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Abstract— Semantic interoperability problems have found
their solutions due to the use of languages and tatques
from the Semantic Web. The proliferations of ontolgies
and meta-information have improved the understandig of
information and the relevance of search engine resmpses.
However, the construction of semantic graphs is aoarce of
numerous errors of interpretation or modeling, and
scalability remains a major problem. The processingof
large semantic graphs is a limit to the use of semtcs in
current information systems. The work presented in his
paper is part of a new research at the border of ter areas:
the semantic web and the model checking. This linef o
research concerns the adaptation of model checking
techniques to semantic graphs. We present a first ethod of
converting RDF (Resource Description Framework) grahs
into NuSMV and PROMELA (Process Meta Language)
languages in order to be checked with the temporadbgic
property and queried by the temporal logic query.
SPARQL (Simple Protocol and RDF query Language)
guery language is the standard for querying the Seamtic
Web, but it has a lot of limitations. Our primary goal with
the temporal logic query is to overcome this limitéon of the
SPARQL query language. To reach this goal, three tosl
have been developed. The first two tools “RDF2SPINand
“RDF2NuSMV” are used to transform the Semantic grag
into a model written in PROMELA and respectively in
NuUSMV languages — in order to be understood by th8PIN
and respectively the NuSMV model checkers. The STL
Resolver tool is used to find solutions to the tengpal logic
query. It is based on the model checking algorithms

Index Terms— Semantic graph, model checking, temporal
logic, temporal logic query, SPARQL.

. INTRODUCTION

W3C (World Wide Web Consortium) aims to
standardize the representation and the exchange
information on the WEB. This objective should béeaio
make the information understandable for both autecha

processes and users. The homogenization of comput

exchanges took place due to the introduction ofXhi
(eXtensible Markup Language)
standard has enabled
information through languages with hierarchicalisture

mark-up defined by grammars that are derived frbe t
XML standard. However, this effort has not beereabl

improve the user’'s understanding of informationug;h

the proéngt?gdar;dénigur};graphs is pervasive and serious problems of sdigyabi

languages ranging from automatic processes oriented
languages to languages representing more abstract
concepts of formal semantics [2]. These languages a
used to represent the semantics associated with
information, whatever their form or structure. Tiow

the construction of a semantic graph, many toolgeha
been developed, such as Annotea [3], which is gegrrof

the W3C that specifies the infrastructure for the
annotation of Web documents. RDF represents th@ mai
format used in the annotation and the types of ohecus

that can be annotated are HTML (Hypertext Markup
Language) or XML based documents. However, none
provides the functionality to verify the consistgnof
semantics or to reduce error annotations.

This paper proposes a hew way to check these siemant
graphs by using the model checking technique irrotol
reduce errors in annotation, for example, and nthke
data more relevant. The model checking is an automa
verification technique which has been applied tonyna
cases in industry, in the Netherlands for instafghas
revealed several serious flaws in the design ottmrol
system of a barrier protection in the main port of
Rotterdam against floods. The large "Intel" mantufeng
company processor has used the model checkingeotde
the bug in its Pentium Il processor that causedsa bf
475 million dollars damage to the reputation ofelnt
Finally, the model checking succeeded in findingeanor
in the handling baggage system at the Denver airpor
(USA), which delayed opening its doors for nine then
and caused a loss of 1.1 million dollars per day.

The model checking is a powerful tool for the syste
verification because it can reveal errors that weot
discovered by other formal methods, such as tesing
éirmulation. The model checking uses the tempogit|m

escribe the properties checking the system médelve
have seen in the examples above, the model checkimg
giandle complex problems with large amounts of
Ihformation, stored as a graph, in order to vedififical
systems. In comparison, in the semantic web, tieeofis

adppear [5]. Thus, it is appropriate to use the ritlyms
developed for the model checking in the field oé th
Semantic Web.

Pnueli pioneered the use of temporal logic as forma

new standards have been developed to enable thgnguage for reasoning about reactive systemsT6é

semantic representation of information in the foofn

temporal logic allows the model checking to repnésiee

XML-derived languages. This base is called Semantigoperty that needs to be checked. One limitatibthe

Web standards and is usually represented as a efack
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model checking is that it gives simple “yes or no” Section 4 refers to the mapping of the semantiptga
answers: either the system under study satisfies thinto models, and the ScaleSem approach. Section 5
temporal formula, or it does not. [7] presents fmst  presents our tool that solves the query checkiriggua
research work on the use of the temporal logiciqgaeas ~Semantic graph model. Finally, we end with a beratm

an extension of the model checking, in order tphbe  followed by a conclusion.

user understand the system behaviors, because €dd¢h I
that the use of the model checking has not been '
emphasized enough in the literature yet. A tempguaty ~ A. Semantic web

is a temporal formula where the special symbold@urs  The semantic Web aims at organizing and structuttieg

as a placeholder. In [7], a temporal logic queny bave at  hyge quantity of information present on the Net. It
most one placeholder, but in our research workueryy consists of a semi-structured language based on .XML
can have at least one placeholder. Figure 1 shows one of the versions of the orgaioiah

In this paper, we introduce a new method to qualifgl layers sugges’Fed by the W3C. Each layer is budnuthe
query a semantic graph by using the formal methutl a |ayerS below it. T.hUS, the WhOle set of |ayers uteEs
especially the model checking. We developed tools tXML syntax. This allows taking advantage of all
convert semantic graphs into a model understoothey technologies developed around XML: XML Schema,
model checker. We introduce a new language based daols for exploiting XML resources (JAVA librariestc.),
the operators of the temporal logic to query thadei by XML databases. XML stems from the SGML (Standard
using the model checker algorithms. We haveGeneralized Markup Language) language, but contaary
implemented a prototype STL Resolver query engine.  HTML, the structure and the presentation of XML

A survey of popular RDF query languages conducte(ffm(?uments are conceptu_ally separated. XML is alagg
by the W3C identified more than 20 languages that a which uses tags as a universal representation fm"rr_lhe
either under development or have been implemerg@ipd [ data. An XML document contains at the same time the
Some in the lines of traditional database querguages data and the indications about the role that tdese play.
(e.g. SQL (Structured Query Language), OQL (ObjecfAs a result, the same contents can be presenteatious
Query Language)), others based on logic and ruléorms according to the role of the user in the AEC
languages. Some of them are: RQL (RDF Query(Architecture Engineering Construction) project. KN&
Language) [9] is a typed language for querying RDRhe keystone of information exchanges on the Web.
repositories; SquishQL (Simple RDF Query Language) Unfortunately, XML is insufficient to describe aihe
a SQL-style query language that permits simple lgrapsemantics required in the Web.
navigation in RDF sources; RDQL (RDF Data Query
Language) [10] is an implementation of SquishQL; Trust
RDFQL (RDF Query Language) is a statement-base Proof
qguery language with a SQL-style to perform queries
inference operations, and construction of viewsRF
structured data; TRIPLE [11] is a language thabvesl Rules / Query
rule definition, inference and transformation of RD

BACKGROUND

Logic

Signature
Encryption

Ontolo
models; Notation 3 (N3) [12] provides a text-basgutax *
for RDF; VERSA is a graph-based language with some Lzel7 St ST
support for rules; SeRQL (Sesame RDF Query Language XML Query XML Schema
combines characteristics of languages like RQL, RDQ L ——

N-Triple, N3 plus some new features; RXPath (Ragula

XPath) is a query language based on XPath (XML Patl

Language) [13, 14]. The W3C SPARQL [15] is an RDF

query language designed to meet such requiremets a Figure 1. Stack of languages of the Semantic Waib. [
design objectives mentioned previously. It defiaeguery
language with a SQL-like style, where a simple yuer  This paper is based on the RDF layer of the Semanti
based on query patterns, and query processingstsmsi  \veb. RDF is a language developed by the W3C taylain
binding of variables to generate pattern soluti@sph  semantic layer to the Web [16]. It allows the castios
pattern matching). SPARQL is still a work in progse of Web resources using directed labeled edges. The
Our research primary goal is to define a powerhd a structure of RDF documents is a complex labeleectid
expressive query language for semantic graphsolirer  graph. An RDF document is a set of triples <subjec
rather competing goal is to keep the query languagpredicate, object>. In addition, the predicatedaialled
simple enough so that it could be easily built andproperty) connects the subject (resource) to thecob
understood. (value). Thus, the subject and the object are nofi¢ise
The rest of this paper is organized as follows. |ngraph connecte_d by an edge directed from the subjec
Section 2 we present an overview of the semanépitg, Eowards tf'e object. The node_s gnd Fhe edges be_tDng
especially the structure of the RDF graphs and the/©SOurce” types. A resource is identified by a fdmn
SPARQL query language, the model checking, théXeésource Identifier [17].

temporal logic and the temporal logic queries. Then
Section 3 presents the related work of our approach

©2012 ACADEMY PUBLISHER
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algorithms that systematically explore all statdsthe

@ PO Value system model. This provides the basis for a whatege
of verification techniques ranging from an exhauesti
Figure 2. RDF triple. exploration “Model checking” to experiments with a

restrictive set of scenario in the model “Simulatio
The declarations can also be represented as a,gh&ph Simulation allows the user to study the system bienalt
nodes as resources and values, and the arcs ast@®p s less suited to detect errors because it iscdifito
The resources are represented in the graph begirtle  generate all possible scenarios of the system and t
properties are represented by directed arcs andalbes  simulate them all. Model checker is a verification
by a box (a rectangle), see Figure 2. Values caorbe technique that explores all possible system stétethis
resources if they are described by additional pt@®  way, it can be shown that a given system model trul
For example, when a value is a resource in anttipéet,  satisfies a certain property.

the value is represented by a circle [18]. i
P y [18] The model checker examines all relevant systeresstat

The RDF graphs considered here are represented @S order to check whether they satisfy the desired
XML verbose files, in which the information is n&tbred  property. The model checker gives a counter exaihale
hierarchically (so-called graph point of view). BBeRDF  indicates how the model can violate the propefyith
graphs are not necessarily connected, meaningrtfagy  the help of a simulator, the user can locate ther end
have no root vertex from which all the other versiare  adapt the model or the property to prevent theatimh of
reachable. To handle the RDF graphs, several desigth  property, as shown in Figure 3.
implementations of RDF query languages have been
proposed. In 2004, the RDF Data Access Working @rou

part of the W3C Semantic Web Activity, releasedrst f Requireme Systen
public working draft of a query language for RDA&|led l
SPARQL [15]. Since then, SPARQL has been rapidly l

adopted as the standard for querying the Semangb W
data. In January 2008, SPARQL became a W3C
Recommendation. SPARQL queries [19] are pattern ¢ ¢
matching queries on triples that constitute an Riaka
graph. The official SPARQL query introduces four
different query forms:

+ SELECT query, which returns the value of the L’ PR 4J
variable, which may be bound by a matching
query pattern;

e ASK query, which returns true if a given query
matches and false if not;

e CONSTRUCT query, which returns an RDF
graph by substituting the values in given

Formalizing Modeling

Property System
specificatic mode

Violated + —> =»  Locatio

Simulation

Satisfied Counterexamnl n arrnr

Figure 3. The model checking approach.

templates; _ For our approach, we will use the model checking to
+ DESCRIBE query, which returns an RDF graph analyze semantic networks. We use both linear tingie
that defines the matching resource. “LTL” and computation tree logic “CTL" for describg

the specifications of the properties to be verifidth the

B. Model checking and temporal logic Overview ;
model checking.

Formal methods [4] offer great potential for anlyar
inclusion of verification in the design processpyding  Algorithm: Model-checking

technical audit more efficiently and reduce thefigation Begin

time. Formal methods are highly recommended While stack Z nil do

techniques for the software development. They hed¢o P := top (stack);

the development of some very promising verification while = satisfied (pthen

techniques that facilitate early detection of defe@wo Refine the model, or property;

types of formal verification methods can be distiisbed:
methods based on the proof of the theorem and the

methods based on models. Elseif satisfied (phen

P :=top (stack);
Methods based on the proof of the theorem veri§y th

correctness of systems by properties in a matheahati Else // out of memory

theory. These properties are proven with the highes Try to reduce the model;
possible precision using tools such as theoremgpsoand End

proof checkers. Theorems proofs are also calledfpr  Engd

assistants.

Methods based on models describe the possiblensyste The concepts of temporal logic were used for thet fi
behavior in a mathematical precise and unambiguouéme by Pnueli [6] in the specification of formal
manner. The system models are accompanied bgroperties that are fairly easy to use. The opesaioe

©2012 ACADEMY PUBLISHER
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very close in terms of natural language. TheDefinition 1. A temporal logic query with a single
formalization in temporal logic is simple enough placeholder 2 denotedp[?,], is an expression containing
although this apparent simplicity therefore regsire @symbol 2, where replacing;by a propositional formula
significant expertise. In [20], the temporal logitows Yields a CTL or LTL formula.

representing and reasoning about certain propatitdee

system, so it is well-suited for the systems veaiion.  pefinition 2. A temporal logic query with multiple
There are two main temporal logics, that is lingare  pjaceholders 7...,2, denotedp[?y,...2is an expression
and branching time. In linear time temporal logéech containing symbols;?..?, where replacing2...2, by a

execution of the system is independently analyethis  ,qhositional formula yields a CTL or LTL formula.
case, a system satisfies a formula f, if f holdsmglevery

execution. The branching time combines all possible
executions of the system into a single tree. Eath

the tree is a possible representation of the system
execution.

e Linear Temporal Logic or LTL allows
representing the behavior of reactive systems
using properties that describe the system in which
time proceeds linearly. Clearly, we specify the
expected behavior of a system, by specifying the
only possible future as a sequence of actions that
follow; LTL uses for that temporal operators: X
(Next), F (Finally or Eventually), G (Always), U
(Until).

» Computation Tree Logic or CTL suggests Figure 4. An example of Kripke structure: a traffght.
several possible futures from a system state rather
than having a linear view of the consideredNote that the second definition allows multiple
system. The operators of CTL are obtained byoccurrences of the same placeholder symbol in tieeyg
adding A (for any execution) or E (there is anTo understand better, let us illustrate this with a
execution) before the operators of linear temporagxample. Assume that we are currently designimgféid
logic that are: AX ¢ (all successor states light system, as in Figure 4 (The traffic lightealates in
immediately satisfy 9), EX ¢ (there is an the right order and without blocking), and rely tre
execution whose next state satisfigs AF ¢ (for ~ model checking to verify if it satisfies a typidaimporal
any execution, there is a state whens true), EF  specification such as:
¢ (there is an execution, leading to a true stafe
AG ¢ (for any executiong is always true), EG G(orange> Fred) (S)

(there is an execution, wherge is always true),
AgUy (for any executiom is true untily is true),  stating that “all orange lights are eventually daled by

EeoUy (there is an execution in whiah is true  red lights”. The model checking will provide a yasno
until y is true). answer: either the system satisfies (S) or it dms

Temporal queries lead to a finer analysis of th&tesy.

The model checking uses a kripke [21] structure tolhe query
represent the behavior of the system. Kripke strestare G(?> Fred) (Q)
an abstract representation of the behavior of gorigdhm
whose certain properties must be tested. A Kripkeasks for conditions that always lead to red. Comngut
structure is used to represent the relation betwesas of  solutions for (Q), in our system, will tell us, angpother
the system to be checked. It is a directed grapbrevh things, whether the system satisfies its speciticat(S)
nodes, called states, are labeled by states aiy$tem, as is satisfied iff the orange light is a solution f¢®).
seen in Figure 3. However, it will tell us more. For example, if (8) not
satisfied, answering (Q) can lead to the discovteay, in

C. Temporal logic queries ) o
. . L reality, the property that our system satisfie&s{green
Temporal logic queries are a generalization of the%F orange)

model checking [22, 23, 24], which allows system
properties not only to be verified, but also tocoenputed .  RELATED WORK
in a systematic manner. A temporal logic query s a
incomplete temporal logic specification containirgy
special placeholder symbol “?”. Intuitively, theegy asks
for those system properties which yield a correc
specification when inserted into the query. [25, @&fine
two types of queries, queries with one placehokaled
gueries with multiple placeholders.

In this section, we briefly discuss some of the
researches related to the verification and theyga&the
?'Semantic graphs using the model checking. Thereeae
ew researches about the use of the model checking
method to qualify a Semantic graph. On the contrary
there are many more researches on the verificafidhe
Web application. The work in [27] proposes a new wh

©2012 ACADEMY PUBLISHER
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converting an RDF graph into the BCG (Binary Coded ----------- [ —— .
Graph) format that was used in the CADP (Constoacti ! First phase |
and Analysis of Distributed Processes) toolbox. THter I I
represents a verification toolbox for asynchronous | rorzemy 1 |
concurrent systems. The toolbox accepts as inpudgrale 1 t— ----- orRDF2SPIN | | l

| :

1 |

1 1

1 |

M: semantic graf
(RDF)

Natural languag
description of
Semantic graph

languages and all of them are compiled into LT Séled
Transition System), which is a state/transition pgra rempora

. . escription of
representing the behavior of concurrent systemsDEEA Semantic graph
provides several representations for LTS; one ekeh 7~~~ }*K; y
representations is the BCG format.

Tool verification

M': simplified model Temporal logic

of semantic graph

There are few research works on the study of teeofis Seconcphast (NuSV o SN
the temporal logic to query a system. We are tist fo /\
use the temporal logic to query the semantic graph Y P
models. The temporal logic query was introduced by temporal logic counter example
William Chan [7] in order to speed up design
understanding by discovering properties unknown yet Figure 5. The ScaleSem architecture.
[25, 26] show that query checking is applicable ato
variety of model exploration tasks, ranging fromariant In Figure 5, we present the architecture of our

computation to test case generation. They illustitaby  approach. We can get the semantic graph (RDF) tand i
using a CCS (Cruise Control System), which isdescription in temporal logic from a natural langea
responsible for keeping an automobile travelingaat description, as shown in Figure 9 of section V. dligde
certain speed. In their study, the tool they cireatarches this architecture in two phases. The first phasecems
all the propositional formula to hold the tempol@jic  the transformation of the semantic graph into a ehod
query, while in our research work, our tool seascbely  sing our tools RDF2SPIN and RDFESMV. There are
the state that holds the temporal logic query,x@a@ed ihree steps in this transformation. The first stepo
in Figure 4. The difference between the two worksgypiore the entire RDF graph to obtain the triptisle.
consists in the states content. [28] studies thdlepm of The second step is to determine a root for thehgrapd
computing all minimal solutions to arbitrary temalor the last step is to write the model that represenés
queries over arbitrary Kripke structures and [28sents semantic graph in the PROMELA or NuSMV languages.
a tool thatfinds the solutions to any CTL query. The second phase concerns the verification of ptigge

In the work of Chan, a temporal logic query canenav expressed in temporal logic on the model usingSReN
only one placeholder while in [25, 26, 29, 29fdin have  or the NuSMV model checkers. The choice of the rhode
multiple placeholders. Chan’s temporal logic quetiave  checker depends on the tool that one uses to dotheer
a unique representation, using computation tregc log semantic graphs. For example, when using RDF2SPIN,

operators, while the research in [30] tries to Btt€han’s  jne must use the model checker SPIN to check the
work to other temporal logic formulas, such as CTL* ,54el.

which includes the linear temporal logic. Our retioh
tool can have multiple placeholders in the temptmgic  A. Introducing RDF
query. The RDF graphs [18] considered here are represented
as XML verbose files, in which the information istn
stored hierarchically (the so-called graph poinviefw).
This section details our approach which consists iMThese RDF graphs, that represent, in fact, the stecna
transforming semantic graphs into models in ordebé  model of an RDF file, are not necessarily connected
verified by the model checker. For this, we havemeaning they may have no root vertex from whicttte!
developed two tools called “RDF2SPIN" and other vertices are reachable. The RDF graph
“‘RDF2NuSMV”, that transform semantic graphs into transformation into a model is articulated in theteps:
PROMELA and respectively into NuUSMV  [31] exploring the RDF graph, holding election of theotro
languages. vertex and generating the model of the semantiphgra

We use SPIN [32] and NuSMV as model checkers t®, Exploring RDF graph
check the model of semantic graphs. We want to emenp
them in terms of capabilities. SPIN is a softwarel for
verifying system models. The system is described in
language model called PROMELA. NuSMV is the
amelioration of SMV model checker, working on the
same simple principles as SMV. SPIN verifies the
correctness of properties expressed in linear lirgie; on
the other side, NuUSMV verifies the properties inthbo  We achieve this by appropriate explorations of the
linear time logic and computation tree logic. RDF graphs, as explained below. Let us considdraha

RDF graph is represented as a couple (V, E), wheise

the set of vertices arld L1V x V is the set of edges. For

IV. THE SCALESEM APPROACH

In order to exploit the RDF graphs by using SPIN or
NuSMV, we therefore have to determine whether they
have a root vertex, by analyzing RDF triples, dndis is
not the case, we must create a new root vertexling
care to keep the size of the resulting graph adl sasa
possible.

©2012 ACADEMY PUBLISHER
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a vertex x, we notdE(X) ={ YOV | (X, y) JE} the

set of its successor vertices. This correspondshéo
classical data structure for representing graphs
memory, consisting of an array indexed by the vesti
and containing in each entry the list of successotices
of the corresponding vertex. There are severalrifgos
to traverse a large graph, of these basic algosithm
include the best known, depth-first search (DFS)l an
breadth-first search (BFS). We use the depth-§iestrch
algorithm, illustrated below, to explore the graph,
knowing that the breadth-first algorithm also woriks
this context. We considered here an iterative warat
DFS, which makes use of an explicit stack, ratihant
the recursive variant given in [33]; this is re@uairin
practice to avoid overflows of the system call ktathen

the algorithm is invoked for exploring large graphs

Al gorithm procedure Dfs (X):
begin
visited(x) := true;
/1 vertex x becones visited
p(x) := 0; // start exploring its successors
stack := push(x, nil);
while stack # nil do
y = top(stack);
if p(y) <[E(y)| then

/1 y has sone unexpl ored successors
z = E (y) P(V);
p(y) = p(y)+1;
/1 take the next successor of y
if -visited (z) then

visited(z) :=true; // visit it
p(z) := 0;//start exploring its successors
stack : = push(z, stack)

endi f

el se //all successors of y were expl ored
stack := pop(stack)
endi f

end

end

1467

Remark a property must always have a resource and a
value; the resource should never be a value wils#ime

iI;i)redicate, i.e. a loop in the graph.

Al gorithm procedure RootElection(): //
precondition: O x O V.visited(x) = fal se
Begin // first phase
root _list :=nil;
forall x O V do
if -visited(x) then
Df s(x);
root _list := cons(x, root_list)
endi f
endf or;
/I second phase
if |root_list|= 1 then
root := head(root_list)
/1 the single partial root is the global root
el se
forall x OV do visited(x):= fal se;
endf or;
forall x O root_list do
/'l reexplore partial roots in reverse order
if -visited(x) then Dfs(x)

el se
root _list :=root_list \ {x}
/1 partial root is not a real one
endi f
endf or;
if |[root_list] =1 then
root := head(root_list)
/1 a single partial root is the global root
el se
root := new_node();
/'l new root predecessor of the partial roots
E(root) :=root_list
endi f
endi f

The first phase explores all the vertices of thapbr
and inserts in root list all vertices that have no
predecessor. If root_list contains a single veritemeans
that it represents the global root of the grapkesiall the

C. Determining a Root Vertex other vertices are accessible from it, and it isless to
If the RDF graph has no principal vertex root butgo to the second phase. Otherwise, any vertex io@ata

multiple roots, we must create a new root whosen root list could also be a root of the graph: tual of

successors are all the other roots already existite  the second phase is to determine the root of thbagl

graph, but this will increase the number of edd#®  graph among the partial roots.
look forward to doing this by adding as few edgss a

possible. A vertex x of a directed graph is a phroot if ) . . .
it cannot be reached from any other vertex of treply. of the roots contained in the partlal .root_lls_t time

If the graph contains only one partial root, alhat reverse order they were inserted in the list.rid@t in the
vertices of the graph can be reached from the roofCOLIistis to be visited by a partial root, itiemoved
otherwise there would be other roots in the pagiaph. from the list because it is not a partial root.tli¢ end of

If the graph has multiple partial roots, the mostthis phase, all partial roots of thg graph aregme# the
economical way to provide a root is to create a neV\yoot__llst. Indeed,. each vertex is unreag:hable fribwe
record with all the roots as a partial succesdus will ~ Partial roots which were explored during the second
add to the graph a minimum number of edges. w&hase. A new root is created, as in Figure 6, lgaas
compute the set of partial roots in two phasesh gae ~ SUCCESSOr all the p_artlal roots of the root_llsh_mlv
consisting in successive explorations of the graptie ~ €nsures that all vertices of the graph are acdeskim
first phase identifies a set of candidate partists, and ~the new root. Therefore, such a summit is inacbessi
the second one refines this set in order to deterrtiie ~ T0mM other nodes of the graph.

partial roots of the graph.

The second phase performs a new wave of exploration
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° established query languages such as SQL or XQuery
(XML Query Language). The following list surveys
.o important features and constructs that are (to)date
missing in SPARQL.

Figure 6. A root is a single node that has no prestor. In this graph, * Aggregation: The current speC|f|cat|on does not

we have a node A and a node B, two roots, andwleewill create a support aggregation functions, such as summing
new virtual root (blue circle "R") that points feettwo roots. up numeric values, counting, or average
computation.

The algorithm for determining a root has a comgiexi + Updates While the SPARQL standard supports
O(IVI+[EI), linear in the size of the graph (numbér data extraction from RDF graphs, constructs for
vertices and edges), since each phase visits estaty inserting new triples into RDF graphs and
and traverses every edge of the graph only'oncmrsl manipulating existing graphs (in the style of SQL
the fact that the graph must be traversed entirebrder Insert and Update clauses) are missing.
to determine whether it has a root or not, this glexity

« Paths expression SPARQL does not support the
specification of (constrained) path expressions,

D. Generating the model e.g. using a single SPARQL query it is impossible

The third step is divided into three sub-steps. fits¢ to compute the transitive closure of a graph or to
one consists in creating the table of all tripleg b extract all nodes that are reachable from a fixed
exploring the entire graph; the second one consists n(_)de.. -~
generating the table of resources and values for Views: In_tradm_onal query languages such as
RDF2SPIN but for RDF2NuSMYV, it generates the table SQL, logical views over the data play an
of association. The last one consists in produdimg Important role. They are crucial to both database
model representing the semantic graph written in design and access management. SPARQL does

is optimal.

PROMELA or in NuSMV languages. not currently support the specification of Ic_>gilcal
views over the data; however, that materialized
Table of triples- We will create a table consisting in views over the data can be extracted from the
resources, properties and values, by exploringRbé& input graph using the CONSTRUCT query form.
graph. In our RDF graph, the resource and the valae « Support for constraints: Mechanisms to assert
represented by nodes, and the property is an edge  and check for integrity constraints in the RDF
directed from the resource towards the value. abketof database are not covered in the current SPARQL
triples of the RDF graph is useful for the next-stép. specification. In SQL, such as integrity constraint
In this second sub-step, RDF2SPIN generates a table ~ &€ implicitly derived from primary and foreign
of resources and values, while RDF2NUSMV generates key specifications established in the schema
table of association. design p_hase. Beyond _that, it |s_p055|ble to esforc
user-defined constraints using the Create
e Table of resources and valuesBrowsing the Assertion statement.

table triples seen in the previous step, we attibu

a unique function for each resource and for each The complexity of SPARQL The analysis of
value. These functions are of proctype type. WeSPARQL complexity is not new: the preliminary
combine all these functions in a table called tablenvestigation of the combined complexity of SPAR®L
of resources and values. [35] shows that the evaluation problem for full SR@L

« Table of association- This table contains an expressions is PSpace-complete. As a consequent
identifier for each resource, property and value. enhancement of this initial analysis, [34] systeoatly

The model- In this last sub-step, we will write the explored the complexity of all expression and query

model in PROMELA language for the RDF2SPIN tool orfragmer_\ts, where a fragme_nt means a plass of esipres
in NUSMV language for the RDF2NUSMV tool or queries that can be built using a fixed subsethe

corresponding to the RDF graph that we want to ichec SPARQ.L operators. One central resul_t is th"’}t the
Evaluation problem for the operator Optional aldse

V. QUERYING THE MODELS OFSEMANTIC GRAPH a!ready PSpape—hard. The author further_ showstljimt
Before showing our approach that solves the tenhpor 'gh complexity 1S caus_ed by an “.”"rT“ted nestinfy o
logic queries on the semantic graph models, we wil pt!onal EXpressions. Still, as a key _|nS|ght, dperator .
present the limitations and the complexity of theolggg]a:_ ISThby f:gr thetmost comptlllcterl]tetd constlruu:t '
SPARQL query language, which represents the Semant§ Q IS observation Suggests that special rare
Web standard. query optimization should be taken in queries dontg

the operator Optional and will serve as a guidelarehe
The limitation of SPARQL. Given that SPARQL isa SPARQL optimization.
comparably young technology, the current W3C
specification [34] still has a couple of limitatnwhich
become obvious when comparing SPARQL to

In [36] the query optimizer can choose optimal join
orders even for complex queries, with a cost malizt
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includes statistical synopses for entire join pafibe  Definition 3 (solution). Consider a CTL (or LTL) query,
absence of a global schema and the diversity afigaee K a Kripke structure, ang a propositional formula. We
names pose major problems for the physical databaserite Y[¢] to denote the result of substitutimgfor the
design. In principle, one could rely on an autoktgnto  placeholder in the query. If K (o], then we say thap
materialize frequent join paths; however, in prgtithe s a solution tor in K. We denote the set of all solutions

evolving structure of the data and the variance angy g queryr in a Kripke structure K by sol(K)) = { ¢ | K
dynamics of the workload turn this problem into a|=y[q)).

complex task. The fine-grained modeling of RDF data

queries with a large number of joins will inhergrfibrm

a large part of the workload, but the join attrémitare ‘
much less predictable than in a relational settiRigis o e @
calls for specific choices of query processing atgms,

and for careful optimization of complex join quexie Figure 7. Example of a Kripke structure.

Extensions of SPARQL The work in [37] shows that o example, consider the Kripke structure K shawn
SPARQL — with some minor extensions — can be uged tFigure 7 and the CTL quem= A((av c) U AG?). It is

express a large class of constraints and to eXtra%tasyto see that b. d. anddbare solutions t in K
constraints from RDF graphs when these are spdcifie " '

using a predefined vocabulary for encoding constsai This query has one placeholder. [25] introduces the
query with multiple placeholders. If a query congi
multiple placeholders, it is transformed into a CTL
formula by substituting a propositional formula fach

Aggregation functions for SPARQL were proposed in
[38]. The latter work defines an extension of SPARQ
called SPARQL++, which embeds standard aggregat - : :
functions in Construct and Filter clauses. The waitbn ﬁlaceholder. Given a query with n placeholdershut

for this extension was to express schema mappin being the lattice of propositional formulas for thk
; ; aceholder, the set of all possible substitutiengiven
through SPARQL Construct queries. It is also wortrg\l& ! P 8

mentioning that some existing SPARQL engines, e.gl.Oy the cross product L = ... X L.

ARQ [39] and Virtuoso [40], have already implemehte  In our approach, we developed a new tool named STL
their own strategies to aggregation. Resolver. After transforming the semantic graplo iat
model (section V), we query this model by using th
a?emporal logic query. Figure 8 represents theitacture

of the STL Resolver tool.

Path expressions for SPARQL have been identified
an important feature in several research contiingt{41;
42; 43]. The common idea to all these approachés is
extend SPARQL by constructs that allow expressing

relations between nodes that go beyond what can b i

expressed by simple basic graph patterns, e.gitiraly
connected nodes. It is natural to assume that quefgr
(constrained) paths is an important feature incitnatext Replace the
of a graph structured data model like RDF. The apgih R
in [41] uses so-called regular path patterns, akin
regular expressions, to express complex path oelsti

Checking the

between nodes in RDF graphs. These regular patl temporal logic

patterns are used to extend SPARQL to a dialet¢ctal Niosiel Chacker
SPARQLeR $PARQL extended with Regular pathsn Yhile there Wigghere
[42] a SPARQL extension called nSPARQL

(Navigational SPARQL) is proposed, driven by thead S Cornm P R ——"—

of navigating through the RDF graph using a set of ] correct ‘ false j

predefined axes, very much in the style of the KRetes _
for navigating through XML documents. Another Figure 8. The STL Resolver tool.
reasonable approach is the PSPARQL (Path SPARQL)
[43] query language. It relies on an extended versif
RDF, called PRDF (Path RDF), where graph edges (i.
predicates in RDF triples) may carry regular exgigs
patterns as labels. The PSPARQL query languadeeis t
defined over such PRDF patterns.

First, we transform the temporal logic query into
temporal logic formula (i.e. there is no placeholhethe
Giemporal logic) by replacing the placeholder of theery
with a state of the semantic graph model. The query
placeholder can be replaced by a state of the gaaph
not by a propositional formula, as seen above.
In [7], a temporal logic query is presented agiagtin  Furthermore, if the temporal logic formula is viif by
which the placeholder appears exactly once. In outhe model checker, we store this state in the foetsuilts,
research work, a temporal logic query for querying else we replace the query placeholder with ancitate;
semantic graph can have multiple placeholders. Thafterwards, we repeat the verification with the elod
placeholder is represented with the special syrt@jol checker. When we have no state to replace in the
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'[S%TJE[)icc))rnaslh logic query, we return the set of all the Date/___> Febraary 26, 160
The_ Simplici_ty and the expressivity of the query Author - = »  Besancon

checking Previously, we saw that the SPARQL query Place bor

language is the Semantic Web standard but is is

characterized by complexity and limitations. We tlse —— Novel

temporal logic query to simplify the SPARQL queries Ninety-three

and to reach expressivity with the temporal logic

operators. Our STL resolver is based on the model P‘m i

checking techniques. In [36] the problem under Thems

discussion is to choose optimal joins for complex French

SPARQL queries. For example, note the SPARQL query

below: Figure 9. Example of an RDF graph.

SELECT ?x Due to our tools “RDF2SPIN” and “RDF2NuSMV”,

WHERE { the graph in the Figure 9 can be transformed into a
?x hasName ?y. model, written in PROMELA and respectively in
?y hasAdress ?z. NuSMV languages (see section IV) in order to be
?z hasAge “26” checked with the temporal logic or to be queriedthsy

} temporal logic queries. The query below searchiethal

states that follow the state “Ninty-three”:

This query selects the subject ?x that has the&g6. In SPARQL:

temporal logic query, the SPARQL query becomes as '

follows: SELECT ?XWHERE {“Ninety-Three” ?y ?x}

Temporal logic query
Eventually (Ninety-three> Next ?X)

Eventually (?x2> next next next 26)

Note that the query becomes simpler than in the
SPARQL query language, due to the use of the teahpor To answer this query, we use the STL Resolver which
logic operators. We use three Next operators (@@@) is based on the model checking algorithms. We ocepla
in the query because there are three nodes tosatites the placeholder of the temporal logic query withthe
node “26” representing the age. states of the graph one by one, and we check all th
properties with the model checker. The temporaiclig
expressed by an automaton that invalidates theepingp
the model of the RDF graph represented in Figuis 9
also expressed by an automaton. A synchronizeduptod
is built; it is an automaton recognizing the ingsmtion of

We noticed above the simplicity of the temporali¢og
query, and we will see below the expressivity du¢he
temporal logic operators. We saw above that the
SPARQL query language had a lot of limitations. For
instance, the path expression gives the path betivee

hich that the first f two languages. Then, if the language is empty there
resources, which means that the nirst resourcesesoa _Iis no execution sequence of the model that invedglthe
the nodes in order to reach the second resource.

. S X y:ﬂoperty, the STL Resolver stocks this state assalt:
express this character_|st|c with the temporal lagiery, Otherwise, the model checker returns a countereleamp
we use only the hegation of the two resources afehst representing an execution on the model that is not
Allowed by the property. In both cases, if thers mther
unreplaced states of the graph, we replace thethdn
temporal logic query, and we repeat the processritbes!

ove; else we return the set of all the soluticas,
follows:
! Eventually (ressource® Next Next Next {Victor_hugo, Novel, 1874, French}
ressource2)

that separate the resources. For example in thpaiein
logic below, we want to know the path of lengthethr
that separates the two resources (resourcel a
resource2):

If these states are replaced one by one in thedrshp

The  model checklng algorithms  return & logic query, we notice that the model checker alifays
counterexample that contains the path betweenwbe t return true

resources, as a true temporal logic formula has bee
negated. Another example is represented by the query below

. that searches the person (RDF resource) who wamsitvor
Example of Resolution The example below helps to “Besancon” on the “February 26, 1802"

better understand how the STL Resolver works. The

graph in Figure 9 describes the further affirmagi¢d]: SPARQL:

“Ninety-three is a novel by Victor Hugo publishenl i SELECT ?XWHERE

1874, whose theme is the French Revolution. Victor {?x Place Born “Besancgon”.
Hugo was born in February 26, 1802 in Besangon”. ?x Date “February 26, 1802}
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RDF2SPIN tool and almost 21 seconds using the
Temporal logic query RDF2NuSMV tool. Both transformation tools follow a
polynomial curve. In Figure 10, we see the size of
Eventually (’.I):Xbe Nextzl_?éelsgggon"?ﬁ Next converted semantic graphs from RDF to PROMELA
ebruary o, ) language with RDF2SPIN and NpSMV language with
We notice that in this query there are two placeedd RDF2NuSMV. We notice that the sizes of the
which are identical. The query result is the reseur PROMELA model are smaller than the NuSMV model.
“Victor Hugo”.

_ _ VII.  CONCLUSION
The following example cannot be expressed in a

) ) This paper presents a new technique for the semanti
iiﬁsrgé“qNLiJr?(?t/y-tmlaseggﬁziy“ggg:ngi E)ath between thE;raphs verification by using a model checker. Kmayvi

that the model checker does not understand thergema
I Eventually (Ninety-three> Next Next Besancon)  graphs, we developed two tools RDF2SPIN and
RDF2NUSMV to convert them into PROMELA and
NUSMV languages in order to be verified with the
temporal logic formulas. There are formulas that be
presented in LTL and not in CTL and vice versa. The
advantage of the NUSMV model checker is that the
{Ninety-three, Victor Hugo, February 26 1802} verification can be made with both linear time tgnd
computation tree logic formulas. We also use the
VI BENCHMARK temporal logic query to query the semantic graphieho
Now, we will be able to transform the RDF graphtwit We have implemented a query checker to resolve the
our tools "RDF2SPIN" and RDF2M$MV" into a model ~ query on the semantic graphs model.
in order to check each temporal logic formula aeel i§ it
is verified or not in the model with the SPIN and
NUSMV model checkers. In this way, we can verifg th
semantic graphs.

We use two Next operators because between th
resource “Besancon” and the resource “Ninety-three’
there is a length of two resources. The resulbisf query
is illustrated by the following path:

In our future work, we aim to convert the SPARQL
query language for RDF graphs into queries usirg th
operator of the temporal logic, in order to havbetter
verification of RDF graphs representing, for exaenphe
building industry. The SPARQL queries have a lot of
limitations, but due to the model checking techeiqwe
continue to find solutions for this gap.

Time of conversion

——ROFINUSMV  —@—RDF25PIN
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