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ON TORSIONAL RIGIDITY AND PRINCIPAL FREQUENCIES:

AN INVITATION TO THE KOHLER-JOBIN REARRANGEMENT

TECHNIQUE

LORENZO BRASCO

Abstract. We generalize to the p−Laplacian ∆p a spectral inequality proved by M.-T.
Kohler-Jobin. As a particular case of such a generalization, we obtain a sharp lower bound
on the first Dirichlet eigenvalue of ∆p of a set in terms of its p−torsional rigidity. The
result is valid in every space dimension, for every 1 < p < ∞ and for every open set having
finite measure. Moreover, it holds by replacing the first eigenvalue with more general
optimal Poincaré-Sobolev constants. The method of proof is based on a generalization of
the rearrangement technique introduced by Kohler-Jobin.
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1. Introduction

1.1. Background and motivations. Given an open set Ω ⊂ R
N with finite measure, we

consider the following quantities

λ(Ω) = min
u∈W 1,2

0 (Ω)\{0}

∫

Ω
|∇u|2 dx

∫

Ω
|u|2 dx

and T (Ω) = max
u∈W 1,2

0 (Ω)\{0}

(∫

Ω
|u| dx

)2

∫

Ω
|∇u|2 dx

.

The first one is called principal frequency of Ω and the second one is its torsional rigidity.
Our terminology is a little bit improper, since the usual definition of torsional rigidity
differs from our by a multiplicative factor. Since this factor will have no bearing in the
whole discussion, we will forget about it. Another frequently used terminology for λ(Ω)
is first eigenvalue of the Dirichlet-Laplacian. Indeed λ(Ω) coincides with the smaller real
number λ such that the problem

−∆u = λu in Ω, u = 0, on ∂Ω,

has a nontrivial solution1. In [23] Pólya and Szegő conjectured that the ball should have
the following isoperimetric-type property:

(⋆) among sets having given torsional rigidity, balls minimize the principal frequency.

In other words, by taking advantage of the fact that

λ(tΩ) = t−2 λ(Ω) and T (tΩ) = tN+2 T (Ω), t > 0,

they conjectured the validity of the following scaling invariant inequality

(1.1) T (Ω)
2

N+2 λ(Ω) ≥ T (B)
2

N+2 λ(B),

where B is any ball. We recall that among sets having given volume, balls were already
known to minimize λ (the celebrated Faber-Krahn inequality) and maximize T (the so-called
Saint-Venant Theorem). This means that the inequality conjectured by Pólya and Szegő
was not a trivial consequence of existing inequalities. A proof of (1.1) was finally given
by Kohler-Jobin in [18, 19], by using a sophisticated new rearrangement technique. The
latter is indeed a general result which permits, given Ω and a smooth positive function u ∈
W 1,2

0 (Ω), to construct a ball B having smaller torsional rigidity and a radially decreasing

function u∗ ∈W 1,2
0 (B) such that

∫

Ω
|∇u|2 dx =

∫

B
|∇u∗|2 dx and

∫

Ω
|u|q ≤

∫

B
|u∗|q dx,

for every q > 1. It is clear that once we have this result, the Pólya-Szegő conjecture is easily
proven. Of course this also shows that (⋆) is still true if we replace the principal frequency

1Here solutions are always understood in the energy sense, i.e. u ∈ W 1,2
0 (Ω) and is a weak (then

classical if ∂Ω is smooth enough) solution. It is well-known that by dropping the assumption u ∈ W 1,2
0 (Ω)

strange phenomena can be observed, like for example nontrivial harmonic functions being constantly 0 at
the boundary ∂Ω.
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λ(Ω) by any other optimal Poincaré-Sobolev constant. In other words, balls minimize the
quantity

min
u∈W 1,2

0 (Ω)\{0}

∫

Ω
|∇u|2 dx

(∫

Ω
|u|q dx

) 2
q

, where 1 < q < 2∗ =
2N

N − 2
,

among sets with given torsional rigidity (see [17, Theorem 3]).

1.2. Aim of the paper. Unfortunately, the Kohler-Jobin’s rearrangement technique seems
not to be well-known, even among specialists. Then the goal of this paper is twofold: first
of all, we try to revitalize interest in her methods and results. Secondly, we will extend
the Kohler-Jobin inequality to more general “principal frequencies”, associated with the
nonlinear p−Laplace operator, defined by

∆pu = div (|∇u|p−2∇u),

and to some anisotropic variants of it (Section 6). The main difficulty of this extension
is due to the lack of regularity of solutions to equations involving ∆p, indeed in general
these are far from being analytic or C∞, as required in [17, 18, 19]. We will show that the
Kohler-Jobin technique can be extended to functions enjoying a mild regularity property
(see Definition 3.1), which is indeed satisfied by solutions to a wide class of quasilinear
equations (see Lemma 3.2). Also, we will simplify some arguments used in [17, 18, 19]. For
example, in order to compare the Lq norms of the original function and its rearrangement,
we will sistematically use Cavalieri’s principle, as it is natural. Finally, we will not require
smoothness hypotheses on Ω, which is another difference with the work of Kohler-Jobin.

1.3. Notation. In order to clearly explain the contents of this work and the results here
contained, we now proceed to introduce some required notations.

By Ω ⊂ R
N we still denote an open set with finite measure, whileW 1,p

0 (Ω) stands for the
closure of C∞

0 (Ω) with respect to the norm ‖∇u‖Lp(Ω). Throughout the whole paper we
will always assume that 1 < p <∞. In this work we will consider the “first eigenvalues”

(1.2) λp,q(Ω) = min
u∈W 1,p

0 (Ω)\{0}

∫

Ω
|∇u|p dx

(∫

Ω
|u|q dx

) p

q

,

where the exponent q is such that

(1.3)





1 < q <
N p

N − p
, if 1 < p < N,

1 < q <∞, if p ≥ N.

Then the quantity λp,q(Ω) is always well-defined, thanks to Sobolev embeddings. Some-
times we will also refer to λp,q(Ω) as a principal frequency, in analogy with the linear case.
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Observe that a minimizer of the previous Rayleigh quotient is a nontrivial solution of

(1.4) −∆pu = λ ‖u‖p−qLq(Ω) |u|
q−2 u, in Ω u = 0, on ∂Ω,

with λ = λp,q(Ω). The two terms on both sides of (1.4) have the same homogeneity, then
if u is solution, so is t u for every t ∈ R. Moreover, it is not difficult to see that if for a
certain λ there exists a nontrivial solutions of (1.4), then we must have λ ≥ λp,q(Ω). These
considerations justify the name “first eigenvalue” for the quantity λp,q(Ω) (see [13] for a
comprehensive study of these nonlinear eigenvalue problems).

The principal frequency λp,q obeys the following scaling law

λp,q(tΩ) = t
N−p− p

q
N
λp,q(Ω),

then the general form of the previously mentioned Faber-Krahn inequality is

(1.5) |B|
p

N
+ p

q
−1
λp,q(B) ≤ |Ω|

p

N
+ p

q
−1
λp,q(Ω),

with equality if and only if Ω is a ball. In other words, balls are the unique solutions to
the problem

min{λp,q(Ω) : |Ω| ≤ c}.

Properly speaking, the name Faber-Krahn inequality is usually associated with the partic-
ular case of p = q in (1.5). Since the proof is exactly the same for all range of admissible
p and q, this small abuse is somehow justified. The special limit case q = 1 deserves a
distinguished notation, namely we will set

Tp(Ω) =
1

λp,1(Ω)
= max

v∈W 1,p
0 (Ω)\{0}

(∫

Ω
|v| dx

)p

∫

Ω
|∇v|p dx

.

In analogy with the case p = 2, we will call it the p−torsional rigidity of the set Ω. Of
course, inequality (1.5) can now be written as

(1.6) |Ω|1−
p

N
−p Tp(Ω) ≤ |B|1−

p

N
−p Tp(B).

For ease of completeness, we mention that inequalities (1.5) and (1.6) have been recently
improved in [14], by means of a quantitative stability estimate. Roughly speaking, this
not only say that balls are the unique sets for which equality can hold, but also that sets
“almost” realizing the equality are “almost” balls.

It is useful to recall that the proof of (1.5) and (1.6) is based on the use of the Schwarz

symmetrization. The latter consists in associating to each positive function u ∈ W 1,p
0 (Ω)

a radially symmetric decreasing function u∗ ∈ W 1,p
0 (Ω∗), where Ω∗ is the ball centered at

the origin such that |Ω∗| = |Ω|. The function u∗ is equimeasurable with u, that is

|{x : u(x) > t}| = |{x : u∗(x) > t}|, for every t ≥ 0,

so that ‖u‖Lq = ‖u∗‖Lq for every q ≥ 1. More important, by using the Coarea Formula
and by exploiting the convexity of t 7→ tp and the isoperimetric inequality, one can obtain
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the celebrated Pólya-Szegő principle
∫

Ω∗

|∇u∗|p dx ≤

∫

Ω
|∇u|p dx.

The reader is referred to [15, Chapter 2] or [16, Chapters 1 and 2] for more details on the
Schwarz symmetrization and the Pólya-Szegő principle.

1.4. Main result. In order to describe the Kohler-Jobin technique and illustrate its range
of applicability, in this paper we will consider the following shape optimization problem

(1.7) min{λp,q(Ω) : Tp(Ω) ≤ c},

in the same spirit as conjecture (⋆) recalled at the beginning. Again by taking into account
the homogeneities of the quantities involved, the previous problem is the same as

minTp(Ω)
α(p,q,N) λp,q(Ω), where α(p, q,N) =

p

N
+
p

q
− 1

p

N
+ p− 1

.

We point out that the previous shape functional can be written as follows

Tp(Ω)
α(p,q,N) λp,q(Ω) =

(
|Ω|1−

p

N
−p Tp(Ω)

)α(p,q,N)
|Ω|

p

N
+ p

q
−1
λp,q(Ω),

i.e. the product of two functionals which are maximized and minimized by balls, respec-
tively.

By suitably extending the Kohler-Jobin technique, we will prove the following inequality,
which represents the main result of this paper.

Theorem 1.1. Let 1 < p < ∞ and q be an exponent verifying (1.3). For every Ω ⊂ R
N

open set having finite measure, we have

(1.8) Tp(Ω)
α(p,q,N) λp,q(Ω) ≥ Tp(B)α(p,q,N) λp,q(B),

where B is any ball. Equality can hold if and only if Ω itself is a ball.
In other words, the only solutions to the shape optimization problem (1.7) are given by

balls having p−torsional rigidity equal to c.

We observe that the whole family of inequalities (1.5) can now be derived by using (1.6)
and (1.8). Indeed, we have

|Ω|
p

N
+ p

q
−1
λp,q(Ω) =

(
|Ω|

p

N
+ p

q
−1
Tp(Ω)

−α(p,q,N)
) (

Tp(Ω)
α(p,q,N) λp,q(Ω)

)

=
(
|Ω|1−

p

N
−p Tp(Ω)

)−α(p,q,N) (
Tp(Ω)

α(p,q,N) λp,q(Ω)
)

≥
(
|B|1−

p

N
−p Tp(B)

)−α(p,q,N) (
Tp(B)α(p,q,N) λp,q(B)

)

= |B|
p

N
+ p

q
−1
λp,q(B).



6 BRASCO

This implies that the Saint-Venant inequality (1.6) permits to improve the lower bounds
on the principal frequencies λp,q provided by the Faber-Krahn inequality, since we can now
infer

λp,q(Ω) ≥

(
Tp(B)

Tp(Ω)

)α(p,q,N)

λp,q(B),

and the term (Tp(B)/Tp(Ω))
α(p,q,N) is greater than (|B|/|Ω|)p/N+p/q−1 coming from (1.5).

1.5. Plan of the paper. In Section 2 we collect some basic facts we will need througout
the whole paper. In the subsequent section we introduce and characterize the modified
torsional rigidity of a set, which will be the main tool needed to define the Kohler-Jobin
symmetrization technique. The latter is described in the crucial Proposition 4.1, which
occupies the whole Section 4 and represents the core of the paper. Finally, in Section 5
we give the proof of Theorem 1.1 and draw some consequences. The paper is concluded
by Section 6, where we discuss the extension of the Kohler-Jobin procedure to general
anisotropic Dirichlet integrals, i.e. to quantities like

∫

Ω
‖∇u‖p dx, u ∈W 1,p

0 (Ω),

where ‖ · ‖ is a strictly convex C1 norm. In this case as well we can prove the analogous of
Theorem 1.1. For ease of exposition, we preferred to treat this kind of generalization in a
separate section, so to neatly present the Kohler-Jobin rearrangement avoiding unnecessary
technicalities.

2. Preliminaries

The first result we need is very simple, but quite useful in the sequel. The proof is
omitted.

Lemma 2.1. Let A,B > 0 and p > 1, then we have

(2.1) A t−B
tp

p
≤
p− 1

p

(
Ap

B

) 1
p−1

, for every t ≥ 0,

and equality sign in (2.1) holds if and only if

t =

(
A

B

) 1
p−1

.

We define the strictly concave functional

Fp(u) =

∫

Ω
u dx−

1

p

∫

Ω
|∇u|p dx, u ∈W 1,p

0 (Ω),

and we denote by uΩ ∈W 1,p
0 (Ω) its unique maximizer. Observe that uΩ is the unique weak

solution of

(2.2) −∆pu = 1, in Ω, u = 0, on ∂Ω,
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i.e. uΩ verifies
∫

Ω
〈|∇uΩ|

p−2∇uΩ,∇ϕ〉 =

∫

Ω
ϕdx, for every ϕ ∈W 1,p

0 (Ω),

The next result collects some equivalent definitions for the p−torsional rigidity.

Proposition 2.2. Let Ω ⊂ R
N be an open set having finite measure. Let us denote by 1Ω

the characteristic function of Ω and set p′ = p/(p − 1). Then Tp(Ω) can be equivalently
characterized as

(2.3) Tp(Ω) = ‖1Ω‖
p

W−1,p′ (Ω)
,

(2.4) Tp(Ω) =

(∫

Ω
uΩ dx

)p−1

=

(
p′ max

u∈W 1,p
0 (Ω)

Fp(u)

)p−1

,

and also

(2.5) Tp(Ω) =

(
min

V ∈Lp′ (Ω;RN )

{∫

Ω
|V |p

′

dx : −div V = 1 in Ω

})p−1

.

where the divergence constraint is intended in distributional sense, i.e.
∫

Ω
〈V,∇ϕ〉 dx =

∫

Ω
ϕdx for every ϕ ∈W 1,p

0 (Ω).

Proof. For the first characterization, we just observe that by definition of dual norm we
have

‖1Ω‖W−1,p′ (Ω) = sup
ϕ∈W 1,p

0 (Ω)

{∫

Ω
ϕdx : ‖ϕ‖

W 1,p
0 (Ω)

= 1

}
,

which immediately gives (2.3), since

max
v∈W 1,p

0 (Ω)\{0}

(∫

Ω
v dx

)p

∫

Ω
|∇v|p dx

= max
v∈W 1,p

0 (Ω)\{0}

(∫

Ω
|v| dx

)p

∫

Ω
|∇v|p dx

.

By testing the equation (2.2) with ϕ = uΩ, we obtain
∫

Ω
|∇uΩ|

p dx =

∫

Ω
uΩ dx,

so that the maximal value of Fp is given by

max
u∈W 1,p

0 (Ω)
Fp(u) =

∫

Ω
uΩ dx−

1

p

∫

Ω
|∇uΩ|

p dx =
p− 1

p

∫

Ω
uΩ dx.
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We now prove that the last quantity coincides with Tp(Ω). Let v0 ∈W 1,p
0 (Ω) be a function

realizing the supremum in the definition of Tp(Ω), i.e.

Tp(Ω) =

(∫

Ω
|v0| dx

)p

∫

Ω
|∇v0|

p dx

.

We notice that v0 can be taken to be positive. It is not difficult to see that if we set

λ0 =




∫

Ω
v0 dx

∫

Ω
|∇v0|

p dx




1
p−1

.

then the function w0 = λ0 v0 ∈ W 1,p
0 (Ω) maximizes Fp. Indeed, by using Lemma 2.1 and

the definition of p−torsional rigidity, for every v ∈W 1,p
0 (Ω) we get

∫

Ω
v dx−

1

p

∫

Ω
|∇v|p dx ≤ max

λ≥0

[
λ

∫

Ω
|v| dx−

λp

p

∫

Ω
|∇v|p dx

]

=
p− 1

p




(∫

Ω
|v| dx

)p

∫

Ω
|∇v|p




1
p−1

≤
p− 1

p
Tp(Ω)

1
p−1 ,

and equality holds in the previous chain of inequalities if v = λ0 v0. This finally shows that

Tp(Ω) =

(
p

p− 1
max

u∈W 1,p
0 (Ω)

Fp(u)

)p−1

=

(∫

Ω
uΩ dx

)p−1

,

thus concluding the proof of (2.4).

The characterization (2.5) is a consequence of the equality

max
u∈W 1,p

0 (Ω)

{∫

Ω
u dx−

1

p

∫

Ω
|∇u|p dx

}
= min

V ∈Lp′ (Ω;RN )

{∫

Ω
|V |p

′

dx : −div V = 1 in Ω

}
,

which in turn follows from a standard duality result in Convex Analysis, for which the
reader is referred to [7, Proposition 5, page 89]). We also recall that the unique vector field
VΩ minimizing the problem on the right-hand side has the form VΩ = |∇uΩ|

p−2∇uΩ. �

Remark 2.3 (Torsional rigidity of a ball). For a ball BR(x0) having radius R and center
x0, it is straightforward to verify that

uBR(x0)(x) =
R

p

p−1 − |x− x0|
p

p−1

βN,p
, where βN,p =

p

p− 1
N

1
p−1 ,
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is the unique solution of (2.2). Then we get

(2.6) Tp(BR(x0)) =

(∫

B
uB dx

)p−1

=

[
ωN
βN,p

p

N(p− 1) + p

]p−1

RN(p−1)+p,

where ωN is the measure of the N−dimensional unit ball. In what follows, we will set for
simplicity

(2.7) γN,p =

[
ωN
βN,p

p

N(p− 1) + p

]p−1

,

which just coincides with the p−torsional rigidity of the unit ball in R
N .

We recall some regularity properties of our eigenfunctions, i.e. functions realizing the
minimal value λp,q(Ω). These are collected below.

Proposition 2.4. Let Ω ⊂ R
N be an open set with finite measure. Let u ∈ W 1,p

0 (Ω) be a
first eigenfunction relative to λp,q(Ω), i.e. a solution to

(2.8) −∆pu = λp,q(Ω) ‖u‖
p−q
Lq(Ω) |u|

q−2 u.

Then we have u ∈ C1(Ω) ∩ L∞(Ω).

Proof. Observe that since the equation is (p − 1)-homogeneous, we can always scale a
solution u in such a way that ‖u‖Lq(Ω) = 1. Then the L∞ bound follows in a standard way

by means of a Moser’s iteration argument. The C1 result is a consequence of the by now
classical results in [6]. Of course should the boundary of Ω be smooth enough, then this
result would be global (see [20]). �

At last, we will need the following particular version of the one-dimensional area formula.

Lemma 2.5. Let A > 0 and ψ ∈ Liploc([0, A)) such that ψ′(t) > 0 for almost every
t ∈ [0, A]. We also set sup[0,A] ψ = M . Let ϕ = ψ−1 be its inverse function, then we have
the change of variable formula

∫ M

ψ(0)
F (ϕ(t))ϕ′(t) dt =

∫ A

0
F (s) ds,

for any non-negative Borel function F .

Proof. The statement is known to be true if ψ ∈ Lip([0, A]), see [1, Example 3.4.5 and
Theorem 3.4.6]. To prove it under our slightly weaker hypotheses, we just have to use an
approximation argument. For every ε > 0 sufficiently small, we have

∫ ψ(A−ε)

ψ(0)
F (ϕ(t))ϕ′(t) dt =

∫ A−ε

0
F (s) ds,

since ψ ∈ Lip([0, A − ε]) and ψ′ > 0 almost everywhere. It is now sufficient to let ε go to
0 and observe that all the functions involved are positive. �
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3. The modified torsional rigidity

Definition 3.1. Given an open set Ω ⊂ R
N having finite measure, we will say that

u ∈W 1,p
0 (Ω) ∩ L∞(Ω) is a reference function for Ω if u ≥ 0 in Ω and

(3.1) t 7→
µ(t)∫

{u=t}
|∇u|p−1 dHN−1

∈ L∞([0,M ]),

whereM = ‖u‖L∞(Ω) and µ denotes the distribution function of u, i.e. the function defined
by

µ(t) = |{x ∈ Ω : u(x) > t}|, t ∈ [0,M ].

We will denote by Ap(Ω) the set of all reference functions for Ω, i.e.

Ap(Ω) =
{
u ∈W 1,p

0 (Ω) ∩ L∞(Ω) : u ≥ 0 and (3.1) holds
}
.

We will see in a while the importance of condition (3.1). Firstly, let us consider a particular
class of functions which verify it. The next result is somehow classical, related computations
can be found in [25].

Lemma 3.2. Let u ∈W 1,p
0 (Ω) ∩ L∞(Ω) be a positive function such that

−∆pu = f(x, u), in Ω,

in a weak sense, where f : Ω× [0,∞) → [0,∞) verifies:

(i) t 7→ f(x, t) is increasing, for almost every x ∈ Ω;
(ii) for every t > 0, we have inf

x∈Ω
f(x, t) > 0.

We set M = ‖u‖L∞(Ω), then we have

(3.2)

∫

{x :u(x)=t}
|∇u|p−1 dHN−1 =

∫

{x :u(x)>t}
f(x, u) dx, for a.e. t ∈ [0,M ].

In particular, we get u ∈ Ap(Ω), i.e. u verifies (3.1).

Proof. By using test functions of the form (u− s)+ in the equation solved by u, we get
∫

{x :u(x)>s}
|∇u|p dx =

∫

Ω
〈|∇u|p−2∇u,∇(u− s)+〉, dx

=

∫

Ω
f(x, u) (u− s)+ dx.

On the other hand, by Coarea Formula we have
∫

{x :u(x)>s}
|∇u|p dx =

∫ M

s

(∫

{x :u(x)=τ}
|∇u|p−1 dHN−1

)
dτ.

By taking first s = t and then s = t+ h with h > 0 and subtracting, we then get

1

h

∫ t+h

t

(∫

{x :u(x)=τ}
|∇u|p−1 dHN−1

)
dτ =

∫

Ω
f(u)

(u− t)+ − (u− t− h)+
h

dx.
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By passing to the limit on both sides, we conclude the proof of (3.2).

To prove (3.1), it is sufficient to observe that
∫

{x :u(x)>t}
f(x, u) dx ≥

(
inf
y∈Ω

f(y, t)

) ∫

{x :u(x)>t}
dx =

(
inf
y∈Ω

f(y, t)

)
µ(t),

thanks to the monotonicity of f , so that

0 ≤
µ(t)∫

{u=t}
|∇u|p−1 dHN−1

≤
1

infy∈Ω f(y, t)
,

which means that the quantity we are considering stays bounded whenever t is away from
0, for example if t ≥M/2. On the other hand if t < M/2 we just notice that f ≥ 0 implies

∫

{x :u(x)>t}
f(x, u) dx ≥

∫

{x :u(x)>M/2}
f(x, u) dx,

and then again we may proceed as before. �

The next counterexample shows that smooth functions may fail to verify (3.1).

Example 3.3. Let us take B = {x : |x| < 1} and a smooth radial function u such that

u(x) = (1− |x|)α for |x| ≃ 1,

where α > 1. We then have∫

{u=t}
|∇u|p−1 dHN−1 ≃ t

(α−1) (p−1)
α (1− t1/α)N−1, t ≃ 0,

and

µ(t) = {x : (1− |x|)α > t} = {x : |x| < 1− t1/α} ≃ (1− t1/α)N , t ≃ 0.

This implies that the ratio of the two quantities is unbounded for t approaching 0. More-

over, this ratio behaves like t
(α−1) (1−p)

α , which may even fail to be merely integrable.

We introduce the following set of Lipschitz functions

L =
{
g ∈ Lip ([0,M ]) : g(0) = 0

}
,

then for every reference function u ∈ Ap(Ω), we clearly have g ◦ u ∈ W 1,p
0 (Ω) whenever

g ∈ L. Taking advantage of the equivalent formulations of Tp(Ω) provided by Lemma 2.2,
we define the modified p−torsional rigidity of Ω according to u by

(3.3) Tp,mod(Ω;u) :=

(
p

p− 1
sup
g∈L

Fp(g ◦ u)

)p−1

,

and notice that since we restricted the class of admissible functions, we decreased the value
of Tp(Ω), i.e.

Tp,mod(Ω;u) ≤ Tp(Ω).
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The key point is that for every u ∈ Ap(Ω) the modified torsional rigidity is well-defined,
i.e. the supremum is attained in the class L. Moreover it can be fully characterized in
terms of the distribution function of u and of the Coarea factor

∫
{u=t} |∇u|

p−1.

Proposition 3.4. Let u ∈ Ap(Ω) be a reference function for Ω. Then the function g0
defined by

(3.4) g0(t) =

∫ t

0




µ(τ)∫

{u=τ}
|∇u|p−1 dHN−1




1
p−1

dτ,

(uniquely) realizes the supremum in (3.3). The modified torsional rigidity is then given by

(3.5) Tp,mod(Ω;u) =




∫ M

0

µ(t)
p

p−1

(∫

{u=t}
|∇u|p−1 dHN−1

) 1
p−1

dt




p−1

.

Proof. We first observe that the value of Tmod(Ω;u) remains unchanged if we restrict the
optimization to positive non-decreasing functions. Indeed, let g ∈ L be admissible and let
us set

g̃(t) =

∫ t

0
|g′(τ)| dτ, t ∈ [0,M ],

then this is non-decreasing by definition and obviously g ∈ L. It satisfies
∫

Ω
|∇g ◦ u(x)|p dx =

∫

Ω
|∇g̃ ◦ u(x)|p dx, since g̃′(t) = |g′(t)|, for a.e. t ∈ [0,M ].

We also notice that we have g̃(t) ≥ g(t), so that we can simply infer
∫

Ω
g(u(x)) dx ≤

∫

Ω
g̃(u(x)) dx,

which finally implies

Fp(g ◦ u) ≤ Fp(g̃ ◦ u).

We then observe that for every positive non-decreasing g ∈ L, we have

Fp(g ◦ u) =

∫

Ω
g(u(x)) dx−

1

p

∫

Ω
g′(u(x))p |∇u(x)|p dx

=

∫ M

0

[
g′(t)µ(t) dt−

g′(t)p

p

(∫

{u=t}
|∇u|p−1 dHN−1

)]
dt,
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where we used Cavalieri’s principle in the first integral and Coarea Formula in the second
one. By using again Lemma 2.1, we then get

Fp(g ◦ u) ≤

∫ M

0
max
s≥0

[
s µ(t) −

sp

p

(∫

{u=t}
|∇u|p−1 dHN−1(x)

)]
dt

=
p− 1

p

∫ M

0

µ(t)
p

p−1

(∫

{u=t}
|∇u|p−1 dHN−1

) 1
p−1

dt,
(3.6)

and equality holds if and only if

g′(t) =




µ(t)∫

{u=t}
|∇u|p−1 dHN−1




1
p−1

, for a.e. t ∈ [0,M ].

Observe that the latter is an L∞ function on [0,M ], since u satisfies (3.1) by hypothesis.
This means the function g0 defined by

g0(t) =

∫ t

0




µ(τ)∫

{u=τ}
|∇u(x)|p−1 dHN−1(x)




1
p−1

dt,

belongs to L and is thus the unique maximizer of Fp. In particular
(

p

p− 1
Fp(g0 ◦ u)

)p−1

= Tmod(Ω;u).

Finally, the previous equation and (3.6) show the validity of the expression (3.5). �

Remark 3.5. The previous result generalizes [18, Lemme 1]. Observe that our proof runs
similarly to that in [18], but the use of Cavalieri’s principle and Lemma 2.1 permitted some
simplifications.

Remark 3.6. If Ω ⊂ R
2 is a convex polygon and we take as reference function the distance

dΩ from ∂Ω, the corresponding modified p−torsional rigidity has been recently considered
in [12], in connection with a conjecture by Pólya and Szegő.

The following result is an isoperimetric inequality for the modified torsional rigidity.
This fact will be crucially exploited in the next section, in order to define our spherical
rearrangement.

Proposition 3.7. Let Ω ⊂ R
N be an open set having finite measure and u ∈ Ap(Ω) a

reference function. If B ⊂ R
N is a ball such that

Tp(B) = Tp,mod(Ω;u),
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then we have
|B| ≤ |Ω|.

We have equality if and only if Ω itself is a ball and u is a radial function.

Proof. We just observe that Tp(B) = Tp,mod(Ω;u) ≤ Tp(Ω), then by using (1.6) we get

1 ≤
Tp(Ω)

Tp(B)
≤

(
|Ω|

|B|

) p

N
+p−1

,

which proves the first assertion.

As for equality cases, if |B| = |Ω| by appealing to the equality cases in (1.6) we can surely
infer that Ω has to be a ball. Moreover, in this case we also have

Tp,mod(Ω;u) = Tp(Ω).

We now recall that the function realizing the p−torsional rigidity is unique, up to a renor-
malization, and that such a function has to be radial for a ball (see Remark 2.3). This
implies that for the optimal g0 realizing Tp,mod(Ω;u), we must have that g0 ◦ u is radial as
well which finally implies that u has to be radial.

On the other hand, it is easily seen that if Ω itself is a ball and u is radial, then
Tp,mod(Ω;u) = Tp(Ω) and the equality Tp(Ω) = Tp(B) implies |Ω| = |B|, since two balls
have the same p−torsional rigidity if and only if they share the same radius. �

Remark 3.8. The previous result can be rewritten in scaling invariant form as

|B|1−
p

N
−p Tp(B) ≥ |Ω|1−

p

N
−p Tp,mod(Ω;u),

with equality if and only if Ω is a ball and u is a radial function. This result generalizes
the first inequality2 appearing in [18, Lemme 2]. See also [17, Corollary 1].

4. The Kohler-Jobin rearrangement technique

We are now going to describe the Kohler-Jobin rearrangement for W 1,p
0 functions that

satisfy property (3.1). We recalled that in the classical Schwarz symmetrization it is the
measure of superlevel sets which plays the leading role in the rearrangement procedure.
Now, it is their p−torsional rigidity which will do the job. This is natural, since we are
dealing with a shape optimization problem with a constraint on the torsional rigidity, rather
than on the measure of admissible sets.

Proposition 4.1. Let 1 < p < ∞ and let Ω ⊂ R
N be an open set having finite measure.

Given a reference function u ∈ Ap(Ω), let B be the ball centered at the origin such that

Tp,mod(Ω;u) = Tp(B).

Then there exists a radially symmetric decreasing function u∗ ∈W 1,p
0 (B) such that

(4.1)

∫

B
|∇u∗|p dx =

∫

Ω
|∇u|p dx and

∫

B
f(u∗) dx ≥

∫

Ω
f(u) dx,

2The reader should notice that when p = 2, our definition of torsional rigidity differs from that in [18]
by a multiplicative factor 4.
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for every function f : [0,∞) → [0,∞) strictly convex and such that f(0) = 0.

Proof. In order to simplify the notation, in the whole proof we will use the notation

T = Tp,mod(Ω;u).

For every t ∈ [0,M ], we will also set

Ωt = {x ∈ Ω : u(x) > t} and T (t) = Tp,mod(Ωt; (u− t)+),

i.e. the latter is the modified torsional rigidity of Ωt according to the function (u − t)+.
Since we have

|{x : (u(x)− t)+ > s}| = µ(t+ s),

from (3.5) we can infer the explicit expression of this modified torsion, i.e.

T (t) =



∫ M−t

0

µ(s+ t)
p

p−1

(∫
{(u−t)+=s} |∇u|

p−1 dHN−1
) 1

p−1

ds




p−1

=



∫ M

t

µ(τ)
p

p−1

(∫
{u=τ} |∇u|

p−1 dHN−1
) 1

p−1

dτ




p−1

.

Observe that from the previous expression we obtain that T ∈ Liploc([0,M)), such that
T ′(t) < 0 almost everywhere on [0,M ], since we have

d

dt
T (t) = −(p− 1)

µ(t)
p

p−1

(∫

{u=t}
|∇u(x)|p−1 dHN−1(x)

) 1
p−1

T (t)
p−2
p−1 , for a.e. t.

This is useful, since we are going to write the Lp norm of∇u in terms of the “variable” T (t).
More precisely, we first observe that applying the Coarea Formula and then introducing a
change of variable ϕ : [a, b] → [0,M ], we have

(4.2)

∫

Ω
|∇u|p dx =

∫ b

a
ϕ′(τ)

(∫

{u=ϕ(τ)}
|∇u|p−1HN−1

)
dτ.

As function ϕ we just take ϕ : [0, T ] → [0,M ] defined by the inverse function

ϕ(τ) = T−1(τ), τ ∈ [0, T ],

then the derivative ϕ′(τ) is obviously given by

ϕ′(τ) = −
1

p− 1

(∫

{u=ϕ(τ)}
|∇u(x)|p−1 dHN−1(x)

) 1
p−1

µ(ϕ(τ))
p

p−1

τ
2−p

p−1 .
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Also observe that ϕ satisfies the hypotheses of Lemma 2.5, then we finally obtain

(4.3)

∫

Ω
|∇u|p dx = (p− 1)p−1

∫ T

0
τp−2 µ(ϕ(τ))p (−ϕ′(τ))p dτ.

The finiteness of the integral in the left-hand side and the previous identity justify the
convergence of the right-hand side in (4.3), also for 1 < p < 2.

We now define a radially symmetric decreasing function u∗ ∈W 1,p
0 (B). As before, the idea

is to prescribe the values of u∗ by using the torsional rigidity of its superlevel sets. For
every τ ∈ [0, T ], let R(τ) be the unique radius such that the concentric ball BR(τ) = {x :
|x| < R(τ)} ⊂ B has torsional rigidity τ , i.e. by using formula (2.6) we have

R(τ) =

(
τ

γN,p

) 1
N(p−1)+p

, τ ∈ [0, T ],

where the constant γN,p is defined in (2.7). Then we introduce the change of variable
ψ : [0, T ] → [0,+∞) and we set

u∗(x) = ψ(τ), if |x| = R(τ).

In other words, u∗ attains the value ψ(τ) on the boundary of a ball whose torsional rigidity
coincides with τ . Of course, the function u∗ will be completely determined, once we will
specify the function ψ.

We can write the Dirichlet integral of u∗ as before, that is using τ as variable. This
yields

∫

B
|∇u∗|p dx = −

∫ T

0
ψ′(τ)

(∫

{u∗=ψ(τ)}
|∇u∗|p−1 dHN−1

)
dτ.

We then observe that for u∗ by construction we have

|∇u∗(x)| = (N(p− 1) + p) γN,p (−ψ
′(τ))R(τ)N(p−1)+p−1, if |x| = R(τ),

so that after some (tedious) computations we get
∫

{u∗=ψ(τ)}
|∇u∗|p−1 dHN−1 = (p− 1)p−1 τp−2 µ∗(ψ(τ))

p (−ψ′(τ))p,

i.e. we can infer again

(4.4)

∫

B
|∇u∗|p dx = (p− 1)p−1

∫ T

0
τp−2 µ∗(ψ(τ))

p (−ψ′(τ))p dτ,

where µ∗ is the distribution function of u∗.

We are finally ready to define ψ: we impose

(4.5)





(−ψ′(τ))µ∗(ψ(τ)) = (−ϕ′(τ))µ(ϕ(τ))

ψ(T ) = 0

By recalling that by construction we have
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Ωt

R(τ)

Ω B

Figure 1. The construction of Proposition 4.1: the set Ωt has modified
torsional rigidity equal to τ . On the circle having torsional rigidity equal to
τ , we set u∗ to be equal to the value ψ(τ) defined through (4.5).

µ∗(ψ(τ)) = ωN R(τ)
N = ωN

(
τ

γN,p

) N
N(p−1)+p

,

the change of variable ψ is explicitely given by

ψ(τ) =
γ

N
N(p−1)+p

N,p

ωN

∫ T

τ
(−ϕ′(s))µ(ϕ(s)) s

− N
N(p−1)+p ds, τ ∈ [0, T ].

By using the information (4.5) in (4.3) and (4.4), we immediately obtain
∫

B
|∇u∗|p dx =

∫

Ω
|∇u|p dx,

as desired.

As for the integrals of u, first of all we observe that thanks to Proposition 3.7 we have

µ∗(ψ(τ)) ≤ µ(ϕ(τ)), for every τ ∈ [0,M ],

since the torsional rigidity of the ball {x ∈ B : u∗(x) > ψ(τ)} is equal to the modified
torsional rigidity of {x ∈ Ω : u(x) > ϕ(τ)}. Then (4.5) implies

−ψ′(τ) ≥ −ϕ′(τ), for a.e. τ ∈ [0, T ],

thus integrating we get

(4.6) ψ(τ) = −

∫ T

τ
ψ′(s) ds ≥ −

∫ T

τ
ϕ′(s) ds = ϕ(τ), τ ∈ [0, T ],
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since ψ(T ) = ϕ(T ) = 0. Once again Cavalieri’s principle and a change of variable gives
∫

Ω
f(u) dx =

∫ M

0
f ′(t)µ(t) dt

=

∫ T

0
f ′(ϕ(τ)) (−ϕ′(τ))µ(ϕ(τ)) dτ

≤

∫ T

0
f ′(ψ(τ)) (−ψ′(τ))µ∗(ψ(τ)) dτ =

∫

B
f(u∗) dx,

where we exploited (4.5), (4.6) and the strict convexity of f . This finally concludes the
proof. �

Remark 4.2 (Equality cases). Observe that in the previous construction we have

µ∗(ψ(τ)) = µ(ϕ(τ)),

if and only if the superlevel set {x ∈ Ω : u(x) > ϕ(τ)} is a ball and (u− ϕ(τ))+ is radial,
thanks to the equality cases in Proposition 3.7. This implies that equality holds in (4.6)
for almost every τ ∈ [0, T ] if and only if Ω is a ball and u is a radial function. This finally
gives that

∫

Ω
|∇u|p dx =

∫

B
|∇u∗|p dx and

∫

Ω
f(u) dx =

∫

B
f(u∗) dx,

if and only if Ω is a ball and u is a radial function.

Remark 4.3 (Assumptions on f). Observe that the strict convexity f is not really nec-
essary for (4.1) to hold, the argument still works with an f convex. But in this case the
identification of equality cases is lost. On the other hand, the condition f(0) = 0 is vital,
since one has ∫

Ω
f(u) dx ≤

∫

B
f(u∗) dx+ f(0)

[
|Ω| − |B|

]
,

and by construction we have |Ω| ≥ |B|. If f(0) > 0, the latter inequality does not permit
to say that the integral

∫
Ω f(u) dx is increased.

5. Proof of Theorem 1.1

Let vΩ ∈W 1,p
0 (Ω) be a function such that

‖∇vΩ‖
p
Lp(Ω)

‖vΩ‖
p
Lq(Ω)

= λp,q(Ω).

Since the value of the Rayleigh quotient on the left is unchanged if we replace a function
vΩ by its modulus |vΩ|, we can assume that vΩ ≥ 0. Moreover, the function vΩ solves the
equation (2.8), then by Proposition 2.4 and Lemma 3.2, we get immediately that vΩ is
a reference function for Ω, i.e. vΩ ∈ Ap(Ω). Accordingly, the modified torsional rigidity
Tp,mod(Ω; vΩ) is well-defined. Let us simply set for brevity

TΩ = Tp,mod(Ω; vΩ),
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and recall that TΩ ≤ Tp(Ω). We then take B the ball centered at the origin such that

TΩ = Tp(B),

and by starting from vΩ, thanks to Proposition 4.1, we can construct v∗Ω ∈ W 1,p
0 (B) such

that ∫

B
|v∗Ω|

q dx ≥

∫

Ω
|vΩ|

q dx and

∫

B
|∇v∗Ω|

p dx =

∫

Ω
|∇vΩ|

p dx.

Using this and the definition of λp,q(B), we then obtain

Tp(B)α(p,q,N) λp,q(B) ≤ T
α(p,q,N)
Ω

‖∇v∗Ω‖
p
Lp(B)

‖v∗Ω‖
p
Lq(B)

≤ T
α(p,q,N)
Ω

‖∇vΩ‖
p
Lp(Ω)

‖vΩ‖
p
Lq(Ω)

≤ Tp(Ω)
α(p,q,N) λp,q(Ω),

(5.1)

which concludes the proof of (1.8).

As for equality cases, we observe that if equality holds in (1.8), then equality holds every-
where in (5.1). In particular we get

∫

B
|∇v∗Ω|

p dx

(∫

B
|v∗Ω|

q dx

) p

q

=

∫

Ω
|∇vΩ|

p dx

(∫

Ω
|vΩ|

q dx

) p

q

.

Thanks to Proposition 4.1 and Remark 4.2, we can finally conclude that Ω has to be a ball.
This concludes the proof of Theorem 1.1.

Remark 5.1 (Moser-Trudinger sharp constant). In the case p = N , one may wonder what
can be said for the best constant in the Moser-Trudinger inequality (see [22, 26]), such a
constant being defined by

MTN (Ω) = sup

{∫

Ω
exp

(
cN |u|

N
N−1

)
: ‖∇u‖

W 1,N
0 (Ω)

≤ 1

}
, cN = N (N ωN )

1
N−1 .

It is straightforward to see that this quantity is maximized by balls among sets having
given volume, i.e.

(5.2)
MTN (Ω)

|Ω|
≤
MTN (B)

|B|
,

the proof consisting of a straightfoward application of the Schwarz rearrangement. This
time, it is not clear that balls still maximize with a constraint on the N−torsional rigidity.
The reason lies in the fact that the function f(t) = exp(cN tN

′

) verifies f(0) > 0. Then
by taking an optimal function vΩ for MTN (Ω) (see [11, 21] for the existence of such a
function) and applying Proposition 4.1, we would obtain (see Remark 4.3)

MTN (Ω) ≤MTN (BΩ) + |Ω| − |BΩ|,
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where BΩ is a ball such that TN (BΩ) = TN,mod(Ω; vΩ). In particular BΩ is smaller than
a ball B⋆ having the same torsional rigidity as Ω. In order to show that the ball is still a
maximizer, it would sufficies to verify that for every set Ω there holds

MTN (BΩ) + |Ω| − |BΩ| ≤MTN (B
⋆).

The previous is in turn equivalent to

|Ω| − |BΩ|

|B⋆| − |BΩ|
≤
MTN (B

⋆)

|B⋆|
,

an estimate which seems difficult to check, since the measure of BΩ depends in an intricate
way on Ω.

As a straightforward consequence of Theorem 1.1 we get the following functional in-
equality of interpolation type, with sharp constant. In what follows we will denote by
W 1,p

0 (RN ) the completion of C∞
0 (RN ) with respect to the norm ‖∇u‖Lp .

Corollary 5.2. Let 1 < p <∞ and q be an exponent satisfying (1.3). We still denote

α(p, q,N) =

p

N
+
p

q
− 1

p

N
+ p− 1

,

and p′ = p/(p− 1), then for every u ∈W 1,p
0 (RN ) ∩ C(RN ) we have

(5.3) ‖u‖Lq ≤ KJ(p, q,N)
(∥∥1{|u|>0}

∥∥
W−1,p′

)α(p,q,N)
‖∇u‖Lp ,

where the sharp constant KJ(p, q,N) is given by

KJ(p, q,N) =
(
T (B1)

α(p,q,N) λp,q(B1)
)− 1

p
,

and B1 is the unit ball of RN . Equality in (5.3) holds if and only if u has the form

u(x) = c U

(
x− x0
s

)
for some (x0, c, s) ∈ R

N × R× R
+,

where U ∈W 1,p
0 (B1) is the (unique) function solving





−∆pU = λp,q(B1)U
q−1, in B1,

‖U‖Lq = 1 and U > 0.

Proof. It is sufficient to observe that (1.8) implies

Tp(B1)
α(p,q,N) λp,q(B1) ≤ Tp({|u| > 0})α(p,q,N)

∫

RN

|∇u|p dx

(∫

RN

|u|q
) p

q

,
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then we use the characterization (2.3) of the p−torsional rigidity. Equality cases easily
follow from those in (1.8). �

Remark 5.3. For simplicity, we stated the previous result for functions in W 1,p
0 (RN ) ∩

C(RN ). This assures that {|u| > 0} is an open set. However, by appealing to the theory
of quasi-open sets and of Sobolev spaces in a capacitary sense (see [4]), one could state the

previous inequality for general functions in W 1,p
0 (RN )

Remark 5.4. Observe that (5.3) is a limit case of the following family of interpolation
inequalities

(5.4) ‖u‖Lq ≤ C ‖∇u‖
ϑ (1− 1

s )+
1
s

Lp

∥∥|u|s−2 u
∥∥

1
q
− ϑ

p∗

W−1,p′
,

where 1 ≤ s < q < p∗ and the parameter ϑ is such that

ϑ =
p∗

q

q − s

p∗ − s
.

Here p∗ denotes the usual Sobolev embedding exponent, i.e. p = Np/(N − p) (let us
confine ourselves to the case 1 < p < N , for simplicity). The proof of (5.4) simply follows
by combining the Gagliardo-Nirenberg-Sobolev inequality

‖u‖Lq ≤ C ‖∇u‖ϑLp ‖u‖1−ϑLs ,

and the estimate ∫
|u|s dx =

∫
|u|s−2 uu dx ≤

∥∥|u|s−2 u
∥∥
W−1,p′ ‖∇u‖Lp ,

which is a plain consequence of the definition of dual norm. By formally taking the limit
for s converging to 1 in (5.4), one ends up with (5.3).

6. The case of general norms

In this last section, we will see how to adapt the Kohler-Jobin rearrangement to the case
of anisotropic principal frequencies and torsional rigidities. The reader could find useful to
consult [24] for the basic facts about convex bodies needed below.

Let 1 < p <∞ and q still satisfying (1.3), we consider the quantities

λKp,q(Ω) = min
u∈W 1,p

0 (Ω)\{0}

∫

Ω
‖∇u‖pK dx

(∫

Ω
|u|q dx

) p

q

and TKp (Ω) = max
v∈W 1,p

0 (Ω)\{0}

(∫

Ω
|v| dx

)p

∫

Ω
‖∇v‖pK dx

,

where K is a C1 centro-symmetric3 bounded strictly convex set and

‖x‖K = min{λ ≥ 0 : x ∈ λK}, x ∈ R
N ,

i.e. ‖·‖K is the norm having K as unit ball. Of course by taking K = B the Euclidean ball,
we are back to the quantities considered in the previous sections. An interesting particular

3This means that x ∈ K implies that −x ∈ K as well.
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case of these anisotropic variants is when K is the unit ball of the ℓp norm, in this case we
have

∫

Ω
‖∇u‖pK dx =

N∑

i=1

∫

Ω
|uxi |

p dx.

The Faber-Krahn inequality for the corresponding first eigenvalue λKp,q(Ω) has been derived
in [3], by using the convex symmetrization introduced in [2]. The latter is just a variant of
the Schwarz symmetrization, where balls are replaced by rescaled copies of the polar body
K∗ defined by

K∗ =

{
ξ ∈ R

N : sup
x∈K

〈ξ, x〉 ≤ 1

}
.

In other words, given a positive function u ∈ W 1,p
0 (Ω), we can construct a new Sobolev

function u# supported on a scaled copy K̃∗ of K∗, such that

{x : u#(x) > t} is homothetic to K∗ for every t,

and u and u# are equimeasurable. Moreover, for the convex symmetrization as well we
have the Pólya-Szegő principle, i.e.

(6.1)

∫

Ω
‖∇u‖pK dx ≥

∫

K̃∗

‖∇u#‖pK dx.

We refer the reader to [2, Theorem 3.1] for the proof. The equality cases are investigated
in [8, Theorem 5.1] and [9, Theorem 1].

We also recall the Wulff inequality

(6.2) |Ω|−
N−1
N

∫

∂Ω
‖νΩ‖K dH

N−1 ≥ |K∗|−
N−1
N

∫

∂K∗

‖νK∗‖K dH
N−1,

where νΩ is the outer normal versor4 to ∂Ω. Equality holds in the previous if and only if
Ω = x0+sK

∗, for some x0 ∈ R
N and s > 0. Inequality (6.2) is nothing but a generalization

of the classical isoperimetric one and it is of course an essential ingredient of (6.1). The
boundary integral appearing in (6.2) is called anisotropic perimeter and for K∗ we have
the simple formula

(6.3)

∫

∂K∗

‖νK∗‖K dH
N−1 = N |K∗|.

as in the Euclidean case. A good reference for (6.2) is the recent paper [10], where stability
issues are addressed as well.

By suitably adapting the rearrangement technique of Kohler-Jobin, one can obtain the
following generalization of Theorem 1.1.

4Here we are a little bit vague about the smoothness assumptions on Ω, since we will not really need
this result in what follows. We just mention that (6.2) is naturally settled in the class of set having finite
perimeter in the De Giorgi sense.
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Theorem 6.1. Let 1 < p <∞ and q satisfying (1.3). Then

(6.4) TKp (Ω)α(p,q,N) λKp,q(Ω) ≥ TKp (K∗)α(p,q,N) λKp,q(K
∗),

and equality holds if and only if Ω coincides with the polar body K∗, up to translations and
dilations.

The proof is exactly the same as in the Euclidean case, it is sufficient to use Proposition
6.5 below, which is nothing but the anisotropic counterpart of Proposition 4.1. In the
remaining part of the section, we list the main changes needed for the definition of the
anisotropic Kohler-Jobin rearrangement and for the proof of its properties.

First of all, we need the expression of the p−torsional rigidity of the “ball” K∗.

Lemma 6.2. The unique solution to the problem

(6.5) max
u∈W 1,p

0 (K∗)

∫

K∗

u dx−
1

p

∫

K∗

‖∇u‖pK dx,

is given by

uK∗(x) =
1− ‖x‖

p

p−1

K∗

βN,p
, where βN,p =

p

p− 1
N

1
p−1 .

In particular we have

(6.6) TKp (K∗) =

[
|K∗|

βN,p

p

N(p− 1) + p

]p−1

.

Proof. The uniqueness of the solution for (6.5) simply follows by the strict concavity of the
functional5. For simplicity, let us now introduce the notation

H(x) = ‖x‖K and H∗(x) = ‖x‖K∗ ,

and observe that the Euler-Lagrange equation for problem (6.5) is
∫

K∗

Hp−1(∇u) 〈∇H(∇u),∇ϕ〉 dx =

∫

K∗

ϕdx, ϕ ∈W 1,p
0 (K∗).

By inserting the function uK∗ defined above and using the relations (see [24])

(6.7) H(∇H∗(x)) = 1 and ∇H(∇H∗(x)) =
x

H(x)
,

we then obtain that uK∗ solves this equation and thus is the p−torsion function.
In order to compute the exact value of TKp (K∗) we can use the following trick. First of

all, by using the expression of uK∗ we have
∫

K∗

uK∗ dx =
|K∗|

βN,p
−

1

βN,p

∫

K∗

H∗(x)
p

p−1 dx.

5Here enters the assumption of strict convexity on K.
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On the other hand, by using uK∗ as a test function in the Euler-Lagrange equation and
appealing to (6.7), we obtain

∫

K∗

uK∗ dx =

∫

K∗

H(∇u)p dx =

(
p

p− 1

1

βN,p

)p ∫

K∗

H∗(x)
p

p−1 dx.

By comparing the two previous expressions we can compute the value of
∫
K∗H∗(x)

p

p−1 dx.

This finally gives the desired expression for TKp (K∗), since

TKp (K∗) =

(∫

K∗

uK∗ dx

)p−1

,

as in Proposition 2.2. �

We can still characterize the modified torsional rigidity in terms of the distribution
function and of the (anisotropic) Coarea factor. This is the content of the next result.

Proposition 6.3. Let u ∈ Ap(Ω) be a reference function for Ω. Then the modified torsional
rigidity is given by

(6.8) TKp,mod(Ω;u) =




∫ M

0

µ(t)
p

p−1

(∫

{u=t}
‖∇u‖p−1

K

∥∥∥∥
∇u

|∇u|

∥∥∥∥
K

dHN−1

) 1
p−1

dt




p−1

.

Proof. It is sufficient to use the Coarea Formula in the following form
∫

Ω
‖∇u‖pK dx =

∫ M

0

∫

{u=t}
‖∇u‖p−1

K

∥∥∥∥
∇u

|∇u|

∥∥∥∥
K

dHN−1 dt.

Also observe that since in R
N all norms are equivalent, if u is a reference function we also

have that

t 7→
µ(t)∫

{u=t}
‖∇u‖p−1

K

∥∥∥∥
∇u

|∇u|

∥∥∥∥
K

dHN−1

∈ L∞([0,M ]).

These two modifications permit to conclude the proof as before. �

Proposition 6.4. Let Ω ⊂ R
N be an open set having finite measure and u ∈ Ap(Ω) a

reference function. If K̃∗ ⊂ R
N is a scaled copy of K∗ such that

TKp (K̃∗) = TKp,mod(Ω;u),

then we have

|K∗| ≤ |Ω|.

We have equality if and only if Ω itself is a scaled copy of K∗ and u has the form u(x) =
h(‖x‖K∗), for some function h.
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Proof. This is a consequence of the Saint-Venant inequality for the anistropic torsional
rigidity, i.e.

|Ω|1−
p

N
−p TKp (Ω) ≤ |K∗|1−

p

N
−p TKp (K∗),

which in turn follows from the Pólya-Szegő principle (6.1) for the convex rearrangement.
Thanks to the result of [8, 9], equality is attained if and only if Ω = x + sK∗, then the
proof of the second part of the statement is as in Proposition 3.7. �

Finally, we define the Kohler-Jobin rearrangement, which still keeps the Dirichlet integral
fixed and increases the Lq norms of a function. This permits to prove Theorem 6.1.

Proposition 6.5. Let 1 < p < ∞ and let Ω ⊂ R
N be an open set having finite measure.

Given a reference function u ∈ Ap(Ω), let K̃
∗ be a scaled copy of the polar body K∗ such

that
TKp,mod(Ω;u) = TKp (K̃∗).

Then there exists a function u∗ ∈W 1,p
0 (K̃∗) such that its superlevel sets are scaled copy of

K∗ with the same centers and

(6.9)

∫

K̃∗

|∇u∗|p dx =

∫

Ω
|∇u|p dx and

∫

K̃∗

f(u∗) dx ≥

∫

Ω
f(u) dx,

for every function f : [0,∞) → [0,∞) strictly convex and such that f(0) = 0.

Proof. The proof runs exactly as in Proposition 4.1, up to some relevant changes that we
list below. First of all, we observe that the modified torsional rigity of Ωt according to
(u− t)+ is now given by

TK(t) =




∫ M

t

µ(τ)
p

p−1

(∫

{u=t}
‖∇u‖p−1

K

∥∥∥∥
∇u

|∇u|

∥∥∥∥
K

dHN−1

) 1
p−1

dτ




p−1

, t ∈ [0,M ].

Then we can infer again

(6.10)

∫

Ω
‖∇u‖p dx = (p− 1)p−1

∫ T

0
τp−2 µ(ϕ(τ))p (−ϕ′(τ))p dτ,

where now ϕ is the inverse function of TK . As before, we define the new “radial” function

u∗(x) = ψ(τ), if ‖x‖K∗ = R(τ),

where for every τ ∈ [0, T ] the “radius” R(τ) is such that

TKp (R(τ)K∗) = τ.

In other words R(τ)K∗ is the unique scaled copy of the polar body K∗ having torsional
rigidity equal to τ . Observe that from the previous we have the relation

R(τ) =

(
τ

TKp (K∗)

) 1
N (p−1)+p

,
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and TKp (K)∗ is the constant depending only on K,N and p given by (6.6). By construction
we get

‖∇u∗(x)‖K = (N(p− 1) + p)TKp (K∗) (−ψ′(τ))R(τ)N(p−1)+p−1, if ‖x‖K∗ = R(τ),

so that, with a small abuse of notation, we obtain
∫

{u∗=ψ(τ)}
‖∇u‖p−1

K

∥∥∥∥
∇u∗

|∇u∗|

∥∥∥∥
K

dHN−1 = ‖∇u∗(R(τ))‖p−1
K

∫

{u∗=ψ(τ)}
‖ν‖K dHN−1.

Here ν is the outer normal to the set {u∗ > ψ(τ)}, the latter being R(τ)K∗. Then the
integral on the right-hand side is nothing but the anisotropic perimeter of this set, which
is homothetic to K∗. By (6.3) we can infer

∫

{u∗=ψ(τ)}
‖ν‖K dHN−1 = N R(τ)N−1 |K∗|.

By keeping everything together, we get
∫

{u∗=ψ(τ)}
‖∇u‖p−1

K

∥∥∥∥
∇u∗

|∇u∗|

∥∥∥∥
K

dHN−1 = (N(p− 1) + p)p−1 TKp (K∗)p−1 (−ψ′(τ))p−1

× R(τ)(N+1)(p−1)2+N−1N |K∗|,

so that after some some simplifications we obtain
∫

B
|∇u∗|p dx = (p− 1)p−1

∫ T

0
τp−2 µ∗(ψ(τ))

p (−ψ′(τ))p dτ.

Then we can define once again ψ through (4.5). The resulting function u∗ has the desired
properties, the proof being exactly the same as in Proposition 4.1. �
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Birkhäuser Verlag, Basel, 2006.
[16] S. Kesavan, Symmetrization and applications. Series in Analysis, 3. World Scientific Publishing Co.

Pte. Ltd., Hackensack, NJ, 2006.
[17] M.-T. Kohler-Jobin, Symmetrization with equal Dirichlet integrals, SIAM J. Math. Anal., 13 (1982),

153–161.
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Pólya et Szegő, C. R. Acad. Sci. Paris Sér. A-B, 281 (1975), A119–A121.

[20] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal-
ysis. Theory, Methods & Applications 12 (1988), 1203–1219.

[21] K.-C. Lin, Extremal functions for Moser’s inequality, Trans. Am. Math. Soc., 348 (1996), 2663–2671.
[22] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71),

1077–1092.
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