N

N
N

HAL

open science

Remarks on isomorphisms of simple inductive types

David Chemouil, Sergei Soloviev

» To cite this version:

David Chemouil, Sergei Soloviev. Remarks on isomorphisms of simple inductive types. Mathematics,
Logic and Computation 2003 (Satellite Event of ICALP 2003), Jun 2003, Eindhoven, Netherlands.
pp.106-124, 10.1016/S1571-0661(04)80760-6 .

hal-00783654

HAL Id: hal-00783654
https://hal.science/hal-00783654
Submitted on 18 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-00783654
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

MLC 2003 Preliminary Version

Remarks on Isomorphisms
of Simple Inductive Types

David Chemouil, Sergei Soloviev 12

IRIT, Université Paul Sabatier
118, route de Narbonne
31062 Toulouse, France

Abstract

We study isomorphisms of types in the system of simply-typed A-calculus with in-
ductive types and recursion operators. It is shown that in some cases (multiproducts,
copies of types), it is possible to add new reductions in such a way that strong nor-
malisation and confluence of the calculus are preserved, and the isomorphisms may
be regarded as intensional w.r.t. a stronger equality relation.

1 Introduction

1.1 Presentation

This work is part of a larger project where we are exploring the possibilities
of extensions preserving strong normalisation and confluence of standard re-
duction systems by new reductions of the form f' (f ¢t) — t where f’ is in
some sense an inverse of f.

The way this notion of invertibility may be understood is one of the ques-
tions we are investigating. A possibility would be to take the invertibility w.r.t
extensional equality of functions between inductive types.

Here, we shall consider the simply-typed A-calculus, equipped with induc-
tive types (i.e recursive types satisfying a condition of strict positivity) and
structural recursion schemes on these types.

In this short paper, we will focus on two particular cases where the use-
fulness of this extension seems obvious. Namely, we shall study some isomor-
phisms of products (defined as inductive types) and the notion of copy of a

type

I E-mails: chemouil@irit.fr, soloviev@irit.fr
2 Work partly funded by Project 1SOT (STIC 21) from Department STIC of CNRS.
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

D. CHEMOUIL, S. SOLOVIEV

1.2 Isomorphisms of Types
Let us first recall a few facts and definitions about isomorphisms of types.

Definition 1.1 Consider a typed A-calculus, equipped with an equivalence
relation ~ on terms, a term id4 : A — A for any type A and a composition
operator o (with suitable typing) verifying the following conditions, for any
function f : A — B:

foidy~ f idpof ~ f
Then, two types A and B are said to be isomorphic (written A = B) if
there exist two A-terms f: A — B and g : B — A such that
fog~idp gof~ida
In this case, ¢ is often written f~! and called the inverse of f.

Until now, isomorphisms of types have mostly been studied in various first-
or second-order A-calculi, where ~ is usually generated by [n-conversion ,
idg= :A-zando=XNg:B—C-Af:A— B-Xx:A-g(f x) (for any
types A, B, and C). As an example, we have the following result:

Proposition 1.2 ([21]; [9J11]) All isomorphisms holding in N\'Bn_, 1, the
first-order simply-typed \-calculus with binary products and unit type (or,
equivalently, in cartesian closed categories), are obtainable by finite compo-
sitions of the following “base” of seven isomorphisms:

AxB=BxA Ax(Bx(C)=(AxB)x(C
(AxB)—-C=A— (B—C) A (BxC)=2(A—=B)x (A=)

Ax1=2A A—=s121 1 A=A

1.3 Isomorphisms of Inductive Types

Now, it is our view that, as long as inductive types are concerned, intensional
isomorphisms, in ordinary sense, lack expressivity. To view this problem in a
larger context, one needs a notion of extensionality.

Definition 1.3 Two types A and B are eztensionally isomorphic (written
A = B) if there exists two A-terms f: A — B and g : B — A such that

Ve:A-g(fz)~x and Vy:B-f(gy) ~vy .

(Note that = and & are both equivalence relations.)

3 Tt was shown in [T0] that with 8-conversion solely, the only invertible term is the identity.

2

D. CHEMOUIL, S. SOLOVIEV

Obviously, we have A =2 B = A = B, but the converse is usually not true.
One way to achieve this kind of isomorphisms would be to add extensional
reduction rules to the calculi, such as n rules, surjective pairing, etc. However,
many calculi don’t come equipped with extensional reduction rules, for various
reasons (decidability, confluence, etc); though some positive results do exist,
e.g [TATAT6]. Hence, in this paper, we will mainly be interested with [i-
reduction only (where (-reduction is the rule associated to structural recursion
over inductive types).

Of course, extensional isomorphisms are provable by induction, but they
are not computable, i.e, one doesn’t have (for example)

M A fTN(f o) —p Mz A-a

Without appealing to full extensionality, we think that, if f and f~! are
mutually invertible extensional isomorphisms, it is worth considering the ad-
dition of new reduction rules (call them o-reductions, following [6]) as follows:

f(f'a) —, 2z and f'(f2) —, z

1.4 QOutline of the paper

In Sect. 2, we quickly give essential definitions of a simply-typed A-calculus
with inductive types.

Then, in Sect. 3, we quickly present a small lemma (“Deferment Lemma”)
that is of interest in the next section.

In Sect. 4, we illustrate the addition of rewrite rules on n-ary products.
We show that, for products, strong normalisation and confluence are preserved
for a rewrite rule corresponding to commutativity, while it is not the case for
associativity, unless we also add surjective pairing.

Finally, in Sect. 5, we study the notion of isomorphic copy of a type, and
how a rewrite rule corresponding to it may or not be added to the calculus.

2 Simply-Typed A-Calculus with Inductive Types

We define the simply-typed A-calculus with inductive types, which may be
seen as an extension of Godel’s system 7. Some references on A-calculus and
inductive types may be found in [AR0/523JT9R]. Furthermore, most of our
notations and results concerning rewrite systems are taken from [I]. For a
given reduction — g, we write —, for its transitive closure, and —% for
its reflexive-transitive closure.

2.1 Types

Throughout this paper, we consider an infinite set S = {a,3,...} of type
variables. We also consider an infinite set of variables V (with VNS = &),

3

D. CHEMOUIL, S. SOLOVIEV

and an infinite set C of inductive-type constructors (or introduction operators),
withCNS=CNV =02.

Moreover, as usual in this sort of presentation, we consider all terms and
types up to a-conversion, i.e the names of bound variables are irrelevant.

Note 1 In the following, the sign = will denote syntactic equality, and def-
initions will be introduced in the calculus with the sign =. Furthermore, we
will use the common notation let x = ey in ey for esfe;/z].

Definition 2.1 The set of pre-types is generated by the following grammar
rules:

Ty:= a | (Ty = Ty) | Ind(a)[CS]
CS:= CL | e
CL:= ¢:Ty | ¢:Ty;CL

with ¢ € C (as usual, ¢ denotes the empty word). Of course, we require that
any constructor belong to only one inductive type.

Note 2 We consider that — is right associative, hence 71 — (19 — 73) will
be subsequently written 7 — Ty — T3.

An inductive type with n constructors ¢y, ..., ¢, in C, each of arity k; (with
1 < i < n), is then of the form

Ind(a)[ci:0l = ... =0 wa;...;c 0l = ... =0 = al,

where the part between brackets is bound by Ind(«). Moreover, every o; =
ol — ... = af" — « must verify certain conditions, as explained below.

Definition 2.2 A strictly positive operator T over a type variable a (written
7 spos «) is inductively defined by the following rules:

a g FV(n) Ty SPOS (v

Q Spos a Ti — T SPOS «

Definition 2.3 An (inductive) schema T over a type variable o (written 7 sch
«) is inductively defined by the following rules:

a ¢ FV(r) 79 sch a T1 SPOS «v 79 sch a

o sch o T — To sch « 1 — T9 sch «

Intuitively, a schema o is of the form o' — ... — ¢* — «, where every o/
is itself:

* either a type not containing o (we call this 07 a non-recursive operator);

e or a type of the form 0/ = v, — ... = v, — a (we call this 07 a strictly
positive operator), where a does not appear in any ;.

4

D. CHEMOUIL, S. SOLOVIEV

Note 3 Given a schema o =o' — ... — % = «, we will denote by SP (o)
the set of indices j (with 1 < j < k) such that o7 is a strictly positive op-
erator over a, i.e SP.(0) = {j | 1 < j < kAo’ spos a}. This set will be
useful because it corresponds to arguments (of a given constructor) on which
a recursive call may be carried out.

Definition 2.4 A type 7 (written 7 : x) is inductively defined by the following
rules:

a€eS T X To @ % ci €C o; 1% o; sch a (1<i<n)
ok TL— To % Ind(a)[er 015 .5 ¢pion] ik

Example 2.5 With these rules, it is possible to define the types of natural

numbers, of Brouwer’s ordinals and of lists of natural numbers (normally,

these inductive types should have different constructor names, we used some
common names for the sake of readibility):

Nat = Ind(a)[0: a|S: a — o]
Ord = Ind(a)[0: «|S:a— a|L: (Nat = a) = «]
ListNat = Ind(«)[nil : «|cons : Nat — o — «].

Note that any inductive type 7 generates a recursor (or structural-recursion
operator) R, to any type . This will be further explained in the next section
concerned with terms of the language.

2.2 Terms
We will now define the terms of our calculus.

Definition 2.6 The set of terms is generated by the following grammar rule:
M:x=c¢c | z | Qe:7-M) | (MM) | Rk,

where x € V, ¢ € C and 7 and k are types.

Note 4 Application is left-associative, hence (...(M; My) ...) M,) can be
written My ... M,. In the same way, abstraction is right-associative, hence
(Azqy i1 - (Axg 2 7o - M) can be written Axq @ Ty - Ay @ 7o - M

We now define a syntactic operation that will be useful to assert typing
rules for terms.

Definition 2.7 Let 7 be an inductive type, 0 = 0! — ... = ¥ = a a

schema over « in 7, and k a type. Let {j,},=1¢ = SP4(0). Then, we define

Y. (0,k) =c'[r/a] = ... = d"[r/a] = o7 [k/a] — ...0%[k/a] — k.

5

D. CHEMOUIL, S. SOLOVIEV

Definition 2.8 We now present the typing rules for the calculus:

r=Ind(a)]...;c:0;...] T X
(AX) (CONSTR)
Tr:abz:a I'kec:olr/al
De:m=M:1m 'EM:m —mn 'EN:7y
(N) (APP)
Az :m - M):1 — 7 'E(MN):n
T=Ind(a)[cr 01505 ¢ 104

F"MiZTT(OﬂL’,I{) (lézén)
' (Rew My ... My): 7 — kK

(ELIM)

2.8 Reduction

Definition 2.9 We define the usual g-reduction rule as follows:
(Az:7-M) N —p5 M[N/x] .
Now, we define the /-reduction. However, to do so, we first need to make

a technical definition which will be helpful.

Definition 2.10 Let v =v; — ... — v, — « be a strictly positive operator
over . Then, we define

SE(RNV)=Az1 1o A2 iU R (N 21 ... 2) -

Of course, in the special case where m = 0, we have Z(R, N,v) = R N.
Definition 2.11 Now, let 0 =o' — ... — ¢* = a be a schema over «, and

let {j,}p=14 = SP4(0). Then, we define t-reduction by

RT’K Man (CiNl---Nk)—>L MiNla---Nk:i]\/vjl1 ... N!

i Je?

where N]’-p =Z(R:x My ... M,,, N;

Jp?

gj,), forall 1 <p < L.

Examples of rules for some basic inductive types are given in Figure [[l on
the following page.

Proposition 2.12 For the simply-typed \-calculus with inductive types, [i-
reduction is strongly normalising and confluent.

See for example [g].

3 A Deferment Lemma

There are many lemmas concerning with strong normalisability of a relation
—prs When — g and — ¢ are strongly normalising. Though the lemma we

6

D. CHEMOUIL, S. SOLOVIEV

RNat,n a f 0 —,

RNat,n a f (S p) — f p (RNat,n a f p)

7-\)/Ord,n a f g 0 —, a

7zOrd,n a f g (S p) — f p (ROrd,n a f g p)

Roras @ f g (L k) —, gk (Az:Nat- (Rowas a f g (k 2)))
RiistNat,x @ f nil —, a

RListNat,n a f (COIlS h t) —>L f h t (RListNat,n a f t)

Fig. 1. Recursion rules for some basic inductive types

consider below is close to many results in the folklore, we could not find its
exact formulation in the literature.

Note also that this lemma is not equivalent to the so-called Postponement
Lemma for n-contractions in pure A-calculus, see e.g [3] p. 386.

Definition 3.1 Let —; and — 5 be two reductions. Then, — g is defer-
able w.r.t —p if, for all terms ¢ and u such that t —g¢—— g u, there is a

derivation t —p—>5g Uu.
"

\R\ // RS
*

u

Lemma 3.2 (Deferment Lemma) Let —r and — g be two strongly nor-
malising relations. Then, if —>g is deferable w.r.t —gr, —>rs s strongly
normalising.

Proof. Let —x and — ¢ be two strongly normalising relations, such that
—g is deferable w.r.t — . Let us suppose that —rg is not strongly
normalising, and show that it leads to a contradiction.

If — g is not strongly normalising, then — 74 consists of an infinite al-
ternation of —}, and —%. Then, one can inductively “lift” — r-reductions
by deferring every —g-reduction followed by an — g-reduction, thus build-
ing an infinite derivation of —p steps. This contradicts the fact that — 5
is strongly normalising. O

In fact, we can prove a slightly more powerful lemma whose premises occur
however less in practice.

D. CHEMOUIL, S. SOLOVIEV

Definition 3.3 Let —; and —g be two reductions. Then, —g is (-
deferable w.r.t —p if, for all terms ¢ and u such that t — ¢ u, there is a
derivation t —p—>5g Uu.

Lemma 3.4 (0-Deferment Lemma) Let —p and —g be two strongly
normalising relations. Then, if —g is 0-deferable w.r.t —pgr, —>pgs 18
strongly normalising.

Proof. Immediate, because 0-deferment implies deferment. O

Remark 3.5 Since the submission of this paper, we found some references
about what we call Deferment Lemma (cf. [2[I5] and most notably [I3]).
While we shall keep calling this property “deferment” in the current paper,
we intend to use the preferable term “adjournement” afterwards, following
Delia Kesner (private communication).

4 Multiproducts

Let us define a schema of inductive types representing n-ary products:
I, Ay ... A, =Ind(a)[() : A1 = ... 5> An —>],

with recursion operator (-), defined by
(Dn:(A —...> A, — B)— (II, A, ... A, — B)
(fDn (a1 ...an)n —> far...a, .

The projections p} are defined as (Azy : Ay -...- Az 0 Ay - T

Remark 4.1 One may note that the product of morphisms f; : C' — A; (with
1 < i < n) is definable, without the elimination operator, by

prod, fi...fa=Xz2:C-{(fi z,..., [fn 2)n -

However, many familiar properties of product and projections do not hold
intensionally. For example, we have (p? z,p3)y #5, © for z : Il A B. In
fact, this property, usually known as surjective pairing, stipulates that the
product is unique.

4.1 Commutativity of Products

Now, let o be a permutation of {1,...,n}. The permutation of TI,, A; ... A, in-
duced by pis denoted 9, and defined as (Azy : Ay-.. - Axy @ Ap(Tp01), - - -, Tom))n)n-

8

D. CHEMOUIL, S. SOLOVIEV

Proposition 4.2 For any term t : 11, A;... A, and permutations o and w
defined on {1,...,n}, the equality 00w t =5, 0 (W t) is provable.

Still, while we can prove this proposition by induction, it is important to
note that the equality is not computable for an arbitrary ¢, but just when
t = (t1,...,tn), for some n (cf. Sect. on page B). Note also that for
mutually inverse permutations ¢ and p~', 7 and p~! are mutually inverse
extensional isomorphisms.

Now, for given mutually inverse permutations o and p !, let us add the
following rewrite rules to the system of Si-reductions:

o(o'x) —,x ol (0x) —,x .
(Note that @ and o1 are concrete, i.e constant, terms of the calculus.)

Remark 4.3 To lighten the notation, let us write 7 and 7’ for g and . We
will also make use of diagrams, as is usually done for this kind of proof.

Lemma 4.4 o-reduction is strongly normalising.
Proof. Take the length of terms as an ordering. O
Theorem 4.5 [io-reduction is strongly normalising.

Proof. We show that o-reduction is deferable w.r.t S-reduction (case i) and
w.r.t t-reduction (case).

(i) For S-reduction. The crucial case is when the o-redex occurs inside a
[B-redex.
i.1. As a first possibility, we may have t = t'[(Az : A-p[r (7" s)]) q]. Note
that 7 and 7' do not contain variables.

t=t[(A\x: A -p[ﬂ___(ﬂl s)])]

t'[(Az : A-pls]) 4] Flplr (x" s))la/2]]

#1(pls])[q/7]]

i.2. We may also have ¢t = ¢/[(Az : A -p) (¢[r (7’ s)])], in which case the
term p may contain many (or zero) occurrences of x, which requires

9

D. CHEMOUIL, S. SOLOVIEV

to carry as many o-reductions.

t=t[(Ax: A p) (q[7r (7" 5)])]

U)

t'[(Az: A-p) (qls])] Flplglm («" s)] / 2]

t'[plgls]/x]]

(ii) For t-reduction.

ii.1. The crucial case occurs when a t-redex may interact with = and 7',
hence we must have ¢t = t'[r (7" (s1,..., $p)n)]. But then, it is imme-
diate to see that t —, t'[{s1, ..., Sn)s] can also be performed by the
derivation: #[r (7' (s1,...,8u)n)] —>—5, t'[(51,- -+, 8n)n). This is
a trivial case of 0-deferment.

ii.2. In other cases, the (-redex doesn’t interfere with o-reduction, there-
fore deferment is obviously possible.

O

Theorem 4.6 [io-reduction is confluent.

Proof. First, as Sio-reduction is strongly normalising, it is enough to show
local confluence (by Newman’s Lemma), i.e for all terms ¢, w, w' such that
t —p0 w and T —p,, W', there exists a term u such that w —%, v and
w' —%,, U

By Lemma T2 Si-reduction is confluent. For o-reductions alone, by
Newman’s Lemma it is enough to show local confluence. The critical pairs
induced by o-reduction are joinable; hence by the Critical Pair Theorem, o-
reduction is locally confluent. Therefore, for Sio-reductions there are only
two extra cases to be considered depending on whether one carries a - or
i-reduction (combined with o-) as a first step.

(i) If it is a t-reduction, then ¢t = t'[r (7' s)], and there are 4 possible cases:
the t-redex is in s, the s-redex has no intersection with 7 (7' s), the ¢~
redex contains m (7" s), or the t-redex is in 7w (7’ s) and intersects with
mor 7.

i.1. We have t = t'[r (7" (s'[r]))], r being a t-redex. Then, if ¢ t-reduces
to t'[r (n' §'[r'])] and o-reduces to t'[s'[r]], it is possible to “close” the
fork by ¢'[7 (" §'[r']))] —, ¢[s'[r']] and ¢'[x (7' §'[r'])] —, ¢'['[r"]].

i.2. Once more, the order is indifferent.

i.3. One has ¢ = t"[r[r (7" s)]]. The upper-left ;-reduction cannot affect
7 (7' s) since this part doesn’t begin with an introduction operator.
(In general, the lower-left reduction would possibly be — since the
number of o-redexes may change when i-reduction is applied, but it

10

i.4.

D. CHEMOUIL, S. SOLOVIEV

is not the case for products.)

t'=t"[rlr (7' s)]]

"'l (' ;)H/ \t" [r[s]]

MAﬂWﬂﬂ]

In fact, the i-redex should coincide with (7' s), since (7’ s) doesn’t
begin with an introduction operator, so it cannot be 7 (7’ s) (here,
we use the concrete definition of m and 7). Thus, s must be of
the form (sy,...,s,),. But, for all elements of this form, we have
7w (7" (S1,...,Sn)n) —>L—>Z§L (S1,...,5n)n, hence local confluence
holds trivially in this case.

(ii) For B-reduction, cases ii.1 and ii.2 are similar to cases L1l and L2 thus
treated as above.

1.3

ii.4

Ift=4t[Ae: A p[r (7" s)]) q], and t —5 t'[(p[7 (7" s)])[¢/z]] and
t —, t'[(Ax : A-p[s]) q], closing the “fork” is straightforward by
observing that both terms o- and [-reduce respectively in one step
to t'[(p[s])[¢/x]]. (Note that this situation appears because 7 and 7’
are closed terms.)

In the last case, where t = ¢/[(Az : A - p) (¢[r (7' s)])], the number
of occurrences of x in p may influence the number of o-reductions to
perform to close the diagram. Thus, if t —p t/[p[¢[7 (7" s)] /z]] and
t —, t'[(Az : A-p) (q[s])], we may need a sequence of reductions
t'[plg[m (7" s)] /z]] —% t'[plq[s]/=]] while a one-step S-reduction only
would be necessary on the other term: t'[(Az : A - p) (q[s])] —5
t'[plgs]/=]].

O

4.2 Associativity of Products

As just seen, products enjoy the commutativity property. However, the as-
sociativity does not hold in general, i.e, it is not the case that, for example,
I, (I, A B) C = 1l, A (Il B C). This is so because there is an occurence
of I A B (or I, B C) inside another TIy. Thus, the “isomorphisms” g and
¢’ would be defined in the following way:

gZH2 (HQAB)C%HQA(HQBC)
Eq)\pHQAB)\CC<p% p7<pg p,C>2>2D

11

D. CHEMOUIL, S. SOLOVIEV

and

g Ty A(Tly, BC) =TI, (I, A B) C
= (Aa:A-Aq: T B C-({a,0? q)2, 12 q)a) -

Then, for a term (p, ¢)9, with p: II; A B and ¢ : C, one has:

/

9" (g (p,c)2) ——5 g (07 P, (D3 P, C)a)o
—>L—>6 <<p% papg p>2,6>2 7£,8L <p; C>2

because of the lack of surjective pairing. It is interesting to note that, even
with extensionality on canonical elements, the isomorphism establishing asso-
ciativity of binary product does not hold.

4.3 Retractions

Now, let us consider some correspondances between n-products for different
n, for example II3; A B C' and I, (II, A B) C. Define

fZH2 (HQAB)C%H:;ABC
=y I AB-X2:C-(p? y. 03y, 2)3)a

and

fI:H3ABC—)H2 (HQAB)C
=(Az:A-dy:B-Xz:C-{((z,9)2 2)2)3 -

For (t,u,v)3 : I3 A B C, we have:
f U (tu,v)s) ——p f (G u)2,v)e ——5 (tu,)3

However, for (y, z)s : Il (Il A B) C, we have:

' (f (Y, 2)2) ———5 [(02 4,02 Y, 2)3
— =5 (07 ¥, D5 Y)2, 2)2 #50 (Y, 2)2

once again because the type IIs A B doesn’t enjoy surjective pairing. This
means that even in an extensional sense (on canonical elements), f is only
a retraction, and not an isomorphism. Of course, the same situation will
appear if we consider the product of n elements expressed with II,,, and using
a superposition of II; for & < n. While we will not consider deeply the
case of retractions in this paper, we think they deserve attention for further
studies: this example suggests that II3 might be considered as the “canonical”
representation of triples, for being the retract of all representations of triples.
One may note that this observation demonstrates the usefulness of adding
new reductions gradually. The correspondence between products of different

12

D. CHEMOUIL, S. SOLOVIEV

arity described above would remain hidden if surjective pairing was already
present.

4.4 Surjective Pairing

Let us add the rule (p? x,p3 x)s —sp z (if x is of product type) to the system

with Si-reductions. We will now show that the Deferment Lemma may also

be applied to prove strong normalisation of a system of StSP-reductions.
Consider a SP-reduction followed by some (- or t-reduction.

t{(p} s,p5 8)2] —>sp t[s] —, t*[s] .

If s does not have the form (s, s9)9 or it does but the reduction does not use
this occurrence of (-, -)o then deferment is obviously possible.

Suppose the reduction that follows SP is ¢, then ¢ should be a term of the
form t[(p? s,p2 s)o] = V'[(f)2 (P? s,p3 s)o] where s : Ily A B, sy : A, s9: B,
f:A— B — C and we have

tI(fD2 (07 5,05)2] —>sp '[(fD2 (s1,82)2) =, t'[f 51 92)

This can be replaced by

10Dz (BF 5,05 s)a] — E'[f (07) (p5 9)]
———g U'[f 51 (95)] ———5 t'[f 51 2]

(a trivial case of deferment). It is easy to see that local confluence will hold
as well.

5 Isomorphic Copies of (Non-)Algebraic Types

The notion of the copy of a type is a very important one, and occurs quite
often in many developments. For example, such operations are frequently used
in tree-processing programs such as compilers. In this section, we study how
isomorphisms may be used to devise an extended notion of copy, namely the
isomorphic copy (for want of a better name).

Let us consider two extensionally isomorphic types A and B with isomor-
phisms f: A — B and f~!: B — A, and a type

C’EInd(oz)[cl:a%—)...—)alfl—>a;...;cn:azﬁ...—)aﬁn—)a] ,

possibly containing occurrences of A. An isomorphic copy C' of C differs
by names of introduction operators, e.g ¢/, ...,c,, and by the fact that each
“atomic” occurrence of A in C is replaced by an occurrence of B in C' (that
is to say: A will be replaced by B only if it occurs either as a non-recursive
operator, or as the premise —i.e, the type of an argument— of a strictly

positive operator).
13

D. CHEMOUIL, S. SOLOVIEV

The reader who prefers a less abstract setting may suppose the isomor-
phisms between A and B belong to the class studied in section Bl It can be
also intensional isomorphism, e.g., permutation of premisses of a functional

type.

The definitions below also may be modified in such a way that only some
selected occurrences of A are considered.

Now, let us define a function icopy : C' — C' which converts canon-
ical objects from one type to the other. Formally, icopy is of the form
Recr My ...M,. For every constructor ¢; : o} — ... — off — C, let
{Jp}p=14 = SP4(0) and let us denote every strictly positive operator o’ by

Vij1 = -+ Vijp., — a. Then, we have

M; = dxy : 0}l[Cla] - ... \xy, : 0¥ [C/al-
Awj, 2o [CMa] - Awy, ol [CMal - 6 by O,
where
(@) Azi Vgt A Y Wi 272, EME iy g
dm =4 (b) [fan if 0" = A;
() Tm otherwise;
and, for 1 <r < pjm:
* V., =Band 2. = ! 2 if v, = A
* Vipmr = Vimy and 2. = 2, otherwise.

The function icopy ! : €' — C'is defined similarly.

We may now consider the behaviour of icopy and icopy ™" w.r.t introduction
operators, assuming that the new o-reductions icopy™" (icopy z) —, = and
f~' (f £) —, = are added. The main observation is that

icopy ™" (icopy (¢i ty...ty,)) —5, ¢ty ...t

i

where 7
* is t; in case (c);
o is f7' (f t;) in case (b);

* and is of the form A2y : v 1 ... Azp : Vigp,, ~icopy™ (icopy (t; 21 ..2,))
where 2. = 71 (f 2,) if v, = A, 2/ = 2z, otherwise, in case (a).

1

Now, suppose we have a term of the form gficopy * (icopy (c; t1...1,))].

14

D. CHEMOUIL, S. SOLOVIEV

Then, by one single o-reduction, we have

qlicopy ! (icopy (c; t1...t,))] —o qlci t1-. . ts,]

But we may try to defer this o-reduction. First, we have

qlicopy™" (icopy (ci t1...1))] —)EL qle; th .. 1]

Now, the deferment will depend on which cases the ¢ are in. In case (c), we
have t; = t;, so no more reduction is to be done to close the diagram. If
case (b) happens, some o-reductions will be needed:

Q[Ci tll .. t;%] _>;r q[Cz t1.. tkl] .

Finally, if case (a) happens, carrying some o-reductions may lead to an un-
closed diagram:
qle; by -t] —F ale t]]

where] may begin by some abstractions. This situation will not happen only
in the specific case, similar in result to case (b), where af is a strictly positive
operator over « of null arity, 7.e af = «. For example, this is the case for the
‘S’ constructor of ordinals. In the general case however (i.e with o being a
strictly positive operator over « of non-null arity), the only way to close the
diagram seems to add further n-expansions in the following way:

qleg ty .. ty) —F qle Bt]

As an example, we have, for the ‘I’ constructor of ordinals the following
reduction graph:

qlicopy ™" (icopy (

/\
\

L (Azi = N -icopy™" (icopy (k (f~" (f 21)))))]
)\Zl N kz1

As a conclusion, if we only meet cases (c¢) and (b), and case (a) with
only null-arity strictly positive operators, it is always possible to (0-)defer
o-reductions in the calculus. Thus fio-reduction is strongly normalising for
“algebraic” types. Confluence follows easily, with a similar proof as for Theo-
rem on page [0

As we briefly discussed above, our “strategy” is to add new reductions one
by one. Thus, even the result for algebraic types only opens a large field of

15

D. CHEMOUIL, S. SOLOVIEV

applications for icopy, generated by isomorphisms of parameters introduced
previously.

The difficult case is when “non-algebraic” types occur. Recently we ob-
tained a proof for this case and the system with n-expansion.

Definition 5.1 We define n-expansion as follows:

M is of function type A — B
M—, x:A-Maz if 1 .un 1on Lyp))
M is neither an abstraction nor applied.

In detailed form the proof is too long to be presented here and we shall
only give an outline.

The main observation used in this proof is that if the terms ¢y, ..., ¢, above
are in n-expanded form then

qlei ty. . ty)] ge— qlei tt ..t

E.g., the diagram for 'L’ constructor may be closed differently:

qlicopy™" (icopy (

/\

q[L (M\z1 : N -icopy™" (icopy (k (f~' (f 21)))))]

)\Zl N k Zl

Since we consider the system with n-expansions, we need a proof that the
system with . and n-expansions is strongly normalising and confluent (we
currently have a sketch of this proof).

To prove strong normalisation of the system extended not only by n but
by o-reductions related to icopy we assume that there is an infinite reduction
sequence including o reductions.

To use the observation above we need a lemma that shows that this re-
duction sequence will remain infinite if we insert appropriate n-expansions (to
make the terms ¢ in case (a) n-expanded).

After that, using a modification of deferment (to take into account the
condition that the terms ¢ are n-expanded) we show that it would be possible
to obtain an infinite sequence consisting of Snt only and this contradiction
shows that the system with o is SN.

The proof is completed by verification of confluence.

16

D. CHEMOUIL, S. SOLOVIEV

Acknowledgement

We would like to thank Roberto Di Cosmo for helpful discussions, and Freiric
Barral for his help and proofreading.

6 Conclusion

The systems based on intensional equality (e.g., many proof assistants) often
puzzle mathematically-oriented users because some familiar functional equali-
ties (such as equalities related to commutativity and associativity of product)
are no more viewed as computational and their use may require additional
and heavy proof development. The arguments in favor of the equality based
only on fi-reduction (or even n:) may look nice from the foundational point
of view but, pragmatically speaking, there is no harm if an extension of a
reduction system doesn’t destroy properties such as strong normalisation and
confluence.

In this short paper, we studied two cases that seem of interest: extensions
of reduction systems related to products and also to “isomorphic” copies of a
type.

As for products, using the Deferment Lemma, we were able to prove that
adding a rewriting rule corresponding to commutativity of products keeps the
calculus strongly normalising and confluent. The same lemma also enabled us
to show that adding surjective pairing to the system of Fi-reductions does not
break normalisation and confluence properties.

Secondly the notion of isomorphic copy, is useful for a clean distinction
between the multiple uses of the type itself and of its copies. E.g., in proof
assistants, the type of Even numbers is often defined as a copy of type Nat
together with an appropriate coercion Even — Nat. Combining this coer-
cion with the isomorphism copy defined above, we may obtain representations
of classes of numbers modulo 2". Furthermore, isomorphic copies of non-
algebraic types may require a notion of n-expansion, and hence to show that
Bnio-reduction is strongly normalising and confluent.

There are several recent works where normalisation in extended reduction
systems is considered (e.g., [22] or [78]). This makes the perspective seem
quite optimistic.

The calculus we considered here (the simply-typed A-calculus with induc-
tive types) is a compromise between the richness provided by inductive con-
structions and the relative simplicity of simply-typed systems. In the case of
dependent types, one will meet more difficulties because new reductions will
influence type-equality as well.

The subject needs more investigation but appropriate methods (e.g., a
modification of H. Goguen’s Typed Operational Semantics, see [T8]) will prob-

17

D. CHEMOUIL, S. SOLOVIEV

ably lead to useful results of the same type as presented here.

References

[1] Baader, F. and T. Nipkow, “Term Rewriting and All That,” Cambridge
University Press, New York, 1998.

[2] Bachmair, L. and N. Dershowitz, Commutation, transformation, and
termination, in: J. H. Siekmann, editor, Proceedings of the Fighth International
Conference on Automated Deduction (Ozford, England), Lecture Notes in
Computer Science 230 (1986), pp. 5-20.

[3] Barendregt, H. P., “The Lambda Calculus - Its Syntax and Semantics,” North-
Holland, Amsterdam, 1984.

[4] Barendregt, H. P., Lambda calculi with types, in: D. M. Gabbai, S. Abramsky
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, Oxford
University Press, Oxford, 1992 .

[5] Barras, B., S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Gimenez,
H. Herbelin, G. Huet, C. Munoz, C. Murthy, C. Parent, C. Paulin-Mohring,
A. Saibi and B. Werner, The Coq proof assistant reference manual : Version
6.1, Technical Report RT-0203, Inria (Institut National de Recherche en
Informatique et en Automatique), France (1997).

[6] Barthe, G. and O. Pons, Type isomorphisms and proof reuse in dependent type
theory, in: F. Honsell and M. Miculan, editors, Proceedings 4th Int. Conf. on
Found. of Software Science and Computation Structures, FoSSaCS’01, Genova,
Ttaly, 2-6 Apr. 2001, Lecture Notes in Computer Science 2030, Springer-Verlag,
Berlin, 2001 pp. 57-71.

[7] Blanqui, F., J.-P. Jouannaud and M. Okada, The calculus of algebraic
constructions, in: P. Narendran and M. Rusinowitch, editors, Proceedings of
the 10th International Conference on Rewriting Techniques and Applications

(RTA-99) (1999), pp. 301-316.

[8] Blanqui, F., J.-P. Jouannaud and M. Okada, Inductive-data-type systems,
Theoretical Computer Science 272 (2002), pp. 41-68.

[9] Bruce, K., R. Di Cosmo and G. Longo, Provable isomorphisms of types, Technical
Report 90-14, LIENS, Ecole Normale Supérieure, Paris (1990).

[10] Dezani-Ciancaglini, M., Characterization of normal forms possessing inverse in
the X — B — n-calculus, Theoretical Computer Science 2 (1976), pp. 323-337.

[11] Di Cosmo, R., “Isomorphisms of Types: From A-Calculus to Information
Retrieval and Language Design,” Progress in Theoretical Computer Science,
Birkh&user, Boston, MA, 1995.

[12] Di Cosmo, R. and D. Kesner, Combining algebraic rewriting, extensional lambda
calculi, and fizpoints, Theoretical Computer Science 169 (1996), pp. 201-220.

18

D. CHEMOUIL, S. SOLOVIEV

[13] Doornbos, H. and B. von Karger, On the union of well-founded relations, Logic
Journal of the IGPL 6 (1998), pp. 195-201.

[14] Dowek, G., G. Huet and B. Werner, On the definition of the eta-long normal
form in type systems of the cube, in: H. Geuvers, editor, Informal Proceedings of

the Workshop on Types for Proofs and Programs, Nijmegen, The Netherlands,
1993.

[15] Geser, A., “Relative Termination,” Ph.D. thesis, Universitit Passau, Passau,
Germany (1990).

[16] Geuvers, H., The Church-Rosser property for fn-reduction in typed \-calculi, in:
Proceedings, Seventh Annual IEEE Symposium on Logic in Computer Science,
IEEE Computer Society Press, Santa Cruz, California, 1992, pp. 453-460.

[17] Geuvers, H., “Logics and Type Systems,” Ph.D. thesis, Computer Science
Institute, Katholieke Universiteit Nijmegen (1993).

[18] Goguen, H., A typed operational semantics for type theory, LFCS report
ECS-LFCS-94-304, University of Edinburgh, Department of Computer Science
(1994).

[19] Luo, Z., “Computation and Reasoning: A Type Theory for Computer Science,”
Number 11 in International Series of Monographs on Computer Science, Oxford
University Press, 1994.

[20] Paulin-Mohring, C., Inductive definitions in the system Coq. Rules and
properties, in: M. Bezem and J. F. Groote, editors, Proceedings of the 1%
International Conference on Typed Lambda Calculi and Applications, TCLA’93,
Utrecht, The Netherlands, Lecture Notes in Computer Science 664 (1993), pp.
328-345.

[21] Soloviev, S. V., The category of finite sets and Cartesian closed categories,
in: Theoretical Applications of Methods of Mathematical Logic III, Zapiski
Nauchnykh Seminarov LOMI 105, Nauka, Leningrad, 1981 pp. 174-194, english
translation in Journal of Soviet Mathematics, 22(3) (1983), 1387-1400.

[22] Walukiewicz, D., Termination of rewriting in the calculus of constructions,
Lecture Notes in Computer Science 1443 (1998).

[23] Werner, B., Méta-théorie du Calcul des Constructions Inductives, Thése Univ.
Paris VII, France (1994).

19

	Introduction
	Presentation
	Isomorphisms of Types
	Isomorphisms of Inductive Types
	Outline of the paper

	Simply-Typed -Calculus with Inductive Types
	Types
	Terms
	Reduction

	A Deferment Lemma
	Multiproducts
	Commutativity of Products
	Associativity of Products
	Retractions
	Surjective Pairing

	Isomorphic Copies of (Non-)Algebraic Types
	Acknowledgement
	Conclusion
	References

