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Deformations of third order Peregrine breather solutions of the NLS equation with four parameters

In this paper, we give new solutions of the focusing NLS equation as a quotient of two determinants. This formulation gives in the case of the order 3, new deformations of the Peregrine breather with four parameters. This gives a very efficient procedure to construct families of quasirational solutions of the NLS equation and to describe the apparition of multi rogue waves. With this method, we construct the analytical expressions of deformations of the Peregrine breather of order N = 3 depending on 4 real parameters and plot different types of rogue waves.

Introduction

The first results concerning the nonlinear Schrödinger equation (NLS) date from the Seventies. Precisely, in 1972 Zakharov and Shabat solved it using the the inverse scattering method [START_REF] Zakharov | Stability of periodic waves of finite amplitude on a surface of a deep fluid[END_REF][START_REF] Zakharov | Exact theory of two dimensional self focusing and one dimensinal self modulation of waves in nonlinear media[END_REF]. The first quasi-rational solutions of NLS equation were constructed in 1983 by Peregrine [START_REF] Peregrine | Water waves, nonlinear Schrödinger equations and their solutions[END_REF]. In 1986 Eleonski, Akhmediev and Kulagin obtained the two-phase almost periodic solution to the NLS equation and obtained the first higher order analogue of the Peregrine breather [START_REF] Akhmediev | Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions[END_REF]. Other families of higher order were constructed in a series of articles by Akhmediev et al. [START_REF] Akhmediev | Rogue waves and rational solutions of nonlinear Schrödinger equation[END_REF][START_REF] Akhmediev | Exact first order solutions of the nonlinear Schrödinger equation[END_REF] using Darboux transformations. It has been shown in [START_REF] Dubard | On multi-rogue waves solutions of the NLS equation and positon solutions of the KdV equation[END_REF] in 2010, that rational solutions of the NLS equation can be written as a quotient of two Wronskians. Recently, it has been constructed in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF] a new representation of the solutions of the NLS equation in terms of a ratio of two Wronskians determinants of even order 2N composed of elementary functions; the related solutions of NLS are called of order N. Quasi-rational solutions of the NLS equation were obtained by the passage to the limit when some parameter tended to 0. These results can be compared with those obtain recently by Akhmediev et al. in [START_REF] Akhmediev | Circular rogue wave clusters[END_REF] with Darboux dressing method and numerical approach. Recently, an other representation of the solutions of the focusing NLS equation, as a ratio of two determinants has been given in [START_REF] Guo | Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions[END_REF] using generalized Darboux transform. A new approach has been done in [START_REF] Ohta | General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation[END_REF] which gives a determinant representation of solutions of the focusing NLS equation, obtained from Hirota bilinear method, derived by reduction of the Gram determinant representation for Davey-Stewartson system. A little later, in 2012 one obtained a representation in terms of determinants which does not involve limits [START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF]. But, these first two formulations given in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF] did depend in fact only on two parameters; this remark was first made by V.B. Matveev. Then, in the middle of the year 2012, one determined multi-parametric families of quasi rational solutions of NLS in terms of determinants of order N (determinants of order 2N) dependent on 2N-2 real parameters. They are similar to those previously explicitly found by V.B Matveev and P. Dubard by the method given in [START_REF] Akhmediev | Exact first order solutions of the nonlinear Schrödinger equation[END_REF], for the first time in the case N = 3. With this method, we obtain news deformations at order 3 with 4 real parameters. With this representation, one finds at the same time the circular forms well-known, but also the triangular forms put recently in obviousness by Ohta and Yang [START_REF] Ohta | General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation[END_REF], and also by Akhmediev et al. [START_REF] Kedziora | Triangular rogue waves[END_REF].

The following orders will be the object of other publications.

2 Wronskian representation of solutions of NLS equation and quasi-rational limit

Solutions of NLS equation in terms of Wronskian determinant

We consider the focusing NLS equation

iv t + v xx + 2|v| 2 v = 0. (1) 
From the works [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Higher order Peregrine breathers and multi-rogue waves solutions of the NLS equation[END_REF], the solution of the NLS equation can be written in the form

v(x, t) = det(I + A 3 (x, t)) det(I + A 1 (x, t)) exp(2it -iϕ). (2) 
In (2), the matrix A r = (a νµ ) 1≤ν,µ≤2N (r = 3, 1) is defined by

a νµ = (-1) ǫν λ =µ γ λ + γ ν γ λ -γ µ exp(iκ ν x -2δ ν t + x r,ν + e ν ). (3) 
κ ν , δ ν , γ ν are functions of the parameters λ ν , ν = 1, . . . , 2N satisfying the relations

0 < λ j < 1, λ N +j = -λ j , 1 ≤ j ≤ N. (4) 
They are given by the following equations,

κ ν = 2 1 -λ 2 ν , δ ν = κ ν λ ν , γ ν = 1 -λ ν 1 + λ ν , (5) 
and

κ N +j = κ j , δ N +j = -δ j , γ N +j = 1/γ j , j = 1 . . . N. (6) 
The terms x r,ν (r = 3, 1) are defined by

x r,ν = (r -1) ln γ ν -i γ ν + i , 1 ≤ j ≤ 2N. ( 7 
)
The parameters e ν are defined by

e j = ia j -b j , e N +j = ia j + b j , 1 ≤ j ≤ N, (8) 
where a j and b j , for 1 ≤ j ≤ N are arbitrary real numbers. The terms ǫ ν are defined by :

ǫ ν = 0, 1 ≤ ν ≤ N ǫ ν = 1, N + 1 ≤ ν ≤ 2N.
We use the following notations :

Θ r,ν = κ ν x/2 + iδ ν t -ix r,ν /2 + γ ν y -ie ν , 1 ≤ ν ≤ 2N .
We consider the functions

φ r,ν (y) = sin Θ r,ν , 1 ≤ ν ≤ N, φ r,ν (y) = cos Θ r,ν , N + 1 ≤ ν ≤ 2N. (9) 
W r (y) = W (φ r,1 , . . . , φ r,2N ) is the Wronskian

W r (y) = det[(∂ µ-1 y φ r,ν ) ν, µ∈[1,...,2N ] ]. ( 10 
)
Then we get the following link between Fredholm and Wronskian determinants [START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF] Theorem 2.1

det(I + A r ) = k r (0) × W r (φ r,1 , . . . , φ r,2N )(0), (11) 
where

k r (y) = 2 2N exp(i 2N ν=1 Θ r,ν ) 2N ν=2 ν-1 µ=1 (γ ν -γ µ )
.

In [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF], the matrix A r is defined by (3).

It can be deduced the following result :

Theorem 2.2 The function v defined by v(x, t) = W 3 (0) W 1 (0) exp(2it -iϕ). ( 12 
)
is solution of the NLS equation ( 1)

iv t + v xx + 2|v| 2 v = 0.

Quasi-rational solutions of NLS equation

In the following, we take the limit when the parameters λ j → 1 for 1 ≤ j ≤ N and λ j → -1 for N + 1 ≤ j ≤ 2N . We consider the parameter λ j written in the form

λ j = 1 -2j 2 ǫ 2 , 1 ≤ j ≤ N. (13) 
When ǫ goes to 0, we realize limited expansions at order p, for 1 ≤ j ≤ N , of the terms

κ j = 4jǫ(1 -ǫ 2 j 2 ) 1/2 , δ j = 4jǫ(1 -2ǫ 2 j 2 )(1 -ǫ 2 j 2 ) 1/2 , γ j = jǫ(1 -ǫ 2 j 2 ) -1/2 , x r,j = (r -1) ln 1+iǫj(1-ǫ 2 j 2 ) -1/2 1-iǫj(1-ǫ 2 j 2 ) -1/2 , κ N +j = 4jǫ(1 -ǫ 2 j 2 ) 1/2 , δ N +j = -4jǫ(1 -2ǫ 2 j 2 )(1 -ǫ 2 j 2 ) 1/2 , γ N +j = 1/(jǫ)(1 -ǫ 2 j 2 ) 1/2 , x r,N +j = (r -1) ln 1-iǫj(1-ǫ 2 j 2 ) -1/2 1+iǫj(1-ǫ 2 j 2 ) -1/2
. Then we get quasi-rational solutions of the NLS equation given by : Theorem 2.3 With the parameters λ j defined by ( 13), a j and b j chosen as in (??), for 1 ≤ j ≤ N , the function v defined by

v(x, t) = exp(2it -iϕ) lim ǫ→0 W 3 (0) W 1 (0) , (14) 
is a quasi-rational solution of the NLS equation ( 1)

iv t + v xx + 2|v| 2 v = 0.

Expression of solutions of NLS equation in terms of a ratio of two determinants

We construct here solutions of the NLS equation which is expressed as a quotient of two determinants. For this we need the following notations :

A ν = κ ν x/2 + iδ ν t -ix 3,ν /2 -ie ν /2, B ν = κ ν x/2 + iδ ν t -ix 1,ν /2 -ie ν /2,
for 1 ≤ ν ≤ 2N , with κ ν , δ ν , x r,ν defined in ( 5), ( 6) and [START_REF] Chabchoub | Super rogue waves : observation of a higher-order breather in water waves[END_REF].

The parameters e ν are defined by [START_REF] Dubard | On multi-rogue waves solutions of the NLS equation and positon solutions of the KdV equation[END_REF].

With particular special choices of the parameters a j and b j , for 1 ≤ N , we get new deformations depending on four parameters. Below we use the following functions :

f 4j+1,k = γ 4j-1 k sin A k , f 4j+2,k = γ 4j k cos A k , f 4j+3,k = -γ 4j+1 k sin A k , f 4j+4,k = -γ 4j+2 k cos A k , (15) 
for 1 ≤ k ≤ N , and

f 4j+1,k = γ 2N -4j-2 k cos A k , f 4j+2,k = -γ 2N -4j-3 k sin A k , f 4j+3,k = -γ 2N -4j-4 k cos A k , f 4j+4,k = γ 2N -4j-5 k sin A k , (16) 
for

N + 1 ≤ k ≤ 2N .
We define the functions g j,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, we replace only the term A k by B k .

g 4j+1,k = γ 4j-1 k sin B k , g 4j+2,k = γ 4j k cos B k , g 4j+3,k = -γ 4j+1 k sin B k , g 4j+4,k = -γ 4j+2 k cos B k , (17) 
for 1 ≤ k ≤ N , and

g 4j+1,k = γ 2N -4j-2 k cos B k , g 4j+2,k = -γ 2N -4j-3 k sin B k , g 4j+3,k = -γ 2N -4j-4 k cos B k , g 4j+4,k = γ 2N -4j-5 k sin B k , (18) 
for

N + 1 ≤ k ≤ 2N .
Then we get the following result :

Theorem 3.1 The function v defined by v(x, t) = exp(2it -iϕ) × det((n jk) j,k∈[1,2N ] ) det((d jk) j,k∈[1,2N ] ) (19) 
is a quasi-rational solution of the NLS equation ( 1)

iv t + v xx + 2|v| 2 v = 0,
where

n j1 = f j,1 (x, t, 0), 1 ≤ j ≤ 2N n jk = ∂ 2k-2 f j,1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N n jN +1 = f j,N +1 (x, t, 0), 1 ≤ j ≤ 2N n jN +k = ∂ 2k-2 f j,N +1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N d j1 = g j,1 (x, t, 0), 1 ≤ j ≤ 2N d jk = ∂ 2k-2 g j,1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N d jN +1 = g j,N +1 (x, t, 0), 1 ≤ j ≤ 2N d jN +k = ∂ 2k-2 g j,N +1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N
The functions f and g are defined in ( 15),( 16), ( 17), [START_REF] Matveev | Darboux transformations and solitons[END_REF].

We don't give here the proof of this result in order to not weight down the text. We postpone the redaction of the proof to a next publication. The solutions of the NLS equation can also be written in the form :

v(x, t) = exp(2it -iϕ) × Q(x, t)
where Q(x, t) is defined by :

Q(x, t) := f 1,1 [0] . . . f 1,1 [N -1] f 1,N +1 [0] . . . f 1,N +1 [N -1] f 2,1 [0] . . . f 2,1 [N -1] f 2,N +1 [0] . . . f 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . f 2N,1 [0] . . . f 2N,1 [N -1] f 2N,N +1 [0] . . . f 2N,N +1 [N -1] g 1,1 [0] . . . g 1,1 [N -1] g 1,N +1 [0] . . . g 1,N +1 [N -1] g 2,1 [0] . . . g 2,1 [N -1] g 2,N +1 [0] . . . g 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . g 2N,1 [0] . . . g 2N,1 [N -1] g 2N,N +1 [0] . . . g 2N,N +1 [N -1] (20) 
4 Quasi-rational solutions of order 3 with four parameters

Wa have already constructed in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF] solutions for the cases N = 1, 2, 3 , and in [START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF] with two parameters.

Analytical expressions of the solutions of NLS equation with Four parameters

Here, we give the expression v of the solution of NLS equation with four parameters; it is defined by

v 3 (x, t, a, b) = n(x, t) d(x, t) exp(2it) = (1 -4 G 3 (2x, 4t) + iH 3 (2x, 4t) Q 3 (2x, 4t) )e 2it with G 3 (X, T ) = 12 k=0 g k (T )X k , H 3 (X, T ) = 12 k=0 h k (T )X k , Q 3 (X, T ) = 12 k=0
q k (T )X k .

g 12 = 0, g 11 = 0, g 10 = 6, g 9 = 0, g 8 = 90 T 2 + 90, g 7 = 0, g 6 = 300 T 4 -360 T 2 -960 T b 1 + 1260, g 5 = -1440 T 2 a 1 -1440 a 1 + 18 a 2 , g 4 = 420 T 6 -900 T 4 -2400 

T 3 b 1 + 2700 T 2 + 3600 a 1 2 -1200 b 1 2 + (-2490 b 1 -30 b 2 )T -2700, g 3 = -4800 T 4 a 1 -19200 T a 1 b 1 + (-28800 a 1 + 60 a 2 )T 2 +14400 a 1 + 60 a 2 , g 2 = 270 T 8 + 2520 T 6 + 40500 T 4 + (57060 b 1 -180 b 2 )T 3 +(-7200 a 1 2 + 21600 b 1 2 -81000)T 2 -7200 a 1 2 -7200 b 1 2 + (-58140 b 1 -180 b 2 )T -4050, g 1 = -3360 T 6 a 1 + 19200 T 3 a 1 b 1 + (7200 a 1 -150 a 2 )T 4 + 9600 a 1 3 + 9600 a 1 b 1 2 +(-21600 a 1 -540 a 2 )T 2 + (19920 a 1 b 1 + 240 a 1 b 2 -240 a 2 b 1 )T + 21600 a 1 + 90 a 2 , g 0 = 66 T 10 + 2970 T 8 + 1440 T 7 b 1 + 13140 T 6 + (17886 b 1 + 42 b 2 )T 5 + (8400 a 1 2 +3600 b 1 2 -45900)T 4 + (-44340 b 1 + 420 b 2 )T 3 + (7200 a 1 2 + 240 a 1 a 2 -30480 b 1 2 + 240 b 1 b 2 -12150)T 2 + 18000 a 1 2 + 240 a 1 a 2 + a 2 2 + 10489 b 1 2 +166 b 1 b 2 + b 2 2 + (-9600 a 1 2 b 1 -9600 b 1 3 + 7470 b 1 + 90 b 2 )T + 4050 h 12 = 0, h 11 = 0, h 10 = 6 T, h 9 = 0, h 8 = 30 T 3 -90 T -60 b 1 , h 7 = 0, h 6 = 60 T 5 -840 T 3 -480 T 2 b 1 -900 T -305 b 1 + 5 b 2 , h 5 = -480 T 3 a 1 + 960 a 1 b 1 +(1440 a 1 + 18 a 2 )T, h 4 = 60 T 7 -1260 T 5 -600 T 4 b 1 -2700 T 3 + (-1245 b 1 -15 b 2 )T 2 +(
+28350)T + 22005 b 1 + 135 b 2 , h 1 = -480 T 7 a 1 + 4800 T 4 a 1 b 1 + (10080 a 1 -30 a 2 )T 5 +(21600 a 1 -60 a 2 )T 3 + (9960 a 1 b 1 + 120 a 1 b 2 -120 a 2 b 1 )T 2 + 4440 a 1 b 1 -120 a 1 b 2 +120 a 2 b 1 + (9600 a 1 3 + 9600 a 1 b 1 2 + 64800 a 1 + 450 a 2 )T, h 0 = 6 T 11 + 150 T 9 + 180 T 8 b 1 -5220 T 7 + (101 b 1 + 7 b 2 )T 6 + (1680 a 1 2 + 720 b 1 2 -57780)T 5 + (-63975 b 1 + 75 b 2 )T 4 +(-12000 a 1 2 + 80 a 1 a 2 -24560 b 1 2 + 80 b 1 b 2 -14850)T 3 -7760 a 1 2 b 1 + 80 a 1 2 b 2 -160 a 1 a 2 b 1 -1840 b 1 3 -80 b 1 2 b 2 + (-4800 a 1 2 b 1 -4800 b 1 3 -41085 b 1 -495 b 2 )T 2 +(-25200 a 1 2 -240 a 1 a 2 + a 2 2 -14951 b 1 2 -314 b 1 b 2 + b 2 2 + 28350)T + 11835 b 1 + 45 b 2 q 12 = 1, q 11 = 0, q 10 = 6 T 2 + 6, q 9 = 40 a 1 , q 8 = 15 T 4 -90 T 2 -120 T b 1 +135, q 7 = -2 a 2 , q 6 = 20 T 6 -180 T 4 -320 T 3 b 1 + 540 T 2 + 240 a 1 2 + 560 b 1 2 +(350 b 1 + 10 b 2 )T + 2340, q 5 = -240 T 4 a 1 + 1920 T a 1 b 1 + (1440 a 1 + 18 a 2 )T 2 -2160 a 1 + 18 a 2 , q 4 = 15 T 8 + 60 T 6 -240 T 5 b 1 -1350 T 4 + (-5630 b 1 -10 b 2 )T 3 +(3600 a 1 2 -1200 b 1 2 + 13500)T 2 + 3600 a 1 2 -40 a 1 a 2 + 280 b 1 2 -40 b 1 b 2 +(3330 b 1 -90 b 2 )T + 3375, q 3 = -320 T 6 a 1 -6400 T 3 a 1 b 1 + (-14400 a 1 +10 a 2 )T 4 -3200 a 1 3 -3200 a 1 b 1 2 + (-43200 a 1 -60 a 2 )T 2 + (-31760 a 1 b 1 +80 a 1 b 2 -80 a 2 b 1 )T + 14400 a 1 + 90 a 2 , q 2 = 6 T 10 + 270 T 8 + 13500 T 6 +(11466 b 1 -18 b 2 )T 5 + (-1200 a 1 2 + 3600 b 1 2 + 78300)T 4 + (114660 b 1 -180 b 2 )T 3 + (7200 a 1 2 + 64800 b 1 2 -36450)T 2 -10800 a 1 2 + a 2 2 -9431 b 1 2 -74 b 1 b 2 + b 2 2 + (9600 a 1 2 b 1 + 9600 b 1 3 -58950 b 1 -450 b 2 )T + 12150, q 1 = -120 T 8 a 1 + 1920 T 5 a 1 b 1 + (-480 a 1 -10 a 2 )T 6 + (10800 a 1 -270 a 2 )T 4 +(45040 a 1 b 1 + 80 a 1 b 2 -80 a 2 b 1 )T 3 + 9600 a 1 3 + 160 a 1 2 a 2 -2240 a 1 b 1 2 +320 a 1 b 1 b 2 -160 a 2 b 1 2 + (9600 a 1 3 + 9600 a 1 b 1 2 -108000 a 1 -990 a 2 )T 2 +(-26640 a 1 b 1 + 720 a 1 b 2 -720 a 2 b 1 )T -27000 a 1 -90 a 2 , q 0 = T 12 + 126 T 10 +40 T 9 b 1 + 3735 T 8 + (2086 b 1 + 2 b 2 )T 7 + (560 a 1 2 + 240 b 1 2 + 15300)T 6 +(-5214 b 1 + 102 b 2 )T 5 + (3600 a 1 2 + 40 a 1 a 2 -12280 b 1 2 + 40 b 1 b 2 + 143775)T 4 +6400 a 1 4 + 12800 a 1 2 b 1 2 + 6400 b 1 4 + (-3200 a 1 2 b 1 -3200 b 1 3 + 179730 b 1 -90 b 2 )T 3 + (32400 a 1 2 -240 a 1 a 2 + a 2 2 + 100249 b 1 2 -314 b 1 b 2 + b 2 2 +93150)T 2 + 39600 a 1 2 + 360 a 1 a 2 + a 2 2 + 27649 b 1 2 + 286 b 1 b 2 + b 2 2 + (22880 a 1 2 b 1 +160 a 1 2 b 2 -320 a 1 a 2 b 1 + 34720 b 1 3 -160 b 1 2 b 2 + 96750 b 1 + 450 b 2 )T + 2025 2 

Plots of the solutions of NLS equation with four parameters

Conversely to the study with two parameters given in preceding works [START_REF] Gaillard | Higher order Peregrine breathers and multi-rogue waves solutions of the NLS equation[END_REF][START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF], we get other type of symmetries in the plots in the (x, t) plane, in particular we obtain beside already known circular shapes, triangular configurations. We give some examples of this fact in the following.

Peregrine breather of order 3

If we choose ã1 = b1 = ã2 = b2 = 0, we obtain the classical Peregrine breather With other choices of parameters, we obtain all types of configurations : triangular with 6 peaks, circular with 6 peak, different cases with 1 until 6 peaks.

Variation of one parameter

If we choose ã1 = 10 9 , b1 = 0, ã2 = 0, b2 = 0, we obtain : If we choose ã1 = 0, b1 = 10 6 , ã2 = 0, b2 = 0, we obtain : 

Apparition of 1 until 6 peaks

If we choose ã1 = 0, b1 = 10 7 , ã2 = 0, b2 = 10 7 , we obtain : If we choose ã1 = 0, b1 = 0, ã2 = 10 4 , b2 = 0, we obtain :

Circular and triangular configurations

In general we obtain generically circular shapes in the case a 2 = b 2 = 0, and triangular configurations in the case a 1 = b 1 = 0. We present here some examples.

If we choose ã1 = 0, b1 = 10 7 , ã2 = 0, b2 = 0, we obtain : If we choose ã1 = 0, b1 = 0, ã2 = 0, b2 = 10 3 , we obtain : 

Conclusion

The method described in the present paper provides a new tool to get explicitly solutions of the NLS equation.

The introduction of new parameters gives the appearance of new forms in conformity with those presented by Ohta and Yang [START_REF] Ohta | General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation[END_REF], , and also by Akhmediev et al. [START_REF] Kedziora | Triangular rogue waves[END_REF]. As it was already noted in previous studies with two parameters, one finds Peregrine breathers in the case where all the parameters are equal to 0. We chose to present here the solutions of the NLS equation in the cases N = 3 only in order not to weigh down the text. We postpone the presentation of the higher orders in another publications.
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 1 Figure 1: Solution of NLS, N=3, ã1 = b1 = ã2 = b2 = 0.
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 2 Figure 2: Solution of NLS, N=3, ã1 = 10 9 , b1 = 0, ã2 = 0, b2 = 0.
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 3 Figure 3: Solution of NLS, N=3, ã1 = 0, b1 = 10 6 , ã2 = 0, b2 = 0.

Figure 4 :

 4 Figure 4: Solution of NLS, N=3, ã1 = 0, b1 = 0, ã2 = 10 4 , b2 = 0, .
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 5 Figure 5: Solution of NLS, N=3, ã1 = 0, b1 = 0, ã2 = 10 5 .

Figure 6 :

 6 Figure 6: Solution of NLS, N=3, ã1 = 0, b1 = 10 7 , ã2 = 0, b2 = 10 7 .
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 7 Figure 7: Solution of NLS, N=3, ã1 = 10 5 , b1 = 10 5 , ã2 = 10 5 , b2 = 0.

Figure 8 :

 8 Figure 8: Solution of NLS, N=3, ã1 = 0, b1 = 10 6 , ã2 = 10 6 , b2 = 0.

Figure 9 :

 9 Figure 9: Solution of NLS, N=3, ã1 = 0, b1 = 0, ã2 = 10 5 , b2 = 0.

Figure 10 :

 10 Figure 10: Solution of NLS, N=3, ã1 = 10 4 , b1 = 10 4 , ã2 = 10 4 , b2 = 10 4 .

Figure 11 :

 11 Figure 11: Solution of NLS, N=3, ã1 = 0, b1 = 0, ã2 = 10 4 , b2 = 0.

Figure 12 :

 12 Figure 12: Solution of NLS, N=3, ã1 = 0, b1 = 10 7 , ã2 = 0, b2 = 0.
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