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Abstract 
In a lubricated interface, the local dynamic responses can be complex and depend on 
molecular effects in the confined lubricating films. In a mechanical system comprising 
one or more of such interfaces, the influence of the local interfacial behaviour on the 
total vibrational response remains largely unknown. In this work, we propose a 
numerical model that incorporates realistic laws of local friction issued from previous 
experimental results. The objective is to characterize the dynamics of a lubricated 
system and to study its complex global responses triggered by the local interfacial 
behaviour. Both the stability analysis and vibrational oscillations of the mechanical 
system will be investigated through various operating conditions. 
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1. Introduction 

Nowadays, one of the important challenges in mechanical design is the ability to 
predict and reduce structural vibrations. These vibrations can be fed by external 
sources or by themselves, such as friction-induced vibrations. In all cases, these 
vibrations are hardly controllable and result in elevated stresses, exceeding those 
expected over nominal operation cycles. On one hand, the encountered material 
fatigue can significantly reduce the lifetime of the mechanical components while on 
the other hand the acoustic emissions from such vibrations may be a source of 
discomfort, for example, brake-squealing noise in automobile. 

Several mechanisms have been proposed in the literature to explain friction-induced 
vibrations. In self-sustained systems, these mechanisms fall into two distinct 
categories. First, one can mention the instabilities that depend mainly on geometrical 
characteristics of the system, such as sprag-slip or modal coupling through friction [1-
4]. Sprag-slip instabilities were first described by Spurr [5]: the instability of the 
stationary position arises from a kinematic coupling between the variation of normal 
and friction forces. For modal coupling through friction instabilities, Jarvis and Mills [6] 
first showed that the increase in friction induces a displacement of the two natural 
frequencies of the system: respectively in normal and tangential directions towards 
each other, until they become equal at the so-called Hopf bifurcation point. The static 
equilibrium position then becomes highly unstable, even for infinitesimal 
perturbations. These instabilities result in oscillations. In the second category as 
previously referred, one can find stick-slip instabilities that may occur with a variation 
of the friction coefficient. For instance, discontinuous static/dynamic friction transition 
or a decrease in dynamic friction with an increase in velocity will generate saw-tooth 
like vibrations that result from stick and slip states. On the other hand, in externally 
excited systems such as those involving a varying normal force or varying sliding 
velocity, the system can become unstable when a delay occurs between the external 
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excitation and the system frictional response, a phenomenon commonly detected in 
experiments. 
Friction-induced vibrations are in reality the consequence of a combination of those 
mechanisms, weighted relatively to the system configuration, operating and 
environmental conditions. The problem can become more complicated when lubricated 
interfaces are involved. In the boundary lubrication regime, a thin fluid film is confined 
between the two shearing surfaces. It displays specific properties that strongly differ 
from those of the bulk. These changes have been extensively studied, thanks to the 
development of the Surface Force Apparatus (SFA) and Atomic Force Microscopy 
(AFM) techniques 7-9 and are usually related to confined film relaxation times, 
orders of magnitude larger than those of the bulk 10, and to liquid/solid transitions 
11-12 within the interfacial layer. Evidence of layering may be observed 11, 13-15 
although liquid/solid transitions may also occur without any ordering [14, 16-17]. The 
friction response of such confined layers under shear will depend on the operating 
conditions (contact pressure, sliding velocity, and temperature), the nature of the 
surfaces and their mechanical and topographic characteristics, and the nature and 
shape of the confined fluid molecules 18-19. In the case of polymer and self-
assembled monolayers 20-22, shear experiments at the nanoscale also show long 
relaxation times, characteristic memory length and link friction dynamics to molecular 
organization. 
In order to account for these effects, various models have been developed to describe 
the frictional response of dry/lubricated single/multi-asperity contacts [23-30]. For 
instance, the so-called phenomenological ‘state and rate’ approach assumes that the 
interfacial area is large enough to self-average and allows one to model the collective 
dependence of friction on both the internal degrees of freedom of the interfacial layer 
and the characteristics of the shear motion. Indeed, the dissipative pinning/depinning 
of mesoscopic domains governs the interfacial rheology and the frictional response of 
contacts. Therefore, considering the interface as statistically interacting units is a 
promising way of modelling the friction. 
 
In this manuscript, the impact of local interfacial friction dynamics on the overall 
system behaviour is investigated through numerical modelling that relies on realistic 
experimental results for lubricated friction. The interest of this work emerges from the 
lack in literature of studies focused on friction-induced vibrations with lubricated 
interfaces. Besides, we will highlight the following paradox: although lubricated 
systems are supposed to reduce the frictional losses and improve the lifetime of 
mechanical components, they can generate undesirable vibrations leading to contact 
deterioration and material fatigue when badly designed. 

This manuscript is organized as follows. The model is first described including the 
equations of motion and details on the considered lubricated friction law. In the later 
sections, the stability of the self-excited system is discussed over its possible 
operating regimes and vibrational responses cycles are investigated in the presence of 
variable external excitations including alternative sliding.  

2. Model description 

In this section, the single degree-of-freedom block on a moving belt model is 
described. Then, the lubricated friction model that is based on SFA experimental 
results by Mazuyer et al [19] is presented. 
 
2.1. Mechanical system 
The mechanical system under study, shown in Figure 1, is composed of a mass held 
against a moving band with a confined lubricated interface. For the sake of simplicity, 
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we assume that the mass and band surfaces are always in contact. This assumption 
may be due to a preload applied to the system.  The equation of motion for the 
system is defined as follows: 

    
t relmx cx kx F v        (1) 

where  x t  is the displacements. m , c  and k  stand respectively for mass, damping 

and stiffness of the system. relv  defines the relative velocity of the mass given by  

  rel bandv v x .  t relF v  represents the tangential friction force: 

   , t rel relF v N v N      (2) 

where N  defines the constant normal force and  , relN v  the friction coefficient. 

 

 
 

Figure 1: Mechanical system considered in this work 
 
 

2.2. Lubricated friction model 
Various models have been proposed in the literature 24-29, 31-32. However, their 
main drawback relies on the lack of physical meaning for the variables used in the 
equations. In this framework, we will consider a general friction model based on the 
kinetics of formation and rupture of adhesive bonds between two shearing surfaces 
with an additional viscous contribution. This model, originally derived from a theory of 
adhesive friction between elastomeric surfaces 23,33, has been successfully applied 
to predict new instability regimes 30 and velocity-dependent friction response of 
surfactant monolayers 19, 34 and of more complex adsorbed polymer layers 22. 
The confined lubricated interface, considered as a viscoelastic medium, has a shear 
elastic modulus, G, and a viscosity, . The total contact area, A, can be described as 
schematically depicted in Figure 2: at any time of shear, it consists of Nj independent 
adhesive nanodomains, referred to as junctions, of average individual area, A. During 
shear, individual junctions are continuously formed and broken incoherently. Each 
junction can either be in a bonded state and it contributes elastically to friction or in a 
free state and then it participates to friction dissipation with a viscous contribution. 
The junction activation involves two characteristic times: 0, the mean time to break a 
junction due to thermal fluctuations under zero shear force, and , the mean time to 
activate or reactivate a junction thermally. A junction is assumed to remain in the 
bonded state until it is elastically stretched under shear, up to a yield distance l* 
beyond which it becomes depinned or free. Figure 3a and b respectively present a 
schematic of a bonded junction respectively at rest and stretched while Figure 3c 
illustrates a free junction. The mean lifetime of a bonded junction, <tb>, can be 
calculated from its survival probability, such as: 

0

0 1
 

    
 

rel

v
v

bt e
   

   (3)
 

with v0 = l*/0 is the critical sliding velocity at the junction becomes free under shear. 
According to this model, for a constant normal force N, the friction coefficient  results 
from two terms elastic and viscous contributions, as follows: 
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where D is the lubricated interface thickness,; d is the thickness of the 

interpenetration zone between adsorbed layers, as defined in Figure 3a, 
 
b

b

t
t

 is 

the ratio between the number of junctions at vrel and that at rest,
 

1 
    

 

k

rel
ref

ref

v
v

 is the 

mean time to activate or reactivate a junction thermally and is given by decreasing 
power law with a reference time, ref, a reference velocity, vref, and a power index, k1, 

ranging from -1 to 0, and the viscosity 
2 

    
 

k

rel
ref

ref

v
v

 is the dynamic viscosity of the 

shear-thinning lubricant. ref is a reference viscosity and k2, a power index varying 
between -1 and 0, is dependent on the nature of the lubricant. It is noteworthy that 
the contact area A also depends on the normal force N according to Jonhson-Kendall-
Roberts adhesive contact law 35. 
In the remaining part of this paper, the contact is lubricated with a blend composed of 
0.5%w/w N-alkyl dioelate diamine, a friction modifier, dispersed in polyalphaolefin 
base oil. The viscosity of the lubricant at ambient pressure and temperature, 
measured using a capillary viscometer, is 18.10-3 Pa.s. Friction experiments on 
adsorbed diamine monolayers were performed on the molecular tribometer of the 
Ecole Centrale de Lyon 19, 34. The results are described in detail in 19. Under a 
constant normal force of 10-3 N and for a thickness D of 4.25 10-9 m, i.e. twice the 
length of the diamine molecule, the contact area A is 28.3 10-12 m2. Dynamic 
measurements carried out at 37 Hz allow us to estimate the shear elastic modulus of 
the confined lubricated interface, G = 3.9 106 Pa. The evolution of the friction 
coefficient as a function of the sliding velocity is presented in Figure 4. Three friction 
regimes can be detected: for a sliding velocity lower than 4.1 10-12 m/s, the friction is 
rather high at around 0.1. This large value mainly emerges from the elastic 
contribution arising from the bonded junctions. It corresponds to a static friction. As 
the sliding velocity increases, the number of free junctions goes up and the friction 
decreases. This regime lasts until the velocity reaches 1.35 10-7 m/s. Above this 
velocity, the friction response becomes purely viscous, due to a large number of free 
junctions and the friction increases linearly with the sliding velocity. 
The application of the friction model - Equation (4) – to experimental data gives: 
v0 = 1.6 10-12 m/s, vref = 10-10 m/s, l* = 1.6 10-9 m, d = 10-10 m, 0 = 1000 s, ref = 18 
s, k1 = -0.41, k2 = -0.62 and ref = 900 Pa.s. The physical meaning of these values is 
discussed in detail in 19. In the following expression of the friction coefficient 
 , relN v  will be denoted by   relv  due to the fact that the normal force N is 

constant. 
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Figure 2: Schematic of the contact area A that is composed of bonded and free 
junctions 

 
 
 

 
                (a)         (b)    (c) 

 
Figure 3: Shear-induced rupture process of junctions a) a bonded junction with an 

interpenetration zone of thickness d, b) an elastically stretched bonded junction, c) a 
free junction 

 
 
2.3 Complete mechanical system with the lubricated friction model 

Finally, by introducing the constants  ζ = c / 2 km , 0 /ω = k m  and the hyper-time 

t’=0t, Equation (1) becomes: 

2


     N
x x x

k
     (5) 

with 
'





 x
x

t
 and 

2

2'





 x
x

t
. The expression of the friction coefficient  is given in 

Equation (4). Numerical values of the parameters are m=0.1kg, 0
0 10

2





f = Hz , 

ζ = 0.01 and N=10-3N. 
 
3. Numerical study 
In this part of the paper, the stability analysis and the nonlinear behaviour of the 
system with a confined lubricated interface for different operating conditions will be 
investigated. 
 
3.1. Stability analysis 
The stability analysis of the static sliding equilibrium point is the first step while 
studying nonlinear systems subjected to instability phenomena [2]. For a given set of 
parameters, a static equilibrium position can become unstable and nonlinear 
oscillations occur.  
This analysis is performed in two steps [36]. The first step in the solution procedure is 
to obtain the steady state operating point, called the equilibrium point, for the 
nonlinear equation defined in Equation (5). This equilibrium point 0x  is calculated by 
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solving the nonlinear static equations for a given normal force. It satisfies the 
following conditions:  

   
0

0
rel bandμ x= N μ v =v N

x = =
k k

    (6) 

 
It is observed that the equilibrium point depends on the ground sliding velocity bandv  

via the friction coefficient. 
Secondly, the stability is investigated on the linearized equations by assuming small 
perturbations x  around the equilibrium point 0x  i.e. 0 x x x . The linearization of 

the equation of motion for a small displacement from the equilibrium position gives 
the following differential equation:  

0 02 0
' 

     
 

 ω μ N
x x x

k
     (7) 

The term 0
'μ  corresponds to the linearized nonlinear forces which is composed by the 

following Jacobian value for each operating condition:  

 0
' 

 band
rel

μ
μ = v

v
     (8) 

We consider that the normal load N  and the ground sliding velocity bandv  are both 

constant with time.  In this case, the system is said to be self-sustained since all 
possible vibrations would occur at the natural frequency of the system.  
Figure 4 also shows the calculated Jacobian values corresponding to the friction 
coefficient  previously defined in Equation (4) taking into account the elastic and 
viscous contributions.  
Finally, the stability of the equilibrium point is evaluated by considering the Routh-
Hurwitz criterion [37] given by:  

0 0 0
2

'

  
ω μ N
k

     (9) 

 
After calculation, the complete expression giving the stability condition of the 
equilibrium point is: 
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0 0
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


rel rel

rel
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v v
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rel relt
v v
v v

v v
e e

v vF x AAG
c

x D d
e e

  
(10) 

Obviously, the stability of the equilibrium position depends on the ground velocity. If 
the ground velocity lies in zone 1 or 3 of the friction curve, as indicated in Figure 4, 
then the Jacobian value 0

'μ  is positive and the equilibrium position is stable. However, 

in zone 2 where the friction  bandμ v  is a decreasing function of the relative velocity, a 

minimum value of   i.e. the non dimensional structural damping  ζ = c / 2 km , is 

required to avoid instability. 
Consequently, three possible stability scenarios can be encountered as a function of 
the ground velocity as shown in Figure 5. First, if the slope of the friction coefficient 
with the relative velocity is positive (i.e. 12 14.10 relv ms ), then the system is 

naturally stable. Second, for a range of velocities between 12 14.10 ms 
 and 1.35 10-7 

ms-1, the system is by nature unstable in the absence of structural damping. However, 
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the mechanical system can be stabilized by adding an appropriate non dimensional 
structural damping ζ  for the range of ground velocity between 8 13.10 ms   and 1.35 10-

7 ms-1: increasing the quantity of ζ  increases the stability of the equilibrium point if all 
the other parameters are kept constant, as indicated in Figure 5. However, for a 
ground velocity value between 12 14.10 ms   and 8 13.10 ms  , it can be observed that the 
mechanical system with the lubricated friction model is unstable whatever the value of 
the non dimensional structural damping ζ . For example, a numerical simulation 

performed with a ground velocity of 8 12.10 ms   results in a stick-slip motion as shown 
in Figure 6: the mass of the mechanical system sticks until the tension force reaches 
the value of the friction force at the lubricated interface. Then the mass slips over the 
belt until the friction force at the interface exceeds the tension, and the process 
repeats itself. 
Finally, if the ground velocity ranges between 1.35 10-7 ms-1 and 4 11.10 ms  , the 
mechanical system is stable whatever the value of the non dimensional structural 
damping ζ . 

 
 
 

 
 
 
 

Figure 4:Evolution of the friction coefficient as a function of the sliding velocity for 
confined monolayers of diamine at room temperature under a normal force of 1 mN 
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Figure 5: Stability analysis of the system 
 

 
Figure 6: Stick-slip motion a) displacement vs time, b) velocity vs time 

 
 
3.2. Nonlinear behaviour of the system with a confined lubricated interface 
In real systems, sliding velocities are seldom constant throughout the operation. Since 
the sliding velocity seems a key factor in determining the system stability, the 
influence of a non-constant sliding velocity on the vibration response of the complete 
mechanical system with the lubricated friction model needs to be looked at in detail. 
In this section of the paper, the basic concept of the Continuous Wavelet Transform is 
first introduced before various nonlinear behaviours of the system with a confined 
lubricated interface are undertaken for different operating conditions. 
 
3.2.1 Basic theory of the wavelet analysis with Continuous Wavelet Transform 
The frequency analysis is one of the first key step in investigating of the information 
contained in a given signal. For steady state vibration signals, the Fast Fourier 
Transform (FFT) is a commonly used method: it transforms the signal from a time-
based domain to a frequency-based domain. However, in the case of a non-stationary 
signal, the time-dependence of the frequency components is an essential point to 
evaluate in order to obtain a better understanding of the dynamic behaviour of the 
mechanical system.  
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When a signal is considered as non-stationary, the characteristics of transient 
responses and changes in the properties of non-stationary signal of mechanical 
systems can be precisely analysed by means of the Continuous Wavelet Transform 
(CWT) 38]. The wavelet analysis transforms a signal into wavelets that are well 
localized both in frequency and time. The continuous Wavelet Transform (CWT) of a 
function  f t

 
is defined by:  

     *
,,




  a bW a b f t t dt

    
(11) 

where 

  1
,

    
 

a b

t b
t

aa      
(12) 

are the daughter wavelets (i.e. the dilated and shifted versions of the ‘mother’ 
wavelet   that is continuous both in time and frequency). a is the scale parameter, b 

is the time parameter. The asterisk *
,a b  indicates the complex conjugate of ,a b .The 

term 1 a  ensures energy normalization across the different scales. The mother 
wavelet fulfils the admissibility conditions [39] i.e. 0   C  where C  defines the 

admissibility constant 
  2

ˆ

 

 
 

C d  with ̂  the Fourier transform of . Many 

types of wavelets with their own features and performance in time and frequency 
domains have been developed. One of the most widely used mother wavelets is the 
Morlet wavelet defined as follows in the time domain: 

 
21

4 2
0


     ime e

      
(13) 

where m is the wave-number ,   is a non-dimensional time parameter, and i defines 
the complex number. The wavelet function contains unit energy at every scale due to 
the normalization of the mother wavelet. In practice, the wavelet power spectrum is 
used because of its analogy with the Fourier power spectrum. For this study, part of 
the Continuous Wavelet Transform software includes code originally written by 
Torrence and Compo [40]. 

3.2.2 Effects of variable physical parameters 

To estimate more precisely the vibration phenomena, a series of numerical tests are 
performed for different operating conditions. We will consider that the belt velocity 
changes over regular cycles between V1 and V2 as presented in Figure 7. V1 and V2 
are respectively chosen in the unstable and stable zones. The influence of the 
variation of the ramp time Tramp, time of constant belt velocity Tc, the minimum 
and maximum belt velocity V1 and V2 will be more particularly analysed.  All the 
cases studied here are reported in Table 1. For each case, the equivalent frequency of 
the belt velocity (Hz) that is defined by 1/Tbelt (with Tbelt=∆Tramp+Tc) is also given 
in Table 1. The initial conditions initialx used in time integrations have been chosen in 

order to represent a small perturbation of 1% around the equilibrium point, i.e. 
xinitial=1.01 x0. 
First of all, Figures 8 illustrate the effect of the time of constant belt velocity Tc when 
other parameters are held constant (cases 1 to 3). Figures 8(a), (c) and (e) present 
the time-history response of the mechanical system with the frequency content via 
Continuous Wavelet Transform (CWT). The limit cycles are given in Figures 8(b), (d) 
and (f). For the first two cases, the dynamics of the response appears to be simple as 
it is composed of two domains: first, the oscillation amplitude increases before the 
oscillations stabilize and stationary amplitudes are reached. Moreover, an overshoot is 
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observed in the transient regime for the first case, between t ranging from 0.5 to 1.5 
s as indicated in Figure 8(a). By showing the frequencies occurring in the dynamical 
response, the Continuous Wavelet Transform reveals that the response is composed of 
two frequencies for the first case, at around 4.76Hz and 9.52Hz as indicated in Figure 
8(a), while it consists of three frequencies for the second case at around 3.33Hz, 
6.66Hz and 9.99Hz as indicated in Figure 8(b). It is noted that 4.76Hz and 3.33Hz are 
the fundamental frequencies of the belt velocity for cases 1 and 2, respectively (see 
Table 1). Moreover, the frequency value 9.52Hz corresponds to the second harmonic 
component of the fundamental frequency 4.76Hz for case 1. The frequency values 
6.66Hz and 9.99Hz correspond respectively to the second and third harmonic 
components of the fundamental frequency 3.33Hz for case 2. So the dynamic 
response of the system is not only composed of the equivalent fundamental frequency 
of the belt velocity but also its harmonics. Even if slight differences in the frequency 
content and in the initial transient response are noticed, these two first cases appear 
to be very similar with identical amplitude levels. For case 3, the time-plot displays 
fluctuations in oscillations as indicated in Figure 8(e): the response of the mechanical 
system appears to become more complex with a succession of increase and decrease 
in amplitudes. These successive increase and decrease of oscillations are due to the 
fact that the time of constant belt velocity is sufficient enough to allow the 
establishment of the stability mechanism around V1 and V2. As previously explained 
in Section 3.1, for V1=1.10-7 m.s-1 the system is unstable causing an increase in the 
response. For V2=2.10-7 m.s-1, the system is stable leading to the decrease of the 
response. Finally, we detect multiple frequencies in the range 1-10Hz with a 
predominant frequency at 10Hz. It should be noted that the fundamental frequency of 
the belt is 0.83Hz for this case. Therefore the multiple frequencies observed via the 
wavelet spectrum correspond to the harmonic components of the frequency of the 
belt. The predominant frequency at 10Hz is related to the 12th harmonic component. 
Finally, it can be assumed that the limitation of vibration amplitudes is due to the 
combination of the growth rate and the evolution of the belt velocity changes that 
induces the successive increase and decrease of oscillations  
 
Case V1 (m.s-1) V2 (m.s-1) Tc (s) Tramp (s) Frequency of the belt 

velocity (Hz) 1/Tbelt  
1 1.10-7 2.10-7 0.01 0.2 4.76 
2 1.10-7 2.10-7 0.1 0.2 3.33 
3 1.10-7 2.10-7 1 0.2 0.83 
4 1.10-7 10.10-7 0.01 0.2 4.76 
5 1.10-7 10.10-7 0.1 0.2 3.33 
6 1.10-7 10.10-7 1 0.2 0.83 
7 1.10-7 10.10-7 0.08 0.02 10 
8 1.10-7 10.10-7 0.04 0.01 20 
9 1.10-7 2.10-7 0.01 0.02 33.3 
10 1.10-7 10.10-7 0.01 0.02 33.3 

 
 

Table 1: Operating conditions for the belt velocity changes over regular cycles 
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Figure 7: Belt velocity changes over regular cycles. Tbelt corresponds to the 
periodicity of a cycle, Tramp is the ramp time and Tc is the time of the plateau of 
constant velocity. V1 and V2 are respectively the minimum and the maximum belt 

velocity reached in a cycle. 
 

Then, we propose to analyse the effects of the maximum belt velocity V2. To do so, 
the previous cases are reconducted by changing only this parameter as indicated in 
Table 1. Figures 9(a) and (b) illustrate the time history, frequency spectrum via CWT 
and the limit cycles for case 4. Apart from the initial transient behaviour and the 
vibration amplitudes, the simple vibration behaviour of the system and the frequency 
content can be compared with that of case 1. The predominant frequency is identified 
at around 4.76Hz in this case, with two small contributions around 9.52Hz and 
14.28Hz.  As previously explained, we observed the equivalent fundamental frequency 
of the belt velocity and its second and third harmonic components. For case 5, the 
vibration develops with a classically increase, quite similar to that observed for case 2. 
However, it is noteworthy that the quasi-periodic amplitudes and velocities are larger. 
The system response is composed of two predominant frequencies at around 3.33Hz 
and 9.99Hz corresponding to the fundamental frequency of the belt velocity and its 
third harmonic component. 
For case 6, the time plots of Figure 9(e) and (f) show significantly different behaviours 
compared to the previous cases. As seen in Figure 9(f), the complete dynamics 
appears to comprise two specific limit cycles with transitions from one to the other: 
for the first one (i.e. the left limit cycle in Figure 9(f)), a vibration develops and 
increases, while oscillations decrease for the second limit cycles. This behaviour can 
be compared with the nonlinear behaviour previously observed for case 3: the time of 
constant belt velocity is sufficient to allow the establishment of the mechanism around 
V1 and V2. The novelty compared to the previous case 3 is that these two oscillations 
and limit cycles are clearly separated in phase plot with jumps of amplitude responses 
of the system. Moreover, it can be observed that the amplitude level is more 
important. As previously explained, the limitation of the vibration amplitudes is due to 
the growth rate and the evolution of the belt velocity changes. Finally, the detailed 
CWT of Figure 9(e) gives a view of all the frequencies between 0.8Hz and 10Hz 
making up the signal: the frequency content is extremely rich with four predominant 
contributions at 0.83Hz, 2.49Hz, 4.15Hz and 9.96Hz i.e. the fundamental frequency of 
the belt velocity and its 3rd, 5th and 12th harmonic components, respectively. 

From these examples, it can be concluded that variations of the time of constant belt 
velocity Tc, the minimum and maximum belt velocities V1 and V2 can drastically 
affect not only the vibration amplitudes of the mechanical system but also the 
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frequency content and the transient behaviour with more or less complex nonlinear 
behaviours. The frequency content can be composed of multiple frequencies that 
correspond to the equivalent fundamental frequency of the belt velocity and its 
harmonic components. 

 
 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

 
 
Figure 8: Nonlinear dynamics of the system for cases 1, 2 and 3 (a) time history and 
wavelet power spectrum for case 1; (b) phase plot for case 1; (c) time history and 
wavelet power spectrum for case 2; (d) phase plot for case 2; (e) time history and 

wavelet power spectrum for case 3; (f) phase plot for case 3 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
 
 

(e) 
 

 
(f) 

Figure 9: Nonlinear dynamics of the system for cases 4, 5 and 6 (a) time history and 
wavelet power spectrum for case 4; (b) phase plot for case 4; (c) time history and 
wavelet power spectrum for case 5; (d) phase plot for case 5; (e) time history and 

wavelet power spectrum for case 6; (f) phase plot for case 6 

 

Considering the previous results, a specific case is now presented and discussed: the 
belt velocity changes are always performed over regular cycles, but the frequency of 
these regular cycles corresponds to the fundamental frequency of the mechanical 
system. Figures 10(a) and (b) show the time plot, the associated wavelet power 
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spectrum and the phase plot for this case 7. It can be seen that the displacement 
increases until periodic oscillations are obtained. As indicated by the wavelet power 
spectrum, the response of the system is mono-harmonic at 10 Hz. This phenomenon 
can be interpreted as a classical dynamical behaviour of a mechanical system 
undergoing external excitation synchronized on its own frequency resonance. In 
comparison with case 5 (i.e. the same operating conditions expect for the ramp time 
Tramp), it is clearly shown that the oscillation magnitudes are eight times higher 
here. This example perfectly illustrates the need to avoid a match between the 
excitation frequency and the resonant frequency of the mechanical system.  

In conclusion, it can be noted that for each case the vibration amplitude depends on 
the growth rate of the oscillation, the evolution of the belt velocity changes over 
regular cycles (i.e. the difference between V1 and V2) and the frequency of these 
regular cycles of the belt  (due to the synchronisation or not with the fundamental 
frequency of the mechanical system). 

3.2.3 How does the local dynamics control the macroscopic behaviour? 
 
By varying Tramp and Tc, other behaviours such as stick-slip phenomenon, may also 
be triggered. For example, Figures 11(a) and (b) show the transient and stationary 
quasi-periodic vibrations corresponding to case 8. The operating parameters are 
similar to those of cases 4-7 except for the value of the ramp time Tramp and the 
time of constant belt velocity Tc. Firstly, a decrease of the transient oscillations for t 
inferior to 2 s is followed by a very fast increase for t higher than 4 s, as illustrated in 
Figure 11(a). Two predominant frequencies at 10Hz and 20Hz are present during this 
first part of the system behaviour. Then, during the second part of the transient 
oscillations (for t > 4 s), stationary oscillations are seen without modification in the 
frequency content. Figure 11 (b) shows that this second part of the system behaviour 
is governed by a stick-slip motion when the velocity remains constant for a varying 
displacement. As previously explained in Section 3.1, the following repetitive process 
occurs: when the tension force reaches the value of the friction force at the lubricated 
interface the mass of the mechanical system slips over the belt. When the friction 
force at the interface exceeds the tension, the mass sticks. 
For this case, it appears that the two frequencies correspond to the fundamental 
frequency of the mechanical system and the equivalent frequency of the belt velocity. 
 
 

 
(a) 

 

 
(b) 

 
Figure 10: Nonlinear dynamics of the system for case 7 (a) time history and wavelet 

power spectrum; (b) phase plot 
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(a) 
 

 
(b) 

 
Figure 11: Nonlinear dynamics of the system for case 8 (a) time history and wavelet 

power spectrum; (b) phase plot 
 
 
 
 

 
(a) 

 

 
(b) 

(c) 
 

 
(d) 

 
Figure 12: Nonlinear dynamics of the system for cases 9 and 10 (a) time history and 
wavelet power spectrum for case 9; (b) phase plot for case 9; (c) time history and 

wavelet power spectrum for case 10; (d) phase plot for case 10 
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Another interesting phenomenon can be put forward. We show that one can attenuate 
the macroscopic dynamic behaviour by controlling the local lubricated friction 
dynamics: under certain operating conditions, the movement of the belt and the 
associated non-constant sliding velocity may lead to a decrease and an attenuation of 
stationary vibrations of the mechanical system with the lubricated interface. This fact 
is illustrated in Figures 12 with the operating conditions given in Table 1 
corresponding to cases 9 and 10. For the reader’s understanding, cases 9 and 10 can 
be compared to the cases 2 and 5, respectively: all the operating parameters are 
similar to these previous cases except for the value of the ramp time Tramp. In 
comparison with the previous cases 2 and 5, two behaviours can be identified when 
examining the time history of the system response. First, a very fast decrease of the 
transient oscillations is observed; then, small residual stationary oscillations are 
depicted. Showing the CWT analysis, the resonance frequency of the mechanical 
system at 10Hz, which is present in the first part of the transient vibrations (for t 
lower than 10 s for case 9 and for t inferior to 5 s for case 10), disappears in the 
second part of the time plot and stationary oscillations occur for t > 10 s for case 9 
and for t > 5 s for case 10.  
As indicated by the CWT analysis (see Figures 12(a) and (c)), the frequency content is 
composed of only the fundamental frequency at 33Hz for case 9, and only the 
fundamental frequency at 33 Hz and its second harmonic component at 66 Hz for case 
10. So, the previous observations can be explained by the fact that the system is first 
governed by its fundamental frequency and then the system is excited by the 
frequency of the moving belt. Due to the fact that the fundamental frequency of the 
system and the frequency of the belt are not in concordance, small vibration 
amplitudes are observed. Moreover, the mechanical system cannot be excited by the 
harmonic components of the belt velocity that are higher than the fundamental 
frequency of the system. This is one way to reduce or avoid amplitudes of the 
mechanical system with a lubricated interface. 

3.2.4 Evolution of the friction coefficient 
 
It can be interesting to investigate the evolution of the friction coefficient versus time 
for each previous case. Such information can be useful to answer the following 
questions: 

- Does the friction coefficient fluctuate more or less during the transient or 
stationary responses of the mechanical system? 

- Is it possible to clearly understand the variation of the friction coefficient during 
the system response?  

To answer these questions, Figures 13 and 14 give the evolution of the friction 
coefficient versus time for cases 1-6 and cases 7-10, respectively. Moreover, the 
velocity of the mechanical system  x t  and the band velocity  bandv t  (i.e. velocity 

changes over regular cycles between V1 and V2) are also given to better analyse the 
fluctuation of the friction coefficient with time.  
Considering all cases in Figures 13 and 14, various situations are found. First of all, it 
is observed that the differences between the minimum and maximum values of the 
friction coefficient during time can be very small between [6.5 10-3; 6.6 10-3] (see for 
example cases 1, 2, 3, and 9 in Figures 13(a), 13(b), 13(c) and 14(c), respectively).  
In some other cases, this fluctuation is more important between [6.10-3; 10.10-3] (see 
for example cases 4-6, 7 and 10 in Figures 13(d-f) ,14(a) and 14(d), respectively). 
These observations can be explained by the fact that the velocity fluctuation of the 
belt  bandv t  is more important than the velocity evolution of the mechanical system 
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 x t  (as illustrated in Figures 13 and 14 and 14(c-d)). So the evolution of the friction 

coefficient seems mainly governed by the evolution of the belt velocity  bandv t  (via 

equation 4). For case 8 where stick-slip occurs (Figure 14(b)), fluctuation of the 
friction coefficient is very high between [6.5 10-3;0.16] due to the high variation of the 
velocity of the mechanical system  x t  from -1.10-7ms-1 to 1.10-7ms-1. Consequently, 

the values of the velocity  x t  and the belt velocity  bandv t  can be of the same order 

of magnitude: this induces a relative velocity of the mass   rel bandv v x  equal to zero 

resulting in a high value of the friction coefficient, as indicated in Figure 4. It can be 
concluded that the friction coefficient fluctuates more or less during the transient or 
stationary responses of the mechanical system due to the fluctuation of both the 
system velocity  x t  and the belt velocity  bandv t . 

 
In addition, the evolution of the friction coefficient can also be more or less complex. 
These different behaviours depend on the trends of the two velocities (i.e. system 
velocity  x t  and belt velocity  bandv t ). For example, if the temporal evolution of the 

belt velocity  bandv t ) is really much more important than the evolution of the system 

velocity  x t , the vibration behaviour of the friction coefficient follows the evolution 

of the belt velocity  bandv t  (see for example cases 4, 5, 6, 7, 9 and 10 in Figures 

13(d), 13(e), 13(f), 14(a), 14(c)  and 14(d)). In other cases, the temporal evolution 
of the friction coefficient is more complex, as illustrated in Figures 13(a), 13(b) and 
13(c) (for cases 1, 2 and 3). For cases 1 and 2, it is shown that the friction coefficient 
fluctuates due to the periodic evolution of both the belt velocity  bandv t ) and the 

system velocity  x t . For case 3, the temporal fluctuations of the friction coefficient 

are even more pronounced and complex: the global evolution of the friction coefficient 
follows the temporal evolution of the belt velocity  bandv t ; additionally, a fluctuation 

of the friction coefficient around this ‘global evolution’ is observed. This 
supplementary evolution is governed by that of the system velocity  x t : an increase 

in amplitude of the system velocity  x t  results in fluctuations of the friction 

coefficient around the temporal ‘global value’ (see for example evolution of the signal 
for t=[3.6;4.1]s or t=[6;6.5]s). In contrast, fluctuations of the friction coefficient 
decrease around the ‘global value’ when amplitudes of the system velocity  x t  

decrease (see for example evolution of the signal for t=[5.4;5.9]s or t=[7.8;8.3]s). 
 
In conclusion, variations and temporal changes of the friction coefficient are consistent 
with the temporal evolutions of both the belt velocity  bandv t ) and the system 

velocity  x t . It is recalled that the others parameters of Equation 4 (for the friction 

law) are assumed to be constant for the present study. It is also seen that evolution 
of the friction coefficient can be more or less complex during time due to the specific 
vibrational behaviour of the mechanical system.  
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(a) 

 
(b) 

 
(c) 

 

 

 (d) 

 
(e) 

 
(f) 

 
 
Figure 13: Temporal evolution of the system velocity, the belt velocity and the friction 

coefficient (a) case 1; (b) case 2; (c) case 3; (d) case 4; (e) case 5; (f) case 6 
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(a) (b) 

(c) (d) 
 
 
Figure 14: Temporal evolution of the system velocity, the belt velocity and the friction 

coefficient (a) case 7; (b) case 8; (c) case 9; (d) case 10 
 
 
4. Conclusions 
 
This study takes place in the context of the local dynamic responses of a mechanical 
system with lubricated interface. A rather simple mechanical model, that is to say a 
single-degree of freedom block on a moving belt, was deliberately selected. 
Nevertheless the originality of this work lies on the choice of a realistic friction law, 
issued from experimental results, that accounts for the physical dissipation 
mechanisms within the lubricated interface. This coupled approach allows us to 
develop a complete numerical investigation in order to bring a better insight into the 
dynamic behaviour of such a system. Not only the stability analysis of the system, but 
also the vibrational oscillations and a complete analysis of the frequency content via 
the Continuous Wavelet Transform were presented and discussed through various 
operating conditions. More particularly, the influence of a non-constant velocity of the 
belt is undertaken. 
We clearly demonstrated the impact of the periodicity of velocity cycles, as well as the 
values of minimum and maximum velocities reached by the belt, on the complexity of 
the nonlinear behaviour in terms of vibration amplitudes and frequency content. We 
also illustrated the consequence of a match between the excitation frequency and the 
resonant frequency of the mechanical system. Last but not least, we showed that the 
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local dynamics can control the macroscopic behaviour by triggering stick-slip 
phenomenon or attenuating the vibrations. 
Giving an exhaustive list of topics of interest for future developments is not possible. 
However, some non-exhaustive interesting further studies can be considered: 

- the improvement of correlations between experimental and numerical analysis 
for a better understanding of the nonlinear behaviour of lubricated mechanical 
systems; 

- the extension of the proposed numerical process for complex industrial 
systems. 

On a more fundamental aspect, one might wonder how to take advantage of this 
correlation between local dynamics and macroscopic nonlinear behaviour. Is it 
possible to control the evolution of the local dynamics with an adequate choice of 
monolayers in terms of viscoelastic properties and adsorption characteristics, and 
consequently the vibrational behaviour of a lubricated mechanical system? 
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