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Remarks on Isomorphisms

of Simple Indu
tive Types

David Chemouil, Sergei Soloviev
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31062 Toulouse, Fran
e

Abstra
t

We study isomorphisms of types in the system of simply-typed �-
al
ulus with in-

du
tive types and re
ursion operators. It is shown that in some 
ases (multiprodu
ts,


opies of types), it is possible to add new redu
tions in su
h a way that strong nor-

malisation and 
on�uen
e of the 
al
ulus are preserved, and the isomorphisms may

be regarded as intensional w.r.t. a stronger equality relation.

1 Introdu
tion

1.1 Presentation

This work is part of a larger proje
t where we are exploring the possibilities

of extensions preserving strong normalisation and 
on�uen
e of standard re-

du
tion systems by new redu
tions of the form f

0

(f t) �! t where f

0

is in

some sense an inverse of f .

The way this notion of invertibility may be understood is one of the ques-

tions we are investigating. A possibility would be to take the invertibility w.r.t

extensional equality of fun
tions between indu
tive types.

Here, we shall 
onsider the simply-typed �-
al
ulus, equipped with indu
-

tive types (i.e re
ursive types satisfying a 
ondition of stri
t positivity) and

stru
tural re
ursion s
hemes on these types.

In this short paper, we will fo
us on two parti
ular 
ases where the use-

fulness of this extension seems obvious. Namely, we shall study some isomor-

phisms of produ
ts (de�ned as indu
tive types) and the notion of 
opy of a

type
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1.2 Isomorphisms of Types

Let us �rst re
all a few fa
ts and de�nitions about isomorphisms of types.

De�nition 1.1 Consider a typed �-
al
ulus, equipped with an equivalen
e

relation � on terms, a term id

A

: A ! A for any type A and a 
omposition

operator Æ (with suitable typing) verifying the following 
onditions, for any

fun
tion f : A! B:

f Æ id

A

� f id

B

Æf � f

Then, two types A and B are said to be isomorphi
 (written A

�

=

B) if

there exist two �-terms f : A! B and g : B ! A su
h that

f Æ g � id

B

g Æ f � id

A

In this 
ase, g is often written f

�1

and 
alled the inverse of f .

Until now, isomorphisms of types have mostly been studied in various �rst-

or se
ond-order �-
al
uli, where � is usually generated by ��-
onversion

3

,

id

A

b= �x : A � x and Æ b= �g : B ! C � �f : A ! B � �x : A � g (f x) (for any

types A, B, and C). As an example, we have the following result:

Proposition 1.2 ([21℄; [9,11℄) All isomorphisms holding in �

1

��

!;�;1

, the

�rst-order simply-typed �-
al
ulus with binary produ
ts and unit type (or,

equivalently, in 
artesian 
losed 
ategories), are obtainable by �nite 
ompo-

sitions of the following �base� of seven isomorphisms:

A�B

�

=

B � A A� (B � C)

�

=

(A� B)� C

(A�B)! C

�

=

A! (B ! C) A! (B � C)

�

=

(A! B)� (A! C)

A� 1

�

=

A A! 1

�

=

1 1! A

�

=

A

1.3 Isomorphisms of Indu
tive Types

Now, it is our view that, as long as indu
tive types are 
on
erned, intensional

isomorphisms, in ordinary sense, la
k expressivity. To view this problem in a

larger 
ontext, one needs a notion of extensionality.

De�nition 1.3 Two types A and B are extensionally isomorphi
 (written

A u B) if there exists two �-terms f : A! B and g : B ! A su
h that

8 x : A � g (f x) � x and 8 y : B � f (g y) � y :

(Note that

�

=

and u are both equivalen
e relations.)

3

It was shown in [10℄ that with �-
onversion solely, the only invertible term is the identity.

2
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Obviously, we have A

�

=

B ) A u B, but the 
onverse is usually not true.

One way to a
hieve this kind of isomorphisms would be to add extensional

redu
tion rules to the 
al
uli, su
h as � rules, surje
tive pairing, et
. However,

many 
al
uli don't 
ome equipped with extensional redu
tion rules, for various

reasons (de
idability, 
on�uen
e, et
); though some positive results do exist,

e.g [17,14,16℄. Hen
e, in this paper, we will mainly be interested with ��-

redu
tion only (where �-redu
tion is the rule asso
iated to stru
tural re
ursion

over indu
tive types).

Of 
ourse, extensional isomorphisms are provable by indu
tion, but they

are not 
omputable, i.e, one doesn't have (for example)

�x : A � f

�1

(f x) �!

��

�x : A � x:

Without appealing to full extensionality, we think that, if f and f

�1

are

mutually invertible extensional isomorphisms, it is worth 
onsidering the ad-

dition of new redu
tion rules (
all them �-redu
tions, following [6℄) as follows:

f (f

�1

x) �!

�

x and f

�1

(f x) �!

�

x:

1.4 Outline of the paper

In Se
t. 2, we qui
kly give essential de�nitions of a simply-typed �-
al
ulus

with indu
tive types.

Then, in Se
t. 3, we qui
kly present a small lemma (�Deferment Lemma�)

that is of interest in the next se
tion.

In Se
t. 4, we illustrate the addition of rewrite rules on n-ary produ
ts.

We show that, for produ
ts, strong normalisation and 
on�uen
e are preserved

for a rewrite rule 
orresponding to 
ommutativity, while it is not the 
ase for

asso
iativity, unless we also add surje
tive pairing.

Finally, in Se
t. 5, we study the notion of isomorphi
 
opy of a type, and

how a rewrite rule 
orresponding to it may or not be added to the 
al
ulus.

2 Simply-Typed �-Cal
ulus with Indu
tive Types

We de�ne the simply-typed �-
al
ulus with indu
tive types, whi
h may be

seen as an extension of Gödel's system T . Some referen
es on �-
al
ulus and

indu
tive types may be found in [4,20,5,23,19,8℄. Furthermore, most of our

notations and results 
on
erning rewrite systems are taken from [1℄. For a

given redu
tion �!

R

, we write �!

+

R

for its transitive 
losure, and �!

�

R

for

its re�exive-transitive 
losure.

2.1 Types

Throughout this paper, we 
onsider an in�nite set S = f�; �; : : :g of type

variables. We also 
onsider an in�nite set of variables V (with V \ S = ?),

3
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and an in�nite set C of indu
tive-type 
onstru
tors (or introdu
tion operators),

with C \ S = C \ V = ?.

Moreover, as usual in this sort of presentation, we 
onsider all terms and

types up to �-
onversion, i.e the names of bound variables are irrelevant.

Note 1 In the following, the sign � will denote synta
ti
 equality, and def-

initions will be introdu
ed in the 
al
ulus with the sign b=. Furthermore, we

will use the 
ommon notation let x = e

1

in e

2

for e

2

[e

1

=x℄.

De�nition 2.1 The set of pre-types is generated by the following grammar

rules:

Ty ::= � j (Ty ! Ty) j Ind(�)[ CS ℄

CS ::= CL j "

CL ::= 
 : Ty j 
 : Ty ; CL

with 
 2 C (as usual, " denotes the empty word). Of 
ourse, we require that

any 
onstru
tor belong to only one indu
tive type.

Note 2 We 
onsider that ! is right asso
iative, hen
e �

1

! (�

2

! �

3

) will

be subsequently written �

1

! �

2

! �

3

.

An indu
tive type with n 
onstru
tors 


1

, . . . , 


n

in C, ea
h of arity k

i

(with

1 6 i 6 n), is then of the form

Ind(�)[ 


1

: �

1

1

! : : :! �

k

1

1

! � ; : : : ; 


n

: �

1

n

! : : :! �

k

n

n

! � ℄;

where the part between bra
kets is bound by Ind(�). Moreover, every �

i

�

�

1

i

! : : :! �

k

i

i

! � must verify 
ertain 
onditions, as explained below.

De�nition 2.2 A stri
tly positive operator � over a type variable � (written

� spos �) is indu
tively de�ned by the following rules:

� spos �

� 62 FV(�

1

) �

2

spos �

�

1

! �

2

spos �

De�nition 2.3 An (indu
tive) s
hema � over a type variable � (written � s
h

�) is indu
tively de�ned by the following rules:

� s
h �

� =2 FV(�

1

) �

2

s
h �

�

1

! �

2

s
h �

�

1

spos � �

2

s
h �

�

1

! �

2

s
h �

Intuitively, a s
hema � is of the form �

1

! : : :! �

k

! �, where every �

j

is itself:

�

either a type not 
ontaining � (we 
all this �

j

a non-re
ursive operator);

�

or a type of the form �

j

� �

1

! : : : ! �

m

! � (we 
all this �

j

a stri
tly

positive operator), where � does not appear in any �

`

.

4
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Note 3 Given a s
hema � � �

1

! : : :! �

k

! �, we will denote by SP

�

(�)

the set of indi
es j (with 1 6 j 6 k) su
h that �

j

is a stri
tly positive op-

erator over �, i.e SP

�

(�) = fj j 1 6 j 6 k ^ �

j

spos �g. This set will be

useful be
ause it 
orresponds to arguments (of a given 
onstru
tor) on whi
h

a re
ursive 
all may be 
arried out.

De�nition 2.4 A type � (written � : ?) is indu
tively de�ned by the following

rules:

� 2 S

� : ?

�

1

: ? �

2

: ?

�

1

! �

2

: ?




i

2 C �

i

: ? �

i

s
h � (1 6 i 6 n)

Ind(�)[ 


1

: �

1

; : : : ; 


n

: �

n

℄ : ?

Example 2.5 With these rules, it is possible to de�ne the types of natural

numbers, of Brouwer's ordinals and of lists of natural numbers (normally,

these indu
tive types should have di�erent 
onstru
tor names, we used some


ommon names for the sake of readibility):

Nat b= Ind(�)[ 0 : � j S : �! � ℄

Ord b= Ind(�)[ 0 : � j S : �! � jL : (Nat! �)! � ℄

ListNat b= Ind(�)[ nil : � j 
ons : Nat! �! � ℄:

Note that any indu
tive type � generates a re
ursor (or stru
tural-re
ursion

operator)R

�;�

to any type �. This will be further explained in the next se
tion


on
erned with terms of the language.

2.2 Terms

We will now de�ne the terms of our 
al
ulus.

De�nition 2.6 The set of terms is generated by the following grammar rule:

M ::= 
 j x j (�x : � �M) j (M M) j R

�;�

;

where x 2 V, 
 2 C and � and � are types.

Note 4 Appli
ation is left-asso
iative, hen
e (: : : (M

1

M

2

) : : :) M

n

) 
an be

written M

1

: : :M

n

. In the same way, abstra
tion is right-asso
iative, hen
e

(�x

1

: �

1

� (�x

2

: �

2

�M)) 
an be written �x

1

: �

1

� �x

2

: �

2

�M

We now de�ne a synta
ti
 operation that will be useful to assert typing

rules for terms.

De�nition 2.7 Let � be an indu
tive type, � � �

1

! : : : ! �

k

! � a

s
hema over � in � , and � a type. Let fj

p

g

p=1;`

= SP

�

(�). Then, we de�ne

�

�

(�; �) � �

1

[�=�℄! : : :! �

k

[�=�℄! �

j

1

[�=�℄! : : : �

j

`

[�=�℄! �:

5
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De�nition 2.8 We now present the typing rules for the 
al
ulus:

�; x : � ` x : �

(ax)

� � Ind(�)[ : : : ; 
 : � ; : : : ℄ � : ?

� ` 
 : �[�=�℄

(
onstr)

�; x : �

1

`M : �

2

(�x : �

1

�M) : �

1

! �

2

(�)

� `M : �

1

! �

2

� ` N : �

1

� ` (M N) : �

2

(app)

� � Ind(�)[ 


1

: �

1

; : : : ; 


n

: �

n

℄

� `M

i

: �

�

(�

i

; �) (1 6 i 6 n)

� ` (R

�;�

M

1

: : : M

n

) : � ! �

(elim)

2.3 Redu
tion

De�nition 2.9 We de�ne the usual �-redu
tion rule as follows:

(�x : � �M) N �!

�

M [N=x℄ :

Now, we de�ne the �-redu
tion. However, to do so, we �rst need to make

a te
hni
al de�nition whi
h will be helpful.

De�nition 2.10 Let � � �

1

! : : :! �

m

! � be a stri
tly positive operator

over �. Then, we de�ne

�(R;N; �) � �z

1

: �

1

� : : : � �z

m

: �

m

�R (N z

1

: : : z

m

) :

Of 
ourse, in the spe
ial 
ase where m = 0, we have �(R;N; �) � R N .

De�nition 2.11 Now, let � � �

1

! : : :! �

k

! � be a s
hema over �, and

let fj

p

g

p=1;`

= SP

�

(�). Then, we de�ne �-redu
tion by

R

�;�

M

1

: : : M

n

(


i

N

1

: : : N

k

i

) �!

�

M

i

N

1

; : : : N

k

i

N

0

j

1

: : : N

0

j

`

;

where N

0

j

p

� �(R

�;�

M

1

: : : M

n

; N

j

p

; �

j

p

), for all 1 6 p 6 `.

Examples of rules for some basi
 indu
tive types are given in Figure 1 on

the following page.

Proposition 2.12 For the simply-typed �-
al
ulus with indu
tive types, ��-

redu
tion is strongly normalising and 
on�uent.

See for example [8℄.

3 A Deferment Lemma

There are many lemmas 
on
erning with strong normalisability of a relation

�!

RS

when �!

R

and �!

S

are strongly normalising. Though the lemma we

6
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R

Nat;�

a f 0 �!

�

a

R

Nat;�

a f (S p) �!

�

f p (R

Nat;�

a f p)

R

Ord;�

a f g 0 �!

�

a

R

Ord;�

a f g (S p) �!

�

f p (R

Ord;�

a f g p)

R

Ord;�

a f g (L k) �!

�

g k (�z : Nat � (R

Ord;�

a f g (k z)))

R

ListNat;�

a f nil �!

�

a

R

ListNat;�

a f (
ons h t) �!

�

f h t (R

ListNat;�

a f t)

Fig. 1. Re
ursion rules for some basi
 indu
tive types


onsider below is 
lose to many results in the folklore, we 
ould not �nd its

exa
t formulation in the literature.

Note also that this lemma is not equivalent to the so-
alled Postponement

Lemma for �-
ontra
tions in pure �-
al
ulus, see e.g [3℄ p. 386.

De�nition 3.1 Let �!

R

and �!

S

be two redu
tions. Then, �!

S

is defer-

able w.r.t �!

R

if, for all terms t and u su
h that t �!

S

�!

R

u, there is a

derivation t �!

R

�!

�

RS

u.

t

S

���

�

�

�

�

�

�

�

R

��

R

��

�

�

�

�

�

�

�

�

RS

��

u

Lemma 3.2 (Deferment Lemma) Let �!

R

and �!

S

be two strongly nor-

malising relations. Then, if �!

S

is deferable w.r.t �!

R

, �!

RS

is strongly

normalising.

Proof. Let �!

R

and �!

S

be two strongly normalising relations, su
h that

�!

S

is deferable w.r.t �!

R

. Let us suppose that �!

RS

is not strongly

normalising, and show that it leads to a 
ontradi
tion.

If �!

RS

is not strongly normalising, then �!

�

RS


onsists of an in�nite al-

ternation of �!

�

R

and �!

�

S

. Then, one 
an indu
tively �lift� �!

R

-redu
tions

by deferring every �!

S

-redu
tion followed by an �!

R

-redu
tion, thus build-

ing an in�nite derivation of �!

R

steps. This 
ontradi
ts the fa
t that �!

R

is strongly normalising. 2

In fa
t, we 
an prove a slightly more powerful lemma whose premises o

ur

however less in pra
ti
e.

7
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De�nition 3.3 Let �!

R

and �!

S

be two redu
tions. Then, �!

S

is 0-

deferable w.r.t �!

R

if, for all terms t and u su
h that t �!

S

u, there is a

derivation t �!

R

�!

�

RS

u.

t

S

��

R

��

�

RS

��

u

Lemma 3.4 (0-Deferment Lemma) Let �!

R

and �!

S

be two strongly

normalising relations. Then, if �!

S

is 0-deferable w.r.t �!

R

, �!

RS

is

strongly normalising.

Proof. Immediate, be
ause 0-deferment implies deferment. 2

Remark 3.5 Sin
e the submission of this paper, we found some referen
es

about what we 
all Deferment Lemma (
f. [2,15℄ and most notably [13℄).

While we shall keep 
alling this property �deferment� in the 
urrent paper,

we intend to use the preferable term �adjournement� afterwards, following

Delia Kesner (private 
ommuni
ation).

4 Multiprodu
ts

Let us de�ne a s
hema of indu
tive types representing n-ary produ
ts:

�

n

A

1

: : : A

n

b= Ind(�)[ h�i

n

: A

1

! : : :! An! � ℄ ;

with re
ursion operator L�M

n

de�ned by

L�M

n

: (A

1

! : : :! A

n

! B)! (�

n

A

1

: : : A

n

! B)

Lf M

n

ha

1

: : : a

n

i

n

�!

�

f a

1

: : : a

n

:

The proje
tions p

n

k

are de�ned as L�x

1

: A

1

� : : : � �x

n

: A

n

� x

k

M

n

.

Remark 4.1 One may note that the produ
t of morphisms f

i

: C ! A

i

(with

1 6 i 6 n) is de�nable, without the elimination operator, by

prod

n

f

1

: : : f

n

b= �z : C � hf

1

z; : : : ; f

n

zi

n

:

However, many familiar properties of produ
t and proje
tions do not hold

intensionally. For example, we have hp

2

1

x; p

2

2

xi

2

6=

��

x for x : �

2

A B. In

fa
t, this property, usually known as surje
tive pairing, stipulates that the

produ
t is unique.

4.1 Commutativity of Produ
ts

Now, let % be a permutation of f1; : : : ; ng. The permutation of �

n

A

1

: : : A

n

in-

du
ed by % is denoted %, and de�ned as L�x

1

: A

1

�: : :��x

n

: A

n

�hx

%(1)

; : : : ; x

%(n)

i

n

M

n

.

8
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Proposition 4.2 For any term t : �

n

A

1

: : : A

n

and permutations % and !

de�ned on f1; : : : ; ng, the equality % Æ ! t =

��

% (! t) is provable.

Still, while we 
an prove this proposition by indu
tion, it is important to

note that the equality is not 
omputable for an arbitrary t, but just when

t � ht

1

; : : : ; t

n

i

n

for some n (
f. Se
t. 1.3 on page 3). Note also that for

mutually inverse permutations % and %

�1

, % and %

�1

are mutually inverse

extensional isomorphisms.

Now, for given mutually inverse permutations % and %

�1

, let us add the

following rewrite rules to the system of ��-redu
tions:

% (%

�1

x) �!

�

x %

�1

(% x) �!

�

x :

(Note that % and %

�1

are 
on
rete, i.e 
onstant, terms of the 
al
ulus.)

Remark 4.3 To lighten the notation, let us write � and �

0

for % and %

�1

. We

will also make use of diagrams, as is usually done for this kind of proof.

Lemma 4.4 �-redu
tion is strongly normalising.

Proof. Take the length of terms as an ordering. 2

Theorem 4.5 ���-redu
tion is strongly normalising.

Proof. We show that �-redu
tion is deferable w.r.t �-redu
tion (
ase i) and

w.r.t �-redu
tion (
ase ii).

(i) For �-redu
tion. The 
ru
ial 
ase is when the �-redex o

urs inside a

�-redex.

i.1. As a �rst possibility, we may have t � t

0

[(�x : A �p[� (�

0

s)℄) q℄. Note

that � and �

0

do not 
ontain variables.

t � t

0

[(�x : A � p[� (�

0

s)℄) q℄

�

uu
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

�

))

t

0

[(�x : A � p[s℄) q℄

�

))

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

t

0

[(p[� (�

0

s)℄)[q=x℄℄

�

uu

t

0

[(p[s℄)[q=x℄℄

i.2. We may also have t � t

0

[(�x : A � p) (q[� (�

0

s)℄)℄, in whi
h 
ase the

term p may 
ontain many (or zero) o

urren
es of x, whi
h requires

9
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to 
arry as many �-redu
tions.

t � t

0

[(�x : A � p) (q[� (�

0

s)℄)℄

�

uuk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

�

))

t

0

[(�x : A � p) (q[s℄)℄

�

))

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

t

0

[p[q[� (�

0

s)℄ = x℄℄

�

�

uu

t

0

[p[q[s℄=x℄℄

(ii) For �-redu
tion.

ii.1. The 
ru
ial 
ase o

urs when a �-redex may intera
t with � and �

0

,

hen
e we must have t � t

0

[� (�

0

hs

1

; : : : ; s

n

i

n

)℄. But then, it is imme-

diate to see that t �!

�

t

0

[hs

1

; : : : ; s

n

i

n

℄ 
an also be performed by the

derivation: t

0

[� (�

0

hs

1

; : : : ; s

n

i

n

)℄ �!

�

�!

+

��

t

0

[hs

1

; : : : ; s

n

i

n

℄. This is

a trivial 
ase of 0-deferment.

ii.2. In other 
ases, the �-redex doesn't interfere with �-redu
tion, there-

fore deferment is obviously possible.

2

Theorem 4.6 ���-redu
tion is 
on�uent.

Proof. First, as ���-redu
tion is strongly normalising, it is enough to show

lo
al 
on�uen
e (by Newman's Lemma), i.e for all terms t, w, w

0

su
h that

t �!

���

w and t �!

���

w

0

, there exists a term u su
h that w �!

�

���

u and

w

0

�!

�

���

u.

By Lemma 2.12, ��-redu
tion is 
on�uent. For �-redu
tions alone, by

Newman's Lemma it is enough to show lo
al 
on�uen
e. The 
riti
al pairs

indu
ed by �-redu
tion are joinable; hen
e by the Criti
al Pair Theorem, �-

redu
tion is lo
ally 
on�uent. Therefore, for ���-redu
tions there are only

two extra 
ases to be 
onsidered depending on whether one 
arries a �- or

�-redu
tion (
ombined with �-) as a �rst step.

(i) If it is a �-redu
tion, then t � t

0

[� (�

0

s)℄, and there are 4 possible 
ases:

the �-redex is in s, the �-redex has no interse
tion with � (�

0

s), the �-

redex 
ontains � (�

0

s), or the �-redex is in � (�

0

s) and interse
ts with

� or �

0

.

i.1. We have t � t

0

[� (�

0

(s

0

[r℄))℄, r being a �-redex. Then, if t �-redu
es

to t

0

[� (�

0

s

0

[r

0

℄)℄ and �-redu
es to t

0

[s

0

[r℄℄, it is possible to �
lose� the

fork by t

0

[� (�

0

s

0

[r

0

℄)℄ �!

�

t

0

[s

0

[r

0

℄℄ and t

0

[� (�

0

s

0

[r

0

℄)℄ �!

�

t

0

[s

0

[r

0

℄℄.

i.2. On
e more, the order is indi�erent.

i.3. One has t

0

� t

00

[r[� (�

0

s)℄℄. The upper-left �-redu
tion 
annot a�e
t

� (�

0

s) sin
e this part doesn't begin with an introdu
tion operator.

(In general, the lower-left redu
tion would possibly be �!

�

�

sin
e the

number of �-redexes may 
hange when �-redu
tion is applied, but it

10
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is not the 
ase for produ
ts.)

t

0

� t

00

[r[� (�

0

s)℄℄

�

uuk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

�

))

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

t

00

[r

0

[� (�

0

s)℄℄

�

))

t

00

[r[s℄℄

�

uu

t

00

[r

0

[s℄℄

i.4. In fa
t, the �-redex should 
oin
ide with (�

0

s), sin
e (�

0

s) doesn't

begin with an introdu
tion operator, so it 
annot be � (�

0

s) (here,

we use the 
on
rete de�nition of � and �

0

). Thus, s must be of

the form hs

1

; : : : ; s

n

i

n

. But, for all elements of this form, we have

� (�

0

hs

1

; : : : ; s

n

i

n

) �!

�

�!

+

��

hs

1

; : : : ; s

n

i

n

, hen
e lo
al 
on�uen
e

holds trivially in this 
ase.

(ii) For �-redu
tion, 
ases ii.1 and ii.2 are similar to 
ases i.1 and i.2, thus

treated as above.

ii.3 If t � t

0

[(�x : A � p[� (�

0

s)℄) q℄, and t �!

�

t

0

[(p[� (�

0

s)℄)[q=x℄℄ and

t �!

�

t

0

[(�x : A � p[s℄) q℄, 
losing the �fork� is straightforward by

observing that both terms �- and �-redu
e respe
tively in one step

to t

0

[(p[s℄)[q=x℄℄. (Note that this situation appears be
ause � and �

0

are 
losed terms.)

ii.4 In the last 
ase, where t � t

0

[(�x : A � p) (q[� (�

0

s)℄)℄, the number

of o

urren
es of x in p may in�uen
e the number of �-redu
tions to

perform to 
lose the diagram. Thus, if t �!

�

t

0

[p[q[� (�

0

s)℄ =x℄℄ and

t �!

�

t

0

[(�x : A � p) (q[s℄)℄, we may need a sequen
e of redu
tions

t

0

[p[q[� (�

0

s)℄ =x℄℄ �!

�

�

t

0

[p[q[s℄=x℄℄ while a one-step �-redu
tion only

would be ne
essary on the other term: t

0

[(�x : A � p) (q[s℄)℄ �!

�

t

0

[p[q[s℄=x℄℄.

2

4.2 Asso
iativity of Produ
ts

As just seen, produ
ts enjoy the 
ommutativity property. However, the as-

so
iativity does not hold in general, i.e, it is not the 
ase that, for example,

�

2

(�

2

A B) C u �

2

A (�

2

B C). This is so be
ause there is an o

uren
e

of �

2

A B (or �

2

B C) inside another �

2

. Thus, the �isomorphisms� g and

g

0

would be de�ned in the following way:

g : �

2

(�

2

A B) C ! �

2

A (�

2

B C)

b= L�p : �

2

A B � �
 : C � hp

2

1

p; hp

2

2

p; 
i

2

i

2

M

11
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and

g

0

: �

2

A (�

2

B C)! �

2

(�

2

A B) C

b= L�a : A � �q : �

2

B C � hha; p

2

1

qi

2

; p

2

2

qi

2

M :

Then, for a term hp; 
i

2

, with p : �

2

A B and 
 : C, one has:

g

0

(g hp; 
i

2

) �!

�

�!

�

g

0

hp

2

1

p; hp

2

2

p; 
i

2

i

2

�!

�

�!

�

hhp

2

1

p; p

2

2

pi

2

; 
i

2

6=

��

hp; 
i

2

be
ause of the la
k of surje
tive pairing. It is interesting to note that, even

with extensionality on 
anoni
al elements, the isomorphism establishing asso-


iativity of binary produ
t does not hold.

4.3 Retra
tions

Now, let us 
onsider some 
orrespondan
es between n-produ
ts for di�erent

n, for example �

3

A B C and �

2

(�

2

A B) C. De�ne

f : �

2

(�

2

A B) C ! �

3

A B C

b= L�y : �

2

A B � �z : C � hp

2

1

y; p

2

2

y; zi

3

M

2

and

f

0

: �

3

A B C ! �

2

(�

2

A B) C

b= L�x : A � �y : B � �z : C � hhx; yi

2

; zi

2

M

3

:

For ht; u; vi

3

: �

3

A B C, we have:

f (f

0

ht; u; vi

3

) �!

�

�!

�

f hht; ui

2

; vi

2

�!

�

�!

�

ht; u; vi

3

:

However, for hy; zi

2

: �

2

(�

2

A B) C, we have:

f

0

(f hy; zi

2

) �!

�

�!

�

f

0

hp

2

1

y; p

2

2

y; zi

3

�!

�

�!

�

hhp

2

1

y; p

2

2

yi

2

; zi

2

6=

��

hy; zi

2

;

on
e again be
ause the type �

2

A B doesn't enjoy surje
tive pairing. This

means that even in an extensional sense (on 
anoni
al elements), f is only

a retra
tion, and not an isomorphism. Of 
ourse, the same situation will

appear if we 
onsider the produ
t of n elements expressed with �

n

, and using

a superposition of �

k

for k < n. While we will not 
onsider deeply the


ase of retra
tions in this paper, we think they deserve attention for further

studies: this example suggests that �

3

might be 
onsidered as the �
anoni
al�

representation of triples, for being the retra
t of all representations of triples.

One may note that this observation demonstrates the usefulness of adding

new redu
tions gradually. The 
orresponden
e between produ
ts of di�erent

12
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arity des
ribed above would remain hidden if surje
tive pairing was already

present.

4.4 Surje
tive Pairing

Let us add the rule hp

2

1

x; p

2

2

xi

2

�!

SP

x (if x is of produ
t type) to the system

with ��-redu
tions. We will now show that the Deferment Lemma may also

be applied to prove strong normalisation of a system of ��SP-redu
tions.

Consider a SP -redu
tion followed by some �- or �-redu
tion.

t[hp

2

1

s; p

2

2

si

2

℄ �!

SP

t[s℄ �!

�

t

�

[s

�

℄ :

If s does not have the form hs

1

; s

2

i

2

or it does but the redu
tion does not use

this o

urren
e of h�; �i

2

then deferment is obviously possible.

Suppose the redu
tion that follows SP is �, then t should be a term of the

form t[hp

2

1

s; p

2

2

si

2

℄ � t

0

[Lf M

2

hp

2

1

s; p

2

2

si

2

℄ where s : �

2

A B, s

1

: A, s

2

: B,

f : A! B ! C and we have

t

0

[Lf M

2

hp

2

1

s; p

2

2

si

2

℄ �!

SP

t

0

[Lf M

2

hs

1

; s

2

i

2

℄ �!

�

t

0

[f s

1

s

2

℄ :

This 
an be repla
ed by

t

0

[Lf M

2

hp

2

1

s; p

2

2

si

2

℄ �!

�

t

0

[f (p

2

1

s) (p

2

2

s)℄

�!

�

�!

�

t

0

[f s

1

(p

2

2

s)℄ �!

�

�!

�

t

0

[f s

1

s

2

℄

(a trivial 
ase of deferment). It is easy to see that lo
al 
on�uen
e will hold

as well.

5 Isomorphi
 Copies of (Non-)Algebrai
 Types

The notion of the 
opy of a type is a very important one, and o

urs quite

often in many developments. For example, su
h operations are frequently used

in tree-pro
essing programs su
h as 
ompilers. In this se
tion, we study how

isomorphisms may be used to devise an extended notion of 
opy, namely the

isomorphi
 
opy (for want of a better name).

Let us 
onsider two extensionally isomorphi
 types A and B with isomor-

phisms f : A! B and f

�1

: B ! A, and a type

C � Ind(�)[ 


1

: �

1

1

! : : :! �

k

1

1

! � ; : : : ; 


n

: �

1

n

! : : :! �

k

n

n

! � ℄ ;

possibly 
ontaining o

urren
es of A. An isomorphi
 
opy C

0

of C di�ers

by names of introdu
tion operators, e.g 


0

1

; :::; 


0

n

, and by the fa
t that ea
h

�atomi
� o

urren
e of A in C is repla
ed by an o

urren
e of B in C

0

(that

is to say: A will be repla
ed by B only if it o

urs either as a non-re
ursive

operator, or as the premise �i.e, the type of an argument� of a stri
tly

positive operator).

13
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The reader who prefers a less abstra
t setting may suppose the isomor-

phisms between A and B belong to the 
lass studied in se
tion 4. It 
an be

also intensional isomorphism, e.g., permutation of premisses of a fun
tional

type.

The de�nitions below also may be modi�ed in su
h a way that only some

sele
ted o

urren
es of A are 
onsidered.

Now, let us de�ne a fun
tion i
opy : C ! C

0

whi
h 
onverts 
anon-

i
al obje
ts from one type to the other. Formally, i
opy is of the form

R

C;C

0

M

1

: : :M

n

. For every 
onstru
tor 


i

: �

1

i

! : : : ! �

k

i

i

! C, let

fj

p

g

p=1;`

= SP

�

(�) and let us denote every stri
tly positive operator �

j

p

i

by

�

i;j;1

! : : : �

i;j;p

i;j

! �. Then, we have

M

i

� �x

1

: �

1

i

[C=�℄ � : : : � �x

k

i

: �

k

i

i

[C=�℄�

�w

j

1

: �

j

1

i

[C

0

=�℄ � : : : � �w

j

`

: �

j

`

i

[C

0

=�℄ � 


0

i

Æ

1

: : : Æ

k

i

where

Æ

m

�

8

>

<

>

:

(a) �z

1

: �

0

i;m;1

� : : : � �z

p

: �

0

i;m;p

i;m

� w

m

z

0

1

: : : z

0

p

if m 2 j

1

; : : : ; j

`

;

(b) f x

m

if �

m

i

� A;

(
) x

m

otherwise;

and, for 1 6 r 6 p

i;m

:

�

�

0

i;m;r

� B and z

0

r

� f

�1

z

r

if �

r

� A;

�

�

0

i;m;r

� �

i;m;r

and z

0

r

� z

r

otherwise.

The fun
tion i
opy

�1

: C

0

! C is de�ned similarly.

We may now 
onsider the behaviour of i
opy and i
opy

�1

w.r.t introdu
tion

operators, assuming that the new �-redu
tions i
opy

�1

(i
opy x) �!

�

x and

f

�1

(f x) �!

�

x are added. The main observation is that

i
opy

�1

(i
opy (


i

t

1

: : : t

k

i

)) �!

+

��




i

t

0

1

: : : t

0

k

i

where t

0

j

:

�

is t

j

in 
ase (
);

�

is f

�1

(f t

j

) in 
ase (b);

�

and is of the form �z

1

: �

i;j;1

� : : : � �z

p

: �

i;i;p

i;j

� i
opy

�1

(i
opy (t

j

z

0

1

: : : z

0

p

))

where z

0

r

� f

�1

(f z

r

) if �

r

� A, z

0

r

� z

r

otherwise, in 
ase (a).

Now, suppose we have a term of the form q[i
opy

�1

(i
opy (


i

t

1

: : : t

k

i

))℄.

14
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Then, by one single �-redu
tion, we have

q[i
opy

�1

(i
opy (


i

t

1

: : : t

k

i

))℄ �!

�

q[


i

t

1

: : : t

k

i

℄ :

But we may try to defer this �-redu
tion. First, we have

q[i
opy

�1

(i
opy (


i

t

1

: : : t

k

i

))℄ �!

+

��

q[


i

t

0

1

: : : t

0

k

i

℄ :

Now, the deferment will depend on whi
h 
ases the t

0

j

are in. In 
ase (
), we

have t

0

j

� t

j

, so no more redu
tion is to be done to 
lose the diagram. If


ase (b) happens, some �-redu
tions will be needed:

q[


i

t

0

1

: : : t

0

k

i

℄ �!

+

�

q[


i

t

1

: : : t

k

i

℄ :

Finally, if 
ase (a) happens, 
arrying some �-redu
tions may lead to an un-


losed diagram:

q[


i

t

0

1

: : : t

0

k

i

℄ �!

+

�

q[


i

t

00

1

: : : t

00

k

i

℄ ;

where t

00

j

may begin by some abstra
tions. This situation will not happen only

in the spe
i�
 
ase, similar in result to 
ase (b), where �

j

i

is a stri
tly positive

operator over � of null arity, i.e �

j

i

� �. For example, this is the 
ase for the

`S' 
onstru
tor of ordinals. In the general 
ase however (i.e with �

j

i

being a

stri
tly positive operator over � of non-null arity), the only way to 
lose the

diagram seems to add further �-expansions in the following way:

q[


i

t

1

: : : t

k

i

℄ �!

+

�

q[


i

t

00

1

: : : t

00

k

i

℄ :

As an example, we have, for the `L' 
onstru
tor of ordinals the following

redu
tion graph:

q[i
opy

�1

(i
opy (L k))℄

�

wwo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

�

��

''

O

O

O

O

O

O

O

O

O

O

O

O

O

O

q[L k℄

�

''

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

q[L (�z

1

: N � i
opy

�1

(i
opy (k (f

�1

(f z

1

)))))℄

2

�

wwo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

q[L (�z

1

: N � k z

1

)℄

As a 
on
lusion, if we only meet 
ases (
) and (b), and 
ase (a) with

only null-arity stri
tly positive operators, it is always possible to (0-)defer

�-redu
tions in the 
al
ulus. Thus ���-redu
tion is strongly normalising for

�algebrai
� types. Con�uen
e follows easily, with a similar proof as for Theo-

rem 4.6 on page 10.

As we brie�y dis
ussed above, our �strategy� is to add new redu
tions one

by one. Thus, even the result for algebrai
 types only opens a large �eld of
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appli
ations for i
opy, generated by isomorphisms of parameters introdu
ed

previously.

The di�
ult 
ase is when �non-algebrai
� types o

ur. Re
ently we ob-

tained a proof for this 
ase and the system with �-expansion.

De�nition 5.1 We de�ne �-expansion as follows:

M �!

�

�x : A �M x if

(

M is of fun
tion type A! B

M is neither an abstra
tion nor applied.

In detailed form the proof is too long to be presented here and we shall

only give an outline.

The main observation used in this proof is that if the terms t

1

; :::; t

k

i

above

are in �-expanded form then

q[


i

t

1

: : : t

k

i

℄

+

�

 � q[


i

t

00

1

: : : t

00

k

i

℄ :

E.g., the diagram for 'L' 
onstru
tor may be 
losed di�erently:

q[i
opy

�1

(i
opy (L k))℄

�

wwo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

�

��

''

O

O

O

O

O

O

O

O

O

O

O

O

O

O

q[L k℄

q[L (�z

1

: N � i
opy

�1

(i
opy (k (f

�1

(f z

1

)))))℄

2

�

wwo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

q[L (�z

1

: N � k z

1

)℄

�

ggO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Sin
e we 
onsider the system with �-expansions, we need a proof that the

system with �� and �-expansions is strongly normalising and 
on�uent (we


urrently have a sket
h of this proof).

To prove strong normalisation of the system extended not only by � but

by �-redu
tions related to i
opy we assume that there is an in�nite redu
tion

sequen
e in
luding � redu
tions.

To use the observation above we need a lemma that shows that this re-

du
tion sequen
e will remain in�nite if we insert appropriate �-expansions (to

make the terms t in 
ase (a) �-expanded).

After that, using a modi�
ation of deferment (to take into a

ount the


ondition that the terms t are �-expanded) we show that it would be possible

to obtain an in�nite sequen
e 
onsisting of ��� only and this 
ontradi
tion

shows that the system with � is SN.

The proof is 
ompleted by veri�
ation of 
on�uen
e.
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6 Con
lusion

The systems based on intensional equality (e.g., many proof assistants) often

puzzle mathemati
ally-oriented users be
ause some familiar fun
tional equali-

ties (su
h as equalities related to 
ommutativity and asso
iativity of produ
t)

are no more viewed as 
omputational and their use may require additional

and heavy proof development. The arguments in favor of the equality based

only on ��-redu
tion (or even ���) may look ni
e from the foundational point

of view but, pragmati
ally speaking, there is no harm if an extension of a

redu
tion system doesn't destroy properties su
h as strong normalisation and


on�uen
e.

In this short paper, we studied two 
ases that seem of interest: extensions

of redu
tion systems related to produ
ts and also to �isomorphi
� 
opies of a

type.

As for produ
ts, using the Deferment Lemma, we were able to prove that

adding a rewriting rule 
orresponding to 
ommutativity of produ
ts keeps the


al
ulus strongly normalising and 
on�uent. The same lemma also enabled us

to show that adding surje
tive pairing to the system of ��-redu
tions does not

break normalisation and 
on�uen
e properties.

Se
ondly the notion of isomorphi
 
opy, is useful for a 
lean distin
tion

between the multiple uses of the type itself and of its 
opies. E.g., in proof

assistants, the type of Even numbers is often de�ned as a 
opy of type Nat

together with an appropriate 
oer
ion Even ! Nat. Combining this 
oer-


ion with the isomorphism 
opy de�ned above, we may obtain representations

of 
lasses of numbers modulo 2

n

. Furthermore, isomorphi
 
opies of non-

algebrai
 types may require a notion of �-expansion, and hen
e to show that

����-redu
tion is strongly normalising and 
on�uent.

There are several re
ent works where normalisation in extended redu
tion

systems is 
onsidered (e.g., [22℄ or [7,8℄). This makes the perspe
tive seem

quite optimisti
.

The 
al
ulus we 
onsidered here (the simply-typed �-
al
ulus with indu
-

tive types) is a 
ompromise between the ri
hness provided by indu
tive 
on-

stru
tions and the relative simpli
ity of simply-typed systems. In the 
ase of

dependent types, one will meet more di�
ulties be
ause new redu
tions will

in�uen
e type-equality as well.

The subje
t needs more investigation but appropriate methods (e.g., a

modi�
ation of H. Goguen's Typed Operational Semanti
s, see [18℄) will prob-
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ably lead to useful results of the same type as presented here.
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