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An exa
t method for graph 
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et, F. MendesLaRIA EA 2083, 5 rue du Moulin Neuf 80000 Amiens - Fran
e(Corinne.Lu
et, Floren
e.Mendes)�laria.u-pi
ardie.frA. MoukrimHeuDiaSyC UMR CNRS 6599 UTC, BP 20529 60205 Compi�egne - Fran
eAziz.Moukrim�hds.ut
.frNovember 15, 2004Abstra
tWe are interested in the graph 
oloring problem. We propose an exa
tmethod based on a linear-de
omposition of the graph. The 
omplexity ofthis method is exponential a

ording to the linearwidth of the entry graph,but linear a

ording to its number of verti
es. We present some experi-ments performed on literature instan
es, among whi
h COLOR02 libraryinstan
es. Our method is usefull to solve more qui
kly than other exa
talgorithms instan
es with small linearwidth, su
h as mug graphs. More-over, our algorithms are the �rst to our knowledge to solve the COLOR02instan
e 4-Inser 3 with an exa
t method.Keywords: graph 
oloring, exa
t method, linearwidth, linear-de
omposition.1 Introdu
tionThe notions of tree-de
omposition and path-de
omposition have been intro-du
ed by Robertson and Seymour [23℄. The de
omposition method we proposehere is strongly related to these notions, whi
h have been studied in parti
ularby Bodlaender to solve some NP-hard problems [1℄.Our approa
h is a method based on su

essive de
ompositions of the repre-sentative graph providing su

essive resolved subgraphs and their 
orresponding�with the �nan
ial support of Conseil R�egional de Pi
ardie and FSE1



separating sets named boundary sets. At ea
h step, solutions of the resolved sub-graph are represented by the di�erent states of the boundary set verti
es. Thenumber of states to enumerate grows exponentially with the size of the bound-ary set. Its maximum size, for an optimal vertex numbering, 
orresponds tothe linearwidth of the graph. The main advantage of this method is that theexponential fa
tor of its 
omplexity does not depend on the size of the graphbut only on its linearwidth. This te
hnique has been implemented eÆ
ientlyby Carlier, Lu
et and Manouvrier to solve various NP-hard problems su
h asnetwork reliability or minimal Steiner tree 
omputation [4, 18, 19℄.We apply the de
omposition method to one of the most studied problemsof 
ombinatorial optimization: the graph 
oloring problem. It 
onstitutes a
entral problem in a lot of appli
ations su
h as s
hool timetabling, s
heduling,or frequen
y assignment [5, 6℄. The graph 
oloring problem 
onsists in 
oloringthe verti
es of a graph with a minimum number of 
olors, ensuring that twoadja
ent verti
es do not re
eive the same 
olor. Various heuristi
 approa
heshave been proposed for this NP-hard problem [12℄: greedy algorithms su
h asDSATUR [3℄, metaheuristi
s based on lo
al sear
h, tabu method, simulatedannealing, hybrid algorithms, et
. (see for example [10, 11, 13, 16, 20, 22, 26℄).To our knowledge, few exa
t methods are proposed to resolve this problem.One of the most well-known exa
t algorithms is the exa
t bran
h-and-boundalgorithm implemented by Brelaz that uses DSATUR prin
iples [3℄. Impli
itenumeration strategies are used in [17, 25, 27℄. Mehrotra and Tri
k [21℄ studieda linear programming formulation whi
h is solved by using 
olumn generationte
hniques. More re
ently, Mendez Diaz and Zabala presented a bran
h-and-
utalgorithm [8, 9℄. Herrmann and Hertz presented eÆ
ient algorithms used to �ndedge-
riti
al and vertex-
riti
al subgraphs that have same 
hromati
 numbersas initial graphs but are easier to solve [15℄. Desrosiers, Galinier and Hertzproposed di�erent algorithms to dete
t these 
riti
al subgraphs [7℄. They madeexperiments on random graphs and on di�erent types of ben
hmark graphs.Their method is very eÆ
ient on several instan
es families.Our paper is organized as follows. In se
tion 2, we des
ribe the de
omposi-tion method and introdu
e the ne
essary notions. In se
tion 3, we develop theimplementation of the method. We present an exa
t algorithm whi
h enables usto solve eÆ
iently large instan
es whose linearwidth is bounded. Computationalresults obtained on various instan
es are presented in se
tion 4. They 
omparewith two exa
t methods: a bran
h-and-
ut algorithm [9℄ and an algorithm basedon vertex-
riti
al subgraphs dete
tion [7℄. Finally, we give some 
on
lusions anddis
uss about the perspe
tives of this work.2



2 Graph de
ompositionsTo introdu
e the kind of de
omposition that we use to solve the graph 
oloringproblem, it is ne
essary to re
all some graph theory de�nitions and the notionsof tree-de
omposition and path-de
omposition.2.1 Preliminary de�nitionsAn undire
ted graph G is a pair, G = (V;E), made up of a vertex set V and anedge set E � V �V . A graph G is 
onne
ted if for all verti
es w; v 2 V (w 6= v),there exists a path from w to v. Without loss of generality, the graphs G we will
onsider in the following of this paper will be undire
ted and 
onne
ted graphs.A subgraph of G = (V;E), indu
ed by W � V , is a graph G(W ) = (W;EW )su
h that EW = E\(W�W ). A tree is a simple undire
ted graph, T = (I; ET ),without 
y
le and with jET j = jI j � 1. A rooted tree is a tree dire
ted from theroot r to the leaves. If the edge (p; v) belongs to a rooted tree, p is the fatherof v, and v is one of the sons of p.2.2 Tree-de
ompositionA tree-de
omposition of G = (V;E) is a pair (fXi=i 2 Ig; T = (I; ET )) withfXi=i 2 Ig a family of subsets of V and T a tree su
h that:{ Si2I Xi = V ,{ for all edges (v; w) 2 E, there exists a subset Xi; i 2 I; with v 2 Xi andw 2 Xi,{ for all i; j; k 2 I , if j is on the path from i to k in T then Xi \Xk � Xj .The treewidth of a tree-de
omposition is maxi2I (jXij � 1). The treewidth of agraph G is the minimum treewidth over all possible tree-de
ompositions of G.The de
omposition method is as follows. Given a tree-de
omposition of thegraph, partial solutions are built on the subsets Xi and then asso
iated to solvethe 
onsidered problem. The de
omposition method 
omputes the solutionsfrom the leaves to the root of the tree T , by examinating all partial solutions onevery subgraph G(Xi). The number of partial solutions is exponential a

ordingto the size of the subgraphs Xi. These partial solutions are 
omputed from thesolutions of Xf , for all f belonging to the sons of i in T . Unlike a simpleenumerative method, this method allows one to fa
torize partial solutions ofthe Xi sets into 
lasses. This fa
torization provides an eÆ
ient method if the
ardinality of the sets Xi is small, i.e. if the treewidth of the tree-de
ompositionis suÆ
iently small. 3



Whereas for some graph families, su
h as trees and serie-parallel graphs,one 
an 
ompute the treewidth in linear time, 
omputing the treewidth of anygraph is a NP-
omplete problem [24℄. Bodlaender [2℄ gives for a 
onstant k analgorithm in O(n) whi
h for a graph G solves the problem \is the treewidthof G at most k ?". If so, it determines a tree-de
omposition with treewidth atmost k. This algorithm based on 
lique sear
h and graph 
ontra
tion has anexponential 
omplexity with respe
t to k (O(n � 2k2)). It 
annot be used inpra
ti
e, even for k = 4.2.3 Path-de
omposition and linear-de
ompositionThe de
omposition method that we will use in the following is based on a spe
ial
ase of tree-de
omposition. We will 
onsider a tree with only one leaf, that is apath.A path-de
omposition (X1; : : : ; Xr) of a graph G is an ordered sequen
e of sub-sets of V su
h that:{ S1�i�rXi = V ,{ for all edges (v; w) 2 E, there exists a subset Xi; 1 � i � r; with v 2 Xiand w 2 Xi,{ for all i; j; k 2 f1; : : : ; rg, if i � j � k then Xi \Xk � Xj .The pathwidth of a path-de
omposition is max1�i�r(jXij � 1). The pathwidthof a graph is the minimum pathwidth over all possible path-de
ompositionsof G. A vertex linear ordering of G is a bije
tion N : V ! f1; : : : ; jV jg.For more 
larity, we denote k the vertex N�1(k). Let Fi = fj 2 V=9(j; l) 2E j � i < lg 8i 2 f1; : : : ; jV jg. The linearwidth of a vertex linear orderingN is Fmax(N ) = maxi2V (jFij). The linearwidth of G, written Fmax(G), isthe minimum linearwidth over all possible vertex linear orderings of G. Thelinearwidth of a graph equals its pathwidth [19℄.Computing the pathwidth or the linearwidth of any graph is a NP-
ompleteproblem [24℄, similarly as 
omputing the treewidth of any graph. The treewidthof a graph G is smaller or equal to its pathwidth, and as a 
onsequen
e the ex-ponential fa
tor of a tree-de
omposition is smaller than that of a path-de
om-position. Nevertheless, implementing the de
omposition method on a linear-de
omposition is easier than using a tree-de
omposition. First, from a te
hni
alpoint of view, several Xi partial solutions may have to be stored in memorywhen resolving a problem with a tree-de
omposition. It involves some prob-lems of memory storage and 
ombination of the Xi when implementing thealgorithm. Moreover, 
reating a linear-de
omposition is easier than 
reating a4



tree-de
omposition. Thus, we use a vertex linear ordering of the graph to re-solve the graph 
oloring problem with a linear-de
omposition. The resolutionmethod is then based on a sequential insertion of the verti
es, using a vertexlinear ordering previously determined. This will be developed in the followingse
tion.3 Appli
ation to the graph 
oloring problemIn this se
tion, we propose a method whi
h uses linear-de
omposition in orderto solve the graph 
oloring problem.3.1 Problem de�nitionA 
oloring of a graph G = (V;E) is an assignment of a 
olor 
(i) 2 I to ea
hvertex su
h that 
(i) 6= 
(j) for all edges (i; j) 2 E.If the 
ardinality of I is k, the 
oloring of G is 
alled a k-
oloring. The minimumvalue of k for whi
h a k-
oloring is possible is 
alled the 
hromati
 number ofG and is denoted �(G). The graph 
oloring problem 
onsists in �nding the
hromati
 number of a graph.3.2 Linear de
omposition prin
ipleConsider a graph G = (V;E). Let N = jV j and M = jEj. The verti
es of Gare numbered a

ording to a linear ordering N : V ! f1; : : : ; Ng. Let Vi besubset of V , made of the verti
es numbered from 1 to i. Let Hi = (Vi; Ei) bethe subgraph of G indu
ed by Vi. Fi is the boundary set of Hi, i.e. the subset ofVi su
h that v 2 Fi if and only if 9(v; w) 2 E and v � i < w (see �gure 1). LetH 0i = (V 0i ; E0i) be the subgraph of G indu
ed by V 0i = (V nVi)[Fi. Any kind ofrelation between the verti
es of Hi and those of H 0i depends on the verti
es ofFi. The linear de
omposition is a dynami
 method. During the 
oloring wewill 
onsider N subgraphs H1; : : : ; HN and the N 
orresponding boundary setsF1; : : : ; FN . Starting from a vertex linear ordering, we build at �rst iteration asubgraph H1 whi
h 
ontains only the vertex 1, then at ea
h step the next vertexand its 
orresponding edges are added, until HN . Partial solutions of step i arebuilt from partial solutions of step i� 1.At ea
h subgraph Hi 
orresponds a boundary set Fi 
ontaining the verti
esof Hi whi
h have at least one neighbor in H 0i . The boundary set Fi is built fromFi�1 by adding the vertex i and removing the verti
es that have no neighbor with5



3 94 152 8 10 165 141 7 11 176 1312 18G = (V;E)3 942 8 1051 76
158 10 16147 11 171312 18H10 H 010Figure 1: Subgraph H10 of G and its boundary set F10 = f7; 8; 10g
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2 41 F5 = f4; 5g C(H5; 1) = [45℄ val(C(H5; 1)) = 23 5VVBV B2 41 F5 = f4; 5g C(H5; 1) = [45℄ val(C(H5; 1)) = 33 5VVBV RFigure 2: Di�erent 
olorings of H5 but same 
on�guration of F5an ordering number greater than i. Several 
olorings of Hi may 
orrespond tothe same 
oloring of Fi (see �gure 2). Moreover, the 
olors used by the verti
esVi n Fi do not interfere with the 
oloring of the verti
es whi
h have an orderingnumber greater than i, sin
e no edge exists between them. So, only the partialsolutions 
orresponding to di�erent 
olorings of Fi have to be stored in memory.This way, several partial solutions on Hi may be summarized by a unique partialsolution on Fi, 
alled 
on�guration of Fi.The graph 
oloring problem is solved by evaluating at ea
h step the 
on-�gurations of the boundary set Fi. At step i, the subgraph Hi�1 is solved. Itmeans that to ea
h 
on�guration of Fi�1 
orresponds a value of the minimumnumber of 
olors ne
essary to 
olor Hi�1 for this �xed 
oloring of the boundaryset verti
es. Then, partial solutions are built using solutions of the pre
edentstep. This point will be detailed in se
tion 3.4.3.3 Boundary set 
on�gurationsA 
on�guration of the boundary set Fi is a given 
oloring of the verti
es of Fi.This 
an be represented by a partition of Fi, denoted B1; : : : ; Bj , su
h that twoverti
es u; v of Fi are in the same blo
k B
 if and only if they have the same
olor. The number of 
on�gurations of Fi depends obviously on the number ofedges between the verti
es of Fi. The minimum number of 
on�gurations is 1. Ifthe verti
es of Fi form a 
lique, only one 
on�guration is possible: B1; : : : ; BjFij,with exa
tly one vertex in ea
h blo
k. The maximal number of 
on�gurationsof Fi equals the number of partitions of a set with jFij elements. When no edgeexists between the boundary set verti
es, all the partitions are to be 
onsidered.The number of partitions of a set 
omposed by i elements and j blo
ks,7



Table 1: Classi�
ation of the partitions of sets 
ontaining from 1 to 4 elementsAi;j j=1 j=2 j=3 j=4i=1 1 [1℄i=2 1 [12℄ 2 [1℄[2℄i=3 1 [123℄ 2 [13℄[2℄ 5 [1℄[2℄[3℄3 [1℄[23℄4 [12℄[3℄i=4 1 [1234℄ 2 [134℄[2℄ 9 [14℄[2℄[3℄ 15 [1℄[2℄[3℄[4℄3 [13℄[24℄ 10 [1℄[24℄[3℄4 [14℄[23℄ 11 [1℄[2℄[34℄5 [1℄[234℄ 12 [13℄[2℄[4℄6 [124℄[3℄ 13 [1℄[23℄[4℄7 [12℄[34℄ 14 [12℄[3℄[4℄8 [123℄[4℄written Ai;j , is given by the re
ursive formula of Stirling numbers of the se
ondkind: Ai;j = j �Ai�1;j +Ai�1;j�1with A1;1 = 1 and Ai;j = 0 if i < j.The number T (Fi) of di�erent partitions of the boundary set Fi equals thesum of the AjFij;j for j from 1 to jFij.T (Fi) = Xj=1 to jFijAjFij;jTo identify the 
on�gurations of the boundary set, we asso
iate to ea
h onean ordering number between 1 and T (Fi). The partitions of sets with at mostfour elements and their ordering number are reported in table 1.Let C(Hi; x) be the xth 
on�guration of Fi for the subgraph Hi. Its value,denoted val(C(Hi; x)), equals the minimum number of 
olors ne
essary to 
olorHi for this 
on�guration.In �gure 2, two di�erent 
olorings ofH5 
orrespond to the same 
on�gurationof F5. Only 2 
olors are ne
essary to 
olor H5 with the 
on�guration for whi
hverti
es 2 and 3 have a same 
olor, whereas 3 
olors are ne
essary when verti
es 2and 3 have di�erent 
olors. The value of the 
on�guration C(H5; 1), representedby the partition [45℄, is 2, be
ause we keep only the best valuation.8



3.4 Coloring algorithmThe details of the implementation of the de
omposition method are reportedin algorithm 1. Note that H1 = (f1g; ;) and F1 = f1g. So, there is onlyone 
on�guration of F1, C(H1; 1) = [1℄. The insertion of the vertex 2 of G inC(H1; 1) 
an provide one or two 
on�gurations of F2 (only one 
on�guration ifthe verti
es 1 and 2 are neighbors, two 
on�gurations otherwise).At step i, we do not examine all the possible 
on�gurations of the step i�1,but only those whi
h have been 
reated at pre
edent step, it means those forwhi
h there is no edge between two verti
es of the same blo
k. For ea
h 
on-�guration of Fi�1, we introdu
e the vertex i in ea
h blo
k su

essively. Ea
htime the introdu
tion is possible without breaking the 
oloring rules, the 
orre-sponding 
on�guration of Fi is generated. We generate also the 
on�gurationsobtained by adding to ea
h 
on�guration of Fi�1 a new blo
k 
ontaining thevertex i.For a given subgraph Hi, only the 
on�gurations that are di�erent are rep-resented. Their ordering number x, in
luded between 1 and T (Fi), is 
omputedby an algorithm a

ording to their number of blo
ks and their number of ele-ments. When di�erent 
olorings of Hi 
orrespond to the same 
on�guration ofFi, only the best valuation is kept in val(C(Hi; x)).At step N , only one 
on�guration C(HN ; 1) is generated from 
on�gurationsof step N�1. It represents all the optimal 
oloring solutions and its value equals�(G).Example of 
on�guration 
omputing.Assume that we are sear
hing for a 
oloring of the graph G of �gure 3 and thatwe are at step i with Fi = fu; v; w; ig.Suppose that at step i� 1, we had Fi�1 = fu; v; wg and that the 
on�gurationsof Fi�1 were:- C(Hi�1; 2) = [uw℄[v℄ with value �.- C(Hi�1; 4) = [uv℄[w℄ with value �.- C(Hi�1; 5) = [u℄[v℄[w℄ with value 
.The values of � and � are at least 2, sin
e the 
orresponding 
on�gurationshave 2 blo
ks. Remark that these values may be upper than 2, depending onthe 
on�gurations of the pre
eeding steps. By the same way, 
 is at least 3.We want to generate the 
on�gurations of Fi from the 
on�gurations of Fi�1.- it is impossible to insert i in the �rst blo
k of C(Hi�1; 2), sin
e u andi are neighbors. It is possible to insert i in the se
ond blo
k of C(Hi�1; 2).We obtain C(Hi; 3) = [uw℄[vi℄ and val(C(Hi; 3)) = �. It is also possible to9



Algorithm 1 Coloring algorithmInput: a graph GOutput: � : the 
hromati
 number of GH1 = (f1g; ;)F1 = f1gC(H1; 1) = [1℄for i = 2 to N doBuild Hi and Fifor ea
h 
on�guration C(Hi�1; x) of Fi�1 dofor j = 1 to number of blo
ks of C(Hi�1; x) doif i does not have any neighbor in the blo
k j thenpart = C(Hi�1; x)insert i in the blo
k j of partgenerate the 
on�guration C(Hi; y) 
orresponding to partif C(Hi; y) already exists thenval(C(Hi; y)) = min(val(C(Hi; y)); val(C(Hi�1; x)))elseval(C(Hi; y)) = val(C(Hi�1; x))end ifend ifend forpart = C(Hi�1; x)add to part a new blo
k 
ontaining ival(part) = max(val(C(Hi�1; x)), number of blo
ks of part)generate the 
on�guration C(Hi; y) 
orresponding to partif C(Hi; y) already exists thenval(C(Hi; y)) = min(val(C(Hi; y)); val(part))elseval(C(Hi; y)) = val(part)end ifend forend for� = val(C(HN ; 1))
10



uvwFi�1 iHi�1GFigure 3: Constru
tion of Hi = (Vi�1 [ fig; Ei�1 [ f(u; i); (w; i)g)add a third blo
k, it provides the 
on�guration C(Hi; 12) = [uw℄[v℄[i℄ withvalC(Hi; 12) = max(�; 3), sin
e for this 
on�guration at least three 
olors areneeded.- we must add a blo
k to introdu
e i in the 
on�guration C(Hi�1; 4). Weobtain C(Hi; 14) = [uv℄[w℄[i℄ with value max(�; 3).- i may be introdu
ed in the se
ond blo
k of C(Hi�1; 5). It provides the
on�guration C(Hi; 10) = [u℄[vi℄[w℄ with value 
. By adding a new blo
k, the
on�guration C(Hi; 15) is 
reated with val(C(Hi; 15)) = max(
; 4).Thus �ve 
on�gurations are provided at step i, they are used to determine the
on�gurations of the following step, and so on until the whole graph is 
olored.3.5 Improved 
oloring algorithmThe number of 
on�gurations of a boundary set Fi is exponential a

ording tojFij. Moreover, a 
oloring represented by a 
on�guration of k blo
ks needs atleast k 
olors. By applying a su

ession of k-
olorings (see algorithm 2), weavoid examining the 
on�gurations of more than k blo
ks, whi
h proves to bevery interesting when Fmax is larger than �(G).Take again the example of �gure 3, and suppose that we are now sear
hingfor a 3-
oloring of the graph G. All the 
on�gurations are made of at mostthree blo
ks, so their values are upper bounded by 3. This time, only four11



Algorithm 2 k-
oloring fun
tionInput: a graph G and an integer kOutput: Result : True if and only if G is k-
olorableH1 = (f1g; ;)F1 = f1gC(H1; 1) = [1℄i = 2Result = Truewhile i � N and Result doResult = FalseBuild Hi and Fifor ea
h 
on�guration C(Hi�1; x) of Fi�1 dofor j = 1 to number of blo
ks of C(Hi�1; x) doif i does not have any neighbor in the blo
k j thenResult = Truepart = C(Hi�1; x)insert i in the blo
k j of partgenerate the 
on�guration C(Hi; y) 
orresponding to partif C(Hi; y) already exists thenval(C(Hi; y)) = min(val(C(Hi; y)); val(C(Hi�1; x)))elseval(C(Hi; y)) = val(C(Hi�1; x))end ifend ifend forif number of blo
ks of C(Hi�1; x) < k thenResult = Truepart = C(Hi�1; x)add to part a new blo
k 
ontaining ival(part) = max(val(C(Hi�1; x)), number of blo
ks of part)generate the 
on�guration C(Hi; y) 
orresponding to partif C(Hi; y) already exists thenval(C(Hi; y)) = min(val(C(Hi; y)); val(part))elseval(C(Hi; y)) = val(part)end ifend ifend fori = i+ 1end while 12



Algorithm 3 Linear De
omposition Coloring Algorithm (LDC)Input: a graph GOutput: k : the 
hromati
 number of GDetermine a lower bound LB of kDetermine an upper bound UB of kwhile (LB 6= UB) doset the value of k between LB and UB (�)result=k-
oloring(G)if result = false thenLB = k + 1elseUB = kend ifend while(�) Kdi
 : k = b(LB + UB)=2
, Kseq : k = LB + 1
on�gurations are provided at step i:C(Hi; 3) = [uw℄[vi℄ with value 2 or 3, C(Hi; 12) = [uw℄[v℄[i℄ with value 3,C(Hi; 14) = [uv℄[w℄[i℄ with value 3, and C(Hi; 10) = [u℄[vi℄[w℄ with value 3.We 
annot add a new blo
k to C(Hi�1; 5), be
ause it has already got threeblo
ks.The gain may obviously be more signi�
ant when the size of the boundary setin
reases. Indeed, let T 0(Fi) be the maximum number of partitions of Fi whi
hhave at most k blo
ks: T 0(Fi) = Xj=1 to kAjFij;jWhen no edge exists between the verti
es of Fi, the gain Gain(Fi) for thisstep equals T (Fi) minus T 0(Fi):Gain(Fi) = Xj=k+1 to jFijAjFij;jIn the improved Linear De
omposition Coloring algorithm (LDC), we startby determining a lower bound LB of the 
hromati
 number of G (see algo-rithm 3). For that, we apply on G some heuristi
s based on triangulated graphs.Indeed, it is easy to 
ompute the 
hromati
 number of a triangulated graph [14℄.The used lower bound fun
tions as follows: as long as the graph is not triangu-lated, we remove a vertex of smallest degree, and then we 
olor the remaining tri-angulated graph by determining a perfe
t elimination order [14℄ on the verti
es13



of G. The upper bound UB is obtained by applying the heuristi
 DSATUR [3℄.Then we apply a su

ession of k-
olorings, k varying between LB and UB. We
onsider two di�erent versions of LDC, depending on the way the value of kis set: by di
hotomy, denoted Kdi
-LDC, or sequentially growing from LB toUB, denoted Kseq-LDC. In theory, Kdi
-LDC has a better 
omplexity thanKseq-LDC. Nevertheless, in pra
ti
e Kseq-LDC gives good lower bounds ofthe 
hromati
 number of hard instan
es that Kdi
-LDC is unable to solve.Algorithm 3 does not produ
e dire
tly a 
oloring, nevertheless it 
an beobtained easily. All the 
on�gurations generated during the k-
oloring have tobe stored in memory. The 
olor 1 is assigned to vertex N . When a k-
oloringis found, a 
on�guration of FN�1 
orresponding to the 
on�guration of FN is
hosen, a 
olor is assigned to vertex N � 1, and so on until vertex 1 is 
olored.Assign 
olors to the verti
es needs a lot of memory spa
e but does not in
reasethe time 
omplexity of the algorithm.3.6 The vertex linear orderingThe maximum size of the boundary sets Fmax(N ) depends on the verti
es num-bering 
hosen (see �gure 4). It 
orresponds to the linearwidth of the vertexlinear ordering used to build the di�erent subgraphs Hi (
f se
tion 2.3).The 
omplexity of the linear-de
omposition is exponential with respe
t toFmax(N ), so it is ne
essary to make a good 
hoi
e when numbering the verti
esof the graph. Unfortunately, �nding an optimal vertex linear ordering in orderto obtain the smallest linearwidth is a NP-
omplete problem [1℄. A �rst methodto redu
e the size of the boundary sets is to number the verti
es by applying adouble BFS [14℄ on the graph. It produ
es the numbering N1. An other methodis to begin the numbering from a 
lique and then order the verti
es by de
reasingnumber of edges with already numbered verti
es. It produ
es the numberingN2. The aim of this method is to give the smallest numbers as possible tothe verti
es of boundary sets of size Fmax(N2). To 
ompare the linearwidthsof these numberings with the linearwidth of the initial vertex numbering N0,we performed tests on random graphs GN;d (graphs with N verti
es and withdensity d) and on COLOR02 
omputational symposium instan
es. Some rep-resentative results are reported in Table 2. For random graphs, results overaverage of 5 instan
es are given.The numbering N2 gave smaller Fmax(N ) for more instan
es than the othernumberings, so we use this ordering in experiments of se
tion 4. Despite this, thenumber of 
on�gurations in
reases sometimes very strongly when introdu
ing a14
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onsequen
e of the initial vertex numbering.
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Table 2: Comparison of di�erent vertex linear orderingsProblem Fmax(N0) Fmax(N1) Fmax(N2) Problem Fmax(N0) Fmax(N1) Fmax(N2)G(30,.1) 12.4 9.6 8.4 G(40,.5) 34.0 34.4 33.6G(40,.1) 20.8 16.4 15.0 G(50,.5) 43.4 43.4 41.8G(50,.1) 29.4 26.2 22.0 G(60,.5) 53.8 53.8 52.4G(60,.1) 36.8 32.8 28.0 G(30,.9) 27.8 27.8 27.2G(70,.1) 44.0 43.0 34.2 G(40,.9) 37.8 37.8 36.4G(80,.1) 55.0 50.8 42.8 G(50,.9) 47.4 47.4 46.8G(90,.1) 63.6 60.0 51.8 G(60,.9) 57.8 57.8 57.0G(30,.5) 24.8 24.6 22.6 G(70,.9) 67.6 67.4 67.0mug88 1 20 13 8 mug88 25 20 13 8mug100 1 17 22 7 mug100 25 19 16 81-FullIns4 61 71 46 1-FullIns5 187 216 1322-FullIns3 37 28 22 2-FullIns4 157 105 932-FullIns5 637 417 359 3-FullIns3 61 45 363-FullIns4 321 247 200 4-FullIns3 91 57 494-FullIns4 571 332 302 5-FullIns3 127 127 645-FullIns4 925 772 447 1-Inser 4 31 40 321-Inser 5 98 145 91 1-Inser 6 300 406 2762-Inser 4 48 56 52 2-Inser 5 197 251 2403-Inser 3 13 13 16 3-Inser 4 69 92 843-Inser 5 350 578 436 4-Inser 3 15 15 204-Inser 4 94 120 124 miles250 67 48 16le450 5a 381 368 339 le450 5b 386 382 343le450 5
 397 401 385 le450 5d 400 403 385le450 15a 373 365 339 le450 15b 378 372 336le450 15
 420 418 396 le450 15d 416 415 401le450 25a 351 348 293 le450 25
 416 412 394le450 25d 411 409 384
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vertex with too few neighbors in the boundary set. To avoid this 
ase we add aredu
tion on the graph before ea
h k-
oloring.3.7 Vertex redu
tionBefore ea
h k-
oloring, we delete some verti
es of the graph by using the fol-lowing property: for ea
h vertex x, if the degree of x is stri
tly lower than k, xand its adja
ent edges 
an be erased from the graph [13℄. Indeed, assume x hask � 1 neighbors. In the worst 
ase, those neighbors must have di�erent 
olors.Then the vertex x 
an take the kth 
olor. It does not interfere in the 
oloringof the remaining verti
es be
ause all its neighbors have already been 
olored.Therefore we 
an 
onsider from the beginning that it will take a 
olor unusedby its neighbors and delete it from the graph before the 
oloring. We apply thisprin
iple re
ursively by examining the remaining verti
es until having totallyredu
ed the graph or being enable to delete any other vertex.4 Experimental resultsOur LDC algorithms have been implemented on a PC AMDAthlon Xp 2000+ inC language. We performed tests on random graphs and on ben
hmark instan
esused at the 
omputational symposium COLOR02.4.1 Random graphsRandom graphs GN;d have been 
reated. For ea
h graph, N is the number ofverti
es and d its density. We generated graphs with densities 0.1, 0.5 and 0.9.We give the results of our experiments over average of 5 instan
es in Table 3.For ea
h type of graph, we give the number of edges M and the values LB andUB of our initial bounds. Algorithms Kdi
 � LDC and Kseq � LDC havebeen applied to ea
h instan
e, using a CPU time limit of half an hour. For ea
halgorithm, we give the average 
hromati
 number and the CPU time when theprogram is able to 
ompute. Otherwise, when less than 5 instan
es have beensolved, we indi
ate the number of solved instan
es in bra
kets. Starting fromN = 30, we in
rease the size of random graphs by step 10 until less than 3instan
es are solved.Our algorithms are not very eÆ
ient on random graphs in 
omparison withthe results of other exa
t methods [21, 15, 7℄. Indeed, Desrosiers, Galinier andHertz are able to solve graphs with density 0.5 and with up to 100 verti
es. Thisis mainly due to the fa
t that edges repartition in the graph is homogeneous,17



Table 3: Results on random graphsLDCProblem M LB UB Kdi
 T Kseq TG(30,.1) 43.8 2.8 3.0 3.0 0.00 3.0 0.00G(40,.1) 75.8 3.0 3.6 3.2 0.00 3.2 0.00G(50,.1) 123.2 3.0 4.2 4.0 0.00 4.0 0.78G(60,.1) 177.0 3.0 4.6 4.0[2℄ 0.00 4.0 2.54G(70,.1) 237.8 3.0 5.0 4.0 2.66G(80,.1) 320.4 3.0 5.0 4.2[4℄ 103.16G(90,.1) 397.0 3.2 5.6 4.6[3℄ 104.80G(100,.1) 477.2 3.0 5.6 5.0[4℄ 190.99G(110,.1) 604.4 3.8 6.0 5.0[4℄ 91.90G(120,.1) 711.8 3.2 6.4 [0℄ *G(30,.5) 211.2 5.2 8.2 7.0 11.18 7.0 2.92G(40,.5) 380.0 6.2 9.8 8.2 6.19 8.2 6.16G(50,.5) 608.6 6.2 12.0 6.0[3℄ 97.93 9.4[3℄ 83.12G(60,.5) 881.8 6.6 12.8 [0℄ * [0℄ *G(30,.9) 392 15.2 16.2 15.8 0.02 15.8 0.01G(40,.9) 699.8 18.2 22.6 18.8 7.11 18.8 0.44G(50,.9) 1103.6 20.8 25.4 22.8 13.2 22.8 10.79G(60,.9) 1606.6 24.0 30.6 [0℄ * 26.2[4℄ 105.02G(70,.9) 2172.6 25.0 33.4 28[1℄ 684.8
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indu
ing a large linearwidth. For a graph with 50 verti
es, we have (see Table 2)Fmax(N2) = 41 when the graph density is 0:5 and Fmax(N2) = 46 when thegraph density is 0:9. Nevertheless, results of Table 3 re
e
t 
learly the possi-bilities and the limits of our method. We are able to solve graphs with density0:9 and 60 verti
es. These graphs have a very large linearwidth but are alsovery 
onstrained : at ea
h step only few 
on�gurations are generated despitethe big size of the boundary sets. The de
omposition method is not eÆ
ienton random graphs with density 0:5. Indeed, the large size of the linearwidthindu
es the possibility to generate an exponential number of 
on�gurations andthe 0:5 density does not limit enough the number of valid 
on�gurations. Ourlinear-de
omposition method works better on graphs with small density. In-deed, the maximum size of the boundary set 
an be very redu
ed by the vertexnumbering N2. For this kind of random graphs, we are able to solve instan
eswith up to 100 verti
es.4.2 DIMACS and COLOR02 instan
esWe performed tests on ben
hmark instan
es used at the 
omputational sympo-sium COLOR02, among whi
h well-known DIMACS instan
es (see des
riptionof the instan
es at http://mat.gsia.
mu.edu/COLOR02).We �rst apply on ea
h instan
e the lower bound and upper bound des
ribedin se
tion 3.5. Results are reported in table 4. For ea
h graph we give thenumber of verti
es N , the number of edges M , and the values LB and UB ofour initial bounds. At this stage, the lower bound equals the upper bound forsome of the DIMACS instan
es, so we did not apply any k-
oloring algorithmon these graphs.We 
ompare our LDC algorithms with the re
ent results of the exa
t Bran
h-and-Cut algorithm of Mendez Diaz and Zabala [9℄.We use a CPU time limit ofhalf an hour. The results of our experiments are reported in table 5. Thetime 
olumn for B&C is only indi
ative sin
e the results are from di�erentma
hines. They used C++ 
ode using ABACUS framework and CPLEX 6.0LP solver on a Sun ULTRA workstation. Their CPU time limit was two hours.Comparing their time results for the same implementation of Dsat that weuse, our 
omputer seems to run three times faster than their 
omputer. Wereport also the results of Desrosiers, Galinier and Hertz [7℄ in V CS 
olumns.Column btk 
ontains the number of ba
ktra
ks needed by their exa
t algorithmto solve an instan
e redu
ed to a vertex-
riti
al subgraph. Values are en
losedin parentheses when their algorithm is not able to �nd the 
hromati
 number19



Table 4: Lower bound and Upper bound resultsProblem N M LB UB Problem N M LB UBfpsol2.i.1 496 11654 65 65 1-FullIns3 30 100 3 5fpsol2.i.2 451 8691 30 30 1-FullIns4 93 593 3 6fpsol2.i.3 425 8688 30 30 1-FullIns5 282 3247 3 8inithx.i.1 864 18707 54 54 2-FullIns3 52 201 4 5inithx.i.2 645 13979 31 31 2-FullIns4 212 1621 4 6inithx.i.3 621 13969 31 31 2-FullIns5 852 12201 4 7le450-5a 450 5714 5 11 3-FullIns3 80 346 5 6le450-5b 450 5734 5 11 3-FullIns4 405 3524 2 7le450-5
 450 9803 4 13 4-FullIns3 114 541 6 7le450-5d 450 9757 4 12 4-FullIns4 690 6650 2 8le450-15a 450 8168 13 18 5-FullIns3 154 792 7 8le450-15b 450 8169 15 17 5-FullIns4 1085 11395 2 9le450-15
 450 16680 11 25 1-Inser 4 67 232 2 5le450-15d 450 16750 11 26 1-Inser 5 202 1227 2 6le450-25a 450 8260 20 25 1-Inser 6 607 6337 2 7le450 25b 450 8263 25 25 2-Inser 3 37 72 2 4le450-25
 450 17343 22 30 2-Inser 4 149 541 2 5le450-25d 450 17425 19 29 2-Inser 5 597 3936 2 6mulsol.i.1 197 3925 49 49 3-Inser 3 56 110 2 4mulsol.i.2 188 3885 31 31 3-Inser 4 281 1046 2 5mulsol.i.3 184 3916 31 31 3-Inser 5 1406 9695 2 6mulsol.i.4 185 3946 31 31 4-Inser 3 79 156 2 4mulsol.i.5 186 3973 31 31 4-Inser 4 475 1795 2 5s
hool1 385 19095 14 14 mug100-1 100 166 3 4s
hool1 nsh 352 14612 14 14 mug100-25 100 166 3 4zeroin.i.1 211 4100 49 49 mug88-1 88 146 3 4zeroin.i.2 211 3541 30 30 mug88-25 88 146 3 4zeroin.i.3 206 3540 30 30 games120 120 638 9 9anna 138 493 11 11 miles250 128 387 7 8david 87 812 11 11 miles500 128 2340 20 20homer 561 1629 13 13 miles750 128 4226 31 31hu
k 74 602 11 11 miles1000 128 6432 42 42jean 80 508 10 10 miles1500 128 10396 73 7320



within the time limit.The Fmax 
olumn indi
ates for ea
h graph the maximal value of the bound-ary set rea
hed by our algorithm. We give the 
hromati
 number of the graphand the CPU time when the program is able to 
ompute. Otherwise, aster-isks in the time 
olumn indi
ate that the program ex
eeded the time limit. Inthis 
ase, we report the best lower and upper bounds of the 
hromati
 numberobtained by the algorithm.The results of Kseq-LDC are equivalent or better than those of Kdi
-LDCon the tested instan
es, that is why we report only Kseq-LDC results. Ouralgorithm runs very fast on mug instan
es (0.0 or 0.1 se
ond), be
ause thevertex linear ordering 
hosen provides small linearwidths for these graphs (Fmax
olumn). For these instan
es, the results of Kdi
-LDC and Kseq-LDC are thesame, sin
e UB = LB + 1. B&C and V CS found the 
hromati
 number, butspent time to explore the Bran
h-and-Cut tree. Our algorithms are also able tosolve some instan
es whi
h have a large linearwidth, be
ause all the partitions ofthe boundary set have not ne
essarily to be generated. We found the 
hromati
number of 13 instan
es, 12 of whi
h solved in less than 30 se
onds. The LDCalgorithm is the �rst to our knowledge to �nd the 
hromati
 number of theinstan
e 4-Inser 3 (bolded in table 5) with an exa
t method.5 Con
lusionsIn this paper, we have presented an original method to solve the graph 
ol-oring problem by an exa
t way. This method has the advantage of solvingeasily large instan
es whi
h have a small linearwidth, su
h as mug instan
es,and allows us to solve the diÆ
ult instan
e 4-Inser 3. We 
onsider using thelinear-de
omposition mixed with heuristi
s approa
h to deal with unboundedlinearwidth instan
es.Referen
es[1℄ H. L. Bodlaender. A tourist guide through treewidth. A
ta Cyberneti
a, 11:1{21,1993.[2℄ H. L. Bodlaender. A linear time algorithm for �nding tree-de
ompositions ofsmall treewidth. SIAM Journal on Computing, 25(6):1305{1317, 1996.[3℄ D. Brelaz. New methods to 
olor the verti
es of a graph. Communi
ations of theACM, 22(4):251{256, april 1979. 21



Table 5: Results on COLOR02 instan
esLDC B&C VCSProblem Fmax k T k T k btkmug88 1 8 4 0.0 4 485 4 2204467mug88 25 8 4 0.0 4 1690 4 942961mug100 1 7 4 0.1 4 4029 4 1406570mug100 25 8 4 0.0 4 5498 4 9741701-FullIns4 27 5 7.3 5 703 5 61-FullIns5 26 4-6 * 4-6 * 6 2712-FullIns3 9 5 0.0 5 3 5 12-FullIns4 19 5-6 * 5-6 * 6 82-FullIns5 20 5-7 * 5-7 * 7 7153-FullIns3 11 6 0.0 6 1 6 03-FullIns4 20 3-7 * 6-7 * 7 104-FullIns3 11 7 0.0 7 3 7 14-FullIns4 17 4-8 * 7-8 * 8 125-FullIns3 13 8 0.0 8 3 8 15-FullIns4 17 3-9 * 7-9 *1-Inser 4 21 4-5 * 2-5 * 5 1042960361-Inser 5 20 3-6 * 4-6 * * (133727661)1-Inser 6 18 3-7 * 4-7 * * (50929137)2-Inser 4 28 3-5 * 4-5 * * (154902785)2-Inser 5 18 3-6 * 3-6 * * (48458541)3-Inser 3 16 4 23.3 4 10 4 7236163-Inser 4 28 3-5 * 3-5 * * (95076991)3-Inser 5 17 3-6 * 3-6 * * (13784327)4-Inser 3 20 4 1774 3-4 * * (228367528)4-Inser 4 27 3-5 * 3-5 * * (70891706)miles250 9 8 0.0 8 0le450 5a 15 5-9 * 5-9 * 5 0le450 5b 16 5-9 * 5-9 * 5 0le450 5
 22 5-6 * 5 0le450 5d 46 5-7 * 5-10 * 5 0le450 15a 21 15-18 * 15-17 * 15 0le450 15b 21 15-17 * 15-17 * 15 0le450 15
 21 15-25 * 15-24 * 15 0le450 15d 21 15-26 * 15-23 * 15 0le450 25a 25 25 0.0 25 0le450 25
 30 25-28 * 25-28 * 25 0le450 25d 30 25-28 * 25-28 * 25 022
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