
HAL Id: hal-00783744
https://hal.science/hal-00783744v1

Submitted on 1 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal Logic To Query Semantic Graphs Using The
Model Checking Method

Mahdi Gueffaz, Sylvain Rampacek, Christophe Nicolle

To cite this version:
Mahdi Gueffaz, Sylvain Rampacek, Christophe Nicolle. Temporal Logic To Query Se-
mantic Graphs Using The Model Checking Method. Journal of Software, 2012, 7
(7), http://www.ojs.academypublisher.com/index.php/jsw/article/view/jsw070714621472. �hal-
00783744�

https://hal.science/hal-00783744v1
https://hal.archives-ouvertes.fr

Temporal Logic To Query Semantic Graphs
Using The Model Checking Method

Mahdi Gueffaz, Sylvain Rampacek, Christophe Nicolle
LE2I, UMR CNRS 5158
University of Bourgogne

BP 47870, 21078 Dijon Cedex, France
{Mahdi.Gueffaz, Sylvain.Rampacek, CNicolle}@u-bourgogne.fr

Abstract— Semantic interoperability problems have found
their solutions due to the use of languages and techniques
from the Semantic Web. The proliferations of ontologies
and meta-information have improved the understanding of
information and the relevance of search engine responses.
However, the construction of semantic graphs is a source of
numerous errors of interpretation or modeling, and
scalability remains a major problem. The processing of
large semantic graphs is a limit to the use of semantics in
current information systems. The work presented in this
paper is part of a new research at the border of two areas:
the semantic web and the model checking. This line of
research concerns the adaptation of model checking
techniques to semantic graphs. We present a first method of
converting RDF (Resource Description Framework) graphs
into NµSMV and PROMELA (Process Meta Language)
languages in order to be checked with the temporal logic
property and queried by the temporal logic query.
SPARQL (Simple Protocol and RDF query Language)
query language is the standard for querying the Semantic
Web, but it has a lot of limitations. Our primary goal with
the temporal logic query is to overcome this limitation of the
SPARQL query language. To reach this goal, three tools
have been developed. The first two tools “RDF2SPIN” and
“RDF2NµSMV” are used to transform the Semantic graph
into a model written in PROMELA and respectively in
NµSMV languages – in order to be understood by the SPIN
and respectively the NµSMV model checkers. The STL
Resolver tool is used to find solutions to the temporal logic
query. It is based on the model checking algorithms.

Index Terms— Semantic graph, model checking, temporal
logic, temporal logic query, SPARQL.

I. INTRODUCTION

W3C (World Wide Web Consortium) aims to
standardize the representation and the exchange of
information on the WEB. This objective should be able to
make the information understandable for both automated
processes and users. The homogenization of computer
exchanges took place due to the introduction of the XML
(eXtensible Markup Language) [1] standard. This
standard has enabled the program to manipulate
information through languages with hierarchical structure
mark-up defined by grammars that are derived from the
XML standard. However, this effort has not been able to
improve the user’s understanding of information. Thus,
new standards have been developed to enable the
semantic representation of information in the form of
XML-derived languages. This base is called Semantic
Web standards and is usually represented as a stack of

languages ranging from automatic processes oriented
languages to languages representing more abstract
concepts of formal semantics [2]. These languages are
used to represent the semantics associated with
information, whatever their form or structure. To allow
the construction of a semantic graph, many tools have
been developed, such as Annotea [3], which is a project of
the W3C that specifies the infrastructure for the
annotation of Web documents. RDF represents the main
format used in the annotation and the types of documents
that can be annotated are HTML (Hypertext Markup
Language) or XML based documents. However, none
provides the functionality to verify the consistency of
semantics or to reduce error annotations.

This paper proposes a new way to check these semantic
graphs by using the model checking technique in order to
reduce errors in annotation, for example, and make the
data more relevant. The model checking is an automatic
verification technique which has been applied to many
cases in industry, in the Netherlands for instance; [4] has
revealed several serious flaws in the design of the control
system of a barrier protection in the main port of
Rotterdam against floods. The large "Intel" manufacturing
company processor has used the model checking to detect
the bug in its Pentium II processor that caused a loss of
475 million dollars damage to the reputation of Intel.
Finally, the model checking succeeded in finding an error
in the handling baggage system at the Denver airport
(USA), which delayed opening its doors for nine months
and caused a loss of 1.1 million dollars per day.

The model checking is a powerful tool for the system
verification because it can reveal errors that were not
discovered by other formal methods, such as testing or
simulation. The model checking uses the temporal logic to
describe the properties checking the system model. As we
have seen in the examples above, the model checking can
handle complex problems with large amounts of
information, stored as a graph, in order to verify critical
systems. In comparison, in the semantic web, the use of
graphs is pervasive and serious problems of scalability
appear [5]. Thus, it is appropriate to use the algorithms
developed for the model checking in the field of the
Semantic Web.

Pnueli pioneered the use of temporal logic as formal
language for reasoning about reactive systems [6]. The
temporal logic allows the model checking to represent the
property that needs to be checked. One limitation of the

1462 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.7.1462-1472

model checking is that it gives simple “yes or no”
answers: either the system under study satisfies the
temporal formula, or it does not. [7] presents the first
research work on the use of the temporal logic queries as
an extension of the model checking, in order to help the
user understand the system behaviors, because of the fact
that the use of the model checking has not been
emphasized enough in the literature yet. A temporal query
is a temporal formula where the special symbol “?” occurs
as a placeholder. In [7], a temporal logic query can have at
most one placeholder, but in our research work, a query
can have at least one placeholder.

In this paper, we introduce a new method to qualify and
query a semantic graph by using the formal method and
especially the model checking. We developed tools to
convert semantic graphs into a model understood by the
model checker. We introduce a new language based on
the operators of the temporal logic to query this model by
using the model checker algorithms. We have
implemented a prototype STL Resolver query engine.

A survey of popular RDF query languages conducted
by the W3C identified more than 20 languages that are
either under development or have been implemented [8].
Some in the lines of traditional database query languages
(e.g. SQL (Structured Query Language), OQL (Object
Query Language)), others based on logic and rule
languages. Some of them are: RQL (RDF Query
Language) [9] is a typed language for querying RDF
repositories; SquishQL (Simple RDF Query Language) is
a SQL-style query language that permits simple graph
navigation in RDF sources; RDQL (RDF Data Query
Language) [10] is an implementation of SquishQL;
RDFQL (RDF Query Language) is a statement-based
query language with a SQL-style to perform queries,
inference operations, and construction of views on RDF
structured data; TRIPLE [11] is a language that allows
rule definition, inference and transformation of RDF
models; Notation 3 (N3) [12] provides a text-based syntax
for RDF; VERSA is a graph-based language with some
support for rules; SeRQL (Sesame RDF Query Language)
combines characteristics of languages like RQL, RDQL,
N-Triple, N3 plus some new features; RXPath (Regular
XPath) is a query language based on XPath (XML Path
Language) [13, 14]. The W3C SPARQL [15] is an RDF
query language designed to meet such requirements and
design objectives mentioned previously. It defines a query
language with a SQL-like style, where a simple query is
based on query patterns, and query processing consists of
binding of variables to generate pattern solutions (graph
pattern matching). SPARQL is still a work in progress.

Our research primary goal is to define a powerful and
expressive query language for semantic graphs. The other
rather competing goal is to keep the query language
simple enough so that it could be easily built and
understood.

The rest of this paper is organized as follows. In
Section 2 we present an overview of the semantic graphs,
especially the structure of the RDF graphs and the
SPARQL query language, the model checking, the
temporal logic and the temporal logic queries. Then,
Section 3 presents the related work of our approach.

Section 4 refers to the mapping of the semantic graphs
into models, and the ScaleSem approach. Section 5
presents our tool that solves the query checking using a
semantic graph model. Finally, we end with a benchmark
followed by a conclusion.

II. BACKGROUND

A. Semantic web

The semantic Web aims at organizing and structuring the
huge quantity of information present on the Net. It
consists of a semi-structured language based on XML.
Figure 1 shows one of the versions of the organization in
layers suggested by the W3C. Each layer is built upon the
layers below it. Thus, the whole set of layers uses the
XML syntax. This allows taking advantage of all
technologies developed around XML: XML Schema,
tools for exploiting XML resources (JAVA libraries, etc.),
XML databases. XML stems from the SGML (Standard
Generalized Markup Language) language, but contrary to
HTML, the structure and the presentation of XML
documents are conceptually separated. XML is a language
which uses tags as a universal representation format of the
data. An XML document contains at the same time the
data and the indications about the role that these data play.
As a result, the same contents can be presented in various
forms according to the role of the user in the AEC
(Architecture Engineering Construction) project. XML is
the keystone of information exchanges on the Web.
Unfortunately, XML is insufficient to describe all the
semantics required in the Web.

Figure 1. Stack of languages of the Semantic Web. [2]

This paper is based on the RDF layer of the Semantic
Web. RDF is a language developed by the W3C to bring a
semantic layer to the Web [16]. It allows the connection
of Web resources using directed labeled edges. The
structure of RDF documents is a complex labeled directed
graph. An RDF document is a set of triples <subject,
predicate, object>. In addition, the predicate (also called
property) connects the subject (resource) to the object
(value). Thus, the subject and the object are nodes of the
graph connected by an edge directed from the subject
towards the object. The nodes and the edges belong to
“resource” types. A resource is identified by a Uniform
Resource Identifier [17].

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1463

© 2012 ACADEMY PUBLISHER

Figure 2. RDF triple.

The declarations can also be represented as a graph, the
nodes as resources and values, and the arcs as properties.
The resources are represented in the graph by circles; the
properties are represented by directed arcs and the values
by a box (a rectangle), see Figure 2. Values can become
resources if they are described by additional properties.
For example, when a value is a resource in another triplet,
the value is represented by a circle [18].

The RDF graphs considered here are represented as
XML verbose files, in which the information is not stored
hierarchically (so-called graph point of view). These RDF
graphs are not necessarily connected, meaning they may
have no root vertex from which all the other vertices are
reachable. To handle the RDF graphs, several designs and
implementations of RDF query languages have been
proposed. In 2004, the RDF Data Access Working Group,
part of the W3C Semantic Web Activity, released a first
public working draft of a query language for RDF, called
SPARQL [15]. Since then, SPARQL has been rapidly
adopted as the standard for querying the Semantic Web
data. In January 2008, SPARQL became a W3C
Recommendation. SPARQL queries [19] are pattern
matching queries on triples that constitute an RDF data
graph. The official SPARQL query introduces four
different query forms:

• SELECT query, which returns the value of the
variable, which may be bound by a matching
query pattern;

• ASK query, which returns true if a given query
matches and false if not;

• CONSTRUCT query, which returns an RDF
graph by substituting the values in given
templates;

• DESCRIBE query, which returns an RDF graph
that defines the matching resource.

B. Model checking and temporal logic Overview

Formal methods [4] offer great potential for an early
inclusion of verification in the design process, providing
technical audit more efficiently and reduce the verification
time. Formal methods are highly recommended
techniques for the software development. They have led to
the development of some very promising verification
techniques that facilitate early detection of defects. Two
types of formal verification methods can be distinguished:
methods based on the proof of the theorem and the
methods based on models.

Methods based on the proof of the theorem verify the
correctness of systems by properties in a mathematical
theory. These properties are proven with the highest
possible precision using tools such as theorem provers and
proof checkers. Theorems proofs are also called proof
assistants.

Methods based on models describe the possible system
behavior in a mathematical precise and unambiguous
manner. The system models are accompanied by

algorithms that systematically explore all states of the
system model. This provides the basis for a whole range
of verification techniques ranging from an exhaustive
exploration “Model checking” to experiments with a
restrictive set of scenario in the model “Simulation."
Simulation allows the user to study the system behavior. It
is less suited to detect errors because it is difficult to
generate all possible scenarios of the system and to
simulate them all. Model checker is a verification
technique that explores all possible system states. In this
way, it can be shown that a given system model truly
satisfies a certain property.

The model checker examines all relevant system states
in order to check whether they satisfy the desired
property. The model checker gives a counter example that
indicates how the model can violate the property. With
the help of a simulator, the user can locate the error and
adapt the model or the property to prevent the violation of
property, as shown in Figure 3.

Figure 3. The model checking approach.

For our approach, we will use the model checking to
analyze semantic networks. We use both linear time logic
“LTL” and computation tree logic “CTL” for describing
the specifications of the properties to be verified with the
model checking.

Algorithm: Model-checking
Begin
 While stack ≠ nil do
 P := top (stack);
 while ¬ satisfied (p) then
 Refine the model, or property;

Else if satisfied (p) then

P := top (stack);

Else // out of memory

Try to reduce the model;
 End
End

The concepts of temporal logic were used for the first

time by Pnueli [6] in the specification of formal
properties that are fairly easy to use. The operators are

Ressource
Property

Value

Satisfied

System

Formalizing Modeling

Requiremen

Locatio
n error

Property
specificatio

Model-Checking

Violated +
Counterexampl Simulation

System
model

1464 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

very close in terms of natural language. The
formalization in temporal logic is simple enough
although this apparent simplicity therefore requires
significant expertise. In [20], the temporal logic allows
representing and reasoning about certain properties of the
system, so it is well-suited for the systems verification.
There are two main temporal logics, that is linear time
and branching time. In linear time temporal logic, each
execution of the system is independently analyzed. In this
case, a system satisfies a formula f, if f holds along every
execution. The branching time combines all possible
executions of the system into a single tree. Each path in
the tree is a possible representation of the system
execution.

• Linear Temporal Logic or LTL allows
representing the behavior of reactive systems
using properties that describe the system in which
time proceeds linearly. Clearly, we specify the
expected behavior of a system, by specifying the
only possible future as a sequence of actions that
follow; LTL uses for that temporal operators: X
(Next), F (Finally or Eventually), G (Always), U
(Until).

• Computation Tree Logic or CTL suggests
several possible futures from a system state rather
than having a linear view of the considered
system. The operators of CTL are obtained by
adding A (for any execution) or E (there is an
execution) before the operators of linear temporal
logic that are: AX φ (all successor states
immediately satisfy φ), EX φ (there is an
execution whose next state satisfies φ), AF φ (for
any execution, there is a state where φ is true), EF
φ (there is an execution, leading to a true state φ),
AG φ (for any execution, φ is always true), EG φ
(there is an execution, where φ is always true),
AφUψ (for any execution φ is true until ψ is true),
EφUψ (there is an execution in which φ is true
until ψ is true).

The model checking uses a kripke [21] structure to

represent the behavior of the system. Kripke structures are
an abstract representation of the behavior of an algorithm
whose certain properties must be tested. A Kripke
structure is used to represent the relation between states of
the system to be checked. It is a directed graph where
nodes, called states, are labeled by states of the system, as
seen in Figure 3.

C. Temporal logic queries

Temporal logic queries are a generalization of the
model checking [22, 23, 24], which allows system
properties not only to be verified, but also to be computed
in a systematic manner. A temporal logic query is an
incomplete temporal logic specification containing a
special placeholder symbol “?”. Intuitively, the query asks
for those system properties which yield a correct
specification when inserted into the query. [25, 26] define
two types of queries, queries with one placeholder and
queries with multiple placeholders.

Definition 1. A temporal logic query with a single
placeholder ?1, denoted φ[?1], is an expression containing
a symbol ?1, where replacing ?1 by a propositional formula
yields a CTL or LTL formula.

Definition 2. A temporal logic query with multiple
placeholders ?1,…,?n, denoted φ[?1,…?n]is an expression
containing symbols ?1,…?n where replacing ?1,…?n by a
propositional formula yields a CTL or LTL formula.

Figure 4. An example of Kripke structure: a traffic light.

Note that the second definition allows multiple
occurrences of the same placeholder symbol in the query.
To understand better, let us illustrate this with an
example. Assume that we are currently designing a traffic
light system, as in Figure 4 (The traffic light alternates in
the right order and without blocking), and rely on the
model checking to verify if it satisfies a typical temporal
specification such as:

G(orange � F red) (S)

stating that “all orange lights are eventually followed by
red lights”. The model checking will provide a yes-or-no
answer: either the system satisfies (S) or it does not.
Temporal queries lead to a finer analysis of the system.
The query

G(? � F red) (Q)

asks for conditions that always lead to red. Computing
solutions for (Q), in our system, will tell us, among other
things, whether the system satisfies its specification: (S)
is satisfied iff the orange light is a solution for (Q).
However, it will tell us more. For example, if (S) is not
satisfied, answering (Q) can lead to the discovery that, in
reality, the property that our system satisfies is G(green
�F orange).

III. RELATED WORK

In this section, we briefly discuss some of the
researches related to the verification and the query of the
Semantic graphs using the model checking. There are very
few researches about the use of the model checking
method to qualify a Semantic graph. On the contrary,
there are many more researches on the verification of the
Web application. The work in [27] proposes a new way of

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1465

© 2012 ACADEMY PUBLISHER

converting an RDF graph into the BCG (Binary Coded
Graph) format that was used in the CADP (Construction
and Analysis of Distributed Processes) toolbox. The latter
represents a verification toolbox for asynchronous
concurrent systems. The toolbox accepts as input several
languages and all of them are compiled into LTS (Labeled
Transition System), which is a state/transition graph
representing the behavior of concurrent systems. CADP
provides several representations for LTS; one of these
representations is the BCG format.

There are few research works on the study of the use of
the temporal logic to query a system. We are the first to
use the temporal logic to query the semantic graph
models. The temporal logic query was introduced by
William Chan [7] in order to speed up design
understanding by discovering properties unknown yet.
[25, 26] show that query checking is applicable to a
variety of model exploration tasks, ranging from invariant
computation to test case generation. They illustrate it by
using a CCS (Cruise Control System), which is
responsible for keeping an automobile traveling at a
certain speed. In their study, the tool they created searches
all the propositional formula to hold the temporal logic
query, while in our research work, our tool searches only
the state that holds the temporal logic query, as explained
in Figure 4. The difference between the two works
consists in the states content. [28] studies the problem of
computing all minimal solutions to arbitrary temporal
queries over arbitrary Kripke structures and [29] presents
a tool that finds the solutions to any CTL query.

In the work of Chan, a temporal logic query can have
only one placeholder while in [25, 26, 29, 29], it can have
multiple placeholders. Chan’s temporal logic queries have
a unique representation, using computation tree logic
operators, while the research in [30] tries to extend Chan’s
work to other temporal logic formulas, such as CTL*,
which includes the linear temporal logic. Our resolution
tool can have multiple placeholders in the temporal logic
query.

IV. THE SCALESEM APPROACH

This section details our approach which consists in
transforming semantic graphs into models in order to be
verified by the model checker. For this, we have
developed two tools called “RDF2SPIN” and
“RDF2NµSMV”, that transform semantic graphs into
PROMELA and respectively into NµSMV [31]
languages.

We use SPIN [32] and NµSMV as model checkers to
check the model of semantic graphs. We want to compare
them in terms of capabilities. SPIN is a software tool for
verifying system models. The system is described in a
language model called PROMELA. NµSMV is the
amelioration of SMV model checker, working on the
same simple principles as SMV. SPIN verifies the
correctness of properties expressed in linear time logic; on
the other side, NµSMV verifies the properties in both
linear time logic and computation tree logic.

Figure 5. The ScaleSem architecture.

In Figure 5, we present the architecture of our
approach. We can get the semantic graph (RDF) and its
description in temporal logic from a natural language
description, as shown in Figure 9 of section V. We divide
this architecture in two phases. The first phase concerns
the transformation of the semantic graph into a model
using our tools RDF2SPIN and RDF2NµSMV. There are
three steps in this transformation. The first step is to
explore the entire RDF graph to obtain the triples table.
The second step is to determine a root for the graph, and
the last step is to write the model that represents the
semantic graph in the PROMELA or NµSMV languages.
The second phase concerns the verification of properties
expressed in temporal logic on the model using the SPIN
or the NµSMV model checkers. The choice of the model
checker depends on the tool that one uses to convert the
semantic graphs. For example, when using RDF2SPIN,
one must use the model checker SPIN to check the
model.

A. Introducing RDF

The RDF graphs [18] considered here are represented
as XML verbose files, in which the information is not
stored hierarchically (the so-called graph point of view).
These RDF graphs, that represent, in fact, the semantic
model of an RDF file, are not necessarily connected,
meaning they may have no root vertex from which all the
other vertices are reachable. The RDF graph
transformation into a model is articulated in three steps:
exploring the RDF graph, holding election of the root
vertex and generating the model of the semantic graph.

B. Exploring RDF graph

In order to exploit the RDF graphs by using SPIN or
NµSMV, we therefore have to determine whether they
have a root vertex, by analyzing RDF triples, and if this is
not the case, we must create a new root vertex by taking
care to keep the size of the resulting graph as small as
possible.

We achieve this by appropriate explorations of the
RDF graphs, as explained below. Let us consider that an
RDF graph is represented as a couple (V, E), where V is

the set of vertices and VE ⊆ x V is the set of edges. For

Tool verification
Model-checker

(NµSMV or SPIN)

M’: simplified model
of semantic graph

M: semantic graph
(RDF)

Temporal logic
description of

Semantic graph

M’ satisfies the
temporal logic

M’ not satisfies +
counter example

RDF2NµSMV
or RDF2SPIN

First phase

Second phase

Natural language
description of

Semantic graph

1466 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

a vertex x, we note =)(xE { Vy∈ | Eyx ∈),(} the

set of its successor vertices. This corresponds to the
classical data structure for representing graphs in
memory, consisting of an array indexed by the vertices
and containing in each entry the list of successor vertices
of the corresponding vertex. There are several algorithms
to traverse a large graph, of these basic algorithms
include the best known, depth-first search (DFS) and
breadth-first search (BFS). We use the depth-first search
algorithm, illustrated below, to explore the graph,
knowing that the breadth-first algorithm also works in
this context. We considered here an iterative variant of
DFS, which makes use of an explicit stack, rather than
the recursive variant given in [33]; this is required in
practice to avoid overflows of the system call stack when
the algorithm is invoked for exploring large graphs.

Algorithm: procedure Dfs (x):
begin
 visited(x) := true;
 // vertex x becomes visited
 p(x) := 0; // start exploring its successors
 stack := push(x, nil);
 while stack ≠ nil do
y := top(stack);
if p(y) < |E (y)| then
 // y has some unexplored successors
 z := E (y) ;
 p(y) := p(y)+1;
 // take the next successor of y
 if visited (z) then
 visited(z) := true; // visit it
 p(z) := 0;//start exploring its successors
 stack := push(z, stack)
 endif
 else //all successors of y were explored
 stack := pop(stack)
 endif
 end
end

C. Determining a Root Vertex

If the RDF graph has no principal vertex root but
multiple roots, we must create a new root whose
successors are all the other roots already existing in the
graph, but this will increase the number of edges. We
look forward to doing this by adding as few edges as
possible. A vertex x of a directed graph is a partial root if
it cannot be reached from any other vertex of the graph.
If the graph contains only one partial root, all other
vertices of the graph can be reached from the root,
otherwise there would be other roots in the partial graph.
If the graph has multiple partial roots, the most
economical way to provide a root is to create a new
record with all the roots as a partial successor: this will
add to the graph a minimum number of edges. We
compute the set of partial roots in two phases, each one
consisting in successive explorations of the graph. The
first phase identifies a set of candidate partial roots, and
the second one refines this set in order to determine the
partial roots of the graph.

Remark: a property must always have a resource and a
value; the resource should never be a value with the same
predicate, i.e. a loop in the graph.

Algorithm: procedure RootElection(): //
precondition: ∀ x ∈ V.visited(x) = false
Begin // first phase
 root_list := nil;
 forall x ∈ V do
 if visited(x) then
 Dfs(x);
 root_list := cons(x, root_list)
 endif
 endfor;
//second phase

 if |root_list|= 1 then
 root := head(root_list)
 // the single partial root is the global root

 else

 forall x ∈ V do visited(x):= false;
 endfor;
 forall x ∈ root_list do
 // reexplore partial roots in reverse order
 if visited(x) then Dfs(x)
 else
 root_list := root_list \ {x}
 // partial root is not a real one
 endif
 endfor;
 if |root_list| = 1 then
 root := head(root_list)
 // a single partial root is the global root

 else
 root := new_node();
 // new root predecessor of the partial roots

 E(root) := root_list
 endif
 endif

The first phase explores all the vertices of the graph,
and inserts in root_list all vertices that have no
predecessor. If root_list contains a single vertex, it means
that it represents the global root of the graph since all the
other vertices are accessible from it, and it is useless to
go to the second phase. Otherwise, any vertex contained
in root_list could also be a root of the graph: the goal of
the second phase is to determine the root of the global
graph among the partial roots.

The second phase performs a new wave of exploration
of the roots contained in the partial root_list in the
reverse order they were inserted in the list. If a root in the
root_list is to be visited by a partial root, it is removed
from the list because it is not a partial root. At the end of
this phase, all partial roots of the graph are present in the
root_list. Indeed, each vertex is unreachable from the
partial roots which were explored during the second
phase. A new root is created, as in Figure 6, having as
successor all the partial roots of the root_list, which
ensures that all vertices of the graph are accessible from
the new root. Therefore, such a summit is inaccessible
from other nodes of the graph.

)(yp

¬

¬

¬

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1467

© 2012 ACADEMY PUBLISHER

Figure 6. A root is a single node that has no predecessor. In this graph,
we have a node A and a node B, two roots, and then we will create a
new virtual root (blue circle "R") that points to the two roots.

The algorithm for determining a root has a complexity
O(|V|+|E|), linear in the size of the graph (number of
vertices and edges), since each phase visits every state
and traverses every edge of the graph only once. Given
the fact that the graph must be traversed entirely in order
to determine whether it has a root or not, this complexity
is optimal.

D. Generating the model

The third step is divided into three sub-steps. The first
one consists in creating the table of all triples by
exploring the entire graph; the second one consists in
generating the table of resources and values for
RDF2SPIN but for RDF2NµSMV, it generates the table
of association. The last one consists in producing the
model representing the semantic graph written in
PROMELA or in NµSMV languages.

Table of triples - We will create a table consisting in
resources, properties and values, by exploring the RDF
graph. In our RDF graph, the resource and the value are
represented by nodes, and the property is an edge
directed from the resource towards the value. The table of
triples of the RDF graph is useful for the next sub-step.

In this second sub-step, RDF2SPIN generates a table
of resources and values, while RDF2NµSMV generates a
table of association.

• Table of resources and values - Browsing the
table triples seen in the previous step, we attribute
a unique function for each resource and for each
value. These functions are of proctype type. We
combine all these functions in a table called table
of resources and values.

• Table of association – This table contains an
identifier for each resource, property and value.

The model - In this last sub-step, we will write the
model in PROMELA language for the RDF2SPIN tool or
in NµSMV language for the RDF2NµSMV tool,
corresponding to the RDF graph that we want to check.

V. QUERYING THE MODELS OF SEMANTIC GRAPH

Before showing our approach that solves the temporal
logic queries on the semantic graph models, we will
present the limitations and the complexity of the
SPARQL query language, which represents the Semantic
Web standard.

The limitation of SPARQL. Given that SPARQL is a
comparably young technology, the current W3C
specification [34] still has a couple of limitations, which
become obvious when comparing SPARQL to

established query languages such as SQL or XQuery
(XML Query Language). The following list surveys
important features and constructs that are (to date)
missing in SPARQL.

• Aggregation: The current specification does not

support aggregation functions, such as summing
up numeric values, counting, or average
computation.

• Updates: While the SPARQL standard supports
data extraction from RDF graphs, constructs for
inserting new triples into RDF graphs and
manipulating existing graphs (in the style of SQL
Insert and Update clauses) are missing.

• Paths expression: SPARQL does not support the
specification of (constrained) path expressions,
e.g. using a single SPARQL query it is impossible
to compute the transitive closure of a graph or to
extract all nodes that are reachable from a fixed
node.

• Views: In traditional query languages such as
SQL, logical views over the data play an
important role. They are crucial to both database
design and access management. SPARQL does
not currently support the specification of logical
views over the data; however, that materialized
views over the data can be extracted from the
input graph using the CONSTRUCT query form.

• Support for constraints: Mechanisms to assert
and check for integrity constraints in the RDF
database are not covered in the current SPARQL
specification. In SQL, such as integrity constraints
are implicitly derived from primary and foreign
key specifications established in the schema
design phase. Beyond that, it is possible to enforce
user-defined constraints using the Create
Assertion statement.

The complexity of SPARQL. The analysis of

SPARQL complexity is not new: the preliminary
investigation of the combined complexity of SPARQL in
[35] shows that the evaluation problem for full SPARQL
expressions is PSpace-complete. As a consequent
enhancement of this initial analysis, [34] systematically
explored the complexity of all expression and query
fragments, where a fragment means a class of expressions
or queries that can be built using a fixed subset of the
SPARQL operators. One central result is that the
Evaluation problem for the operator Optional alone is
already PSpace-hard. The author further shows that this
high complexity is caused by an unlimited nesting of
Optional expressions. Still, as a key insight, the operator
Optional is by far the most complicated construct in
SPARQL. This observation suggests that special care in
query optimization should be taken in queries containing
the operator Optional and will serve as a guideline for the
SPARQL optimization.

In [36] the query optimizer can choose optimal join
orders even for complex queries, with a cost model that

A

B

C R

A

B

C

1468 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

includes statistical synopses for entire join paths. The
absence of a global schema and the diversity of predicate
names pose major problems for the physical database
design. In principle, one could rely on an auto-tuning to
materialize frequent join paths; however, in practice, the
evolving structure of the data and the variance and
dynamics of the workload turn this problem into a
complex task. The fine-grained modeling of RDF data
queries with a large number of joins will inherently form
a large part of the workload, but the join attributes are
much less predictable than in a relational setting. This
calls for specific choices of query processing algorithms,
and for careful optimization of complex join queries.

Extensions of SPARQL. The work in [37] shows that
SPARQL – with some minor extensions – can be used to
express a large class of constraints and to extract
constraints from RDF graphs when these are specified
using a predefined vocabulary for encoding constraints.

Aggregation functions for SPARQL were proposed in
[38]. The latter work defines an extension of SPARQL,
called SPARQL++, which embeds standard aggregate
functions in Construct and Filter clauses. The motivation
for this extension was to express schema mappings
through SPARQL Construct queries. It is also worth
mentioning that some existing SPARQL engines, e.g.
ARQ [39] and Virtuoso [40], have already implemented
their own strategies to aggregation.

Path expressions for SPARQL have been identified as
an important feature in several research contributions [41;
42; 43]. The common idea to all these approaches is to
extend SPARQL by constructs that allow expressing
relations between nodes that go beyond what can be
expressed by simple basic graph patterns, e.g. transitively
connected nodes. It is natural to assume that querying for
(constrained) paths is an important feature in the context
of a graph structured data model like RDF. The approach
in [41] uses so-called regular path patterns, akin to
regular expressions, to express complex path relations
between nodes in RDF graphs. These regular path
patterns are used to extend SPARQL to a dialect called
SPARQLeR (SPARQL extended with Regular paths). In
[42] a SPARQL extension called nSPARQL
(Navigational SPARQL) is proposed, driven by the idea
of navigating through the RDF graph using a set of
predefined axes, very much in the style of the XPath axes
for navigating through XML documents. Another
reasonable approach is the PSPARQL (Path SPARQL)
[43] query language. It relies on an extended version of
RDF, called PRDF (Path RDF), where graph edges (i.e.
predicates in RDF triples) may carry regular expression
patterns as labels. The PSPARQL query language is then
defined over such PRDF patterns.

In [7], a temporal logic query is presented as a string in
which the placeholder appears exactly once. In our
research work, a temporal logic query for querying a
semantic graph can have multiple placeholders. The
placeholder is represented with the special symbol “?”.

Definition 3 (solution). Consider a CTL (or LTL) query,
K a Kripke structure, and φ a propositional formula. We
write ϒ[φ] to denote the result of substituting φ for the
placeholder in the query. If K |= ϒ[φ], then we say that φ
is a solution to ϒ in K. We denote the set of all solutions
to a query ϒ in a Kripke structure K by sol(K, ϒ) = { φ | K
|= ϒ[φ]}.

Figure 7. Example of a Kripke structure.

For example, consider the Kripke structure K shown in
Figure 7 and the CTL query ϒ= A((a ˅ c) U AG?). It is
easy to see that b, d, and b ˄d are solutions to ϒ in K.

This query has one placeholder. [25] introduces the
query with multiple placeholders. If a query contains
multiple placeholders, it is transformed into a CTL
formula by substituting a propositional formula for each
placeholder. Given a query with n placeholders, with Li
being the lattice of propositional formulas for the ith
placeholder, the set of all possible substitutions is given
by the cross product L = L1 x … x Ln.

In our approach, we developed a new tool named STL
Resolver. After transforming the semantic graph into a
model (section IV), we query this model by using the
temporal logic query. Figure 8 represents the architecture
of the STL Resolver tool.

Figure 8. The STL Resolver tool.

First, we transform the temporal logic query into
temporal logic formula (i.e. there is no placeholder in the
temporal logic) by replacing the placeholder of the query
with a state of the semantic graph model. The query
placeholder can be replaced by a state of the graph and
not by a propositional formula, as seen above.
Furthermore, if the temporal logic formula is verified by
the model checker, we store this state in the set of results,
else we replace the query placeholder with another state;
afterwards, we repeat the verification with the model
checker. When we have no state to replace in the

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1469

© 2012 ACADEMY PUBLISHER

temporal logic query, we return the set of all the
solutions.

The Simplicity and the expressivity of the query
checking. Previously, we saw that the SPARQL query
language is the Semantic Web standard but is
characterized by complexity and limitations. We use the
temporal logic query to simplify the SPARQL queries
and to reach expressivity with the temporal logic
operators. Our STL resolver is based on the model
checking techniques. In [36] the problem under
discussion is to choose optimal joins for complex
SPARQL queries. For example, note the SPARQL query
below:

SELECT ?x
WHERE {

?x hasName ?y.
?y hasAdress ?z.
?z hasAge “26”

}

This query selects the subject ?x that has the age of 26. In
temporal logic query, the SPARQL query becomes as
follows:

Eventually (?x � next next next 26)

Note that the query becomes simpler than in the
SPARQL query language, due to the use of the temporal
logic operators. We use three Next operators (Section 2)
in the query because there are three nodes to access the
node “26” representing the age.

We noticed above the simplicity of the temporal logic
query, and we will see below the expressivity due to the
temporal logic operators. We saw above that the
SPARQL query language had a lot of limitations. For
instance, the path expression gives the path between two
resources, which means that the first resource crosses all
the nodes in order to reach the second resource. To
express this characteristic with the temporal logic query,
we use only the negation of the two resources and at least
one Next operator which represents the number of nodes
that separate the resources. For example in the temporal
logic below, we want to know the path of length three
that separates the two resources (resource1 and
resource2):

! Eventually (ressource1 � Next Next Next
ressource2)

The model checking algorithms return a
counterexample that contains the path between the two
resources, as a true temporal logic formula has been
negated.

Example of Resolution. The example below helps to
better understand how the STL Resolver works. The
graph in Figure 9 describes the further affirmations [44]:

“Ninety-three is a novel by Victor Hugo published in
1874, whose theme is the French Revolution. Victor
Hugo was born in February 26, 1802 in Besançon”.

Figure 9. Example of an RDF graph.

Due to our tools “RDF2SPIN” and “RDF2NµSMV”,
the graph in the Figure 9 can be transformed into a
model, written in PROMELA and respectively in
NµSMV languages (see section IV) in order to be
checked with the temporal logic or to be queried by the
temporal logic queries. The query below searches all the
states that follow the state “Ninty-three”:

SPARQL:

SELECT ?x WHERE {“Ninety-Three” ?y ?x}

Temporal logic query:

Eventually (Ninety-three � Next ?x)

To answer this query, we use the STL Resolver which
is based on the model checking algorithms. We replace
the placeholder of the temporal logic query with all the
states of the graph one by one, and we check all the
properties with the model checker. The temporal logic is
expressed by an automaton that invalidates the property;
the model of the RDF graph represented in Figure 9 is
also expressed by an automaton. A synchronized product
is built; it is an automaton recognizing the intersection of
two languages. Then, if the language is empty, i.e. there
is no execution sequence of the model that invalidates the
property, the STL Resolver stocks this state as a result.
Otherwise, the model checker returns a counterexample
representing an execution on the model that is not
allowed by the property. In both cases, if there rest other
unreplaced states of the graph, we replace them in the
temporal logic query, and we repeat the process described
above; else we return the set of all the solutions, as
follows:

{Victor_hugo, Novel, 1874, French}

If these states are replaced one by one in the temporal
logic query, we notice that the model checker will always
return true.

Another example is represented by the query below
that searches the person (RDF resource) who was born in
“Besançon” on the “February 26, 1802".

SPARQL:

SELECT ?x WHERE
{?x Place Born “Besançon” .
 ?x Date “February 26, 1802”}

 Victor

Besançon

Ninety-three

1874

Novel

February 26, 1802

French
revolution

is

Published

Theme

Author

Date

Place born

1470 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

Temporal logic query:

Eventually (?x � Next Besançon ^ ?x � Next
February 26,1802)

We notice that in this query there are two placeholders
which are identical. The query result is the resource
“Victor Hugo”.

The following example cannot be expressed in a
SPARQL query. This query gives the path between the
resource “Ninety-three” and “Besançon.”

! Eventually (Ninety-three � Next Next Besançon)

We use two Next operators because between the
resource “Besançon” and the resource “Ninety-three”
there is a length of two resources. The result of this query
is illustrated by the following path:

{Ninety-three, Victor Hugo, February 26 1802}

VI. BENCHMARK

Now, we will be able to transform the RDF graph with
our tools "RDF2SPIN" and RDF2NµSMV" into a model
in order to check each temporal logic formula and see if it
is verified or not in the model with the SPIN and
NµSMV model checkers. In this way, we can verify the
semantic graphs.

Figure 10. Time of conversion of Semantic graphs.

Figure 11. Size of the models.

We tested our tools on several RDF graphs, and we
calculated the time of conversion as shown in Figure 9.
Note that the RDF2SPIN tool is faster in converting
semantic graphs than the RDF2NµSMV tool. Both tools
are quick in converting semantic graphs; we obtain less
than 15 seconds for a graph of 53 MB size using the

RDF2SPIN tool and almost 21 seconds using the
RDF2NµSMV tool. Both transformation tools follow a
polynomial curve. In Figure 10, we see the size of
converted semantic graphs from RDF to PROMELA
language with RDF2SPIN and NµSMV language with
RDF2NµSMV. We notice that the sizes of the
PROMELA model are smaller than the NµSMV model.

VII. CONCLUSION

This paper presents a new technique for the semantic
graphs verification by using a model checker. Knowing
that the model checker does not understand the semantic
graphs, we developed two tools RDF2SPIN and
RDF2NµSMV to convert them into PROMELA and
NµSMV languages in order to be verified with the
temporal logic formulas. There are formulas that can be
presented in LTL and not in CTL and vice versa. The
advantage of the NµSMV model checker is that the
verification can be made with both linear time logic and
computation tree logic formulas. We also use the
temporal logic query to query the semantic graph model.
We have implemented a query checker to resolve the
query on the semantic graphs model.

In our future work, we aim to convert the SPARQL
query language for RDF graphs into queries using the
operator of the temporal logic, in order to have a better
verification of RDF graphs representing, for example, the
building industry. The SPARQL queries have a lot of
limitations, but due to the model checking technique, we
continue to find solutions for this gap.

REFERENCE
[1] T. Bray, J. Paoli, C. Sperberg-McQueen. M., Maler, E.,

Yergeau, F., Cowan, J.: Extensible Markup Language
(XML) 1.1 (second edition) W3C recommendation. (2006)

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. Scientific American. pp. 34–43. (2001)

[3] J. Kahan, M. Koivunen, E. Prud'Hommeaux, R. R. Swick.
Annotea: An Open RDF Infrastructure for Shared Web
Annotations, in Proc. of the WWW 10th International
Conference, Hong Kong. (2001)

[4] J. P. Katoen: The princiapl of Model Checking. University
of Twente. (2002)

[5] K. Homma, K. Takahashi, A. Togashi. Modeling and
Verification of Web Applications Using Formal Approach.
IEICE Tech. Rep., vol. 109, no. 40, SS2009-8, pp. 43-48.
(2009)

[6] A. Pnueli. The temporal logic of programs. In proc. 18th
IEEE Symp. Foundations of Computer Science
(FOCS’77), Providence, RI, USA. pages 46-57. (1977)

[7] W. Chan. “Temporal-Logic Queries,” Proc. 12th Conf.
Computer Aided Verification (CAV ’00), pp. 450-463,
July 2000.

[8] R. Angles and C. Gutierrez. Querying RDF Data from a
Graph Database Perspective. 2nd. European Semantic Web
Conference (ESWC2005), May 2005, Heraklion, Greece.
Lecture Notes in Computer Science, Volume 3532, pp.
346-360. 2005

[9] G. Karvounarakis, S., Alexaki, V. Christophides, D.
Plexousakis, M. Scholl. RQL: A Declarative Query
Language for RDF. In: Proc. of the 11th WWW
conference, ACM Press. Pages 592–603. 2002.

[10] A. Seaborne. RDQL - A Query Language for RDF, W3C
Member Submission 9 January 2004.

JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012 1471

© 2012 ACADEMY PUBLISHER

http://www.w3.org/Submission/2004/SUBM-RDQL-
20040109/

[11] M. Sintek, S. Decker. TRIPLE - A Query, Inference, and
Transformation Language for the Semantic Web. Proc. of
the 1th ISWC (2002)

[12] T. Berners-Lee. Notation 3 - An RDF Language for the
Semantic Web.
http://www.w3.org/DesignIssues/Notation3 (2001)

[13] A. Magkanaraki, G. Karvounarakis, T.T. Anh, V.
Christophides, D. Plexousakis. Ontology Storage and
Querying. Tech. Report 308, ICS-FORTH - Hellas (2002)

[14] P. Haase, J. Broekstra, A. Eberhart, R. Volz. A
Comparison of RDF Query Languages. In: Proc. of the 3th
ISWC conference. Number 3298 in LNCS, Springer-
Verlag 502 (2004)

[15] E. Prudhommeaux, A. Seaborne. SPARQL Query
Language for RDF. http://www.w3.org/TR/rdf-sparql-
query/ (2005)

[16] D. Becket, B. McBride: RDF/ XML Syntax Specification
(Revised). W3C recommendation. (2004)

[17] T. Berners-Lee. W3C recommandation. (2007)
[18] V. Bönström, A. Hinze, H. Schweppe: Storing RDF as a

graph. Latin American WWW conference, Santiago, Chile.
(2003)

[19] A. Chebotko, S. Lu, H. M. Jamil, and F. Fotouhi.
Semantics Preserving SPARQL-to-SQL Query Translation
for Optional Graph Patterns. Technical report, Wayne
State University, TR-DB-052006-CLJF, 2006.

[20] M. Mukund. Model Checking: Automated Verification of
Computational Systems. Pages 667-681. (2009)

[21] S. Bardin. Introduction to the Model Checking.
CEA,LIST, Safety Software laboratory. 2008

[22] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

[23] E. M. Clarke and E. A. Emerson. Design and synthesis of
synchronization skeletons using branching time temporal
logic. In Proceedings of the Workshop on Logics of
Programs, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer-Verlag, 1981.

[24] JP. Queille and J. Sifakis. Specification and verification of
concurrent systems in CESAR. In Proceedings of the 5th
International Symposium on Programming, volume 137 of
Lecture Notes in Computer Science, pages 337–350.
Springer-Verlag, 1982.

[25] A. Gurfinkel, B. Devereux and M. Chechik. Model
exploration with temporal logic query checking. SIGSOFT
2002/ FSE-10, 2002.

[26] A. Gurfinkel, M. Chechik and B. Devereux. Temporal
logic query checking: a tool for model exploration. IEEE
computer society. (2003)

[27] R. Mateescu, S. Meriot, S. Rampacek. Extending SPARQL
with Temporal logic. Technical report. (2009)

[28] S. Hornus and Ph. Schnoebelen. On solving temporal logic
queries. Algebraic Methodology and Software
Technology. Lecture Notes in Computer Science, Volume
2422/2002, pages 73-89. 2002.

[29] M. Gheorghiu and A. Gurfinkel. TLQ: A query solver for
states. 2006.

[30] S. Hornus and Ph. Schnoebelen. Queries in temporal logic.
Technical report. 2009.

[31] A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri. NµSMV:
a new symbolic model checker. (2000)

[32] M. Ben-Ari. Principles of the SPIN Model Checker.
Springer. ISBN: 978-1-84628-769-5. (2008)

[33] R. E. Tarjan: Depth-First search and linear graph
algorithm. SIAM Journal of Computing 1, 2, 146-160.
(1972).

[34] M. Schmidt. Fondations of SPARQL query
optimization. PhD Thesis, Albert-Ludwigs-Universität
Freiburg (Germany) 2009.

[35] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
Complexity of SPARQL. Best Paper Award , 5th
International Semantic Web Conference, ISWC 2006.

[36] T. Neumann and G. Weikum. Scalable Join Processing on
very large RDF graphs. SIGMOD’09. (2009)

[37] G. Lausen, M. Meier and M. Schmidt. SPARQLing
Constraints for RDF. In EDBT, pages 499–509, 2008.

[38] A. Polleres, F. Scharffe, and R. Schindlauer. SPARQL++
for Mapping Between RDF Vocabularies. On the Move to
Meaningful Internet Systems 2007: CoopIS, DOA,
ODBASE, GADA, and IS, pages 878–896, 2007.

[39] ARQ SPARQL Processor for Jena.
http://jena.sourceforge.net/ARQ/.

[40] C. Blakeley. Mapping Relational Data to RDF with
Virtuoso’s RDF Views, 2007. OpenLink Software. (2007)

[41] K. Kochut and M. Janik. SPARQLeR: Extended SPARQL
for Semantic Association Discovery. In ESWC, pages
145–159, 2007.

[42] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A
Navigational Language for RDF. In ISWC, pages 66–81,
2008.

[43] F. Alkhateeb, JF. Baget, and J. Euzenate. Extending
SPARQL with regular expression patterns (for querying
RDF). Web Semantics, 7(2):57–73, 2009.

[44] B. Vatant. Metadata to describe resources (Semantic Web
Languages). In Proceedings of the INRA Seminar :
Metadata: changes and prospects. (2008)

Mahdi Gueffaz obtained his engineering
in computer science at the University of
Algiers in 2008 and a Master degree in
image and computer science at the
University of Burgundy in 2009. He has
been working toward his PhD degree at
the LE2I laboratory (electronics, Image
and computer Science) of the University
of Burgundy since September 2009. He

is also teaching at the University of Burgundy. His research
interests lie on formal methods, software engineering and
applying the model checking method to improve the Semantic
Web quality.

Sylvain Rampacek is associate
professor at the University of Burgundy.
He obtained a PhD in Computer Science
at the University of Reims in 2006. His
researches are focused on formal
methods and software engineering,
applied to semantic web.

Christophe Nicolle is full professor at
the University of Burgundy. In 1996, he
obtained a PhD in Computer Science.
His research area is the semantic
interoperability of information systems.
From his research, he founded the
company ACTIVe3D in 2003. This
company develops a facility
management web platform based a

combination of 3D Digital Mockup and semantics.

1472 JOURNAL OF SOFTWARE, VOL. 7, NO. 7, JULY 2012

© 2012 ACADEMY PUBLISHER

