N

N
N

HAL

open science

An exact method for graph coloring

Corinne Lucet, Florence Mendes, Aziz Moukrim

» To cite this version:

Corinne Lucet, Florence Mendes, Aziz Moukrim. An exact method for graph coloring. Computers

and Operations Research, 2006, 33 (8), pp.2189-2207. 10.1016/j.cor.2005.01.008 . hal-00783637

HAL Id: hal-00783637
https://hal.science/hal-00783637
Submitted on 4 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00783637
https://hal.archives-ouvertes.fr

An exact method for graph coloring*

C. Lucet, F. Mendes
LaRIA EA 2083, 5 rue du Moulin Neuf 80000 Amiens - France
(Corinne.Lucet, Florence.Mendes)@laria.u-picardie.fr

A. Moukrim
HeuDiaSyC UMR CNRS 6599 UTC, BP 20529 60205 Compiegne - France
Aziz.Moukrim@hds.ute.fr

November 15, 2004

Abstract

We are interested in the graph coloring problem. We propose an exact
method based on a linear-decomposition of the graph. The complexity of
this method is exponential according to the linearwidth of the entry graph,
but linear according to its number of vertices. We present some experi-
ments performed on literature instances, among which COLORO2 library
instances. Our method is usefull to solve more quickly than other exact
algorithms instances with small linearwidth, such as mug graphs. More-
over, our algorithms are the first to our knowledge to solve the COLOR02
instance 4-Inser_3 with an exact method.

Keywords: graph coloring, exact method, linearwidth, linear-decomposition.

1 Introduction

The notions of tree-decomposition and path-decomposition have been intro-
duced by Robertson and Seymour [23]. The decomposition method we propose
here is strongly related to these notions, which have been studied in particular
by Bodlaender to solve some NP-hard problems [1].

Our approach is a method based on successive decompositions of the repre-
sentative graph providing successive resolved subgraphs and their corresponding

*with the financial support of Conseil Régional de Picardie and FSE

separating sets named boundary sets. At each step, solutions of the resolved sub-
graph are represented by the different states of the boundary set vertices. The
number of states to enumerate grows exponentially with the size of the bound-
ary set. Its maximum size, for an optimal vertex numbering, corresponds to
the linearwidth of the graph. The main advantage of this method is that the
exponential factor of its complexity does not depend on the size of the graph
but only on its linearwidth. This technique has been implemented efficiently
by Carlier, Lucet and Manouvrier to solve various NP-hard problems such as
network reliability or minimal Steiner tree computation [4, 18, 19].

We apply the decomposition method to one of the most studied problems
of combinatorial optimization: the graph coloring problem. It constitutes a
central problem in a lot of applications such as school timetabling, scheduling,
or frequency assignment [5, 6]. The graph coloring problem consists in coloring
the vertices of a graph with a minimum number of colors, ensuring that two
adjacent vertices do not receive the same color. Various heuristic approaches
have been proposed for this NP-hard problem [12]: greedy algorithms such as
DSATUR [3], metaheuristics based on local search, tabu method, simulated
annealing, hybrid algorithms, etc. (see for example [10, 11, 13, 16, 20, 22, 26]).
To our knowledge, few exact methods are proposed to resolve this problem.
One of the most well-known exact algorithms is the exact branch-and-bound
algorithm implemented by Brelaz that uses DSATUR, principles [3]. Implicit
enumeration strategies are used in [17, 25, 27]. Mehrotra and Trick [21] studied
a linear programming formulation which is solved by using column generation
techniques. More recently, Mendez Diaz and Zabala presented a branch-and-cut
algorithm [8, 9]. Herrmann and Hertz presented efficient algorithms used to find
edge-critical and vertex-critical subgraphs that have same chromatic numbers
as initial graphs but are easier to solve [15]. Desrosiers, Galinier and Hertz
proposed different algorithms to detect these critical subgraphs [7]. They made
experiments on random graphs and on different types of benchmark graphs.
Their method is very efficient on several instances families.

Our paper is organized as follows. In section 2, we describe the decomposi-
tion method and introduce the necessary notions. In section 3, we develop the
implementation of the method. We present an exact algorithm which enables us
to solve efficiently large instances whose linearwidth is bounded. Computational
results obtained on various instances are presented in section 4. They compare
with two exact methods: a branch-and-cut algorithm [9] and an algorithm based
on vertex-critical subgraphs detection [7]. Finally, we give some conclusions and
discuss about the perspectives of this work.

2 Graph decompositions

To introduce the kind of decomposition that we use to solve the graph coloring
problem, it is necessary to recall some graph theory definitions and the notions
of tree-decomposition and path-decomposition.

2.1 Preliminary definitions

An undirected graph G is a pair, G = (V, E), made up of a vertex set V' and an
edge set E C V x V. A graph G is connected if for all vertices w,v € V(w # v),
there exists a path from w to v. Without loss of generality, the graphs G we will
consider in the following of this paper will be undirected and connected graphs.
A subgraph of G = (V, E), induced by W C V|, is a graph G(W) = (W, Ew)
such that Eyw = EN(W xW). A tree is a simple undirected graph, T = (I, Er),
without cycle and with |Er| = |I| — 1. A rooted tree is a tree directed from the
root r to the leaves. If the edge (p,v) belongs to a rooted tree, p is the father

of v, and v is one of the sons of p.

2.2 Tree-decomposition

A tree-decomposition of G = (V,E) is a pair ({X;/i € I},T = (I, Er)) with
{X;/i € I} a family of subsets of V and T a tree such that:

“Uier Xi =V,

— for all edges (v,w) € E, there exists a subset X;,7 € I, with v € X; and
w € X;,

—for all 4,4,k € I, if j is on the path from i to k in T then X; N X, C X;.
The treewidth of a tree-decomposition is maz;cr(|X;| — 1). The treewidth of a
graph G is the minimum treewidth over all possible tree-decompositions of G.

The decomposition method is as follows. Given a tree-decomposition of the
graph, partial solutions are built on the subsets X; and then associated to solve
the considered problem. The decomposition method computes the solutions
from the leaves to the root of the tree T', by examinating all partial solutions on
every subgraph G(X;). The number of partial solutions is exponential according
to the size of the subgraphs X;. These partial solutions are computed from the
solutions of Xy, for all f belonging to the sons of ¢ in 7. Unlike a simple
enumerative method, this method allows one to factorize partial solutions of
the X; sets into classes. This factorization provides an efficient method if the
cardinality of the sets X; is small, i.e. if the treewidth of the tree-decomposition
is sufficiently small.

Whereas for some graph families, such as trees and serie-parallel graphs,
one can compute the treewidth in linear time, computing the treewidth of any
graph is a NP-complete problem [24]. Bodlaender [2] gives for a constant k an
algorithm in O(n) which for a graph G solves the problem “is the treewidth
of G at most k 7”. If so, it determines a tree-decomposition with treewidth at
most k. This algorithm based on clique search and graph contraction has an
exponential complexity with respect to k (O(n * 2’“2)). It cannot be used in
practice, even for k = 4.

2.3 Path-decomposition and linear-decomposition

The decomposition method that we will use in the following is based on a special
case of tree-decomposition. We will consider a tree with only one leaf, that is a
path.

A path-decomposition (X1,...,X,) of a graph G is an ordered sequence of sub-
sets of V' such that:

- U1gi§r Xi=V,

— for all edges (v,w) € E, there exists a subset X;,1 < i < r, with v € X;
and w € X;,

—for allé,j,k e {1,...,r},if i <j <k then X;NX; C Xj.

The pathwidth of a path-decomposition is mazi<;<»(]X;| — 1). The pathwidth
of a graph is the minimum pathwidth over all possible path-decompositions
of G. A vertex linear ordering of G is a bijection N' : V. — {1,...,|V|}.
For more clarity, we denote k the vertex N ~1(k). Let F; = {j € V/3(j,1) €
Ej<i <l}yVie{l,...,|V]}. The linearwidth of a vertex linear ordering
N is Frae(N) = maziey (|F;|). The linearwidth of G, written Fpq.(G), is
the minimum linearwidth over all possible vertex linear orderings of G. The
linearwidth of a graph equals its pathwidth [19].

Computing the pathwidth or the linearwidth of any graph is a NP-complete
problem [24], similarly as computing the treewidth of any graph. The treewidth
of a graph G is smaller or equal to its pathwidth, and as a consequence the ex-
ponential factor of a tree-decomposition is smaller than that of a path-decom-
position. Nevertheless, implementing the decomposition method on a linear-
decomposition is easier than using a tree-decomposition. First, from a technical
point of view, several X; partial solutions may have to be stored in memory
when resolving a problem with a tree-decomposition. It involves some prob-
lems of memory storage and combination of the X; when implementing the
algorithm. Moreover, creating a linear-decomposition is easier than creating a

tree-decomposition. Thus, we use a vertex linear ordering of the graph to re-
solve the graph coloring problem with a linear-decomposition. The resolution
method is then based on a sequential insertion of the vertices, using a vertex
linear ordering previously determined. This will be developed in the following
section.

3 Application to the graph coloring problem

In this section, we propose a method which uses linear-decomposition in order

to solve the graph coloring problem.

3.1 Problem definition

A coloring of a graph G = (V, E) is an assignment of a color ¢(i) € T to each
vertex such that ¢(i) # e(j) for all edges (i,j) € E.

If the cardinality of I is k, the coloring of G is called a k-coloring. The minimum
value of k£ for which a k-coloring is possible is called the chromatic number of
G and is denoted x(G). The graph coloring problem consists in finding the
chromatic number of a graph.

3.2 Linear decomposition principle

Consider a graph G = (V,E). Let N = |V| and M = |E|. The vertices of G
are numbered according to a linear ordering N : V' — {1,...,N}. Let V; be
subset of V', made of the vertices numbered from 1 to i. Let H; = (V;, E;) be
the subgraph of G induced by V;. F; is the boundary set of H;, i.e. the subset of
Vi such that v € F; if and only if 3(v,w) € E and v <i < w (see figure 1). Let
H] = (V/, E}) be the subgraph of G induced by V; = (V \ V;) UF;. Any kind of
relation between the vertices of H; and those of H] depends on the vertices of
Fi.

The linear decomposition is a dynamic method. During the coloring we
will consider IV subgraphs Hy, ..., Hy and the N corresponding boundary sets
Fy, ..., Fy. Starting from a vertex linear ordering, we build at first iteration a
subgraph H; which contains only the vertex 1, then at each step the next vertex
and its corresponding edges are added, until Hy. Partial solutions of step i are
built from partial solutions of step i — 1.

At each subgraph H; corresponds a boundary set F; containing the vertices
of H; which have at least one neighbor in H]. The boundary set F; is built from

F;_; by adding the vertex i and removing the vertices that have no neighbor with

Hyy Hij,

Figure 1: Subgraph Hjo of G and its boundary set Fyo = {7,8,10}

5

Fy={4,5} C(Hs,1) = [45] val(C(Hs, 1)) = 2

§9

0
BONONNC)

Fy={4,5} C(Hs,1) = [45] val(C(H;,1)) = 3

<
Py [oN

8C)

Figure 2: Different colorings of Hs but same configuration of Fj

an ordering number greater than i. Several colorings of H; may correspond to
the same coloring of Fj (see figure 2). Moreover, the colors used by the vertices
Vi \ F; do not interfere with the coloring of the vertices which have an ordering
number greater than i, since no edge exists between them. So, only the partial
solutions corresponding to different colorings of F; have to be stored in memory.
This way, several partial solutions on H; may be summarized by a unique partial
solution on Fj;, called configuration of F;.

The graph coloring problem is solved by evaluating at each step the con-
figurations of the boundary set F;. At step i, the subgraph H; ; is solved. It
means that to each configuration of F;_; corresponds a value of the minimum
number of colors necessary to color H;_; for this fixed coloring of the boundary
set vertices. Then, partial solutions are built using solutions of the precedent
step. This point will be detailed in section 3.4.

3.3 Boundary set configurations

A configuration of the boundary set F; is a given coloring of the vertices of Fj.
This can be represented by a partition of F;, denoted By, ..., Bj, such that two
vertices u,v of F; are in the same block B, if and only if they have the same
color. The number of configurations of F; depends obviously on the number of
edges between the vertices of F;. The minimum number of configurationsis 1. If
the vertices of F; form a clique, only one configuration is possible: B, ..., B|g,
with exactly one vertex in each block. The maximal number of configurations
of F; equals the number of partitions of a set with |F;| elements. When no edge
exists between the boundary set vertices, all the partitions are to be considered.

The number of partitions of a set composed by i elements and j blocks,

Table 1: Classification of the partitions of sets containing from 1 to 4 elements

LAy =t [i=2 [i=3 | j=4
i=1 || 1[1]
i=2 || 1[12] | 2[1]2]
i=3 | 1[123] | 2[13][2] | 5 [1][2][3]
3 [1][23]
4 [12][3]
i=4 || 1[1234] | 2 [134]12] | 9 [14][2]3] | 15 [1][2][3][4]
3 [13][24] | 10 [1][24][3]
4 [14]23] | 11 [1][2][34]
5 [1][234] | 12 [13][2][4]
6 [124][3] | 13 [1][23][4]
7 [12][34] | 14 [12][3][4]
8 [123][4]

written A; ;, is given by the recursive formula of Stirling numbers of the second
kind:

Aij =7 Aij+Aicrja

with A171 =1 and Ai7j =0if ¢ <]
The number T'(F;) of different partitions of the boundary set F; equals the
sum of the A, ; for j from 1 to |F3|.

T(F;) = Z Ap),;
j=1 to | Fi|

To identify the configurations of the boundary set, we associate to each one
an ordering number between 1 and T'(F;). The partitions of sets with at most
four elements and their ordering number are reported in table 1.

Let C(H;,z) be the z'" configuration of F; for the subgraph H;. Its value,
denoted val(C(H;, x)), equals the minimum number of colors necessary to color
H; for this configuration.

In figure 2, two different colorings of Hy correspond to the same configuration
of F5. Only 2 colors are necessary to color Hs with the configuration for which
vertices 2 and 3 have a same color, whereas 3 colors are necessary when vertices 2
and 3 have different colors. The value of the configuration C'(Hs, 1), represented
by the partition [45], is 2, because we keep only the best valuation.

3.4 Coloring algorithm

The details of the implementation of the decomposition method are reported
in algorithm 1. Note that H; = ({1},0) and F; = {1}. So, there is only
one configuration of Fy, C(H;,1) = [1]. The insertion of the vertex 2 of G in
C(H1,1) can provide one or two configurations of F» (only one configuration if
the vertices 1 and 2 are neighbors, two configurations otherwise).

At step i, we do not examine all the possible configurations of the step i — 1,
but only those which have been created at precedent step, it means those for
which there is no edge between two vertices of the same block. For each con-
figuration of F;_;, we introduce the vertex i in each block successively. Each
time the introduction is possible without breaking the coloring rules, the corre-
sponding configuration of F; is generated. We generate also the configurations
obtained by adding to each configuration of F;_; a new block containing the
vertex i.

For a given subgraph H;, only the configurations that are different are rep-
resented. Their ordering number z, included between 1 and T'(F;), is computed
by an algorithm according to their number of blocks and their number of ele-
ments. When different colorings of H; correspond to the same configuration of
F;, only the best valuation is kept in val(C'(H;,)).

At step N, only one configuration C(Hy, 1) is generated from configurations
of step N —1. It represents all the optimal coloring solutions and its value equals

X(G).

Example of configuration computing.
Agsume that we are searching for a coloring of the graph G of figure 3 and that
we are at step ¢ with F; = {u, v, w,i}.
Suppose that at step i — 1, we had F;_; = {u,v,w} and that the configurations
of F;_; were:

- C(H;-1,2) = [uw][v] with value a.

- C(H;—1,4) = [uv][w] with value §.

- C(H;-1,5) = [u][v][w] with value 7.
The values of a and f are at least 2, since the corresponding configurations
have 2 blocks. Remark that these values may be upper than 2, depending on
the configurations of the preceeding steps. By the same way, v is at least 3.
We want to generate the configurations of F; from the configurations of F;_;.

- it is impossible to insert 4 in the first block of C(H;—1,2), since v and
i are neighbors. It is possible to insert i in the second block of C'(H;_1,2).
We obtain C(H;,3) = [uw][vi] and val(C(H;,3)) = «. It is also possible to

Algorithm 1 Coloring algorithm

Input: a graph G
Output: y : the chromatic number of G

Hy = ({1},0)
F ={1}
C(Hy,1) =1

for i =2to N do
Build H; and F;
for each configuration C'(H;_1,z) of F;_1 do
for j =1 to number of blocks of C(H;_1,z) do
if i does not have any neighbor in the block j then
part = C(H;_1,)
insert ¢ in the block j of part
generate the configuration C'(H;,y) corresponding to part
if C(H;,y) already exists then
val(C(H;,y)) = min(val(C(H;,y)),val(C(H;—1,1)))
else
val(C(H;, y)) = val(C(Hi-1, 7))
end if
end if
end for
part = C(H;_1,x)
add to part a new block containing 7
val(part) = maz(val(C(H;_1, z)), number of blocks of part)
generate the configuration C'(H;,y) corresponding to part
if C(H;,y) already exists then
val(C(H;,y)) = min(val(C(H;,y)),val(part))
else
val(C(H;,y)) = val(part)
end if
end for
end for

X = val(C(Hy, 1))

10

Figure 3: Construction of H; = (V;—1 U {i}, E;—1 U{(u,1), (w,i)})

add a third block, it provides the configuration C'(H;,12) = [uw][v][i]] with
valC(H;,12) = max(a, 3), since for this configuration at least three colors are
needed.

- we must add a block to introduce ¢ in the configuration C(H;_1,4). We
obtain C'(H;,14) = [uv][w][i] with value maz(3,3).

- i may be introduced in the second block of C(H;_1,5). It provides the
configuration C(H;, 10) = [u][vi][w] with value 7. By adding a new block, the
configuration C'(H;,15) is created with val(C(H;, 15)) = max(v,4).

Thus five configurations are provided at step i, they are used to determine the

configurations of the following step, and so on until the whole graph is colored.

3.5 Improved coloring algorithm

The number of configurations of a boundary set Fj is exponential according to
|F;|. Moreover, a coloring represented by a configuration of k blocks needs at
least k colors. By applying a succession of k-colorings (see algorithm 2), we
avoid examining the configurations of more than & blocks, which proves to be
very interesting when F, ., is larger than x(G).

Take again the example of figure 3, and suppose that we are now searching
for a 3-coloring of the graph G. All the configurations are made of at most

three blocks, so their values are upper bounded by 3. This time, only four

11

Algorithm 2 k-coloring function

Input: a graph G and an integer k
Output: Result : True if and only if G is k-colorable

Hy = ({1},0)
P o= {1}
C(Hy,1) =11]
1 =2

Result = True
while i < N and Result do
Result = False
Build H; and F;
for each configuration C'(H;_1,z) of F;_; do
for j =1 to number of blocks of C(H;_1,z) do
if ¢ does not have any neighbor in the block j then
Result = True
part = C(H;_1,)
insert 7 in the block j of part
generate the configuration C'(H;,y) corresponding to part
if C(H;,y) already exists then
val(C(H;,y)) = min(val(C(H;,y)),val(C(H;—1,1)))
else
val(C(Hy, y)) = val(C(Hi-1, 7))
end if
end if
end for
if number of blocks of C'(H;_1,x) < k then
Result = True
part = C(H;—y,x)
add to part a new block containing 4
val(part) = maz(val(C(H;_1, z)), number of blocks of part)
generate the configuration C'(H;,y) corresponding to part
if C(H;,y) already exists then
val(C(H;,y)) = min(val(C(H;,y)), val(part))
else
val(C(H;,y)) = val(part)
end if
end if
end for
t=1+1

end while

12

Algorithm 3 Linear Decomposition Coloring Algorithm (LDC)

Input: a graph G
Output: k : the chromatic number of G
Determine a lower bound LB of k
Determine an upper bound UB of k
while (LB # UB) do
set the value of k between LB and UB (x)
result=k-coloring(Q)

if result = false then

LB=k+1
else
UB=k
end if
end while

(¥*) Kdic: k= |(LB+UB)/2|, Kseq:k=LB+1

configurations are provided at step i:

C(H;, 3) = [uw][vi] with value 2 or 3, C(H;, 12) = [uw][v][{] with value 3,
C(H;, 14) = [uv][w][¢] with value 3, and C'(H;,10) =

We cannot add a new block to C(H;_1,5), because it has already got three
blocks.

The gain may obviously be more significant when the size of the boundary set

[u][vi][w] with value 3.

increases. Indeed, let T'(F;) be the maximum number of partitions of F; which
have at most k blocks:
T'(F) = Z Ar,
j=1ltok
When no edge exists between the vertices of Fj, the gain Gain(F;) for this
step equals T'(F;) minus T'(F;):

GG,ZTL(FZ) = Z A|Fi\,j

j=k+1 to |F|

In the improved Linear Decomposition Coloring algorithm (LDC'), we start
by determining a lower bound LB of the chromatic number of G (see algo-
rithm 3). For that, we apply on G some heuristics based on triangulated graphs.
Indeed, it is easy to compute the chromatic number of a triangulated graph [14].
The used lower bound functions as follows: as long as the graph is not triangu-
lated, we remove a vertex of smallest degree, and then we color the remaining tri-

angulated graph by determining a perfect elimination order [14] on the vertices

13

of G. The upper bound U B is obtained by applying the heuristic DSATUR, [3].
Then we apply a succession of k-colorings, k varying between LB and UB. We
consider two different versions of LDC, depending on the way the value of k
is set: by dichotomy, denoted Kdic-LDC', or sequentially growing from LB to
UB, denoted Kseq-LDC'. In theory, Kdic-LDC has a better complexity than
Kseq-LDC'. Nevertheless, in practice Kseq-LDC' gives good lower bounds of
the chromatic number of hard instances that Kdic-LDC' is unable to solve.
Algorithm 3 does not produce directly a coloring, nevertheless it can be
obtained easily. All the configurations generated during the k-coloring have to
be stored in memory. The color 1 is assigned to vertex N. When a k-coloring
is found, a configuration of Fiy_; corresponding to the configuration of Fy is
chosen, a color is assigned to vertex N — 1, and so on until vertex 1 is colored.
Assign colors to the vertices needs a lot of memory space but does not increase

the time complexity of the algorithm.

3.6 The vertex linear ordering

The maximum size of the boundary sets F,., (N) depends on the vertices num-
bering chosen (see figure 4). It corresponds to the linearwidth of the vertex
linear ordering used to build the different subgraphs H; (cf section 2.3).

The complexity of the linear-decomposition is exponential with respect to
Fraz(N), so it is necessary to make a good choice when numbering the vertices
of the graph. Unfortunately, finding an optimal vertex linear ordering in order
to obtain the smallest linearwidth is a NP-complete problem [1]. A first method
to reduce the size of the boundary sets is to number the vertices by applying a
double BFS [14] on the graph. It produces the numbering NV;. An other method
is to begin the numbering from a clique and then order the vertices by decreasing
number of edges with already numbered vertices. It produces the numbering
Ns. The aim of this method is to give the smallest numbers as possible to
the vertices of boundary sets of size Fp,4.(N2). To compare the linearwidths
of these numberings with the linearwidth of the initial vertex numbering N,
we performed tests on random graphs Gy 4 (graphs with N vertices and with
density d) and on COLORO02 computational symposium instances. Some rep-
resentative results are reported in Table 2. For random graphs, results over
average of 5 instances are given.

The numbering N5 gave smaller F, ., (N') for more instances than the other
numberings, so we use this ordering in experiments of section 4. Despite this, the

number of configurations increases sometimes very strongly when introducing a

14

030
%

036

®®

030
%

036

®O®

030
%

0620

6%

Figure 4: The value of F,,,, is a conse

15

Table 2: Comparison of different vertex linear orderings

Problem | FruasWo) | Frar i) | Fras() || Problem [Fras(o) | FrnarWi) | Fras(W2)

G(30,.1) 12.4 9.6 8.4 G(40,.5) 34.0 344 33.6
G(40,.1) 20.8 16.4 15.0 G(50,.5) 434 434 41.8
G(50,.1) 29.4 26.2 22.0 G(60,.5) 53.8 53.8 52.4
G(60,.1) 36.8 32.8 28.0 G(30,.9) 27.8 27.8 27.2
G(70,.1) 44.0 43.0 34.2 G(40,.9) 37.8 37.8 36.4
G(80,.1) 55.0 50.8 42.8 G(50,.9) 47.4 47.4 46.8
G(90,.1) 63.6 60.0 51.8 G(60,.9) 57.8 57.8 57.0
G(30,.5) 24.8 24.6 22.6 G(70,.9) 67.6 67.4 67.0
mug88_1 20 13 8 mug88_25 20 13 8
mugl00_1 17 22 7 mugl00-25 19 16 8
1-Fulllns4 61 71 46 1-Fulllns5 187 216 132
2-Fulllns3 37 28 22 2-Fulllns4 157 105 93
2-Fulllns5 637 417 359 3-Fulllns3 61 45 36
3-Fulllns4 321 247 200 4-Fulllns3 91 57 49
4-Fulllns4 571 332 302 5-Fulllns3 127 127 64
5-Fulllns4 925 772 447 1-Inser_4 31 40 32
1-Inser_5 98 145 91 1-Inser 6 300 406 276
2-Inser 4 48 56 52 2-Inser_5 197 251 240
3-Inser_3 13 13 16 3-Inser 4 69 92 84
3-Inser_5 350 578 436 4-Tnser_3 15 15 20
4-Inser_4 94 120 124 miles250 67 48 16
le450_5a 381 368 339 1le450_5b 386 382 343
le450_5¢c 397 401 385 1le450_5d 400 403 385
le450_15a 373 365 339 le450_15b 378 372 336
le450_15¢ 420 418 396 le450_15d 416 415 401
le450_25a 351 348 293 le450_25¢ 416 412 394
le450_25d 411 409 384

16

vertex with too few neighbors in the boundary set. To avoid this case we add a

reduction on the graph before each k-coloring.

3.7 Vertex reduction

Before each k-coloring, we delete some vertices of the graph by using the fol-
lowing property: for each vertex z, if the degree of z is strictly lower than k, x
and its adjacent edges can be erased from the graph [13]. Indeed, assume x has
k — 1 neighbors. In the worst case, those neighbors must have different colors.
Then the vertex x can take the k** color. It does not interfere in the coloring
of the remaining vertices because all its neighbors have already been colored.
Therefore we can consider from the beginning that it will take a color unused
by its neighbors and delete it from the graph before the coloring. We apply this
principle recursively by examining the remaining vertices until having totally
reduced the graph or being enable to delete any other vertex.

4 Experimental results

Our LDC algorithms have been implemented on a PC AMD Athlon Xp 2000+ in
C language. We performed tests on random graphs and on benchmark instances

used at the computational symposium COLOR02.

4.1 Random graphs

Random graphs Gn 4 have been created. For each graph, N is the number of
vertices and d its density. We generated graphs with densities 0.1, 0.5 and 0.9.
We give the results of our experiments over average of 5 instances in Table 3.
For each type of graph, we give the number of edges M and the values LB and
UB of our initial bounds. Algorithms Kdic — LDC and Kseq — LDC have
been applied to each instance, using a CPU time limit of half an hour. For each
algorithm, we give the average chromatic number and the CPU time when the
program is able to compute. Otherwise, when less than 5 instances have been
solved, we indicate the number of solved instances in brackets. Starting from
N = 30, we increase the size of random graphs by step 10 until less than 3
instances are solved.

Our algorithms are not very efficient on random graphs in comparison with
the results of other exact methods [21, 15, 7]. Indeed, Desrosiers, Galinier and
Hertz are able to solve graphs with density 0.5 and with up to 100 vertices. This
is mainly due to the fact that edges repartition in the graph is homogeneous,

17

Table 3: Results on random graphs

LDC

M | LB | UB | Kdic| T | Kseq | T

438 | 28 [30| 30 [000] 30 | 0.00
758 | 3.0 | 36 | 32 | 0.00 | 32 | 0.0
1232 | 30 | 42 | 40 | 000 | 40 | 078
1770 | 3.0 | 46 | 4.0[2] | 0.00 | 40 | 254

2378 | 3.0 | 5.0 40 | 2.66
3204 | 3.0 | 5.0 4.2[4] | 103.16
397.0 | 32 | 5.6 4.6[3] | 104.80
477.2 | 3.0 | 5.6 5.0[4] | 190.99
604.4 | 38 | 6.0 5.0[4] | 91.90
7118 | 32 | 6.4 [0] *

2112 | 52 | 82 | 70 [1118] 7.0 | 2.92
3800 | 62 | 98 | 82 | 619 | 82 | 6.16
608.6 | 6.2 | 12.0 | 6.0[3] | 97.93 | 9.4[3] | 83.12
8818 | 6.6 | 128 | [0] * [0] *

392 | 152] 162 158 | 0.02 | 158 | o0.01
699.8 | 182 | 226 | 188 | 7.11 | 18.8 | 0.44
1103.6 | 20.8 | 25.4 | 22.8 | 132 | 228 | 10.79
1606.6 | 24.0 | 30.6 | [0] * | 26.2[4] | 105.02
2172.6 | 25.0 | 33.4 28[1] | 684.8

18

inducing a large linearwidth. For a graph with 50 vertices, we have (see Table 2)
Fpaz(N2) = 41 when the graph density is 0.5 and Fy,.,(N2) = 46 when the
graph density is 0.9. Nevertheless, results of Table 3 reflect clearly the possi-
bilities and the limits of our method. We are able to solve graphs with density
0.9 and 60 vertices. These graphs have a very large linearwidth but are also
very constrained : at each step only few configurations are generated despite
the big size of the boundary sets. The decomposition method is not efficient
on random graphs with density 0.5. Indeed, the large size of the linearwidth
induces the possibility to generate an exponential number of configurations and
the 0.5 density does not limit enough the number of valid configurations. Our
linear-decomposition method works better on graphs with small density. In-
deed, the maximum size of the boundary set can be very reduced by the vertex
numbering N5. For this kind of random graphs, we are able to solve instances
with up to 100 vertices.

4.2 DIMACS and COLORO02 instances

We performed tests on benchmark instances used at the computational sympo-
sium COLORO02, among which well-known DIMACS instances (see description
of the instances at http://mat.gsia.cmu.edu/COLOR02).

We first apply on each instance the lower bound and upper bound described
in section 3.5. Results are reported in table 4. For each graph we give the
number of vertices IV, the number of edges M, and the values LB and UB of
our initial bounds. At this stage, the lower bound equals the upper bound for
some of the DIMACS instances, so we did not apply any k-coloring algorithm
on these graphs.

We compare our LDC' algorithms with the recent results of the exact Branch-
and-Cut algorithm of Mendez Diaz and Zabala [9].We use a CPU time limit of
half an hour. The results of our experiments are reported in table 5. The
time column for B&C is only indicative since the results are from different
machines. They used C++ code using ABACUS framework and CPLEX 6.0
LP solver on a Sun ULTRA workstation. Their CPU time limit was two hours.
Comparing their time results for the same implementation of Dsat that we
use, our computer seems to run three times faster than their computer. We
report also the results of Desrosiers, Galinier and Hertz [7] in VC'S columns.
Column btk contains the number of backtracks needed by their exact algorithm
to solve an instance reduced to a vertex-critical subgraph. Values are enclosed

in parentheses when their algorithm is not able to find the chromatic number

19

Table 4: Lower bound and Upper bound results

Problem | N | M [LB|UB| Problem | N [M [LB|UB|

fpsol2.i.1 496 | 11654 | 65 | 65 1-Fulllns3 30 100
fpsol2.i.2 451 | 8691 | 30 | 30 1-Fulllns4 93 593
fpsol2.i.3 | 425 | 8688 | 30 | 30 1-Fulllns5 | 282 | 3247
inithx.i.1 864 | 18707 | 54 | 54 || 2-Fulllns3 52 201
inithx.i.2 645 | 13979 | 31 | 31 2-Fulllns4 | 212 | 1621
inithx.i.3 621 | 13969 | 31 | 31 2-Fulllns5 | 852 | 12201
le450-5a 450 | 5714 5 11 3-Fulllns3 80 346
le450-5b 450 | 5734 5 11 3-Fulllns4 | 405 | 3524
le450-5¢ 450 | 9803 4 13 4-Fulllns3 | 114 541
le450-5d 450 | 9757 4 12 4-Fulllns4 | 690 | 6650
le450-15a | 450 | 8168 | 13 | 18 5-Fulllns3 | 154 792
le450-15b | 450 | 8169 | 15 | 17 5-Fulllns4 | 1085 | 11395
le450-15¢ | 450 | 16680 | 11 | 25 1-Inser 4 67 232
le450-15d | 450 | 16750 | 11 | 26 1-Inser_5 202 | 1227
le450-25a | 450 | 8260 | 20 | 25 1-Inser_6 607 | 6337
le450_25b | 450 | 8263 | 25 | 25 2-Inser_3 37 72
le450-25¢c | 450 | 17343 | 22 | 30 2-Inser 4 149 541
le450-25d | 450 | 17425 | 19 | 29 2-Inser_5 597 | 3936
mulsol.i.1 | 197 | 3925 | 49 | 49 3-Inser_3 56 110
mulsol.i.2 | 188 | 3885 | 31 | 31 3-Inser_4 281 | 1046
mulsol.i.3 | 184 | 3916 | 31 | 31 3-Inser.5 | 1406 | 9695
mulsol.i.4 | 185 | 3946 | 31 | 31 4-Tnser_3 79 156
mulsol.i.5 186 | 3973 | 31 | 31 4-Tnser_4 475 1795
schooll 385 | 19095 | 14 | 14 mugl00-1 100 166
schooll nsh | 352 | 14612 | 14 | 14 || mugl00-25 | 100 166
zeroin.i.1 211 | 4100 | 49 | 49 mug88-1 88 146
zeroin.i.2 211 | 3541 | 30 | 30 mug88-25 88 146
zeroin.i.3 | 206 | 3540 | 30 | 30 games120 | 120 638
anna, 138 | 493 11 | 11 miles250 128 387

N O W W W W NN DN DNDDNDNDNDNDDNDNDNSDNO N R R A WWW
0 © &~ B B Ut RO O ORI OO 0000 OO Ot oY Ot

david 87 812 11 | 11 miles500 128 | 2340 | 20 | 20
homer o561 | 1629 | 13 | 13 miles750 128 | 4226 | 31 | 31
huck 74 602 11 | 11 miles1000 | 128 | 6432 | 42 | 42
jean 80 508 10 | 10 miles1500 | 128 | 10396 | 73 | 73

20

within the time limit.

The F,4; column indicates for each graph the maximal value of the bound-
ary set reached by our algorithm. We give the chromatic number of the graph
and the CPU time when the program is able to compute. Otherwise, aster-
isks in the time column indicate that the program exceeded the time limit. In
this case, we report the best lower and upper bounds of the chromatic number
obtained by the algorithm.

The results of Kseq-LDC' are equivalent or better than those of Kdic-LDC
on the tested instances, that is why we report only Kseq-LDC results. Our
algorithm runs very fast on mug instances (0.0 or 0.1 second), because the
vertex linear ordering chosen provides small linearwidths for these graphs (F,q.
column). For these instances, the results of Kdic-LDC and K seq-LDC' are the
same, since UB = LB + 1. B&C and VCS found the chromatic number, but
spent time to explore the Branch-and-Cut tree. Our algorithms are also able to
solve some instances which have a large linearwidth, because all the partitions of
the boundary set have not necessarily to be generated. We found the chromatic
number of 13 instances, 12 of which solved in less than 30 seconds. The LDC
algorithm is the first to our knowledge to find the chromatic number of the

instance 4-Inser_3 (bolded in table 5) with an exact method.

5 Conclusions

In this paper, we have presented an original method to solve the graph col-
oring problem by an exact way. This method has the advantage of solving
easily large instances which have a small linearwidth, such as mug instances,
and allows us to solve the difficult instance 4-Inser_3. We consider using the
linear-decomposition mixed with heuristics approach to deal with unbounded

linearwidth instances.

References
[1] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1-21,
1993.

[2] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of
small treewidth. STAM Journal on Computing, 25(6):1305-1317, 1996.

[3] D. Brelaz. New methods to color the vertices of a graph. Communications of the
ACM, 22(4):251-256, april 1979.

21

Table 5: Results o

n COLORO2 instances

LDC B&C VCS
Problem | Fnae | K | T k T | & btk
mug88_1 8 4 0.0 4 485 4 2204467
mug88_25 8 4 0.0 4 1690 | 4 942961
mugl00-1 7 4 0.1 4 4029 | 4 1406570
mugl100-25 8 4 0.0 4 5498 | 4 974170
1-Fulllns4 27) 7.3) 703 | 5 6
1-Fulllns5 26 4-6 * 4-6 * 6 271
2-Fulllns3 9 5 0.0 5 3 5 1
2-Fulllns4 19 5-6 * 5-6 * 6 8
2-Fulllns5 20 5-7 * 5-7 * 7 715
3-Fulllns3 11 6 0.0 6 1 6 0
3-Fulllns4 20 3-7 * 6-7 * 7 10
4-Fulllns3 11 7 0.0 7 3 7 1
4-Fulllns4 17 4-8 * 7-8 * 8 12
5-Fulllns3 13 8 0.0 8 3 8 1
5-Fulllns4 17 3-9 * 7-9 *
1-Inser_4 21 4-5 * 2-5 * 5 104296036
1-Inser_5 20 3-6 * 4-6 * * (133727661)
1-Inser_6 18 3-7 * 4-7 * * (50929137)
oInserd | 28 | 35 | * | 45 | * | * | (154902785)
2-Inser_5 18 3-6 * 3-6 * * (48458541)
3-Inser_3 16 4 23.3 4 10 4 723616
3-Inser_4 28 3-5 * 3-5 * * (95076991)
3Inser5 | 17 | 36 | * | 36 | * | * | (13784327
4-Inser_3 20 4 1774 | 3-4 * * 1 (228367528)
4-Tnser_4 27 3-5 * 3-5 * * (70891706)
miles250 9 8 0.0 8 0
le450_5a 15 9-9 * 9-9 *) 0
le450_5b 16 9-9 * 9-9 *) 0
le450_5¢ 22 5-6 * 5 0
le450_5d 46 o-7 * 5-10 * 5 0
le450-15a 21 15-18 * 15-17 * 15 0
le450_15b 21 15-17 * 15-17 * 15 0
le450_15¢ 21 15-25 * 15-24 * 15 0
le450-15d 21 15-26 * 15-23 * 15 0
le450-25a 25 25 0.0 25 0
le450_25c¢ 30 25-28 * 25-28 * 25 0
le450-25d 30 25-28 * 2H-28 * 25 0

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Carlier and C. Lucet. A decomposition algorithm for network reliability eval-
uation. Discrete Appl. Math., 65:141-156, 1996.

D. de Werra. An introduction to timetabling. FEuropean Journal of Operation
Research, 19:151-162, 1985.

D. de Werra. On a multiconstrained model for chromatic scheduling. Discrete
Appl. Math., 94:171-180, 1999.

C. Desrosiers, P. Galinier, and A. Hertz. Efficient algorithms for finding critical
subgraphs. Cahiers du GERAD, G-2004-31, 2004.

I. Mendez Diaz and P. Zabala. A branch-and-cut algorithm for graph color-
ing. In Computational Symposium on Graph Coloring and its Generalizations
(COLORO02), Tthaca, N-Y, september 2002.

I. Mendez Diaz and P. Zabala. A branch-and-cut algorithm for graph coloring.
Optimization Online: Combinatorial Optimization, september 2003.

N. Funabiki and T. Higashino. A minimal-state processing search algorithm for
graph coloring problems. IEICE Transactions on Fundamentals, E83-A(7):1420—
1430, 2000.

P. Galinier and J.K. Hao. Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3(4):379-397, 1999.

M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

F. Glover, M. Parker, and J. Ryan. Coloring by tabu branch and bound. In Trick
and Johnson [28], pages 285-308.

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

F. Herrmann and A. Hertz. Finding the chromatic number by means of critical
graphs. ACM Journal of Ezperimental Algorithmics, 7(10):1-9, 2002.

A. Hertz and D. De Werra. Using tabu search techniques for graph coloring.
Computing, 39:345-351, 1987.
M. Kubale and B. Jackowski. A generalized implicit enumeration algorithm for

graph coloring. Communications of the ACM, 28(4):412-418, 1985.

C. Lucet. Méthode de décomposition pour [’évaluation de la fiabilité des réseaux.
PhD thesis, Université de Technologie de Compiegne, 1993.

J.F. Manouvrier. Méthode de décomposition pour résoudre des problémes combi-
natoires sur les graphes. PhD thesis, Université de Technologie de Compiégne,
1998.

B. Manvel. Extremely greedy coloring algorithms. In F. Harary and J.S. Maybee,
editors, Graphs and applications: Proceedings of the First Colorado Symposium
on Graph Theory, pages 257-270, New York, 1985. John Wiley & Sons.

23

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

A. Mehrotra and M. A. Trick. A column generation approach for graph coloring.
INFORMS Journal on Computing, 8(4):344-354, 1996.

C. A. Morgenstern. Distributed coloration neighborhood search. In Trick and
Johnson [28], pages 335-357.

N. Robertson and P. Seymour. Graph minors. ii. algorithmic aspects of tree-width.
Journal of Algorithms, 7:309-322, 1986.

D. G. Corneil S. Arnborg and A. Proskurowski. Complexity of finding embeddings
in a k-tree. STAM Journal on Algebraic and Discrete Methods, 8:277-284, 1987.

T. J. Sager and S. Lin. A pruning procedure for exact graph coloring. ORSA
Journal on Computing, 3:226—230, 1991.

S. Sen Sarma and S. K. Bandyopadhyay. Some sequential graph colouring algo-
rithms. International Journal of Electronic, 67(2):187-199, 1989.

E. Sewell. An improved algorithm for exact graph coloring. In Trick and Johnson
[28], pages 359-373.

Michael A. Trick and David S. Johnson, editors. Cliques, Coloring, and Satisfia-
bility: Proceedings of the Second DIMACS Implementation Challenge. American
Mathematical Society, 1993.

24

