optimal shift scheduling with multiple
break windows. Management Science, 42(4):591–
602, 1996.

[5] S.E. Bechtold and L.W. Jacobs. Implicit modeling of
flexible break assignments in optimal shift schedul-
ing. Management Science, 36(11):1339–1351, 1990.

[6] S. Bhulai, G. Koole, and A. Pot. Simple methods for
shift scheduling in multi-skill call centers.submitted,
2005.

[7] X. Cai and K.N. Li. Genetic algorithm for schedul-
ing staff of mixed skills under multi-criteria.Euro-
pean Journal of Operational Research, 125:359–369,
2000.

[8] G.B. Dantzig. A comment on edie’s traffic delays
at toll booths. Operational Research, 2(3):339–341,
1954.

[9] F. Fukunaga, E. Hamilton, J. Fana, D. Andre,
O. Matan, and I. Nourbakhsch. Staff scheduling for
inbound call centers and customers contact centers.
AI Magazine, 2002(4):30–40, 2002.

[10] J. Gartner and S. Miksch. Shift scheduling with the
projections first strategy.Osterreiches Forshunginsti-
tut fur AI, 1995.

[11] J. Gartner, N. Musliu, and W. Slany. Rota : a research
project on algorithms for workforce scheduling and
shift design optimization.Artificial Intelligence Com-
munications, 14(2):83–92, 2001.

[12] F. Glover and M. Laguna.Tabu Search. Kluwer Aca-
demic Publishers, 1997.

[13] S.L. Moondra. An lp model for workforce scheduling
in banks.Journal of Banks Ressources, 6(4):299–301,
1976.

[14] N. Musliu, A. Schaerf, and W. Slany. Local search
for shift design.European Journal of Operational Re-
search, 153(1):51–64, 2004.

[15] J. Tien and A. Kamiyama. On manpower scheduling
algorithms.SIAM Review, 24:275–287, 1982.

