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Abstract— Semantic interoperability problems have found 
their solutions due to the use of languages and techniques 
from the Semantic Web. The proliferations of ontologies 
and meta-information have improved the understanding of 
information and the relevance of search engine responses. 
However, the construction of semantic graphs is a source of 
numerous errors of interpretation or modeling, and 
scalability remains a major problem. The processing of 
large semantic graphs is a limit to the use of semantics in 
current information systems. The work presented in this 
paper is part of a new research at the border of two areas: 
the semantic web and the model checking. This line of 
research concerns the adaptation of model checking 
techniques to semantic graphs. We present a first method of 
converting RDF (Resource Description Framework) graphs 
into NµSMV and PROMELA (Process Meta Language) 
languages in order to be checked with the temporal logic 
property and queried by the temporal logic query.  
SPARQL (Simple Protocol and RDF query Language) 
query language is the standard for querying the Semantic 
Web, but it has a lot of limitations. Our primary goal with 
the temporal logic query is to overcome this limitation of the 
SPARQL query language. To reach this goal, three tools 
have been developed. The first two tools “RDF2SPIN” and 
“RDF2NµSMV” are used to transform the Semantic graph 
into a model written in PROMELA and respectively in 
NµSMV languages – in order to be understood by the SPIN 
and respectively the NµSMV model checkers. The STL 
Resolver tool is used to find solutions to the temporal logic 
query. It is based on the model checking algorithms.     

Index Terms— Semantic graph, model checking, temporal 
logic, temporal logic query, SPARQL.  

I.  INTRODUCTION 

W3C (World Wide Web Consortium) aims to 
standardize the representation and the exchange of 
information on the WEB. This objective should be able to 
make the information understandable for both automated 
processes and users. The homogenization of computer 
exchanges took place due to the introduction of the XML 
(eXtensible Markup Language) [1] standard. This 
standard has enabled the program to manipulate 
information through languages with hierarchical structure 
mark-up defined by grammars that are derived from the 
XML standard. However, this effort has not been able to 
improve the user’s understanding of information. Thus, 
new standards have been developed to enable the 
semantic representation of information in the form of 
XML-derived languages. This base is called Semantic 
Web standards and is usually represented as a stack of 

languages ranging from automatic processes oriented 
languages to languages representing more abstract 
concepts of formal semantics [2]. These languages are 
used to represent the semantics associated with 
information, whatever their form or structure. To allow 
the construction of a semantic graph, many tools have 
been developed, such as Annotea [3], which is a project of 
the W3C that specifies the infrastructure for the 
annotation of Web documents. RDF represents the main 
format used in the annotation and the types of documents 
that can be annotated are HTML (Hypertext Markup 
Language) or XML based documents. However, none 
provides the functionality to verify the consistency of 
semantics or to reduce error annotations.   

This paper proposes a new way to check these semantic 
graphs by using the model checking technique in order to 
reduce errors in annotation, for example, and make the 
data more relevant. The model checking is an automatic 
verification technique which has been applied to many 
cases in industry, in the Netherlands for instance; [4] has 
revealed several serious flaws in the design of the control 
system of a barrier protection in the main port of 
Rotterdam against floods. The large "Intel" manufacturing 
company processor has used the model checking to detect 
the bug in its Pentium II processor that caused a loss of 
475 million dollars damage to the reputation of Intel. 
Finally, the model checking succeeded in finding an error 
in the handling baggage system at the Denver airport 
(USA), which delayed opening its doors for nine months 
and caused a loss of 1.1 million dollars per day. 

The model checking is a powerful tool for the system 
verification because it can reveal errors that were not 
discovered by other formal methods, such as testing or 
simulation. The model checking uses the temporal logic to 
describe the properties checking the system model. As we 
have seen in the examples above, the model checking can 
handle complex problems with large amounts of 
information, stored as a graph, in order to verify critical 
systems. In comparison, in the semantic web, the use of 
graphs is pervasive and serious problems of scalability 
appear [5]. Thus, it is appropriate to use the algorithms 
developed for the model checking in the field of the 
Semantic Web. 

Pnueli pioneered the use of temporal logic as formal 
language for reasoning about reactive systems [6]. The 
temporal logic allows the model checking to represent the 
property that needs to be checked. One limitation of the 
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model checking is that it gives simple “yes or no” 
answers: either the system under study satisfies the 
temporal formula, or it does not. [7] presents the first 
research work on the use of the temporal logic queries as 
an extension of the model checking, in order to help the 
user understand the system behaviors, because of the fact 
that the use of the model checking has not been 
emphasized enough in the literature yet. A temporal query 
is a temporal formula where the special symbol “?” occurs 
as a placeholder. In [7], a temporal logic query can have at 
most one placeholder, but in our research work, a query 
can have at least one placeholder. 

In this paper, we introduce a new method to qualify and 
query a semantic graph by using the formal method and 
especially the model checking. We developed tools to 
convert semantic graphs into a model understood by the 
model checker. We introduce a new language based on 
the operators of the temporal logic to query this model by 
using the model checker algorithms. We have 
implemented a prototype STL Resolver query engine.   

A survey of popular RDF query languages conducted 
by the W3C identified more than 20 languages that are 
either under development or have been implemented [8]. 
Some in the lines of traditional database query languages 
(e.g. SQL (Structured Query Language), OQL (Object 
Query Language)), others based on logic and rule 
languages. Some of them are: RQL (RDF Query 
Language) [9] is a typed language for querying RDF 
repositories; SquishQL (Simple RDF Query Language) is 
a SQL-style query language that permits simple graph 
navigation in RDF sources; RDQL (RDF Data Query 
Language) [10] is an implementation of SquishQL; 
RDFQL (RDF Query Language) is a statement-based 
query language with a SQL-style to perform queries, 
inference operations, and construction of views on RDF 
structured data; TRIPLE [11] is a language that allows 
rule definition, inference and transformation of RDF 
models; Notation 3 (N3) [12] provides a text-based syntax 
for RDF; VERSA is a graph-based language with some 
support for rules; SeRQL (Sesame RDF Query Language) 
combines characteristics of languages like RQL, RDQL, 
N-Triple, N3 plus some new features; RXPath (Regular 
XPath) is a query language based on XPath (XML Path 
Language) [13, 14].  The W3C SPARQL [15] is an RDF 
query language designed to meet such requirements and 
design objectives mentioned previously. It defines a query 
language with a SQL-like style, where a simple query is 
based on query patterns, and query processing consists of 
binding of variables to generate pattern solutions (graph 
pattern matching). SPARQL is still a work in progress. 

Our research primary goal is to define a powerful and 
expressive query language for semantic graphs. The other 
rather competing goal is to keep the query language 
simple enough so that it could be easily built and 
understood. 

The rest of this paper is organized as follows. In 
Section 2 we present an overview of the semantic graphs, 
especially the structure of the RDF graphs and the 
SPARQL query language, the model checking, the 
temporal logic and the temporal logic queries. Then, 
Section 3 presents the related work of our approach. 

Section 4 refers to the mapping of the semantic graphs 
into models, and the ScaleSem approach. Section 5 
presents our tool that solves the query checking using a 
semantic graph model. Finally, we end with a benchmark 
followed by a conclusion. 

II. BACKGROUND  

A. Semantic web 

The semantic Web aims at organizing and structuring the 
huge quantity of information present on the Net. It 
consists of a semi-structured language based on XML. 
Figure 1 shows one of the versions of the organization in 
layers suggested by the W3C. Each layer is built upon the 
layers below it. Thus, the whole set of layers uses the 
XML syntax. This allows taking advantage of all 
technologies developed around XML: XML Schema, 
tools for exploiting XML resources (JAVA libraries, etc.), 
XML databases. XML stems from the SGML (Standard 
Generalized Markup Language) language, but contrary to 
HTML, the structure and the presentation of XML 
documents are conceptually separated. XML is a language 
which uses tags as a universal representation format of the 
data. An XML document contains at the same time the 
data and the indications about the role that these data play. 
As a result, the same contents can be presented in various 
forms according to the role of the user in the AEC 
(Architecture Engineering Construction) project. XML is 
the keystone of information exchanges on the Web. 
Unfortunately, XML is insufficient to describe all the 
semantics required in the Web.   

 
Figure 1. Stack of languages of the Semantic Web. [2] 

This paper is based on the RDF layer of the Semantic 
Web. RDF is a language developed by the W3C to bring a 
semantic layer to the Web [16]. It allows the connection 
of Web resources using directed labeled edges. The 
structure of RDF documents is a complex labeled directed 
graph.  An RDF document is a set of triples <subject, 
predicate, object>. In addition, the predicate (also called 
property) connects the subject (resource) to the object 
(value). Thus, the subject and the object are nodes of the 
graph connected by an edge directed from the subject 
towards the object. The nodes and the edges belong to 
“resource” types. A resource is identified by a Uniform 
Resource Identifier [17]. 
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Figure 2.  RDF triple. 

The declarations can also be represented as a graph, the 
nodes as resources and values, and the arcs as properties. 
The resources are represented in the graph by circles; the 
properties are represented by directed arcs and the values 
by a box (a rectangle), see Figure 2. Values can become 
resources if they are described by additional properties. 
For example, when a value is a resource in another triplet, 
the value is represented by a circle [18]. 

The RDF graphs considered here are represented as 
XML verbose files, in which the information is not stored 
hierarchically (so-called graph point of view). These RDF 
graphs are not necessarily connected, meaning they may 
have no root vertex from which all the other vertices are 
reachable. To handle the RDF graphs, several designs and 
implementations of RDF query languages have been 
proposed. In 2004, the RDF Data Access Working Group, 
part of the W3C Semantic Web Activity, released a first 
public working draft of a query language for RDF, called 
SPARQL [15]. Since then, SPARQL has been rapidly 
adopted as the standard for querying the Semantic Web 
data. In January 2008, SPARQL became a W3C 
Recommendation. SPARQL queries [19] are pattern 
matching queries on triples that constitute an RDF data 
graph. The official SPARQL query introduces four 
different query forms:  

• SELECT query, which returns the value of the 
variable, which may be bound by a matching 
query pattern;   

• ASK query, which returns true if a given query 
matches and false if not;  

• CONSTRUCT query, which returns an RDF 
graph by substituting the values in given 
templates;  

• DESCRIBE query, which returns an RDF graph 
that defines the matching resource.  

B. Model checking and temporal logic Overview 

Formal methods [4] offer great potential for an early 
inclusion of verification in the design process, providing 
technical audit more efficiently and reduce the verification 
time. Formal methods are highly recommended 
techniques for the software development. They have led to 
the development of some very promising verification 
techniques that facilitate early detection of defects. Two 
types of formal verification methods can be distinguished: 
methods based on the proof of the theorem and the 
methods based on models. 

Methods based on the proof of the theorem verify the 
correctness of systems by properties in a mathematical 
theory. These properties are proven with the highest 
possible precision using tools such as theorem provers and 
proof checkers.  Theorems proofs are also called proof 
assistants.   

Methods based on models describe the possible system 
behavior in a mathematical precise and unambiguous 
manner. The system models are accompanied by 

algorithms that systematically explore all states of the 
system model. This provides the basis for a whole range 
of verification techniques ranging from an exhaustive 
exploration “Model checking” to experiments with a 
restrictive set of scenario in the model “Simulation." 
Simulation allows the user to study the system behavior. It 
is less suited to detect errors because it is difficult to 
generate all possible scenarios of the system and to 
simulate them all. Model checker is a verification 
technique that explores all possible system states. In this 
way, it can be shown that a given system model truly 
satisfies a certain property.     

The model checker examines all relevant system states 
in order to check whether they satisfy the desired 
property. The model checker gives a counter example that 
indicates how the model can violate the property.  With 
the help of a simulator, the user can locate the error and 
adapt the model or the property to prevent the violation of 
property, as shown in Figure 3. 

 
 

Figure 3. The model checking approach. 

For our approach, we will use the model checking to 
analyze semantic networks. We use both linear time logic 
“LTL” and computation tree logic “CTL” for describing 
the specifications of the properties to be verified with the 
model checking. 

Algorithm: Model-checking 
Begin 
 While stack ≠ nil do 
  P := top (stack);  
  while ¬  satisfied (p) then 
   Refine the model, or property; 

 
Else if satisfied (p) then  

P := top (stack); 
 
Else // out of memory  

Try to reduce the model; 
 End  
End  
 
The concepts of temporal logic were used for the first 

time by Pnueli [6] in the specification of formal 
properties that are fairly easy to use. The operators are 
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very close in terms of natural language. The 
formalization in temporal logic is simple enough 
although this apparent simplicity therefore requires 
significant expertise. In [20], the temporal logic allows 
representing and reasoning about certain properties of the 
system, so it is well-suited for the systems verification. 
There are two main temporal logics, that is linear time 
and branching time. In linear time temporal logic, each 
execution of the system is independently analyzed. In this 
case, a system satisfies a formula f, if f holds along every 
execution. The branching time combines all possible 
executions of the system into a single tree. Each path in 
the tree is a possible representation of the system 
execution. 

• Linear Temporal Logic or LTL  allows 
representing the behavior of reactive systems 
using properties that describe the system in which 
time proceeds linearly. Clearly, we specify the 
expected behavior of a system, by specifying the 
only possible future as a sequence of actions that 
follow; LTL uses for that temporal operators: X 
(Next), F (Finally or Eventually), G (Always), U 
(Until).  

• Computation Tree Logic or CTL  suggests 
several possible futures from a system state rather 
than having a linear view of the considered 
system. The operators of CTL are obtained by 
adding A (for any execution) or E (there is an 
execution) before the operators of linear temporal 
logic that are: AX φ (all successor states 
immediately satisfy φ), EX φ (there is an 
execution whose next state satisfies φ), AF φ (for 
any execution, there is a state where φ is true), EF 
φ (there is an execution, leading to a true state φ), 
AG φ (for any execution, φ is always true), EG φ 
(there is an execution, where φ is always true), 
AφUψ (for any execution φ is true until ψ is true), 
EφUψ (there is an execution in which φ is true 
until ψ is true). 

 
The model checking uses a kripke [21] structure to 

represent the behavior of the system. Kripke structures are 
an abstract representation of the behavior of an algorithm 
whose certain properties must be tested. A Kripke 
structure is used to represent the relation between states of 
the system to be checked. It is a directed graph where 
nodes, called states, are labeled by states of the system, as 
seen in Figure 3.  

C. Temporal logic queries  

Temporal logic queries are a generalization of the 
model checking [22, 23, 24], which allows system 
properties not only to be verified, but also to be computed 
in a systematic manner. A temporal logic query is an 
incomplete temporal logic specification containing a 
special placeholder symbol “?”. Intuitively, the query asks 
for those system properties which yield a correct 
specification when inserted into the query. [25, 26] define 
two types of queries, queries with one placeholder and 
queries with multiple placeholders.   

Definition  1. A temporal logic query with a single 
placeholder ?1, denoted φ[?1], is an expression containing 
a symbol ?1, where replacing ?1 by a propositional formula 
yields a CTL or LTL formula. 

 
Definition  2. A temporal logic query with multiple 
placeholders ?1,…,?n, denoted φ[?1,…?n]is an expression 
containing symbols ?1,…?n where replacing ?1,…?n by a 
propositional formula yields a CTL or LTL formula.  
 

 
Figure 4. An example of Kripke structure: a traffic light.  

Note that the second definition allows multiple 
occurrences of the same placeholder symbol in the query. 
To understand better, let us illustrate this with an 
example. Assume that we are currently designing a traffic 
light system, as in Figure 4 (The traffic light alternates in 
the right order and without blocking), and rely on the 
model checking to verify if it satisfies a typical temporal 
specification such as: 
 

G(orange � F red)      (S) 
 

stating that “all orange lights are eventually followed by 
red lights”. The model checking will provide a yes-or-no 
answer: either the system satisfies (S) or it does not. 
Temporal queries lead to a finer analysis of the system. 
The query 

G(? � F red)    (Q) 
 
asks for conditions that always lead to red. Computing 
solutions for (Q), in our system, will tell us, among other 
things, whether the system satisfies its specification: (S) 
is satisfied iff the orange light is a solution for (Q). 
However, it will tell us more. For example, if (S) is not 
satisfied, answering (Q) can lead to the discovery that, in 
reality, the property that our system satisfies is G(green 
�F orange).   

III.  RELATED WORK 

In this section, we briefly discuss some of the 
researches related to the verification and the query of the 
Semantic graphs using the model checking. There are very 
few researches about the use of the model checking 
method to qualify a Semantic graph. On the contrary, 
there are many more researches on the verification of the 
Web application. The work in [27] proposes a new way of 
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converting an RDF graph into the BCG (Binary Coded 
Graph) format that was used in the CADP (Construction 
and Analysis of Distributed Processes) toolbox. The latter 
represents a verification toolbox for asynchronous 
concurrent systems. The toolbox accepts as input several 
languages and all of them are compiled into LTS (Labeled 
Transition System), which is a state/transition graph 
representing the behavior of concurrent systems. CADP 
provides several representations for LTS; one of these 
representations is the BCG format.  

There are few research works on the study of the use of 
the temporal logic to query a system. We are the first to 
use the temporal logic to query the semantic graph 
models. The temporal logic query was introduced by 
William Chan [7] in order to speed up design 
understanding by discovering properties unknown yet. 
[25, 26] show that query checking is applicable to a 
variety of model exploration tasks, ranging from invariant 
computation to test case generation. They illustrate it by 
using a CCS (Cruise Control System), which is 
responsible for keeping an automobile traveling at a 
certain speed. In their study, the tool they created searches 
all the propositional formula to hold the temporal logic 
query, while in our research work, our tool searches only 
the state that holds the temporal logic query, as explained 
in Figure 4. The difference between the two works 
consists in the states content. [28] studies the problem of 
computing all minimal solutions to arbitrary temporal 
queries over arbitrary Kripke structures and [29] presents 
a tool that finds the solutions to any CTL query.   

In the work of Chan, a temporal logic query can have 
only one placeholder while in [25, 26, 29, 29], it can have 
multiple placeholders. Chan’s temporal logic queries have 
a unique representation, using computation tree logic 
operators, while the research in [30] tries to extend Chan’s 
work to other temporal logic formulas, such as CTL*, 
which includes the linear temporal logic. Our resolution 
tool can have multiple placeholders in the temporal logic 
query.     

IV.  THE SCALESEM APPROACH 

This section details our approach which consists in 
transforming semantic graphs into models in order to be 
verified by the model checker. For this, we have 
developed two tools called “RDF2SPIN” and 
“RDF2NµSMV”, that transform semantic graphs into 
PROMELA and respectively into NµSMV [31] 
languages.  

We use SPIN [32] and NµSMV as model checkers to 
check the model of semantic graphs. We want to compare 
them in terms of capabilities. SPIN is a software tool for 
verifying system models. The system is described in a 
language model called PROMELA. NµSMV is the 
amelioration of SMV model checker, working on the 
same simple principles as SMV. SPIN verifies the 
correctness of properties expressed in linear time logic; on 
the other side, NµSMV verifies the properties in both 
linear time logic and computation tree logic.       

 
Figure 5. The ScaleSem architecture.  

In Figure 5, we present the architecture of our 
approach. We can get the semantic graph (RDF) and its 
description in temporal logic from a natural language 
description, as shown in Figure 9 of section V. We divide 
this architecture in two phases. The first phase concerns 
the transformation of the semantic graph into a model 
using our tools RDF2SPIN and RDF2NµSMV. There are 
three steps in this transformation. The first step is to 
explore the entire RDF graph to obtain the triples table. 
The second step is to determine a root for the graph, and 
the last step is to write the model that represents the 
semantic graph in the PROMELA or NµSMV languages. 
The second phase concerns the verification of properties 
expressed in temporal logic on the model using the SPIN 
or the NµSMV model checkers. The choice of the model 
checker depends on the tool that one uses to convert the 
semantic graphs. For example, when using RDF2SPIN, 
one must use the model checker SPIN to check the 
model.  

A. Introducing RDF 

The RDF graphs [18] considered here are represented 
as XML verbose files, in which the information is not 
stored hierarchically (the so-called graph point of view). 
These RDF graphs, that represent, in fact, the semantic 
model of an RDF file, are not necessarily connected, 
meaning they may have no root vertex from which all the 
other vertices are reachable. The RDF graph 
transformation into a model is articulated in three steps: 
exploring the RDF graph, holding election of the root 
vertex and generating the model of the semantic graph.  

B. Exploring RDF graph 

In order to exploit the RDF graphs by using SPIN or 
NµSMV, we therefore have to determine whether they 
have a root vertex, by analyzing RDF triples, and if this is 
not the case, we must create a new root vertex by taking 
care to keep the size of the resulting graph as small as 
possible. 

We achieve this by appropriate explorations of the 
RDF graphs, as explained below. Let us consider that an 
RDF graph is represented as a couple (V, E), where V is 

the set of vertices and VE ⊆ x V is the set of edges. For 
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a vertex x, we note =)(xE { Vy∈ | Eyx ∈),( } the 

set of its successor vertices. This corresponds to the 
classical data structure for representing graphs in 
memory, consisting of an array indexed by the vertices 
and containing in each entry the list of successor vertices 
of the corresponding vertex. There are several algorithms 
to traverse a large graph, of these basic algorithms 
include the best known, depth-first search (DFS) and 
breadth-first search (BFS). We use the depth-first search 
algorithm, illustrated below, to explore the graph, 
knowing that the breadth-first algorithm also works in 
this context. We considered here an iterative variant of 
DFS, which makes use of an explicit stack, rather than 
the recursive variant given in [33]; this is required in 
practice to avoid overflows of the system call stack when 
the algorithm is invoked for exploring large graphs. 

Algorithm: procedure Dfs (x): 
begin 
  visited(x) :=  true;  
   // vertex x becomes visited 
  p(x) := 0; // start exploring its successors 
  stack := push(x, nil); 
 while stack ≠ nil do 
y := top(stack); 
if p(y) < |E (y)| then  
 // y has some unexplored successors 
 z := E (y) ; 
    p(y) := p(y)+1;  
    // take the next successor of y 
    if visited (z) then 
    visited(z) := true;  // visit it 
    p(z) := 0;//start exploring its successors 
    stack := push(z, stack) 
    endif  
   else //all successors of y were explored 
   stack := pop(stack) 
  endif 
 end 
end 

C. Determining a Root Vertex  

If the RDF graph has no principal vertex root but 
multiple roots, we must create a new root whose 
successors are all the other roots already existing in the 
graph, but this will increase the number of edges. We 
look forward to doing this by adding as few edges as 
possible. A vertex x of a directed graph is a partial root if 
it cannot be reached from any other vertex of the graph. 
If the graph contains only one partial root, all other 
vertices of the graph can be reached from the root, 
otherwise there would be other roots in the partial graph. 
If the graph has multiple partial roots, the most 
economical way to provide a root is to create a new 
record with all the roots as a partial successor: this will 
add to the graph a minimum number of edges. We 
compute the set of partial roots in two phases, each one 
consisting in successive explorations of the graph. The 
first phase identifies a set of candidate partial roots, and 
the second one refines this set in order to determine the 
partial roots of the graph. 

Remark: a property must always have a resource and a 
value; the resource should never be a value with the same 
predicate, i.e. a loop in the graph. 

Algorithm: procedure RootElection():  // 
precondition: ∀ x ∈ V.visited(x) = false 
Begin // first phase 
 root_list := nil; 
 forall  x ∈ V do 
  if visited(x) then 
   Dfs(x); 
   root_list := cons(x, root_list) 
  endif 
 endfor; 
//second phase 

 if |root_list|= 1 then 
  root := head(root_list)  
   // the single partial root is the global root 

  else 

  forall x ∈ V do  visited(x):= false;       
  endfor; 
  forall x ∈ root_list do  
   // reexplore partial roots in reverse order 
   if visited(x) then Dfs(x) 
   else 
    root_list := root_list \ {x}  
     // partial root is not a real one 
   endif 
  endfor; 
  if |root_list| = 1 then 
   root := head(root_list)  
    // a single partial root is the global root 

   else 
   root := new_node();  
    // new root predecessor of the partial roots 

   E(root) := root_list 
  endif 
 endif 
 

The first phase explores all the vertices of the graph, 
and inserts in root_list all vertices that have no 
predecessor. If root_list contains a single vertex, it means 
that it represents the global root of the graph since all the 
other vertices are accessible from it, and it is useless to 
go to the second phase. Otherwise, any vertex contained 
in root_list could also be a root of the graph: the goal of 
the second phase is to determine the root of the global 
graph among the partial roots. 

The second phase performs a new wave of exploration 
of the roots contained in the partial root_list in the 
reverse order they were inserted in the list. If a root in the 
root_list is to be visited by a partial root, it is removed 
from the list because it is not a partial root. At the end of 
this phase, all partial roots of the graph are present in the 
root_list. Indeed, each vertex is unreachable from the 
partial roots which were explored during the second 
phase. A new root is created, as in Figure 6, having as 
successor all the partial roots of the root_list, which 
ensures that all vertices of the graph are accessible from 
the new root. Therefore, such a summit is inaccessible 
from other nodes of the graph. 

)( yp

¬

¬

¬
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Figure 6. A root is a single node that has no predecessor. In this graph, 
we have a node A and a node B, two roots, and then we will create a 
new virtual root (blue circle "R") that points to the two roots. 

The algorithm for determining a root has a complexity 
O(|V|+|E|), linear in the size of the graph (number of 
vertices and edges), since each phase visits every state 
and traverses every edge of the graph only once. Given 
the fact that the graph must be traversed entirely in order 
to determine whether it has a root or not, this complexity 
is optimal. 

D. Generating the model 

The third step is divided into three sub-steps. The first 
one consists in creating the table of all triples by 
exploring the entire graph; the second one consists in 
generating the table of resources and values for 
RDF2SPIN but for RDF2NµSMV, it generates the table 
of association. The last one consists in producing the 
model representing the semantic graph written in 
PROMELA or in NµSMV languages. 

Table of triples - We will create a table consisting in 
resources, properties and values, by exploring the RDF 
graph. In our RDF graph, the resource and the value are 
represented by nodes, and the property is an edge 
directed from the resource towards the value. The table of 
triples of the RDF graph is useful for the next sub-step. 

In this second sub-step, RDF2SPIN generates a table 
of resources and values, while RDF2NµSMV generates a 
table of association. 

• Table of resources and values - Browsing the 
table triples seen in the previous step, we attribute 
a unique function for each resource and for each 
value. These functions are of proctype type. We 
combine all these functions in a table called table 
of resources and values. 

• Table of association – This table contains an 
identifier for each resource, property and value.    

The model - In this last sub-step, we will write the 
model in PROMELA language for the RDF2SPIN tool or 
in NµSMV language for the RDF2NµSMV tool, 
corresponding to the RDF graph that we want to check. 

V. QUERYING THE MODELS OF SEMANTIC GRAPH 

Before showing our approach that solves the temporal 
logic queries on the semantic graph models, we will 
present the limitations and the complexity of the 
SPARQL query language, which represents the Semantic 
Web standard.  

The limitation of SPARQL. Given that SPARQL is a 
comparably young technology, the current W3C 
specification [34] still has a couple of limitations, which 
become obvious when comparing SPARQL to 

established query languages such as SQL or XQuery 
(XML Query Language). The following list surveys 
important features and constructs that are (to date) 
missing in SPARQL. 

 
• Aggregation: The current specification does not 

support aggregation functions, such as summing 
up numeric values, counting, or average 
computation. 

• Updates: While the SPARQL standard supports 
data extraction from RDF graphs, constructs for 
inserting new triples into RDF graphs and 
manipulating existing graphs (in the style of SQL 
Insert and Update clauses) are missing. 

• Paths expression:  SPARQL does not support the 
specification of (constrained) path expressions, 
e.g. using a single SPARQL query it is impossible 
to compute the transitive closure of a graph or to 
extract all nodes that are reachable from a fixed 
node.  

• Views: In traditional query languages such as 
SQL, logical views over the data play an 
important role. They are crucial to both database 
design and access management. SPARQL does 
not currently support the specification of logical 
views over the data; however, that materialized 
views over the data can be extracted from the 
input graph using the CONSTRUCT query form.  

• Support for constraints: Mechanisms to assert 
and check for integrity constraints in the RDF 
database are not covered in the current SPARQL 
specification. In SQL, such as integrity constraints 
are implicitly derived from primary and foreign 
key specifications established in the schema 
design phase. Beyond that, it is possible to enforce 
user-defined constraints using the Create 
Assertion statement. 

 
The complexity of SPARQL. The analysis of 

SPARQL complexity is not new: the preliminary 
investigation of the combined complexity of SPARQL in 
[35] shows that the evaluation problem for full SPARQL 
expressions is PSpace-complete. As a consequent 
enhancement of this initial analysis, [34] systematically 
explored the complexity of all expression and query 
fragments, where a fragment means a class of expressions 
or queries that can be built using a fixed subset of the 
SPARQL operators. One central result is that the 
Evaluation problem for the operator Optional alone is 
already PSpace-hard. The author further shows that this 
high complexity is caused by an unlimited nesting of 
Optional expressions. Still, as a key insight, the operator 
Optional is by far the most complicated construct in 
SPARQL. This observation suggests that special care in 
query optimization should be taken in queries containing 
the operator Optional and will serve as a guideline for the 
SPARQL optimization. 

In [36] the query optimizer can choose optimal join 
orders even for complex queries, with a cost model that 

A

B
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includes statistical synopses for entire join paths. The 
absence of a global schema and the diversity of predicate 
names pose major problems for the physical database 
design. In principle, one could rely on an auto-tuning to 
materialize frequent join paths; however, in practice, the 
evolving structure of the data and the variance and 
dynamics of the workload turn this problem into a 
complex task. The fine-grained modeling of RDF data 
queries with a large number of joins will inherently form 
a large part of the workload, but the join attributes are 
much less predictable than in a relational setting. This 
calls for specific choices of query processing algorithms, 
and for careful optimization of complex join queries. 

Extensions of SPARQL. The work in [37] shows that 
SPARQL – with some minor extensions – can be used to 
express a large class of constraints and to extract 
constraints from RDF graphs when these are specified 
using a predefined vocabulary for encoding constraints. 

Aggregation functions for SPARQL were proposed in 
[38]. The latter work defines an extension of SPARQL, 
called SPARQL++, which embeds standard aggregate 
functions in Construct and Filter clauses. The motivation 
for this extension was to express schema mappings 
through SPARQL Construct queries. It is also worth 
mentioning that some existing SPARQL engines, e.g. 
ARQ [39] and Virtuoso [40], have already implemented 
their own strategies to aggregation. 

Path expressions for SPARQL have been identified as 
an important feature in several research contributions [41; 
42; 43]. The common idea to all these approaches is to 
extend SPARQL by constructs that allow expressing 
relations between nodes that go beyond what can be 
expressed by simple basic graph patterns, e.g. transitively 
connected nodes. It is natural to assume that querying for 
(constrained) paths is an important feature in the context 
of a graph structured data model like RDF. The approach 
in [41] uses so-called regular path patterns, akin to 
regular expressions, to express complex path relations 
between nodes in RDF graphs. These regular path 
patterns are used to extend SPARQL to a dialect called 
SPARQLeR (SPARQL extended with Regular paths). In 
[42] a SPARQL extension called nSPARQL 
(Navigational SPARQL) is proposed, driven by the idea 
of navigating through the RDF graph using a set of 
predefined axes, very much in the style of the XPath axes 
for navigating through XML documents. Another 
reasonable approach is the PSPARQL (Path SPARQL) 
[43] query language. It relies on an extended version of 
RDF, called PRDF (Path RDF), where graph edges (i.e. 
predicates in RDF triples) may carry regular expression 
patterns as labels. The PSPARQL query language is then 
defined over such PRDF patterns. 

In [7], a temporal logic query is presented as a string in 
which the placeholder appears exactly once. In our 
research work, a temporal logic query for querying a 
semantic graph can have multiple placeholders. The 
placeholder is represented with the special symbol “?”. 

Definition 3 (solution). Consider a CTL (or LTL) query, 
K a Kripke structure, and φ a propositional formula. We 
write ϒ[φ] to denote the result of substituting φ for the 
placeholder in the query. If K |= ϒ[φ], then we say that φ 
is a solution to ϒ in K. We denote the set of all solutions 
to a query ϒ in a Kripke structure K by sol(K, ϒ) = { φ | K 
|= ϒ[φ]}.   
 

 
Figure 7. Example of a Kripke structure. 

For example, consider the Kripke structure K shown in 
Figure 7 and the CTL query ϒ= A((a ˅ c) U AG?). It is 
easy to see that b, d, and b ˄d are solutions to ϒ in K.  

This query has one placeholder. [25] introduces the 
query with multiple placeholders. If a query contains 
multiple placeholders, it is transformed into a CTL 
formula by substituting a propositional formula for each 
placeholder. Given a query with n placeholders, with Li 
being the lattice of propositional formulas for the ith 
placeholder, the set of all possible substitutions is given 
by the cross product L = L1 x … x Ln.  

In our approach, we developed a new tool named STL 
Resolver. After transforming the semantic graph into a 
model (section IV), we query this model by using the 
temporal logic query.  Figure 8 represents the architecture 
of the STL Resolver tool. 

 
Figure 8. The STL Resolver tool. 

First, we transform the temporal logic query into 
temporal logic formula (i.e. there is no placeholder in the 
temporal logic) by replacing the placeholder of the query 
with a state of the semantic graph model. The query 
placeholder can be replaced by a state of the graph and 
not by a propositional formula, as seen above. 
Furthermore, if the temporal logic formula is verified by 
the model checker, we store this state in the set of results, 
else we replace the query placeholder with another state; 
afterwards, we repeat the verification with the model 
checker. When we have no state to replace in the 
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temporal logic query, we return the set of all the 
solutions.     

The Simplicity and the expressivity of the query 
checking. Previously, we saw that the SPARQL query 
language is the Semantic Web standard but is 
characterized by complexity and limitations. We use the 
temporal logic query to simplify the SPARQL queries 
and to reach expressivity with the temporal logic 
operators. Our STL resolver is based on the model 
checking techniques.  In [36] the problem under 
discussion is to choose optimal joins for complex 
SPARQL queries. For example, note the SPARQL query 
below:  

SELECT ?x 
WHERE { 

?x hasName ?y. 
?y hasAdress ?z. 
?z hasAge “26” 

} 
 
This query selects the subject ?x that has the age of 26. In 
temporal logic query, the SPARQL query becomes as 
follows: 
 

Eventually (?x � next next next 26) 
 

Note that the query becomes simpler than in the 
SPARQL query language, due to the use of the temporal 
logic operators. We use three Next operators (Section 2) 
in the query because there are three nodes to access the 
node “26” representing the age. 

We noticed above the simplicity of the temporal logic 
query, and we will see below the expressivity due to the 
temporal logic operators. We saw above that the 
SPARQL query language had a lot of limitations. For 
instance, the path expression gives the path between two 
resources, which means that the first resource crosses all 
the nodes in order to reach the second resource. To 
express this characteristic with the temporal logic query, 
we use only the negation of the two resources and at least 
one Next operator which represents the number of nodes 
that separate the resources. For example in the temporal 
logic below, we want to know the path of length three 
that separates the two resources (resource1 and 
resource2): 

! Eventually (ressource1 � Next Next Next 
ressource2) 

The model checking algorithms return a 
counterexample that contains the path between the two 
resources, as a true temporal logic formula has been 
negated. 

Example of Resolution. The example below helps to 
better understand how the STL Resolver works. The 
graph in Figure 9 describes the further affirmations [44]:  

“Ninety-three is a novel by Victor Hugo published in 
1874, whose theme is the French Revolution. Victor 
Hugo was born in February 26, 1802 in Besançon”. 

 
Figure 9. Example of an RDF graph.  

Due to our tools “RDF2SPIN” and “RDF2NµSMV”, 
the graph in the Figure 9 can be transformed into a 
model,  written in PROMELA and respectively in 
NµSMV languages (see section IV) in order to be 
checked with the temporal logic or to be queried by the 
temporal logic queries. The query below searches all the 
states that follow the state “Ninty-three”: 

SPARQL: 

SELECT ?x WHERE  {“Ninety-Three” ?y  ?x}  

Temporal logic query: 

Eventually (Ninety-three � Next ?x) 

To answer this query, we use the STL Resolver which 
is based on the model checking algorithms. We replace 
the placeholder of the temporal logic query with all the 
states of the graph one by one, and we check all the 
properties with the model checker. The temporal logic is 
expressed by an automaton that invalidates the property; 
the model of the RDF graph represented in Figure 9 is 
also expressed by an automaton. A synchronized product 
is built; it is an automaton recognizing the intersection of 
two languages. Then, if the language is empty, i.e. there 
is no execution sequence of the model that invalidates the 
property, the STL Resolver stocks this state as a result. 
Otherwise, the model checker returns a counterexample 
representing an execution on the model that is not 
allowed by the property. In both cases, if there rest other 
unreplaced states of the graph, we replace them in the 
temporal logic query, and we repeat the process described 
above; else we return the set of all the solutions, as 
follows: 

{Victor_hugo, Novel, 1874, French} 

If these states are replaced one by one in the temporal 
logic query, we notice that the model checker will always 
return true. 

Another example is represented by the query below 
that searches the person (RDF resource) who was born in 
“Besançon” on the “February 26, 1802".  

SPARQL: 

SELECT ?x WHERE 
{?x Place Born  “Besançon” . 
 ?x Date “February 26, 1802”} 

 Victor 

Besançon  

Ninety-three 

1874  

Novel 

February 26, 1802 

French 
revolution 

is 

Published 

Theme 

Author 

Date 

Place born 
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Temporal logic query: 

Eventually (?x � Next Besançon ^ ?x � Next 
February 26,1802) 

We notice that in this query there are two placeholders 
which are identical. The query result is the resource 
“Victor Hugo”.  

The following example cannot be expressed in a 
SPARQL query. This query gives the path between the 
resource “Ninety-three” and “Besançon.” 

! Eventually (Ninety-three � Next Next Besançon) 

We use two Next operators because between the 
resource “Besançon” and the resource “Ninety-three” 
there is a length of two resources. The result of this query 
is illustrated by the following path:  

{Ninety-three, Victor Hugo, February 26 1802} 

VI.  BENCHMARK  

Now, we will be able to transform the RDF graph with 
our tools "RDF2SPIN" and RDF2NµSMV" into a model 
in order to check each temporal logic formula and see if it 
is verified or not in the model with the SPIN and 
NµSMV model checkers. In this way, we can verify the 
semantic graphs. 

 
Figure 10. Time of conversion of Semantic graphs. 

 

Figure 11. Size of the models.  

We tested our tools on several RDF graphs, and we 
calculated the time of conversion as shown in Figure 9. 
Note that the RDF2SPIN tool is faster in converting 
semantic graphs than the RDF2NµSMV tool. Both tools 
are quick in converting semantic graphs; we obtain less 
than 15 seconds for a graph of 53 MB size using the 

RDF2SPIN tool and almost 21 seconds using the 
RDF2NµSMV tool. Both transformation tools follow a 
polynomial curve. In Figure 10, we see the size of 
converted semantic graphs from RDF to PROMELA 
language with RDF2SPIN and NµSMV language with 
RDF2NµSMV. We notice that the sizes of the 
PROMELA model are smaller than the NµSMV model. 

VII.  CONCLUSION 

This paper presents a new technique for the semantic 
graphs verification by using a model checker. Knowing 
that the model checker does not understand the semantic 
graphs, we developed two tools RDF2SPIN and 
RDF2NµSMV to convert them into PROMELA and 
NµSMV languages in order to be verified with the 
temporal logic formulas. There are formulas that can be 
presented in LTL and not in CTL and vice versa. The 
advantage of the NµSMV model checker is that the 
verification can be made with both linear time logic and 
computation tree logic formulas. We also use the 
temporal logic query to query the semantic graph model.  
We have implemented a query checker to resolve the 
query on the semantic graphs model.  

In our future work, we aim to convert the SPARQL 
query language for RDF graphs into queries using the 
operator of the temporal logic, in order to have a better 
verification of RDF graphs representing, for example, the 
building industry. The SPARQL queries have a lot of 
limitations, but due to the model checking technique, we 
continue to find solutions for this gap.  
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