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Abstract

We propose a simple adaptation to the Tresca friction case of the Nitsche-based finite element
method given in [Chouly-Hild, 2012, Chouly-Hild-Renard, 2013 ] for frictionless unilateral con-
tact. Both cases of unilateral and bilateral contact with friction are taken into account, with
emphasis on frictional unilateral contact for the numerical analysis. We manage to prove theo-
retically the fully optimal convergence rate of the method in the H1(Ω)-norm which is O(h

1
2

+ν)

when the solution lies in H
3
2

+ν(Ω), 0 < ν ≤ 1/2, in two dimensions and three dimensions,
for Lagrange piecewise linear and quadratic finite elements. No additional assumption on the
friction set is needed to obtain this proof.
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1. Introduction

Contact problems with friction are widespread in engineering applications and are generally
solved with the Finite Element Method (FEM) which approximates the corresponding variational
inequalities (see e.g. [30, 21, 26, 22, 32, 40, 39]). In this paper we are interested in the Tresca
problem, which involves a simplified friction law with a given friction threshold [16, 20, 30, 26].
This model problem is a first step towards more realistic situations involving Coulomb’s friction,
and serves for instance in fixed-point arguments when Coulomb’s friction is studied. For the
Tresca problem the obtention of optimal error estimates with the weakest additional assumptions
in standard numerical approximations with FEM has revealed itself to be a challenging issue
(see e.g. [6, 39]). Namely the Tresca problem can be recasted as a variational inequality of the
second kind with non-linear non-differentiable integral terms on the friction interface (see the
formulation (6)). These terms introduce in the error estimates some additional quantities that
are difficult to bound optimally unless additional assumptions are stated (see e.g. [26, 39]).
To our knowledge the first estimates for this problem have been obtained by Haslinger and
Hlaváček [25]: in 2D and for a mixed P1/P0 FEM approximation, with the assumption that the
solution has a regularity H1+ν(Ω) (and the normal stress a regularity L2(ΓC)), they obtain a rate

O(hmin( 1
4
,ν)) [25, Theorem 4.1]. For a regularity H2(Ω) and with the additional assumption that
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the set of transition points on the contact/friction boundary is finite, they manage to increase

this rate to O(h
1
2 ) [25, Theorem 4.2] (see also [26]). Later, still in 2D, a rate of O(h

3
4 ) for a

regularity H2(Ω) is obtained by Hild in [29] for a mortar FEM. The same rate is given by Baillet
and Sassi in [5] for a mixed P1/P1 (and P1/P0) FEM, under the same assumption of regularity
H2(Ω). The first results in the 3D case, still with a mixed P1/P0 FEM, are established by

Haslinger and Sassi in [27]: a rate of O(h
1
2 ) is obtained for a regularity H2(Ω). This rate was

improved to O(h
3
4 ) with the additional assumption that the friction threshold is a constant [27,

Remark 5.1]. Later in [6], a rate of O(h
3
4 ) is still mentioned by Baillet and Sassi for a mixed

P1/P1 FEM in the 2D case [6, Theorem 4.4], but this result is improved to the quasi-optimal

rate of O(h| log(h)|
1
4 ) with additional regularity assumptions on the tangential displacement,

the tangential Lagrange multiplier and the friction threshold, and also with the assumption that
the number of transition points on the contact/friction zone is finite [6, Theorem 4.5]. The rate
of O(hν) for a regularity H1+ν(Ω) (0 ≤ ν ≤ 1) is obtained by Wohlmuth in the 2D case for
a mixed low-order FEM, under technical assumptions on the contact/friction set [39, Theorem
4.9] (this is the first optimal bound to the best of our knowledge). In the 3D case the rate

O(hmin(ν, 1
2

)) is also given, without additional assumption [39, Theorem 4.10]. For the penalty

method, the rate of O(h
1
2

+ ν
2

+ν2) for a regularity H
3
2

+ν(Ω) (0 < ν < 1
2) and the quasi-optimal

rate of O(h| log h|
1
2 ) for a regularity H2(Ω) are established by Chouly and Hild in [11], without

additional assumptions on the contact/friction set.
In previous works [10, 12] a new FEM based on Nitsche’s formulation has been proposed and
analysed in the case of frictionless unilateral contact. An extension to Coulomb’s friction has
been formulated in [36] and tested numerically using a generalized Newton algorithm. In this
paper we detail how this Nitsche-based method can in fact be extended to the Tresca friction case.
We also underline that the same attractive property of optimal convergence that arised in the
frictionless case still holds here. More precisely we are able to prove the optimal convergence
of this method in the H1(Ω)-norm, of order O(h

1
2

+ν) provided the solution has a regularity

H
3
2

+ν(Ω), 0 < ν ≤ 1/2. To this purpose we do not need any additional assumption on the
contact/friction zone, such as an increased regularity of the tangential components (displacement
and stress) or a finite number of transitions points between contact and non-contact. The proof
applies in two-dimensional and three-dimensional cases, and for piecewise linear and quadratic
finite elements. The model problem we focus on is unilateral contact with Tresca friction but the
results we obtain can be straightforwardly applied to bilateral (persistent) contact with Tresca
friction.
The Nitsche method orginally proposed in [35, 3] aims at treating the boundary or interface
conditions in a weak sense, thanks to a consistent penalty term. It differs in this aspect from
standard penalization techniques which are generally non-consistent [30]. Moreover, no addi-
tional unknown (Lagrange multiplier) is needed and no discrete inf–condition must be fulfilled,
contrarily to mixed methods (see, e.g., [26]). Most of the applications of Nitsche’s method
during the last decades have been focused on linear conditions on the boundary of a domain
or at the interface between sub-domains: see, e.g,. [37] for the Dirichlet problem, [7] for do-
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main decomposition with non-matching meshes and [24] for a global review. In some recent
works [23, 28] it has been adapted for bilateral (persistent) contact, which still includes linear
boundary conditions on the contact zone. Remark in particular that an algorithm for unilateral
contact which makes use of Nitsche’s method in its original form is given and implemented in
[23]. Furthermore an extension to large strain bilateral contact has been performed in [41].
Our paper is outlined as follows. In Section 2 we recall the formulation for the Tresca friction
problem and introduce our Nitsche-based FEM. In Section 3 we carry out the numerical analysis
of this method and we prove in particular its optimal convergence. Conclusion and perspectives
are drawn in Section 4.
As usual, we denote by (Hs(.))d, s ∈ R, d ∈ N∗ the Sobolev spaces in d space dimensions (see
[1]). The standard norm of (Hs(D))d is denoted by ‖ · ‖s,D and we keep the same notation for
all the values of d. The letter C stands for a generic constant, independent of the discretization
parameters.

2. Setting

2.1. The Tresca friction problem

We consider an elastic body whose reference configuration is represented by the domain Ω in Rd
with d = 2 or d = 3. Small strain assumption is made, as well as plane strain when d = 2. The
boundary ∂Ω of Ω is polygonal or polyhedral and we partition ∂Ω in three nonoverlapping parts
ΓD, ΓN and the contact/friction boundary ΓC , with meas(ΓD) > 0 and meas(ΓC) > 0. The
contact/friction boundary is supposed to be a straight line segment when d = 2 or a polygon
when d = 3 to simplify. The normal unit outward vector on ∂Ω is denoted n. The body is
clamped on ΓD for the sake of simplicity. It is subjected to volume forces f ∈ (L2(Ω))d and to
surface loads g ∈ (L2(ΓN ))d.
The Tresca friction problem with unilateral contact consists in finding the displacement field
u : Ω→ Rd verifying the equations and conditions (1)–(2)–(3):

divσ(u) + f = 0 in Ω, σ(u) = A ε(u) in Ω,

u = 0 on ΓD, σ(u)n = g on ΓN ,
(1)

where σ = (σij), 1 ≤ i, j ≤ d, stands for the stress tensor field and div denotes the divergence

operator of tensor valued functions. The notation ε(v) = (∇v+∇v
T

)/2 represents the linearized
strain tensor field and A is the fourth order symmetric elasticity tensor having the usual uniform
ellipticity and boundedness property. For any displacement field v and for any density of surface
forces σ(v)n defined on ∂Ω we adopt the following decomposition into normal and tangential
components:

v = vnn + vt and σ(v)n = σn(v)n + σt(v).

The unilateral contact conditions on ΓC are formulated as follows:

un ≤ 0 (i) σn(u) ≤ 0 (ii) σn(u)un = 0 (iii) (2)
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Let g ∈ L2(ΓC), g ≥ 0 be a given threshold. The Tresca friction conditions on ΓC read:

 |σt(u)| ≤ g, if ut = 0, (i)

σt(u) = −g ut

|ut|
otherwise, (ii)

(3)

where | · | stands for the euclidean norm in Rd−1. Note that conditions (i) and (ii) imply that
|σt(u)| ≤ g in all cases, and that if |σt(u)| < g, we must have ut = 0.

Remark 2.1. The case of bilateral contact with Tresca friction can also be considered, simply
substituting to equations (2) the following one on ΓC :

un = 0. (4)

Remark 2.2. The conditions of Coulomb friction can be written similarly as:

 |σt(u)| ≤ νF |σn(u)|, if ut = 0, (i)

σt(u) = −νF |σn(u)| ut

|ut|
otherwise, (ii)

(5)

where νF is the friction coefficient. In the Tresca friction model is made the additional assump-
tion that the amplitude of normal stress is known (νT |σn(u)| = g) [30].

We introduce the Hilbert space V and the convex cone K of admissible displacements which
satisfy the noninterpenetration on the contact zone ΓC :

V :=
{
v ∈

(
H1(Ω)

)d
: v = 0 on ΓD

}
, K := {v ∈ V : vn = v · n ≤ 0 on ΓC} .

Define

a(u,v) :=

∫
Ω
σ(u) : ε(v) dΩ, L(v) :=

∫
Ω
f · v dΩ +

∫
ΓN

g · v dΓ,

j(v) :=

∫
ΓC

g|vt| dΓ

for any u and v in V.
The weak formulation of Problem (1)-(3) as a variational inequality of the second kind is:{

Find u ∈ K such that:
a(u,v − u) + j(v)− j(u) ≥ L(v − u), ∀v ∈ K.

(6)

which admits a unique solution according to [34].

Remark 2.3. In the case of bilateral contact (condition (4)), the same weak formulation (6)
holds, replacing simply the convex cone K by the vectorial space:

Kb := {v ∈ V : vn = 0 on ΓC} .
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2.2. The Nitsche-based finite element method

Let Vh ⊂ V be a family of finite dimensional vector spaces (see [13, 17, 8]) indexed by h coming
from a family T h of triangulations of the domain Ω (h = maxT∈T h hT where hT is the diameter
of T ). We suppose that the family of triangulations is regular, i.e., there exists σ > 0 such that
∀T ∈ T h, hT /ρT ≤ σ where ρT denotes the radius of the inscribed ball in T . Furthermore we
suppose that this family is conformal to the subdivision of the boundary into ΓD, ΓN and ΓC
(i.e., a face of an element T ∈ T h is not allowed to have simultaneous non-empty intersection
with more than one part of the subdivision). We choose a standard Lagrange finite element
method of degree k with k = 1 or k = 2, i.e.:

Vh :=
{
vh ∈ (C 0(Ω))d : vh|T ∈ (Pk(T ))d,∀T ∈ T h,vh = 0 on ΓD

}
. (7)

However, the analysis would be similar for any C0-conforming finite element method.
For any α ∈ R+, we introduce the notation [·]α for the orthogonal projection onto B(0, α) ⊂
Rd−1, where B(0, α) is the closed ball centered at the origin 0 and of radius α. This operation
can be defined analytically, for x ∈ Rd−1 by:

[x]α =

{
x if |x| ≤ α,
α x
|x| otherwise.

We recall the following property, which is classical for projections, and that will be of funda-
mental importance in the sequel, for all x,y ∈ Rd−1:

(y − x) · ([y]α − [x]α) ≥ |[y]α − [x]α|2, (8)

where · is the euclidean scalar product in Rd−1.
Let γ be a positive fonction defined on ΓC . Observe now that the Tresca friction conditions (3)
can be reformulated as follows (see, e.g., [2], or Appendix A):

σt(u) = −1

γ
[ut − γσt(u)]γg . (9)

As in [10, 12] (see also, e.g., [2]) we reformulate the contact conditions (2) as :

σn(u) = −1

γ
[un − γσn(u)]+, (10)

where the notation [·]+ stands for the positive part of a scalar quantity ([x]+ = 1
2(x + |x|) for

x ∈ R). Note that we have also, for x, y ∈ R:

(y − x)([y]+ − [x]+) ≥ ([y]+ − [x]+)2. (11)

We consider in what follows that γ is a positive piecewise constant function on the contact/friction
interface ΓC : for any x ∈ ΓC , let T be an element such that x ∈ T and set γ(x) = γ0hT where
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γ0 is a positive constant. Let now θ ∈ R be a fixed parameter. Let us introduce the discrete
linear operators

Pt
γ :

Vh → (L2(ΓC))d−1

vh 7→ vht − γ σt(vh)
, and Pn

γ :
Vh → L2(ΓC)
vh 7→ vhn − γ σn(vh)

.

Define also the bilinear form:

Aθγ(uh,vh) := a(uh,vh)−
∫

ΓC

θγ σ(uh)n · σ(vh)n dΓ.

Our Nitsche-based method for unilateral contact with Tresca friction then reads:


Find uh ∈ Vh such that:

Aθγ(uh,vh) +

∫
ΓC

1

γ
[Pn
γ (uh)]+Pn

θγ(vh) dΓ +

∫
ΓC

1

γ

[
Pt
γ(uh)

]
γg
·Pt

θγ(vh) dΓ = L(vh),

∀ vh ∈ Vh.
(12)

Remark 2.4. For bilateral contact with friction (equations (1)–(4)–(3)), the Nitsche-based for-
mulation reads:

Find uh ∈ Vh
b such that:

Abθγ(uh,vh) +

∫
ΓC

1

γ

[
Pt
γ(uh)

]
γg
·Pt

θγ(vh) dΓ = L(vh),

∀ vh ∈ Vh
b ,

(13)

where Abθγ(uh,vh) := a(uh,vh)−
∫

ΓC

θγ σt(u
h) · σt(v

h) dΓ and Vh
b := Vh ∩Kb.

Remark 2.5. As in [12] the parameter θ can be set to some interesting particular values, namely:

1. for θ = 1 we recover a symmetric method for which the contact term is positive when
vh = uh.

2. for θ = 0 we recover a simple method close to penalty, which involves only a few terms
and may be of easiest implementation.

3. for θ = −1 the method admits one unique solution and converges optimally irrespectively
of the value of γ0 > 0.
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3. Analysis of the Nitsche-based method

As for frictionless unilateral contact (see [10, 12]), our Nitsche-based formulation (12) for the
Tresca problem is consistent. It is a direct consequence of reformulations (9) and (10) followed
by integration-by-parts:

Lemma 3.1. The Nitsche-based method for Tresca friction is consistent: suppose that the solu-
tion u of (1)–(3) is in (H

3
2

+ν(Ω))d, with ν > 0, then u is also solution of

Aθγ(u,vh) +

∫
ΓC

1

γ
[Pn
γ (u)]+Pn

θγ(vh) dΓ +

∫
ΓC

1

γ

[
Pt
γ(u)

]
γg
·Pt

θγ(vh) dΓ = L(vh), ∀ vh ∈ Vh.

(14)

Note that for the same reasons the formulation (13) for bilateral contact is also consistent. In
the following we establish the well-posedness and the optimal convergence of the method (12)
for unilateral contact with friction. The results and the proofs can be adapted without difficulty
in the case of bilateral contact with friction.

3.1. Well-posedness

We recall first the following classical property:

Lemma 3.2. There exists C > 0, independent of the parameter γ0 and of the mesh size h, such
that:

‖γ
1
2σt(v

h)‖20,ΓC + ‖γ
1
2σn(vh)‖20,ΓC ≤ Cγ0‖vh‖21,Ω, (15)

for all vh ∈ Vh.

Proof: It follows from the definitions of σt(v
h), σn(vh) and the boundedness of A that:

‖γ
1
2σt(v

h)‖20,ΓC + ‖γ
1
2σn(vh)‖20,ΓC ≤ γ0h(‖σt(v

h)‖20,ΓC + ‖σn(vh)‖20,ΓC ) ≤ Cγ0h‖∇vh‖20,ΓC .

Then estimation (15) is obtained using a scaling argument: see [38, Lemma 2.1, p.24] for a
detailed proof in the general case (for an arbitrary degree k and any dimension d). �
To show that Problem (12) is well-posed we use an argument by Brezis for M-type and pseudo-
monotone operators [9] (see also [33] and [31]).

Theorem 3.3. Suppose that one of the two following assumptions hold:

1. θ 6= −1 and γ0 > 0 is sufficiently small,

2. θ = −1 and γ0 > 0.

Then Problem (12) admits one unique solution uh in Vh.
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Proof: With help of the Riesz representation theorem, we introduce a (non-linear) operator
Bh : Vh → Vh, by means of the formula:

(Bhvh,wh)1,Ω := Aθγ(vh,wh) +

∫
ΓC

1

γ
[Pn
γ (vh)]+Pn

θγ(wh) dΓ +

∫
ΓC

1

γ

[
Pt
γ(vh)

]
γg
·Pt

θγ(wh) dΓ,

for all vh,wh ∈ Vh, and where (·, ·)1,Ω stands for the scalar product in (H1(Ω))d. Then Problem
(12) is well-posed if and only if Bh is a bijective operator.
For vh,wh ∈ Vh we first use the decomposition Pn

θγ(·) = Pn
γ (·) + (1− θ)σn(·) (and the same for

Pt
θγ) so that:

(Bhvh −Bhwh,vh −wh)1,Ω

= a(vh −wh,vh −wh)− θ‖γ
1
2σ(vh −wh)n‖20,ΓC

+

∫
ΓC

1

γ

(
[Pn
γ (vh)]+ − [Pn

γ (wh)]+

)
Pn
γ (vh −wh) dΓ

+

∫
ΓC

1

γ

([
Pt
γ(vh)

]
γg
−
[
Pt
γ(wh)

]
γg

)
·Pt

γ(vh −wh) dΓ

+ (1− θ)
∫

ΓC

1

γ

(
[Pn
γ (vh)]+ − [Pn

γ (wh)]+

)
γσn(vh −wh) dΓ

+ (1− θ)
∫

ΓC

1

γ

([
Pt
γ(vh)

]
γg
−
[
Pt
γ(wh)

]
γg

)
· γσt(v

h −wh) dΓ.

(16)

With help of inequalities (8) and (11) followed by Cauchy-Schwarz inequality, we get from (16):

(Bhvh −Bhwh,vh −wh)1,Ω

≥ a(vh −wh,vh −wh)− θ‖γ
1
2σ(vh −wh)n‖20,ΓC

+ ‖γ−
1
2 ([Pn

γ (vh)]+ − [Pn
γ (wh)]+)‖20,ΓC + ‖γ−

1
2 (
[
Pt
γ(vh)

]
γg
−
[
Pt
γ(wh)

]
γg

)‖20,ΓC

− |1− θ| ‖γ−
1
2 ([Pn

γ (vh)]+ − [Pn
γ (wh)]+)‖0,ΓC‖γ

1
2σn(vh −wh)‖0,ΓC

− |1− θ| ‖γ−
1
2 (
[
Pt
γ(vh)

]
γg
−
[
Pt
γ(wh)

]
γg

)‖0,ΓC‖γ
1
2σt(v

h −wh)‖0,ΓC .

(17)

If θ = 1 (symmetric case) we use the coercivity of a(·, ·) and the property (15) in the previous
expression (17). Therefore:

(Bhvh −Bhwh,vh −wh)1,Ω

≥ a(vh −wh,vh −wh)− ‖γ
1
2σn(vh −wh)‖20,ΓC − ‖γ

1
2σt(v

h −wh)‖20,ΓC
≥ C‖vh −wh‖21,Ω,

(18)

when γ0 is chosen sufficiently small.
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We now suppose that θ 6= 1 and take β > 0. Applying Young inequality in (17) yields:

(Bhvh −Bhwh,vh −wh)1,Ω

≥ a(vh −wh,vh −wh)−
(
θ +
|1− θ|β

2

)
‖γ

1
2σ(vh −wh)n‖20,ΓC

+

(
1− |1− θ|

2β

)(
‖γ−

1
2 ([Pn

γ (vh)]+ − [Pn
γ (wh)]+)‖20,ΓC

+‖γ−
1
2 (
[
Pt
γ(vh)

]
γg
−
[
Pt
γ(wh)

]
γg

)‖20,ΓC

)
.

(19)

Choosing β = |1− θ|/2 in (19), we get:

(Bhvh −Bhwh,vh −wh)1,Ω ≥ a(vh −wh,vh −wh)− 1

4
(1 + θ)2 ‖γ

1
2σ(vh −wh)n‖20,ΓC

≥ C‖vh −wh‖21,Ω,
(20)

either for θ 6= −1 and γ0 sufficiently small, or when θ = −1 and γ0 > 0 (γ0 does not need to be
small in this case).
Next, let us show that Bh is also hemicontinuous i.e.

[0, 1] 3 t 7→ ϕ(t) := (Bh(vh − twh),wh)1,Ω ∈ R

is a continuous real function, for all vh,wh ∈ Vh (remark that Vh is a vector space). Let
s, t ∈ [0, 1], with help of the bounds |[x]+−[y]+| ≤ |x−y| , for all x, y ∈ R, | [x]γg−[y]γg | ≤ |x−y|,
for all x,y ∈ Rd−1, and next using the linearity of Pn

γ and Pt
γ we obtain:

|ϕ(t)− ϕ(s)|

≤|t− s|
(
Aθγ(wh,wh) +

∫
ΓC

1

γ
|Pn
γ (wh)||Pn

θγ(wh)| dΓ +

∫
ΓC

1

γ
|Pt

γ(wh)||Pt
θγ(wh)| dΓ

)
,

which means that ϕ is Lipschitz, so that Bh is hemicontinuous. Since properties (18), (20) also
hold, we finally apply the Corollary 15 (p.126) of [9] to conclude that Bh is a bijective operator.
This ends the proof. �

3.2. Error analysis

First we establish an abstract error estimate.

Theorem 3.4. Suppose that the solution u of Problem (6) belongs to (H
3
2

+ν(Ω))d with ν > 0
and d = 2 or d = 3.
1. Let θ ∈ R. Suppose that the parameter γ0 > 0 is sufficiently small. Then the solution uh of
Problem (12) satisfies the following abstract error estimate:

‖u− uh‖1,Ω + ‖γ
1
2 (σn(u) +

1

γ
[Pn
γ (uh)]+)‖0,ΓC + ‖γ

1
2 (σt(u) +

1

γ

[
Pt
γ(uh)

]
γg

)‖0,ΓC

≤ C inf
vh∈Vh

(
‖u− vh‖1,Ω + ‖γ−

1
2 (u− vh)‖0,ΓC + ‖γ

1
2σ(u− vh)n‖0,ΓC

)
,

(21)

9



where C is a positive constant, independent of h, u and γ0.
2. Set θ = −1. Then for all values of γ0 > 0, the solution uh of Problem (12) satisfies the
abstract error estimate (21) where C is a positive constant, dependent of γ0 but independent of
h and u.

Proof: Let vh ∈ Vh. We first use the V-ellipticity and the continuity of a(·, ·), as well as
Young’s inequality, to obtain:

α

2
‖u− uh‖21,Ω ≤

C2

2α
‖u− vh‖21,Ω + a(u,vh − uh)− a(uh,vh − uh),

where α > 0 is the ellipticity constant of a(·, ·). We transform the term a(u,vh−uh)−a(uh,vh−
uh) since u solves (6), uh solves (12) and using Lemma 3.1, which yields:

α

2
‖u− uh‖21,Ω ≤

C2

2α
‖u− vh‖21,Ω − θ

∫
ΓC

γ σ(uh − u)n · σ(vh − uh)n dΓ

+

∫
ΓC

1

γ

([
Pt
γ(uh)

]
γg
−
[
Pt
γ(u)

]
γg

)
·Pt

θγ(vh − uh) dΓ

+

∫
ΓC

1

γ

(
[Pn
γ (uh)]+ − [Pn

γ (u)]+

)
Pn
θγ(vh − uh) dΓ. (22)

The first integral term in (22) is bounded as follows:

− θ
∫

ΓC

γ σ(uh − u)n · σ(vh − uh)n dΓ

= θ

∫
ΓC

γ σ(vh − uh)n · σ(vh − uh)n dΓ− θ
∫

ΓC

γ σ(vh − u)n · σ(vh − uh)n dΓ

≤ θ‖γ
1
2σ(vh − uh)n‖20,ΓC + |θ|‖γ

1
2σ(vh − u)n‖0,ΓC‖γ

1
2σ(vh − uh)n‖0,ΓC

≤ β1θ
2

2
‖γ

1
2σ(vh − u)n‖20,ΓC +

(
1

2β1
+ θ

)
‖γ

1
2σ(vh − uh)n‖20,ΓC , (23)

with β1 > 0. The second integral term in (22) is considered next:∫
ΓC

1

γ

([
Pt
γ(uh)

]
γg
−
[
Pt
γ(u)

]
γg

)
·Pt

θγ(vh − uh) dΓ

=

∫
ΓC

1

γ

([
Pt
γ(uh)

]
γg
−
[
Pt
γ(u)

]
γg

)
Pt
γ(vh − u) dΓ

+

∫
ΓC

1

γ

([
Pt
γ(uh)

]
γg
−
[
Pt
γ(u)

]
γg

)
Pt
γ(u− uh) dΓ

+

∫
ΓC

1

γ

([
Pt
γ(uh)

]
γg
−
[
Pt
γ(u)

]
γg

)
· γ(1− θ)σt(v

h − uh) dΓ. (24)
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With help of the bound (8) and applying two times Cauchy-Schwarz and Young’s inequalities
in (24) we obtain∫

ΓC

1

γ

([
Pt
γ(uh)

]
γg
−
[
Pt
γ(u)

]
γg

)
·Pt

θγ(vh − uh) dΓ

≤ 1

2β2
‖γ

1
2 (σt(u) +

1

γ

[
Pt
γ(uh)

]
γg

)‖20,ΓC +
β2

2
‖γ−

1
2Pt

γ(vh − u)‖20,ΓC

− ‖γ
1
2 (σt(u) +

1

γ

[
Pt
γ(uh)

]
γg

)‖20,ΓC

+
|1− θ|

2β3
‖γ

1
2 (σt(u) +

1

γ

[
Pt
γ(uh)

]
γg

)‖20,ΓC +
|1− θ|β3

2
‖γ

1
2σt(v

h − uh)‖20,ΓC , (25)

with β2 > 0 and β3 > 0. We apply exactly the same treatment for the third (and last) integral
term in (22) (see also [12]) and we note that

‖γ−
1
2 Pn

γ (vh − u)‖20,ΓC + ‖γ−
1
2Pt

γ(vh − u)‖20,ΓC ≤ 2‖γ−
1
2 (u− vh)‖20,ΓC + 2‖γ

1
2σ(u− vh)n‖20,ΓC ,

and then putting together estimates (23) and (25) in (22) gives

α

2
‖u− uh‖21,Ω ≤

C2

2α
‖u− vh‖21,Ω

+

(
β1θ

2

2
+ β2

)
‖γ

1
2σ(u− vh)n‖20,ΓC + β2‖γ−

1
2 (u− vh)‖20,ΓC

+

(
−1 +

1

2β2
+
|1− θ|

2β3

)(
‖γ

1
2 (σn(u) +

1

γ
[Pn
γ (uh)]+)‖20,ΓC + ‖γ

1
2 (σt(u) +

1

γ

[
Pt
γ(uh)

]
γg

)‖20,ΓC

)
+

(
1

2β1
+ θ +

|1− θ|β3

2

)
‖γ

1
2σ(vh − uh)n‖20,ΓC . (26)

The norm term on the discrete Cauchy constraints on ΓC , in (26), is bounded as follows by
using (15):

‖γ
1
2σ(vh − uh)n‖0,ΓC ≤ Cγ

1
2
0 ‖v

h − uh‖1,Ω ≤ Cγ
1
2
0 (‖vh − u‖1,Ω + ‖uh − u‖1,Ω). (27)

For a fixed θ ∈ R we then choose β2 and β3 large enough such that

−1 +
1

2β2
+
|1− θ|

2β3
< −1

2
.

Choosing then γ0 small enough in (27) and putting the estimate in (26) establishes the first
statement of theorem.
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We now consider separately the case θ = −1 for which (26) becomes:

α

2
‖u− uh‖21,Ω

≤C
2

2α
‖u− vh‖21,Ω +

(
β1

2
+ β2

)
‖γ

1
2σ(u− vh)n‖20,ΓC + β2‖γ−

1
2 (u− vh)‖20,ΓC

+

(
−1 +

1

2β2
+

1

β3

)(
‖γ

1
2 (σn(u) +

1

γ
[Pn
γ (uh)]+)‖20,ΓC + ‖γ

1
2 (σt(u) +

1

γ

[
Pt
γ(uh)

]
γg

)‖20,ΓC

)
+

(
1

2β1
− 1 + β3

)
‖γ

1
2σ(vh − uh)n‖20,ΓC . (28)

Let be given η > 0. Set β1 = 1/(2η), β2 = 1 + (1/η) and β3 = 1 + η. Therefore (28) becomes:

α

2
‖u− uh‖21,Ω

≤C
2

2α
‖u− vh‖21,Ω +

(
5

4η
+ 1

)
‖γ

1
2σ(u− vh)n‖20,ΓC +

1 + η

η
‖γ−

1
2 (u− vh)‖20,ΓC

− η

2(1 + η)

(
‖γ

1
2 (σn(u) +

1

γ
[Pn
γ (uh)]+)‖20,ΓC + ‖γ

1
2 (σt(u) +

1

γ

[
Pt
γ(uh)

]
γg

)‖20,ΓC

)
+ 2η‖γ

1
2σ(vh − uh)n‖20,ΓC .

Let γ0 > 0. Set η = α/(16C2γ0) where C is the constant in (27) to conclude the proof of the
theorem. �
The optimal convergence of the method is stated below.

Theorem 3.5. Suppose that the solution u to Problem (6) belongs to (H
3
2

+ν(Ω))d with 0 < ν ≤
k − 1

2 (k = 1, 2 is the degree of the finite element method, given in (7)) and d = 2, 3. When
θ 6= −1, suppose in addition that the parameter γ0 is sufficiently small. The solution uh of
Problem (12) satisfies the following error estimate:

‖u− uh‖1,Ω

+ ‖γ
1
2 (σn(u) +

1

γ
[Pn
γ (uh)]+)‖0,ΓC + ‖γ

1
2 (σt(u) +

1

γ

[
Pt
γ(uh)

]
γg

)‖0,ΓC

≤ Ch
1
2

+ν‖u‖ 3
2

+ν,Ω,

(29)

where C is a positive constant, independent of h and u.

Proof: We need to bound the right terms in estimate (21) and we choose vh = Ihu where
Ih stands for the Lagrange interpolation operator mapping onto Vh. The estimation of the
Lagrange interpolation error in H1-norm on a domain Ω is classical (see, e.g., [8, 15, 17]):

‖u− Ihu‖1,Ω ≤ Ch
1
2

+ν‖u‖ 3
2

+ν,Ω, (30)
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for −1/2 < ν ≤ k − 1/2.
Let E in ΓC be an edge of a triangle T ∈ T h:

‖γ−
1
2 (u− (Ihu))‖0,E ≤ Ch

− 1
2

T h1+ν
T ‖u‖1+ν,E ≤ Ch

1
2

+ν‖u‖1+ν,E ,

(see [17] for instance). A summation on all the edges E together with the trace theorem yield:

‖γ−
1
2 (u− (Ihu))‖0,ΓC ≤ Ch

1
2

+ν‖u‖1+ν,ΓC ≤ Ch
1
2

+ν‖u‖ 3
2

+ν,Ω. (31)

From [19] (see also the details in [18], or alternatively in [12, Appendix A]), the following estimate
also holds:

‖γ
1
2σ(u− Ihu)n‖0,ΓC ≤ Ch

1
2

+ν‖u‖ 3
2

+ν,Ω. (32)

We conclude by inserting the three estimates (30)–(31)–(32) into (21). �

We can easily obtain the following error estimate on the Cauchy constraint ‖γ
1
2σ(u−uh)n‖0,ΓC

in the weighted L2(ΓC)-norm (note that σn(uh) 6= − 1
γ [Pn

γ (uh)]+ and σt(u
h) 6= − 1

γ

[
Pt
γ(uh)

]
γg

on ΓC conversely to the continuous case).

Corollary 3.6. Suppose that the solution u to Problem (6) belongs to (H
3
2

+ν(Ω))d with 0 <
ν ≤ k − 1

2 and d = 2, 3. When θ 6= −1, suppose in addition that the parameter γ0 is sufficiently
small. The solution uh of Problem (12) satisfies the following error estimate:

‖γ
1
2σ(u− uh)n‖0,ΓC ≤ Ch

1
2

+ν‖u‖ 3
2

+ν,Ω, (33)

where C is a positive constant, independent of h and u.

Proof: We use (32), (15), (30) and (29) to establish the bound:

‖γ
1
2σ(u− uh)n‖0,ΓC ≤ ‖γ

1
2σ(u− Ihu)n‖0,ΓC + ‖γ

1
2σ(Ihu− uh)n‖0,ΓC

≤ Ch
1
2

+ν‖u‖ 3
2

+ν,Ω + Cγ
1
2
0 (‖Ihu− u‖1,Ω + ‖u− uh‖1,Ω)

≤ Ch
1
2

+ν‖u‖ 3
2

+ν,Ω.

�

4. Conclusion and perspectives

In this paper we extend the Nitsche-based formulation of [10, 12] to the case of unilateral con-
tact with Tresca friction and we achieve the corresponding numerical analysis. This analysis
allows us to obtain the first optimal a priori error estimate under Hs regularity (3/2 < s ≤ 5/2)
on the solution without any additional assumption, in two-dimensions and three-dimensions,
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and for piecewise linear and quadratic finite elements (which may be of interest when the so-
lution has an increased regularity). It is remarkable that the method originally proposed for
variational inequations arising from frictionless unilateral contact extends naturally to more
complex problems involving other variational inequations (here of the second kind), preserving
all the interesting features observed initially (well-posedness, optimal convergence, same behav-
ior respectively to the numerical parameters θ and γ0). This may open possibilities for further
extensions (for instance the Stokes problem with Tresca friction [4]). It is also worth-noticing
that no special difficulty is encountered in the three-dimensional situation, which is not the case
in mixed methods where bounds are still sub-optimal and seem very difficult to improve (see
e.g. [27, 39]). In forthcoming studies may be considered the extension to the Coulomb friction
problem, numerical experiments and a-posteriori error estimators (as in [14]).
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Appendix A. On reformulation of Tresca conditions

In this Appendix, we give a simple and direct proof of the equivalence between equations (3)
and (9) which was pointed out in [2].

• First let us suppose that ut and σt(u) verify equation (3).

Consider the case ut = 0, then from (3) (i), we have the inequality |σt(u)| ≤ g. Due to
the property of projection [x]γg = x for x ∈ B(0, γg), it results:

−1

γ
[ut − γσt(u)]γg = −1

γ
[−γσt(u)]γg = −1

γ
(−γσt(u)) = σt(u),

so that (9) holds.

In the case ut 6= 0, from (3) (ii) we obtain:

ut − γσt(u) = (1 +
γg

|ut|
)ut.

It results that |ut − γσt(u)| = |ut| + γg ≥ γg, which means that its projection onto
B(0, γg) is simply

[ut − γσt(u)]γg = γg
ut

|ut|
,

noting also that ut and ut − γσt(u) have the same orientation since γ > 0. Finally using
again (3) (ii) yields
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σt(u) = −1

γ
γg

ut

|ut|
= −1

γ
[ut − γσt(u)]γg ,

which is (9).

• Suppose now that the condition (9) is satisfied by ut and σt(u).

We first consider the case |ut − γσt(u)| ≤ γg, for which [ut − γσt(u)]γg = ut − γσt(u).
In this case condition (9) is simply

σt(u) = −1

γ
(ut − γσt(u)),

so that ut = 0. Moreover in this case, since γ > 0,

|σt(u)| = 1

γ
|ut − γσt(u)| ≤ g,

which means that (3) (i) is satisfied.

Consider then the case |ut − γσt(u)| > γg, which means that there is λ ∈ (0, 1) such that
[ut − γσt(u)]γg = λ(ut − γσt(u)). Relationship (9) can now be written:

σt(u) =
λ

γ(λ− 1)
ut, (A.1)

with the quantity λ
γ(λ−1) < 0. Since [ut − γσt(u)]γg ∈ ∂B(0, γg) and owing to relationship

(9) we deduce |σt(u)| = g. Taking then the norm of (A.1) yields

g =
λ

γ(1− λ)
|ut|,

from which we obtain finally ut 6= 0 and σt(u) = −g ut
|ut| , that is (3) (ii).
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