
HAL Id: hal-00783654
https://hal.science/hal-00783654

Submitted on 18 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Remarks on isomorphisms of simple inductive types
David Chemouil, Sergei Soloviev

To cite this version:
David Chemouil, Sergei Soloviev. Remarks on isomorphisms of simple inductive types. Mathematics,
Logic and Computation 2003 (Satellite Event of ICALP 2003), Jun 2003, Eindhoven, Netherlands.
pp.106-124, �10.1016/S1571-0661(04)80760-6�. �hal-00783654�

https://hal.science/hal-00783654
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

MLC 2003 Preliminary Version

Remarks on Isomorphisms

of Simple Indu
tive Types

David Chemouil, Sergei Soloviev

1;2

IRIT, Université Paul Sabatier

118, route de Narbonne

31062 Toulouse, Fran
e

Abstra
t

We study isomorphisms of types in the system of simply-typed �-
al
ulus with in-

du
tive types and re
ursion operators. It is shown that in some
ases (multiprodu
ts,

opies of types), it is possible to add new redu
tions in su
h a way that strong nor-

malisation and
on�uen
e of the
al
ulus are preserved, and the isomorphisms may

be regarded as intensional w.r.t. a stronger equality relation.

1 Introdu
tion

1.1 Presentation

This work is part of a larger proje
t where we are exploring the possibilities

of extensions preserving strong normalisation and
on�uen
e of standard re-

du
tion systems by new redu
tions of the form f

0

(f t) �! t where f

0

is in

some sense an inverse of f .

The way this notion of invertibility may be understood is one of the ques-

tions we are investigating. A possibility would be to take the invertibility w.r.t

extensional equality of fun
tions between indu
tive types.

Here, we shall
onsider the simply-typed �-
al
ulus, equipped with indu
-

tive types (i.e re
ursive types satisfying a
ondition of stri
t positivity) and

stru
tural re
ursion s
hemes on these types.

In this short paper, we will fo
us on two parti
ular
ases where the use-

fulness of this extension seems obvious. Namely, we shall study some isomor-

phisms of produ
ts (de�ned as indu
tive types) and the notion of
opy of a

type

1

E-mails:
hemouil�irit.fr, soloviev�irit.fr

2

Work partly funded by Proje
t isot (sti
 21) from Department sti
 of
nrs.

This is a preliminary version. The �nal version will be published in

Ele
troni
 Notes in Theoreti
al Computer S
ien
e

URL: www.elsevier.nl/lo
ate/ent
s

D. Chemouil, S. Soloviev

1.2 Isomorphisms of Types

Let us �rst re
all a few fa
ts and de�nitions about isomorphisms of types.

De�nition 1.1 Consider a typed �-
al
ulus, equipped with an equivalen
e

relation � on terms, a term id

A

: A ! A for any type A and a
omposition

operator Æ (with suitable typing) verifying the following
onditions, for any

fun
tion f : A! B:

f Æ id

A

� f id

B

Æf � f

Then, two types A and B are said to be isomorphi
 (written A

�

=

B) if

there exist two �-terms f : A! B and g : B ! A su
h that

f Æ g � id

B

g Æ f � id

A

In this
ase, g is often written f

�1

and
alled the inverse of f .

Until now, isomorphisms of types have mostly been studied in various �rst-

or se
ond-order �-
al
uli, where � is usually generated by ��-
onversion

3

,

id

A

b= �x : A � x and Æ b= �g : B ! C � �f : A ! B � �x : A � g (f x) (for any

types A, B, and C). As an example, we have the following result:

Proposition 1.2 ([21℄; [9,11℄) All isomorphisms holding in �

1

��

!;�;1

, the

�rst-order simply-typed �-
al
ulus with binary produ
ts and unit type (or,

equivalently, in
artesian
losed
ategories), are obtainable by �nite
ompo-

sitions of the following �base� of seven isomorphisms:

A�B

�

=

B � A A� (B � C)

�

=

(A� B)� C

(A�B)! C

�

=

A! (B ! C) A! (B � C)

�

=

(A! B)� (A! C)

A� 1

�

=

A A! 1

�

=

1 1! A

�

=

A

1.3 Isomorphisms of Indu
tive Types

Now, it is our view that, as long as indu
tive types are
on
erned, intensional

isomorphisms, in ordinary sense, la
k expressivity. To view this problem in a

larger
ontext, one needs a notion of extensionality.

De�nition 1.3 Two types A and B are extensionally isomorphi
 (written

A u B) if there exists two �-terms f : A! B and g : B ! A su
h that

8 x : A � g (f x) � x and 8 y : B � f (g y) � y :

(Note that

�

=

and u are both equivalen
e relations.)

3

It was shown in [10℄ that with �-
onversion solely, the only invertible term is the identity.

2

D. Chemouil, S. Soloviev

Obviously, we have A

�

=

B) A u B, but the
onverse is usually not true.

One way to a
hieve this kind of isomorphisms would be to add extensional

redu
tion rules to the
al
uli, su
h as � rules, surje
tive pairing, et
. However,

many
al
uli don't
ome equipped with extensional redu
tion rules, for various

reasons (de
idability,
on�uen
e, et
); though some positive results do exist,

e.g [17,14,16℄. Hen
e, in this paper, we will mainly be interested with ��-

redu
tion only (where �-redu
tion is the rule asso
iated to stru
tural re
ursion

over indu
tive types).

Of
ourse, extensional isomorphisms are provable by indu
tion, but they

are not
omputable, i.e, one doesn't have (for example)

�x : A � f

�1

(f x) �!

��

�x : A � x:

Without appealing to full extensionality, we think that, if f and f

�1

are

mutually invertible extensional isomorphisms, it is worth
onsidering the ad-

dition of new redu
tion rules (
all them �-redu
tions, following [6℄) as follows:

f (f

�1

x) �!

�

x and f

�1

(f x) �!

�

x:

1.4 Outline of the paper

In Se
t. 2, we qui
kly give essential de�nitions of a simply-typed �-
al
ulus

with indu
tive types.

Then, in Se
t. 3, we qui
kly present a small lemma (�Deferment Lemma�)

that is of interest in the next se
tion.

In Se
t. 4, we illustrate the addition of rewrite rules on n-ary produ
ts.

We show that, for produ
ts, strong normalisation and
on�uen
e are preserved

for a rewrite rule
orresponding to
ommutativity, while it is not the
ase for

asso
iativity, unless we also add surje
tive pairing.

Finally, in Se
t. 5, we study the notion of isomorphi

opy of a type, and

how a rewrite rule
orresponding to it may or not be added to the
al
ulus.

2 Simply-Typed �-Cal
ulus with Indu
tive Types

We de�ne the simply-typed �-
al
ulus with indu
tive types, whi
h may be

seen as an extension of Gödel's system T . Some referen
es on �-
al
ulus and

indu
tive types may be found in [4,20,5,23,19,8℄. Furthermore, most of our

notations and results
on
erning rewrite systems are taken from [1℄. For a

given redu
tion �!

R

, we write �!

+

R

for its transitive
losure, and �!

�

R

for

its re�exive-transitive
losure.

2.1 Types

Throughout this paper, we
onsider an in�nite set S = f�; �; : : :g of type

variables. We also
onsider an in�nite set of variables V (with V \ S = ?),

3

D. Chemouil, S. Soloviev

and an in�nite set C of indu
tive-type
onstru
tors (or introdu
tion operators),

with C \ S = C \ V = ?.

Moreover, as usual in this sort of presentation, we
onsider all terms and

types up to �-
onversion, i.e the names of bound variables are irrelevant.

Note 1 In the following, the sign � will denote synta
ti
 equality, and def-

initions will be introdu
ed in the
al
ulus with the sign b=. Furthermore, we

will use the
ommon notation let x = e

1

in e

2

for e

2

[e

1

=x℄.

De�nition 2.1 The set of pre-types is generated by the following grammar

rules:

Ty ::= � j (Ty ! Ty) j Ind(�)[CS ℄

CS ::= CL j "

CL ::=
 : Ty j
 : Ty ; CL

with
 2 C (as usual, " denotes the empty word). Of
ourse, we require that

any
onstru
tor belong to only one indu
tive type.

Note 2 We
onsider that ! is right asso
iative, hen
e �

1

! (�

2

! �

3

) will

be subsequently written �

1

! �

2

! �

3

.

An indu
tive type with n
onstru
tors

1

, . . . ,

n

in C, ea
h of arity k

i

(with

1 6 i 6 n), is then of the form

Ind(�)[

1

: �

1

1

! : : :! �

k

1

1

! � ; : : : ;

n

: �

1

n

! : : :! �

k

n

n

! � ℄;

where the part between bra
kets is bound by Ind(�). Moreover, every �

i

�

�

1

i

! : : :! �

k

i

i

! � must verify
ertain
onditions, as explained below.

De�nition 2.2 A stri
tly positive operator � over a type variable � (written

� spos �) is indu
tively de�ned by the following rules:

� spos �

� 62 FV(�

1

) �

2

spos �

�

1

! �

2

spos �

De�nition 2.3 An (indu
tive) s
hema � over a type variable � (written � s
h

�) is indu
tively de�ned by the following rules:

� s
h �

� =2 FV(�

1

) �

2

s
h �

�

1

! �

2

s
h �

�

1

spos � �

2

s
h �

�

1

! �

2

s
h �

Intuitively, a s
hema � is of the form �

1

! : : :! �

k

! �, where every �

j

is itself:

�

either a type not
ontaining � (we
all this �

j

a non-re
ursive operator);

�

or a type of the form �

j

� �

1

! : : : ! �

m

! � (we
all this �

j

a stri
tly

positive operator), where � does not appear in any �

`

.

4

D. Chemouil, S. Soloviev

Note 3 Given a s
hema � � �

1

! : : :! �

k

! �, we will denote by SP

�

(�)

the set of indi
es j (with 1 6 j 6 k) su
h that �

j

is a stri
tly positive op-

erator over �, i.e SP

�

(�) = fj j 1 6 j 6 k ^ �

j

spos �g. This set will be

useful be
ause it
orresponds to arguments (of a given
onstru
tor) on whi
h

a re
ursive
all may be
arried out.

De�nition 2.4 A type � (written � : ?) is indu
tively de�ned by the following

rules:

� 2 S

� : ?

�

1

: ? �

2

: ?

�

1

! �

2

: ?

i

2 C �

i

: ? �

i

s
h � (1 6 i 6 n)

Ind(�)[

1

: �

1

; : : : ;

n

: �

n

℄ : ?

Example 2.5 With these rules, it is possible to de�ne the types of natural

numbers, of Brouwer's ordinals and of lists of natural numbers (normally,

these indu
tive types should have di�erent
onstru
tor names, we used some

ommon names for the sake of readibility):

Nat b= Ind(�)[0 : � j S : �! � ℄

Ord b= Ind(�)[0 : � j S : �! � jL : (Nat! �)! � ℄

ListNat b= Ind(�)[nil : � j
ons : Nat! �! � ℄:

Note that any indu
tive type � generates a re
ursor (or stru
tural-re
ursion

operator)R

�;�

to any type �. This will be further explained in the next se
tion

on
erned with terms of the language.

2.2 Terms

We will now de�ne the terms of our
al
ulus.

De�nition 2.6 The set of terms is generated by the following grammar rule:

M ::=
 j x j (�x : � �M) j (M M) j R

�;�

;

where x 2 V,
 2 C and � and � are types.

Note 4 Appli
ation is left-asso
iative, hen
e (: : : (M

1

M

2

) : : :) M

n

)
an be

written M

1

: : :M

n

. In the same way, abstra
tion is right-asso
iative, hen
e

(�x

1

: �

1

� (�x

2

: �

2

�M))
an be written �x

1

: �

1

� �x

2

: �

2

�M

We now de�ne a synta
ti
 operation that will be useful to assert typing

rules for terms.

De�nition 2.7 Let � be an indu
tive type, � � �

1

! : : : ! �

k

! � a

s
hema over � in � , and � a type. Let fj

p

g

p=1;`

= SP

�

(�). Then, we de�ne

�

�

(�; �) � �

1

[�=�℄! : : :! �

k

[�=�℄! �

j

1

[�=�℄! : : : �

j

`

[�=�℄! �:

5

D. Chemouil, S. Soloviev

De�nition 2.8 We now present the typing rules for the
al
ulus:

�; x : � ` x : �

(ax)

� � Ind(�)[: : : ;
 : � ; : : : ℄ � : ?

� `
 : �[�=�℄

(
onstr)

�; x : �

1

`M : �

2

(�x : �

1

�M) : �

1

! �

2

(�)

� `M : �

1

! �

2

� ` N : �

1

� ` (M N) : �

2

(app)

� � Ind(�)[

1

: �

1

; : : : ;

n

: �

n

℄

� `M

i

: �

�

(�

i

; �) (1 6 i 6 n)

� ` (R

�;�

M

1

: : : M

n

) : � ! �

(elim)

2.3 Redu
tion

De�nition 2.9 We de�ne the usual �-redu
tion rule as follows:

(�x : � �M) N �!

�

M [N=x℄ :

Now, we de�ne the �-redu
tion. However, to do so, we �rst need to make

a te
hni
al de�nition whi
h will be helpful.

De�nition 2.10 Let � � �

1

! : : :! �

m

! � be a stri
tly positive operator

over �. Then, we de�ne

�(R;N; �) � �z

1

: �

1

� : : : � �z

m

: �

m

�R (N z

1

: : : z

m

) :

Of
ourse, in the spe
ial
ase where m = 0, we have �(R;N; �) � R N .

De�nition 2.11 Now, let � � �

1

! : : :! �

k

! � be a s
hema over �, and

let fj

p

g

p=1;`

= SP

�

(�). Then, we de�ne �-redu
tion by

R

�;�

M

1

: : : M

n

(

i

N

1

: : : N

k

i

) �!

�

M

i

N

1

; : : : N

k

i

N

0

j

1

: : : N

0

j

`

;

where N

0

j

p

� �(R

�;�

M

1

: : : M

n

; N

j

p

; �

j

p

), for all 1 6 p 6 `.

Examples of rules for some basi
 indu
tive types are given in Figure 1 on

the following page.

Proposition 2.12 For the simply-typed �-
al
ulus with indu
tive types, ��-

redu
tion is strongly normalising and
on�uent.

See for example [8℄.

3 A Deferment Lemma

There are many lemmas
on
erning with strong normalisability of a relation

�!

RS

when �!

R

and �!

S

are strongly normalising. Though the lemma we

6

D. Chemouil, S. Soloviev

R

Nat;�

a f 0 �!

�

a

R

Nat;�

a f (S p) �!

�

f p (R

Nat;�

a f p)

R

Ord;�

a f g 0 �!

�

a

R

Ord;�

a f g (S p) �!

�

f p (R

Ord;�

a f g p)

R

Ord;�

a f g (L k) �!

�

g k (�z : Nat � (R

Ord;�

a f g (k z)))

R

ListNat;�

a f nil �!

�

a

R

ListNat;�

a f (
ons h t) �!

�

f h t (R

ListNat;�

a f t)

Fig. 1. Re
ursion rules for some basi
 indu
tive types

onsider below is
lose to many results in the folklore, we
ould not �nd its

exa
t formulation in the literature.

Note also that this lemma is not equivalent to the so-
alled Postponement

Lemma for �-
ontra
tions in pure �-
al
ulus, see e.g [3℄ p. 386.

De�nition 3.1 Let �!

R

and �!

S

be two redu
tions. Then, �!

S

is defer-

able w.r.t �!

R

if, for all terms t and u su
h that t �!

S

�!

R

u, there is a

derivation t �!

R

�!

�

RS

u.

t

S

���

�

�

�

�

�

�

�

R

��

R

��

�

�

�

�

�

�

�

�

RS

��

u

Lemma 3.2 (Deferment Lemma) Let �!

R

and �!

S

be two strongly nor-

malising relations. Then, if �!

S

is deferable w.r.t �!

R

, �!

RS

is strongly

normalising.

Proof. Let �!

R

and �!

S

be two strongly normalising relations, su
h that

�!

S

is deferable w.r.t �!

R

. Let us suppose that �!

RS

is not strongly

normalising, and show that it leads to a
ontradi
tion.

If �!

RS

is not strongly normalising, then �!

�

RS

onsists of an in�nite al-

ternation of �!

�

R

and �!

�

S

. Then, one
an indu
tively �lift� �!

R

-redu
tions

by deferring every �!

S

-redu
tion followed by an �!

R

-redu
tion, thus build-

ing an in�nite derivation of �!

R

steps. This
ontradi
ts the fa
t that �!

R

is strongly normalising. 2

In fa
t, we
an prove a slightly more powerful lemma whose premises o

ur

however less in pra
ti
e.

7

D. Chemouil, S. Soloviev

De�nition 3.3 Let �!

R

and �!

S

be two redu
tions. Then, �!

S

is 0-

deferable w.r.t �!

R

if, for all terms t and u su
h that t �!

S

u, there is a

derivation t �!

R

�!

�

RS

u.

t

S

��

R

��

�

RS

��

u

Lemma 3.4 (0-Deferment Lemma) Let �!

R

and �!

S

be two strongly

normalising relations. Then, if �!

S

is 0-deferable w.r.t �!

R

, �!

RS

is

strongly normalising.

Proof. Immediate, be
ause 0-deferment implies deferment. 2

Remark 3.5 Sin
e the submission of this paper, we found some referen
es

about what we
all Deferment Lemma (
f. [2,15℄ and most notably [13℄).

While we shall keep
alling this property �deferment� in the
urrent paper,

we intend to use the preferable term �adjournement� afterwards, following

Delia Kesner (private
ommuni
ation).

4 Multiprodu
ts

Let us de�ne a s
hema of indu
tive types representing n-ary produ
ts:

�

n

A

1

: : : A

n

b= Ind(�)[h�i

n

: A

1

! : : :! An! � ℄ ;

with re
ursion operator L�M

n

de�ned by

L�M

n

: (A

1

! : : :! A

n

! B)! (�

n

A

1

: : : A

n

! B)

Lf M

n

ha

1

: : : a

n

i

n

�!

�

f a

1

: : : a

n

:

The proje
tions p

n

k

are de�ned as L�x

1

: A

1

� : : : � �x

n

: A

n

� x

k

M

n

.

Remark 4.1 One may note that the produ
t of morphisms f

i

: C ! A

i

(with

1 6 i 6 n) is de�nable, without the elimination operator, by

prod

n

f

1

: : : f

n

b= �z : C � hf

1

z; : : : ; f

n

zi

n

:

However, many familiar properties of produ
t and proje
tions do not hold

intensionally. For example, we have hp

2

1

x; p

2

2

xi

2

6=

��

x for x : �

2

A B. In

fa
t, this property, usually known as surje
tive pairing, stipulates that the

produ
t is unique.

4.1 Commutativity of Produ
ts

Now, let % be a permutation of f1; : : : ; ng. The permutation of �

n

A

1

: : : A

n

in-

du
ed by % is denoted %, and de�ned as L�x

1

: A

1

�: : :��x

n

: A

n

�hx

%(1)

; : : : ; x

%(n)

i

n

M

n

.

8

D. Chemouil, S. Soloviev

Proposition 4.2 For any term t : �

n

A

1

: : : A

n

and permutations % and !

de�ned on f1; : : : ; ng, the equality % Æ ! t =

��

% (! t) is provable.

Still, while we
an prove this proposition by indu
tion, it is important to

note that the equality is not
omputable for an arbitrary t, but just when

t � ht

1

; : : : ; t

n

i

n

for some n (
f. Se
t. 1.3 on page 3). Note also that for

mutually inverse permutations % and %

�1

, % and %

�1

are mutually inverse

extensional isomorphisms.

Now, for given mutually inverse permutations % and %

�1

, let us add the

following rewrite rules to the system of ��-redu
tions:

% (%

�1

x) �!

�

x %

�1

(% x) �!

�

x :

(Note that % and %

�1

are
on
rete, i.e
onstant, terms of the
al
ulus.)

Remark 4.3 To lighten the notation, let us write � and �

0

for % and %

�1

. We

will also make use of diagrams, as is usually done for this kind of proof.

Lemma 4.4 �-redu
tion is strongly normalising.

Proof. Take the length of terms as an ordering. 2

Theorem 4.5 ���-redu
tion is strongly normalising.

Proof. We show that �-redu
tion is deferable w.r.t �-redu
tion (
ase i) and

w.r.t �-redu
tion (
ase ii).

(i) For �-redu
tion. The
ru
ial
ase is when the �-redex o

urs inside a

�-redex.

i.1. As a �rst possibility, we may have t � t

0

[(�x : A �p[� (�

0

s)℄) q℄. Note

that � and �

0

do not
ontain variables.

t � t

0

[(�x : A � p[� (�

0

s)℄) q℄

�

uu
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

�

))

t

0

[(�x : A � p[s℄) q℄

�

))

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

t

0

[(p[� (�

0

s)℄)[q=x℄℄

�

uu

t

0

[(p[s℄)[q=x℄℄

i.2. We may also have t � t

0

[(�x : A � p) (q[� (�

0

s)℄)℄, in whi
h
ase the

term p may
ontain many (or zero) o

urren
es of x, whi
h requires

9

D. Chemouil, S. Soloviev

to
arry as many �-redu
tions.

t � t

0

[(�x : A � p) (q[� (�

0

s)℄)℄

�

uuk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

�

))

t

0

[(�x : A � p) (q[s℄)℄

�

))

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

t

0

[p[q[� (�

0

s)℄ = x℄℄

�

�

uu

t

0

[p[q[s℄=x℄℄

(ii) For �-redu
tion.

ii.1. The
ru
ial
ase o

urs when a �-redex may intera
t with � and �

0

,

hen
e we must have t � t

0

[� (�

0

hs

1

; : : : ; s

n

i

n

)℄. But then, it is imme-

diate to see that t �!

�

t

0

[hs

1

; : : : ; s

n

i

n

℄
an also be performed by the

derivation: t

0

[� (�

0

hs

1

; : : : ; s

n

i

n

)℄ �!

�

�!

+

��

t

0

[hs

1

; : : : ; s

n

i

n

℄. This is

a trivial
ase of 0-deferment.

ii.2. In other
ases, the �-redex doesn't interfere with �-redu
tion, there-

fore deferment is obviously possible.

2

Theorem 4.6 ���-redu
tion is
on�uent.

Proof. First, as ���-redu
tion is strongly normalising, it is enough to show

lo
al
on�uen
e (by Newman's Lemma), i.e for all terms t, w, w

0

su
h that

t �!

���

w and t �!

���

w

0

, there exists a term u su
h that w �!

�

���

u and

w

0

�!

�

���

u.

By Lemma 2.12, ��-redu
tion is
on�uent. For �-redu
tions alone, by

Newman's Lemma it is enough to show lo
al
on�uen
e. The
riti
al pairs

indu
ed by �-redu
tion are joinable; hen
e by the Criti
al Pair Theorem, �-

redu
tion is lo
ally
on�uent. Therefore, for ���-redu
tions there are only

two extra
ases to be
onsidered depending on whether one
arries a �- or

�-redu
tion (
ombined with �-) as a �rst step.

(i) If it is a �-redu
tion, then t � t

0

[� (�

0

s)℄, and there are 4 possible
ases:

the �-redex is in s, the �-redex has no interse
tion with � (�

0

s), the �-

redex
ontains � (�

0

s), or the �-redex is in � (�

0

s) and interse
ts with

� or �

0

.

i.1. We have t � t

0

[� (�

0

(s

0

[r℄))℄, r being a �-redex. Then, if t �-redu
es

to t

0

[� (�

0

s

0

[r

0

℄)℄ and �-redu
es to t

0

[s

0

[r℄℄, it is possible to �
lose� the

fork by t

0

[� (�

0

s

0

[r

0

℄)℄ �!

�

t

0

[s

0

[r

0

℄℄ and t

0

[� (�

0

s

0

[r

0

℄)℄ �!

�

t

0

[s

0

[r

0

℄℄.

i.2. On
e more, the order is indi�erent.

i.3. One has t

0

� t

00

[r[� (�

0

s)℄℄. The upper-left �-redu
tion
annot a�e
t

� (�

0

s) sin
e this part doesn't begin with an introdu
tion operator.

(In general, the lower-left redu
tion would possibly be �!

�

�

sin
e the

number of �-redexes may
hange when �-redu
tion is applied, but it

10

D. Chemouil, S. Soloviev

is not the
ase for produ
ts.)

t

0

� t

00

[r[� (�

0

s)℄℄

�

uuk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

�

))

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

t

00

[r

0

[� (�

0

s)℄℄

�

))

t

00

[r[s℄℄

�

uu

t

00

[r

0

[s℄℄

i.4. In fa
t, the �-redex should
oin
ide with (�

0

s), sin
e (�

0

s) doesn't

begin with an introdu
tion operator, so it
annot be � (�

0

s) (here,

we use the
on
rete de�nition of � and �

0

). Thus, s must be of

the form hs

1

; : : : ; s

n

i

n

. But, for all elements of this form, we have

� (�

0

hs

1

; : : : ; s

n

i

n

) �!

�

�!

+

��

hs

1

; : : : ; s

n

i

n

, hen
e lo
al
on�uen
e

holds trivially in this
ase.

(ii) For �-redu
tion,
ases ii.1 and ii.2 are similar to
ases i.1 and i.2, thus

treated as above.

ii.3 If t � t

0

[(�x : A � p[� (�

0

s)℄) q℄, and t �!

�

t

0

[(p[� (�

0

s)℄)[q=x℄℄ and

t �!

�

t

0

[(�x : A � p[s℄) q℄,
losing the �fork� is straightforward by

observing that both terms �- and �-redu
e respe
tively in one step

to t

0

[(p[s℄)[q=x℄℄. (Note that this situation appears be
ause � and �

0

are
losed terms.)

ii.4 In the last
ase, where t � t

0

[(�x : A � p) (q[� (�

0

s)℄)℄, the number

of o

urren
es of x in p may in�uen
e the number of �-redu
tions to

perform to
lose the diagram. Thus, if t �!

�

t

0

[p[q[� (�

0

s)℄ =x℄℄ and

t �!

�

t

0

[(�x : A � p) (q[s℄)℄, we may need a sequen
e of redu
tions

t

0

[p[q[� (�

0

s)℄ =x℄℄ �!

�

�

t

0

[p[q[s℄=x℄℄ while a one-step �-redu
tion only

would be ne
essary on the other term: t

0

[(�x : A � p) (q[s℄)℄ �!

�

t

0

[p[q[s℄=x℄℄.

2

4.2 Asso
iativity of Produ
ts

As just seen, produ
ts enjoy the
ommutativity property. However, the as-

so
iativity does not hold in general, i.e, it is not the
ase that, for example,

�

2

(�

2

A B) C u �

2

A (�

2

B C). This is so be
ause there is an o

uren
e

of �

2

A B (or �

2

B C) inside another �

2

. Thus, the �isomorphisms� g and

g

0

would be de�ned in the following way:

g : �

2

(�

2

A B) C ! �

2

A (�

2

B C)

b= L�p : �

2

A B � �
 : C � hp

2

1

p; hp

2

2

p;
i

2

i

2

M

11

D. Chemouil, S. Soloviev

and

g

0

: �

2

A (�

2

B C)! �

2

(�

2

A B) C

b= L�a : A � �q : �

2

B C � hha; p

2

1

qi

2

; p

2

2

qi

2

M :

Then, for a term hp;
i

2

, with p : �

2

A B and
 : C, one has:

g

0

(g hp;
i

2

) �!

�

�!

�

g

0

hp

2

1

p; hp

2

2

p;
i

2

i

2

�!

�

�!

�

hhp

2

1

p; p

2

2

pi

2

;
i

2

6=

��

hp;
i

2

be
ause of the la
k of surje
tive pairing. It is interesting to note that, even

with extensionality on
anoni
al elements, the isomorphism establishing asso-

iativity of binary produ
t does not hold.

4.3 Retra
tions

Now, let us
onsider some
orrespondan
es between n-produ
ts for di�erent

n, for example �

3

A B C and �

2

(�

2

A B) C. De�ne

f : �

2

(�

2

A B) C ! �

3

A B C

b= L�y : �

2

A B � �z : C � hp

2

1

y; p

2

2

y; zi

3

M

2

and

f

0

: �

3

A B C ! �

2

(�

2

A B) C

b= L�x : A � �y : B � �z : C � hhx; yi

2

; zi

2

M

3

:

For ht; u; vi

3

: �

3

A B C, we have:

f (f

0

ht; u; vi

3

) �!

�

�!

�

f hht; ui

2

; vi

2

�!

�

�!

�

ht; u; vi

3

:

However, for hy; zi

2

: �

2

(�

2

A B) C, we have:

f

0

(f hy; zi

2

) �!

�

�!

�

f

0

hp

2

1

y; p

2

2

y; zi

3

�!

�

�!

�

hhp

2

1

y; p

2

2

yi

2

; zi

2

6=

��

hy; zi

2

;

on
e again be
ause the type �

2

A B doesn't enjoy surje
tive pairing. This

means that even in an extensional sense (on
anoni
al elements), f is only

a retra
tion, and not an isomorphism. Of
ourse, the same situation will

appear if we
onsider the produ
t of n elements expressed with �

n

, and using

a superposition of �

k

for k < n. While we will not
onsider deeply the

ase of retra
tions in this paper, we think they deserve attention for further

studies: this example suggests that �

3

might be
onsidered as the �
anoni
al�

representation of triples, for being the retra
t of all representations of triples.

One may note that this observation demonstrates the usefulness of adding

new redu
tions gradually. The
orresponden
e between produ
ts of di�erent

12

D. Chemouil, S. Soloviev

arity des
ribed above would remain hidden if surje
tive pairing was already

present.

4.4 Surje
tive Pairing

Let us add the rule hp

2

1

x; p

2

2

xi

2

�!

SP

x (if x is of produ
t type) to the system

with ��-redu
tions. We will now show that the Deferment Lemma may also

be applied to prove strong normalisation of a system of ��SP-redu
tions.

Consider a SP -redu
tion followed by some �- or �-redu
tion.

t[hp

2

1

s; p

2

2

si

2

℄ �!

SP

t[s℄ �!

�

t

�

[s

�

℄ :

If s does not have the form hs

1

; s

2

i

2

or it does but the redu
tion does not use

this o

urren
e of h�; �i

2

then deferment is obviously possible.

Suppose the redu
tion that follows SP is �, then t should be a term of the

form t[hp

2

1

s; p

2

2

si

2

℄ � t

0

[Lf M

2

hp

2

1

s; p

2

2

si

2

℄ where s : �

2

A B, s

1

: A, s

2

: B,

f : A! B ! C and we have

t

0

[Lf M

2

hp

2

1

s; p

2

2

si

2

℄ �!

SP

t

0

[Lf M

2

hs

1

; s

2

i

2

℄ �!

�

t

0

[f s

1

s

2

℄ :

This
an be repla
ed by

t

0

[Lf M

2

hp

2

1

s; p

2

2

si

2

℄ �!

�

t

0

[f (p

2

1

s) (p

2

2

s)℄

�!

�

�!

�

t

0

[f s

1

(p

2

2

s)℄ �!

�

�!

�

t

0

[f s

1

s

2

℄

(a trivial
ase of deferment). It is easy to see that lo
al
on�uen
e will hold

as well.

5 Isomorphi
 Copies of (Non-)Algebrai
 Types

The notion of the
opy of a type is a very important one, and o

urs quite

often in many developments. For example, su
h operations are frequently used

in tree-pro
essing programs su
h as
ompilers. In this se
tion, we study how

isomorphisms may be used to devise an extended notion of
opy, namely the

isomorphi

opy (for want of a better name).

Let us
onsider two extensionally isomorphi
 types A and B with isomor-

phisms f : A! B and f

�1

: B ! A, and a type

C � Ind(�)[

1

: �

1

1

! : : :! �

k

1

1

! � ; : : : ;

n

: �

1

n

! : : :! �

k

n

n

! � ℄ ;

possibly
ontaining o

urren
es of A. An isomorphi

opy C

0

of C di�ers

by names of introdu
tion operators, e.g

0

1

; :::;

0

n

, and by the fa
t that ea
h

�atomi
� o

urren
e of A in C is repla
ed by an o

urren
e of B in C

0

(that

is to say: A will be repla
ed by B only if it o

urs either as a non-re
ursive

operator, or as the premise �i.e, the type of an argument� of a stri
tly

positive operator).

13

D. Chemouil, S. Soloviev

The reader who prefers a less abstra
t setting may suppose the isomor-

phisms between A and B belong to the
lass studied in se
tion 4. It
an be

also intensional isomorphism, e.g., permutation of premisses of a fun
tional

type.

The de�nitions below also may be modi�ed in su
h a way that only some

sele
ted o

urren
es of A are
onsidered.

Now, let us de�ne a fun
tion i
opy : C ! C

0

whi
h
onverts
anon-

i
al obje
ts from one type to the other. Formally, i
opy is of the form

R

C;C

0

M

1

: : :M

n

. For every
onstru
tor

i

: �

1

i

! : : : ! �

k

i

i

! C, let

fj

p

g

p=1;`

= SP

�

(�) and let us denote every stri
tly positive operator �

j

p

i

by

�

i;j;1

! : : : �

i;j;p

i;j

! �. Then, we have

M

i

� �x

1

: �

1

i

[C=�℄ � : : : � �x

k

i

: �

k

i

i

[C=�℄�

�w

j

1

: �

j

1

i

[C

0

=�℄ � : : : � �w

j

`

: �

j

`

i

[C

0

=�℄ �

0

i

Æ

1

: : : Æ

k

i

where

Æ

m

�

8

>

<

>

:

(a) �z

1

: �

0

i;m;1

� : : : � �z

p

: �

0

i;m;p

i;m

� w

m

z

0

1

: : : z

0

p

if m 2 j

1

; : : : ; j

`

;

(b) f x

m

if �

m

i

� A;

(
) x

m

otherwise;

and, for 1 6 r 6 p

i;m

:

�

�

0

i;m;r

� B and z

0

r

� f

�1

z

r

if �

r

� A;

�

�

0

i;m;r

� �

i;m;r

and z

0

r

� z

r

otherwise.

The fun
tion i
opy

�1

: C

0

! C is de�ned similarly.

We may now
onsider the behaviour of i
opy and i
opy

�1

w.r.t introdu
tion

operators, assuming that the new �-redu
tions i
opy

�1

(i
opy x) �!

�

x and

f

�1

(f x) �!

�

x are added. The main observation is that

i
opy

�1

(i
opy (

i

t

1

: : : t

k

i

)) �!

+

��

i

t

0

1

: : : t

0

k

i

where t

0

j

:

�

is t

j

in
ase (
);

�

is f

�1

(f t

j

) in
ase (b);

�

and is of the form �z

1

: �

i;j;1

� : : : � �z

p

: �

i;i;p

i;j

� i
opy

�1

(i
opy (t

j

z

0

1

: : : z

0

p

))

where z

0

r

� f

�1

(f z

r

) if �

r

� A, z

0

r

� z

r

otherwise, in
ase (a).

Now, suppose we have a term of the form q[i
opy

�1

(i
opy (

i

t

1

: : : t

k

i

))℄.

14

D. Chemouil, S. Soloviev

Then, by one single �-redu
tion, we have

q[i
opy

�1

(i
opy (

i

t

1

: : : t

k

i

))℄ �!

�

q[

i

t

1

: : : t

k

i

℄ :

But we may try to defer this �-redu
tion. First, we have

q[i
opy

�1

(i
opy (

i

t

1

: : : t

k

i

))℄ �!

+

��

q[

i

t

0

1

: : : t

0

k

i

℄ :

Now, the deferment will depend on whi
h
ases the t

0

j

are in. In
ase (
), we

have t

0

j

� t

j

, so no more redu
tion is to be done to
lose the diagram. If

ase (b) happens, some �-redu
tions will be needed:

q[

i

t

0

1

: : : t

0

k

i

℄ �!

+

�

q[

i

t

1

: : : t

k

i

℄ :

Finally, if
ase (a) happens,
arrying some �-redu
tions may lead to an un-

losed diagram:

q[

i

t

0

1

: : : t

0

k

i

℄ �!

+

�

q[

i

t

00

1

: : : t

00

k

i

℄ ;

where t

00

j

may begin by some abstra
tions. This situation will not happen only

in the spe
i�

ase, similar in result to
ase (b), where �

j

i

is a stri
tly positive

operator over � of null arity, i.e �

j

i

� �. For example, this is the
ase for the

`S'
onstru
tor of ordinals. In the general
ase however (i.e with �

j

i

being a

stri
tly positive operator over � of non-null arity), the only way to
lose the

diagram seems to add further �-expansions in the following way:

q[

i

t

1

: : : t

k

i

℄ �!

+

�

q[

i

t

00

1

: : : t

00

k

i

℄ :

As an example, we have, for the `L'
onstru
tor of ordinals the following

redu
tion graph:

q[i
opy

�1

(i
opy (L k))℄

�

wwo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

�

��

''

O

O

O

O

O

O

O

O

O

O

O

O

O

O

q[L k℄

�

''

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

q[L (�z

1

: N � i
opy

�1

(i
opy (k (f

�1

(f z

1

)))))℄

2

�

wwo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

q[L (�z

1

: N � k z

1

)℄

As a
on
lusion, if we only meet
ases (
) and (b), and
ase (a) with

only null-arity stri
tly positive operators, it is always possible to (0-)defer

�-redu
tions in the
al
ulus. Thus ���-redu
tion is strongly normalising for

�algebrai
� types. Con�uen
e follows easily, with a similar proof as for Theo-

rem 4.6 on page 10.

As we brie�y dis
ussed above, our �strategy� is to add new redu
tions one

by one. Thus, even the result for algebrai
 types only opens a large �eld of

15

D. Chemouil, S. Soloviev

appli
ations for i
opy, generated by isomorphisms of parameters introdu
ed

previously.

The di�
ult
ase is when �non-algebrai
� types o

ur. Re
ently we ob-

tained a proof for this
ase and the system with �-expansion.

De�nition 5.1 We de�ne �-expansion as follows:

M �!

�

�x : A �M x if

(

M is of fun
tion type A! B

M is neither an abstra
tion nor applied.

In detailed form the proof is too long to be presented here and we shall

only give an outline.

The main observation used in this proof is that if the terms t

1

; :::; t

k

i

above

are in �-expanded form then

q[

i

t

1

: : : t

k

i

℄

+

�

 � q[

i

t

00

1

: : : t

00

k

i

℄ :

E.g., the diagram for 'L'
onstru
tor may be
losed di�erently:

q[i
opy

�1

(i
opy (L k))℄

�

wwo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

�

��

''

O

O

O

O

O

O

O

O

O

O

O

O

O

O

q[L k℄

q[L (�z

1

: N � i
opy

�1

(i
opy (k (f

�1

(f z

1

)))))℄

2

�

wwo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

q[L (�z

1

: N � k z

1

)℄

�

ggO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Sin
e we
onsider the system with �-expansions, we need a proof that the

system with �� and �-expansions is strongly normalising and
on�uent (we

urrently have a sket
h of this proof).

To prove strong normalisation of the system extended not only by � but

by �-redu
tions related to i
opy we assume that there is an in�nite redu
tion

sequen
e in
luding � redu
tions.

To use the observation above we need a lemma that shows that this re-

du
tion sequen
e will remain in�nite if we insert appropriate �-expansions (to

make the terms t in
ase (a) �-expanded).

After that, using a modi�
ation of deferment (to take into a

ount the

ondition that the terms t are �-expanded) we show that it would be possible

to obtain an in�nite sequen
e
onsisting of ��� only and this
ontradi
tion

shows that the system with � is SN.

The proof is
ompleted by veri�
ation of
on�uen
e.

16

D. Chemouil, S. Soloviev

A
knowledgement

We would like to thank Roberto Di Cosmo for helpful dis
ussions, and Freiri

Barral for his help and proofreading.

6 Con
lusion

The systems based on intensional equality (e.g., many proof assistants) often

puzzle mathemati
ally-oriented users be
ause some familiar fun
tional equali-

ties (su
h as equalities related to
ommutativity and asso
iativity of produ
t)

are no more viewed as
omputational and their use may require additional

and heavy proof development. The arguments in favor of the equality based

only on ��-redu
tion (or even ���) may look ni
e from the foundational point

of view but, pragmati
ally speaking, there is no harm if an extension of a

redu
tion system doesn't destroy properties su
h as strong normalisation and

on�uen
e.

In this short paper, we studied two
ases that seem of interest: extensions

of redu
tion systems related to produ
ts and also to �isomorphi
�
opies of a

type.

As for produ
ts, using the Deferment Lemma, we were able to prove that

adding a rewriting rule
orresponding to
ommutativity of produ
ts keeps the

al
ulus strongly normalising and
on�uent. The same lemma also enabled us

to show that adding surje
tive pairing to the system of ��-redu
tions does not

break normalisation and
on�uen
e properties.

Se
ondly the notion of isomorphi

opy, is useful for a
lean distin
tion

between the multiple uses of the type itself and of its
opies. E.g., in proof

assistants, the type of Even numbers is often de�ned as a
opy of type Nat

together with an appropriate
oer
ion Even ! Nat. Combining this
oer-

ion with the isomorphism
opy de�ned above, we may obtain representations

of
lasses of numbers modulo 2

n

. Furthermore, isomorphi

opies of non-

algebrai
 types may require a notion of �-expansion, and hen
e to show that

����-redu
tion is strongly normalising and
on�uent.

There are several re
ent works where normalisation in extended redu
tion

systems is
onsidered (e.g., [22℄ or [7,8℄). This makes the perspe
tive seem

quite optimisti
.

The
al
ulus we
onsidered here (the simply-typed �-
al
ulus with indu
-

tive types) is a
ompromise between the ri
hness provided by indu
tive
on-

stru
tions and the relative simpli
ity of simply-typed systems. In the
ase of

dependent types, one will meet more di�
ulties be
ause new redu
tions will

in�uen
e type-equality as well.

The subje
t needs more investigation but appropriate methods (e.g., a

modi�
ation of H. Goguen's Typed Operational Semanti
s, see [18℄) will prob-

17

D. Chemouil, S. Soloviev

ably lead to useful results of the same type as presented here.

Referen
es

[1℄ Baader, F. and T. Nipkow, �Term Rewriting and All That,� Cambridge

University Press, New York, 1998.

[2℄ Ba
hmair, L. and N. Dershowitz, Commutation, transformation, and

termination, in: J. H. Siekmann, editor, Pro
eedings of the Eighth International

Conferen
e on Automated Dedu
tion (Oxford, England), Le
ture Notes in

Computer S
ien
e 230 (1986), pp. 5�20.

[3℄ Barendregt, H. P., �The Lambda Cal
ulus - Its Syntax and Semanti
s,� North-

Holland, Amsterdam, 1984.

[4℄ Barendregt, H. P., Lambda
al
uli with types, in: D. M. Gabbai, S. Abramsky

and T. S. E. Maibaum, editors, Handbook of Logi
 in Computer S
ien
e, Oxford

University Press, Oxford, 1992 .

[5℄ Barras, B., S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Gimenez,

H. Herbelin, G. Huet, C. Munoz, C. Murthy, C. Parent, C. Paulin-Mohring,

A. Saibi and B. Werner, The Coq proof assistant referen
e manual : Version

6.1, Te
hni
al Report RT-0203, Inria (Institut National de Re
her
he en

Informatique et en Automatique), Fran
e (1997).

[6℄ Barthe, G. and O. Pons, Type isomorphisms and proof reuse in dependent type

theory, in: F. Honsell and M. Mi
ulan, editors, Pro
eedings 4th Int. Conf. on

Found. of Software S
ien
e and Computation Stru
tures, FoSSaCS'01, Genova,

Italy, 2�6 Apr. 2001, Le
ture Notes in Computer S
ien
e 2030, Springer-Verlag,

Berlin, 2001 pp. 57�71.

[7℄ Blanqui, F., J.-P. Jouannaud and M. Okada, The
al
ulus of algebrai

onstru
tions, in: P. Narendran and M. Rusinowit
h, editors, Pro
eedings of

the 10th International Conferen
e on Rewriting Te
hniques and Appli
ations

(RTA-99) (1999), pp. 301�316.

[8℄ Blanqui, F., J.-P. Jouannaud and M. Okada, Indu
tive-data-type systems,

Theoreti
al Computer S
ien
e 272 (2002), pp. 41�68.

[9℄ Bru
e, K., R. Di Cosmo and G. Longo, Provable isomorphisms of types, Te
hni
al

Report 90-14, LIENS, É
ole Normale Supérieure, Paris (1990).

[10℄ Dezani-Cian
aglini, M., Chara
terization of normal forms possessing inverse in

the �� � � �-
al
ulus, Theoreti
al Computer S
ien
e 2 (1976), pp. 323�337.

[11℄ Di Cosmo, R., �Isomorphisms of Types: From �-Cal
ulus to Information

Retrieval and Language Design,� Progress in Theoreti
al Computer S
ien
e,

Birkhäuser, Boston, MA, 1995.

[12℄ Di Cosmo, R. and D. Kesner, Combining algebrai
 rewriting, extensional lambda

al
uli, and �xpoints, Theoreti
al Computer S
ien
e 169 (1996), pp. 201�220.

18

D. Chemouil, S. Soloviev

[13℄ Doornbos, H. and B. von Karger, On the union of well-founded relations, Logi

Journal of the IGPL 6 (1998), pp. 195�201.

[14℄ Dowek, G., G. Huet and B. Werner, On the de�nition of the eta-long normal

form in type systems of the
ube, in: H. Geuvers, editor, Informal Pro
eedings of

the Workshop on Types for Proofs and Programs, Nijmegen, The Netherlands,

1993.

[15℄ Geser, A., �Relative Termination,� Ph.D. thesis, Universität Passau, Passau,

Germany (1990).

[16℄ Geuvers, H., The Chur
h-Rosser property for ��-redu
tion in typed �-
al
uli, in:

Pro
eedings, Seventh Annual IEEE Symposium on Logi
 in Computer S
ien
e,

IEEE Computer So
iety Press, Santa Cruz, California, 1992, pp. 453�460.

[17℄ Geuvers, H., �Logi
s and Type Systems,� Ph.D. thesis, Computer S
ien
e

Institute, Katholieke Universiteit Nijmegen (1993).

[18℄ Goguen, H., A typed operational semanti
s for type theory, LFCS report

ECS-LFCS-94-304, University of Edinburgh, Department of Computer S
ien
e

(1994).

[19℄ Luo, Z., �Computation and Reasoning: A Type Theory for Computer S
ien
e,�

Number 11 in International Series of Monographs on Computer S
ien
e, Oxford

University Press, 1994.

[20℄ Paulin-Mohring, C., Indu
tive de�nitions in the system Coq. Rules and

properties, in: M. Bezem and J. F. Groote, editors, Pro
eedings of the 1

st

International Conferen
e on Typed Lambda Cal
uli and Appli
ations, TCLA'93,

Utre
ht, The Netherlands, Le
ture Notes in Computer S
ien
e 664 (1993), pp.

328�345.

[21℄ Soloviev, S. V., The
ategory of �nite sets and Cartesian
losed
ategories,

in: Theoreti
al Appli
ations of Methods of Mathemati
al Logi
 III, Zapiski

Nau
hnykh Seminarov LOMI 105, Nauka, Leningrad, 1981 pp. 174�194, english

translation in Journal of Soviet Mathemati
s, 22(3) (1983), 1387�1400.

[22℄ Walukiewi
z, D., Termination of rewriting in the
al
ulus of
onstru
tions,

Le
ture Notes in Computer S
ien
e 1443 (1998).

[23℄ Werner, B., Méta-théorie du Cal
ul des Constru
tions Indu
tives, Thèse Univ.

Paris VII, Fran
e (1994).

19

	Introduction
	Presentation
	Isomorphisms of Types
	Isomorphisms of Inductive Types
	Outline of the paper

	Simply-Typed -Calculus with Inductive Types
	Types
	Terms
	Reduction

	A Deferment Lemma
	Multiproducts
	Commutativity of Products
	Associativity of Products
	Retractions
	Surjective Pairing

	Isomorphic Copies of (Non-)Algebraic Types
	Acknowledgement
	Conclusion
	References

