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An exat method for graph oloring�C. Luet, F. MendesLaRIA EA 2083, 5 rue du Moulin Neuf 80000 Amiens - Frane(Corinne.Luet, Florene.Mendes)�laria.u-piardie.frA. MoukrimHeuDiaSyC UMR CNRS 6599 UTC, BP 20529 60205 Compi�egne - FraneAziz.Moukrim�hds.ut.frNovember 15, 2004AbstratWe are interested in the graph oloring problem. We propose an exatmethod based on a linear-deomposition of the graph. The omplexity ofthis method is exponential aording to the linearwidth of the entry graph,but linear aording to its number of verties. We present some experi-ments performed on literature instanes, among whih COLOR02 libraryinstanes. Our method is usefull to solve more quikly than other exatalgorithms instanes with small linearwidth, suh as mug graphs. More-over, our algorithms are the �rst to our knowledge to solve the COLOR02instane 4-Inser 3 with an exat method.Keywords: graph oloring, exat method, linearwidth, linear-deomposition.1 IntrodutionThe notions of tree-deomposition and path-deomposition have been intro-dued by Robertson and Seymour [23℄. The deomposition method we proposehere is strongly related to these notions, whih have been studied in partiularby Bodlaender to solve some NP-hard problems [1℄.Our approah is a method based on suessive deompositions of the repre-sentative graph providing suessive resolved subgraphs and their orresponding�with the �nanial support of Conseil R�egional de Piardie and FSE1



separating sets named boundary sets. At eah step, solutions of the resolved sub-graph are represented by the di�erent states of the boundary set verties. Thenumber of states to enumerate grows exponentially with the size of the bound-ary set. Its maximum size, for an optimal vertex numbering, orresponds tothe linearwidth of the graph. The main advantage of this method is that theexponential fator of its omplexity does not depend on the size of the graphbut only on its linearwidth. This tehnique has been implemented eÆientlyby Carlier, Luet and Manouvrier to solve various NP-hard problems suh asnetwork reliability or minimal Steiner tree omputation [4, 18, 19℄.We apply the deomposition method to one of the most studied problemsof ombinatorial optimization: the graph oloring problem. It onstitutes aentral problem in a lot of appliations suh as shool timetabling, sheduling,or frequeny assignment [5, 6℄. The graph oloring problem onsists in oloringthe verties of a graph with a minimum number of olors, ensuring that twoadjaent verties do not reeive the same olor. Various heuristi approaheshave been proposed for this NP-hard problem [12℄: greedy algorithms suh asDSATUR [3℄, metaheuristis based on loal searh, tabu method, simulatedannealing, hybrid algorithms, et. (see for example [10, 11, 13, 16, 20, 22, 26℄).To our knowledge, few exat methods are proposed to resolve this problem.One of the most well-known exat algorithms is the exat branh-and-boundalgorithm implemented by Brelaz that uses DSATUR priniples [3℄. Impliitenumeration strategies are used in [17, 25, 27℄. Mehrotra and Trik [21℄ studieda linear programming formulation whih is solved by using olumn generationtehniques. More reently, Mendez Diaz and Zabala presented a branh-and-utalgorithm [8, 9℄. Herrmann and Hertz presented eÆient algorithms used to �ndedge-ritial and vertex-ritial subgraphs that have same hromati numbersas initial graphs but are easier to solve [15℄. Desrosiers, Galinier and Hertzproposed di�erent algorithms to detet these ritial subgraphs [7℄. They madeexperiments on random graphs and on di�erent types of benhmark graphs.Their method is very eÆient on several instanes families.Our paper is organized as follows. In setion 2, we desribe the deomposi-tion method and introdue the neessary notions. In setion 3, we develop theimplementation of the method. We present an exat algorithm whih enables usto solve eÆiently large instanes whose linearwidth is bounded. Computationalresults obtained on various instanes are presented in setion 4. They omparewith two exat methods: a branh-and-ut algorithm [9℄ and an algorithm basedon vertex-ritial subgraphs detetion [7℄. Finally, we give some onlusions anddisuss about the perspetives of this work.2



2 Graph deompositionsTo introdue the kind of deomposition that we use to solve the graph oloringproblem, it is neessary to reall some graph theory de�nitions and the notionsof tree-deomposition and path-deomposition.2.1 Preliminary de�nitionsAn undireted graph G is a pair, G = (V;E), made up of a vertex set V and anedge set E � V �V . A graph G is onneted if for all verties w; v 2 V (w 6= v),there exists a path from w to v. Without loss of generality, the graphs G we willonsider in the following of this paper will be undireted and onneted graphs.A subgraph of G = (V;E), indued by W � V , is a graph G(W ) = (W;EW )suh that EW = E\(W�W ). A tree is a simple undireted graph, T = (I; ET ),without yle and with jET j = jI j � 1. A rooted tree is a tree direted from theroot r to the leaves. If the edge (p; v) belongs to a rooted tree, p is the fatherof v, and v is one of the sons of p.2.2 Tree-deompositionA tree-deomposition of G = (V;E) is a pair (fXi=i 2 Ig; T = (I; ET )) withfXi=i 2 Ig a family of subsets of V and T a tree suh that:{ Si2I Xi = V ,{ for all edges (v; w) 2 E, there exists a subset Xi; i 2 I; with v 2 Xi andw 2 Xi,{ for all i; j; k 2 I , if j is on the path from i to k in T then Xi \Xk � Xj .The treewidth of a tree-deomposition is maxi2I (jXij � 1). The treewidth of agraph G is the minimum treewidth over all possible tree-deompositions of G.The deomposition method is as follows. Given a tree-deomposition of thegraph, partial solutions are built on the subsets Xi and then assoiated to solvethe onsidered problem. The deomposition method omputes the solutionsfrom the leaves to the root of the tree T , by examinating all partial solutions onevery subgraph G(Xi). The number of partial solutions is exponential aordingto the size of the subgraphs Xi. These partial solutions are omputed from thesolutions of Xf , for all f belonging to the sons of i in T . Unlike a simpleenumerative method, this method allows one to fatorize partial solutions ofthe Xi sets into lasses. This fatorization provides an eÆient method if theardinality of the sets Xi is small, i.e. if the treewidth of the tree-deompositionis suÆiently small. 3



Whereas for some graph families, suh as trees and serie-parallel graphs,one an ompute the treewidth in linear time, omputing the treewidth of anygraph is a NP-omplete problem [24℄. Bodlaender [2℄ gives for a onstant k analgorithm in O(n) whih for a graph G solves the problem \is the treewidthof G at most k ?". If so, it determines a tree-deomposition with treewidth atmost k. This algorithm based on lique searh and graph ontration has anexponential omplexity with respet to k (O(n � 2k2)). It annot be used inpratie, even for k = 4.2.3 Path-deomposition and linear-deompositionThe deomposition method that we will use in the following is based on a speialase of tree-deomposition. We will onsider a tree with only one leaf, that is apath.A path-deomposition (X1; : : : ; Xr) of a graph G is an ordered sequene of sub-sets of V suh that:{ S1�i�rXi = V ,{ for all edges (v; w) 2 E, there exists a subset Xi; 1 � i � r; with v 2 Xiand w 2 Xi,{ for all i; j; k 2 f1; : : : ; rg, if i � j � k then Xi \Xk � Xj .The pathwidth of a path-deomposition is max1�i�r(jXij � 1). The pathwidthof a graph is the minimum pathwidth over all possible path-deompositionsof G. A vertex linear ordering of G is a bijetion N : V ! f1; : : : ; jV jg.For more larity, we denote k the vertex N�1(k). Let Fi = fj 2 V=9(j; l) 2E j � i < lg 8i 2 f1; : : : ; jV jg. The linearwidth of a vertex linear orderingN is Fmax(N ) = maxi2V (jFij). The linearwidth of G, written Fmax(G), isthe minimum linearwidth over all possible vertex linear orderings of G. Thelinearwidth of a graph equals its pathwidth [19℄.Computing the pathwidth or the linearwidth of any graph is a NP-ompleteproblem [24℄, similarly as omputing the treewidth of any graph. The treewidthof a graph G is smaller or equal to its pathwidth, and as a onsequene the ex-ponential fator of a tree-deomposition is smaller than that of a path-deom-position. Nevertheless, implementing the deomposition method on a linear-deomposition is easier than using a tree-deomposition. First, from a tehnialpoint of view, several Xi partial solutions may have to be stored in memorywhen resolving a problem with a tree-deomposition. It involves some prob-lems of memory storage and ombination of the Xi when implementing thealgorithm. Moreover, reating a linear-deomposition is easier than reating a4



tree-deomposition. Thus, we use a vertex linear ordering of the graph to re-solve the graph oloring problem with a linear-deomposition. The resolutionmethod is then based on a sequential insertion of the verties, using a vertexlinear ordering previously determined. This will be developed in the followingsetion.3 Appliation to the graph oloring problemIn this setion, we propose a method whih uses linear-deomposition in orderto solve the graph oloring problem.3.1 Problem de�nitionA oloring of a graph G = (V;E) is an assignment of a olor (i) 2 I to eahvertex suh that (i) 6= (j) for all edges (i; j) 2 E.If the ardinality of I is k, the oloring of G is alled a k-oloring. The minimumvalue of k for whih a k-oloring is possible is alled the hromati number ofG and is denoted �(G). The graph oloring problem onsists in �nding thehromati number of a graph.3.2 Linear deomposition prinipleConsider a graph G = (V;E). Let N = jV j and M = jEj. The verties of Gare numbered aording to a linear ordering N : V ! f1; : : : ; Ng. Let Vi besubset of V , made of the verties numbered from 1 to i. Let Hi = (Vi; Ei) bethe subgraph of G indued by Vi. Fi is the boundary set of Hi, i.e. the subset ofVi suh that v 2 Fi if and only if 9(v; w) 2 E and v � i < w (see �gure 1). LetH 0i = (V 0i ; E0i) be the subgraph of G indued by V 0i = (V nVi)[Fi. Any kind ofrelation between the verties of Hi and those of H 0i depends on the verties ofFi. The linear deomposition is a dynami method. During the oloring wewill onsider N subgraphs H1; : : : ; HN and the N orresponding boundary setsF1; : : : ; FN . Starting from a vertex linear ordering, we build at �rst iteration asubgraph H1 whih ontains only the vertex 1, then at eah step the next vertexand its orresponding edges are added, until HN . Partial solutions of step i arebuilt from partial solutions of step i� 1.At eah subgraph Hi orresponds a boundary set Fi ontaining the vertiesof Hi whih have at least one neighbor in H 0i . The boundary set Fi is built fromFi�1 by adding the vertex i and removing the verties that have no neighbor with5
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158 10 16147 11 171312 18H10 H 010Figure 1: Subgraph H10 of G and its boundary set F10 = f7; 8; 10g
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2 41 F5 = f4; 5g C(H5; 1) = [45℄ val(C(H5; 1)) = 23 5VVBV B2 41 F5 = f4; 5g C(H5; 1) = [45℄ val(C(H5; 1)) = 33 5VVBV RFigure 2: Di�erent olorings of H5 but same on�guration of F5an ordering number greater than i. Several olorings of Hi may orrespond tothe same oloring of Fi (see �gure 2). Moreover, the olors used by the vertiesVi n Fi do not interfere with the oloring of the verties whih have an orderingnumber greater than i, sine no edge exists between them. So, only the partialsolutions orresponding to di�erent olorings of Fi have to be stored in memory.This way, several partial solutions on Hi may be summarized by a unique partialsolution on Fi, alled on�guration of Fi.The graph oloring problem is solved by evaluating at eah step the on-�gurations of the boundary set Fi. At step i, the subgraph Hi�1 is solved. Itmeans that to eah on�guration of Fi�1 orresponds a value of the minimumnumber of olors neessary to olor Hi�1 for this �xed oloring of the boundaryset verties. Then, partial solutions are built using solutions of the preedentstep. This point will be detailed in setion 3.4.3.3 Boundary set on�gurationsA on�guration of the boundary set Fi is a given oloring of the verties of Fi.This an be represented by a partition of Fi, denoted B1; : : : ; Bj , suh that twoverties u; v of Fi are in the same blok B if and only if they have the sameolor. The number of on�gurations of Fi depends obviously on the number ofedges between the verties of Fi. The minimum number of on�gurations is 1. Ifthe verties of Fi form a lique, only one on�guration is possible: B1; : : : ; BjFij,with exatly one vertex in eah blok. The maximal number of on�gurationsof Fi equals the number of partitions of a set with jFij elements. When no edgeexists between the boundary set verties, all the partitions are to be onsidered.The number of partitions of a set omposed by i elements and j bloks,7



Table 1: Classi�ation of the partitions of sets ontaining from 1 to 4 elementsAi;j j=1 j=2 j=3 j=4i=1 1 [1℄i=2 1 [12℄ 2 [1℄[2℄i=3 1 [123℄ 2 [13℄[2℄ 5 [1℄[2℄[3℄3 [1℄[23℄4 [12℄[3℄i=4 1 [1234℄ 2 [134℄[2℄ 9 [14℄[2℄[3℄ 15 [1℄[2℄[3℄[4℄3 [13℄[24℄ 10 [1℄[24℄[3℄4 [14℄[23℄ 11 [1℄[2℄[34℄5 [1℄[234℄ 12 [13℄[2℄[4℄6 [124℄[3℄ 13 [1℄[23℄[4℄7 [12℄[34℄ 14 [12℄[3℄[4℄8 [123℄[4℄written Ai;j , is given by the reursive formula of Stirling numbers of the seondkind: Ai;j = j �Ai�1;j +Ai�1;j�1with A1;1 = 1 and Ai;j = 0 if i < j.The number T (Fi) of di�erent partitions of the boundary set Fi equals thesum of the AjFij;j for j from 1 to jFij.T (Fi) = Xj=1 to jFijAjFij;jTo identify the on�gurations of the boundary set, we assoiate to eah onean ordering number between 1 and T (Fi). The partitions of sets with at mostfour elements and their ordering number are reported in table 1.Let C(Hi; x) be the xth on�guration of Fi for the subgraph Hi. Its value,denoted val(C(Hi; x)), equals the minimum number of olors neessary to olorHi for this on�guration.In �gure 2, two di�erent olorings ofH5 orrespond to the same on�gurationof F5. Only 2 olors are neessary to olor H5 with the on�guration for whihverties 2 and 3 have a same olor, whereas 3 olors are neessary when verties 2and 3 have di�erent olors. The value of the on�guration C(H5; 1), representedby the partition [45℄, is 2, beause we keep only the best valuation.8



3.4 Coloring algorithmThe details of the implementation of the deomposition method are reportedin algorithm 1. Note that H1 = (f1g; ;) and F1 = f1g. So, there is onlyone on�guration of F1, C(H1; 1) = [1℄. The insertion of the vertex 2 of G inC(H1; 1) an provide one or two on�gurations of F2 (only one on�guration ifthe verties 1 and 2 are neighbors, two on�gurations otherwise).At step i, we do not examine all the possible on�gurations of the step i�1,but only those whih have been reated at preedent step, it means those forwhih there is no edge between two verties of the same blok. For eah on-�guration of Fi�1, we introdue the vertex i in eah blok suessively. Eahtime the introdution is possible without breaking the oloring rules, the orre-sponding on�guration of Fi is generated. We generate also the on�gurationsobtained by adding to eah on�guration of Fi�1 a new blok ontaining thevertex i.For a given subgraph Hi, only the on�gurations that are di�erent are rep-resented. Their ordering number x, inluded between 1 and T (Fi), is omputedby an algorithm aording to their number of bloks and their number of ele-ments. When di�erent olorings of Hi orrespond to the same on�guration ofFi, only the best valuation is kept in val(C(Hi; x)).At step N , only one on�guration C(HN ; 1) is generated from on�gurationsof step N�1. It represents all the optimal oloring solutions and its value equals�(G).Example of on�guration omputing.Assume that we are searhing for a oloring of the graph G of �gure 3 and thatwe are at step i with Fi = fu; v; w; ig.Suppose that at step i� 1, we had Fi�1 = fu; v; wg and that the on�gurationsof Fi�1 were:- C(Hi�1; 2) = [uw℄[v℄ with value �.- C(Hi�1; 4) = [uv℄[w℄ with value �.- C(Hi�1; 5) = [u℄[v℄[w℄ with value .The values of � and � are at least 2, sine the orresponding on�gurationshave 2 bloks. Remark that these values may be upper than 2, depending onthe on�gurations of the preeeding steps. By the same way,  is at least 3.We want to generate the on�gurations of Fi from the on�gurations of Fi�1.- it is impossible to insert i in the �rst blok of C(Hi�1; 2), sine u andi are neighbors. It is possible to insert i in the seond blok of C(Hi�1; 2).We obtain C(Hi; 3) = [uw℄[vi℄ and val(C(Hi; 3)) = �. It is also possible to9



Algorithm 1 Coloring algorithmInput: a graph GOutput: � : the hromati number of GH1 = (f1g; ;)F1 = f1gC(H1; 1) = [1℄for i = 2 to N doBuild Hi and Fifor eah on�guration C(Hi�1; x) of Fi�1 dofor j = 1 to number of bloks of C(Hi�1; x) doif i does not have any neighbor in the blok j thenpart = C(Hi�1; x)insert i in the blok j of partgenerate the on�guration C(Hi; y) orresponding to partif C(Hi; y) already exists thenval(C(Hi; y)) = min(val(C(Hi; y)); val(C(Hi�1; x)))elseval(C(Hi; y)) = val(C(Hi�1; x))end ifend ifend forpart = C(Hi�1; x)add to part a new blok ontaining ival(part) = max(val(C(Hi�1; x)), number of bloks of part)generate the on�guration C(Hi; y) orresponding to partif C(Hi; y) already exists thenval(C(Hi; y)) = min(val(C(Hi; y)); val(part))elseval(C(Hi; y)) = val(part)end ifend forend for� = val(C(HN ; 1))
10



uvwFi�1 iHi�1GFigure 3: Constrution of Hi = (Vi�1 [ fig; Ei�1 [ f(u; i); (w; i)g)add a third blok, it provides the on�guration C(Hi; 12) = [uw℄[v℄[i℄ withvalC(Hi; 12) = max(�; 3), sine for this on�guration at least three olors areneeded.- we must add a blok to introdue i in the on�guration C(Hi�1; 4). Weobtain C(Hi; 14) = [uv℄[w℄[i℄ with value max(�; 3).- i may be introdued in the seond blok of C(Hi�1; 5). It provides theon�guration C(Hi; 10) = [u℄[vi℄[w℄ with value . By adding a new blok, theon�guration C(Hi; 15) is reated with val(C(Hi; 15)) = max(; 4).Thus �ve on�gurations are provided at step i, they are used to determine theon�gurations of the following step, and so on until the whole graph is olored.3.5 Improved oloring algorithmThe number of on�gurations of a boundary set Fi is exponential aording tojFij. Moreover, a oloring represented by a on�guration of k bloks needs atleast k olors. By applying a suession of k-olorings (see algorithm 2), weavoid examining the on�gurations of more than k bloks, whih proves to bevery interesting when Fmax is larger than �(G).Take again the example of �gure 3, and suppose that we are now searhingfor a 3-oloring of the graph G. All the on�gurations are made of at mostthree bloks, so their values are upper bounded by 3. This time, only four11



Algorithm 2 k-oloring funtionInput: a graph G and an integer kOutput: Result : True if and only if G is k-olorableH1 = (f1g; ;)F1 = f1gC(H1; 1) = [1℄i = 2Result = Truewhile i � N and Result doResult = FalseBuild Hi and Fifor eah on�guration C(Hi�1; x) of Fi�1 dofor j = 1 to number of bloks of C(Hi�1; x) doif i does not have any neighbor in the blok j thenResult = Truepart = C(Hi�1; x)insert i in the blok j of partgenerate the on�guration C(Hi; y) orresponding to partif C(Hi; y) already exists thenval(C(Hi; y)) = min(val(C(Hi; y)); val(C(Hi�1; x)))elseval(C(Hi; y)) = val(C(Hi�1; x))end ifend ifend forif number of bloks of C(Hi�1; x) < k thenResult = Truepart = C(Hi�1; x)add to part a new blok ontaining ival(part) = max(val(C(Hi�1; x)), number of bloks of part)generate the on�guration C(Hi; y) orresponding to partif C(Hi; y) already exists thenval(C(Hi; y)) = min(val(C(Hi; y)); val(part))elseval(C(Hi; y)) = val(part)end ifend ifend fori = i+ 1end while 12



Algorithm 3 Linear Deomposition Coloring Algorithm (LDC)Input: a graph GOutput: k : the hromati number of GDetermine a lower bound LB of kDetermine an upper bound UB of kwhile (LB 6= UB) doset the value of k between LB and UB (�)result=k-oloring(G)if result = false thenLB = k + 1elseUB = kend ifend while(�) Kdi : k = b(LB + UB)=2, Kseq : k = LB + 1on�gurations are provided at step i:C(Hi; 3) = [uw℄[vi℄ with value 2 or 3, C(Hi; 12) = [uw℄[v℄[i℄ with value 3,C(Hi; 14) = [uv℄[w℄[i℄ with value 3, and C(Hi; 10) = [u℄[vi℄[w℄ with value 3.We annot add a new blok to C(Hi�1; 5), beause it has already got threebloks.The gain may obviously be more signi�ant when the size of the boundary setinreases. Indeed, let T 0(Fi) be the maximum number of partitions of Fi whihhave at most k bloks: T 0(Fi) = Xj=1 to kAjFij;jWhen no edge exists between the verties of Fi, the gain Gain(Fi) for thisstep equals T (Fi) minus T 0(Fi):Gain(Fi) = Xj=k+1 to jFijAjFij;jIn the improved Linear Deomposition Coloring algorithm (LDC), we startby determining a lower bound LB of the hromati number of G (see algo-rithm 3). For that, we apply on G some heuristis based on triangulated graphs.Indeed, it is easy to ompute the hromati number of a triangulated graph [14℄.The used lower bound funtions as follows: as long as the graph is not triangu-lated, we remove a vertex of smallest degree, and then we olor the remaining tri-angulated graph by determining a perfet elimination order [14℄ on the verties13



of G. The upper bound UB is obtained by applying the heuristi DSATUR [3℄.Then we apply a suession of k-olorings, k varying between LB and UB. Weonsider two di�erent versions of LDC, depending on the way the value of kis set: by dihotomy, denoted Kdi-LDC, or sequentially growing from LB toUB, denoted Kseq-LDC. In theory, Kdi-LDC has a better omplexity thanKseq-LDC. Nevertheless, in pratie Kseq-LDC gives good lower bounds ofthe hromati number of hard instanes that Kdi-LDC is unable to solve.Algorithm 3 does not produe diretly a oloring, nevertheless it an beobtained easily. All the on�gurations generated during the k-oloring have tobe stored in memory. The olor 1 is assigned to vertex N . When a k-oloringis found, a on�guration of FN�1 orresponding to the on�guration of FN ishosen, a olor is assigned to vertex N � 1, and so on until vertex 1 is olored.Assign olors to the verties needs a lot of memory spae but does not inreasethe time omplexity of the algorithm.3.6 The vertex linear orderingThe maximum size of the boundary sets Fmax(N ) depends on the verties num-bering hosen (see �gure 4). It orresponds to the linearwidth of the vertexlinear ordering used to build the di�erent subgraphs Hi (f setion 2.3).The omplexity of the linear-deomposition is exponential with respet toFmax(N ), so it is neessary to make a good hoie when numbering the vertiesof the graph. Unfortunately, �nding an optimal vertex linear ordering in orderto obtain the smallest linearwidth is a NP-omplete problem [1℄. A �rst methodto redue the size of the boundary sets is to number the verties by applying adouble BFS [14℄ on the graph. It produes the numbering N1. An other methodis to begin the numbering from a lique and then order the verties by dereasingnumber of edges with already numbered verties. It produes the numberingN2. The aim of this method is to give the smallest numbers as possible tothe verties of boundary sets of size Fmax(N2). To ompare the linearwidthsof these numberings with the linearwidth of the initial vertex numbering N0,we performed tests on random graphs GN;d (graphs with N verties and withdensity d) and on COLOR02 omputational symposium instanes. Some rep-resentative results are reported in Table 2. For random graphs, results overaverage of 5 instanes are given.The numbering N2 gave smaller Fmax(N ) for more instanes than the othernumberings, so we use this ordering in experiments of setion 4. Despite this, thenumber of on�gurations inreases sometimes very strongly when introduing a14



1 4 72 5 83 6 9 1 4 72 5 83 6 9 1 4 72 5 83 6 94 72 5 83 6 9 4 75 83 6 9 4 75 86 975 86 9 86 9Fmax = 32 6 49 1 85 7 3 2 6 49 1 85 7 3 2 6 49 1 85 7 32 6 49 1 85 7 3 2 6 49 1 85 7 3 2 49 1 85 7 32 49 1 85 3 29 15Fmax = 5Figure 4: The value of Fmax is a onsequene of the initial vertex numbering.
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Table 2: Comparison of di�erent vertex linear orderingsProblem Fmax(N0) Fmax(N1) Fmax(N2) Problem Fmax(N0) Fmax(N1) Fmax(N2)G(30,.1) 12.4 9.6 8.4 G(40,.5) 34.0 34.4 33.6G(40,.1) 20.8 16.4 15.0 G(50,.5) 43.4 43.4 41.8G(50,.1) 29.4 26.2 22.0 G(60,.5) 53.8 53.8 52.4G(60,.1) 36.8 32.8 28.0 G(30,.9) 27.8 27.8 27.2G(70,.1) 44.0 43.0 34.2 G(40,.9) 37.8 37.8 36.4G(80,.1) 55.0 50.8 42.8 G(50,.9) 47.4 47.4 46.8G(90,.1) 63.6 60.0 51.8 G(60,.9) 57.8 57.8 57.0G(30,.5) 24.8 24.6 22.6 G(70,.9) 67.6 67.4 67.0mug88 1 20 13 8 mug88 25 20 13 8mug100 1 17 22 7 mug100 25 19 16 81-FullIns4 61 71 46 1-FullIns5 187 216 1322-FullIns3 37 28 22 2-FullIns4 157 105 932-FullIns5 637 417 359 3-FullIns3 61 45 363-FullIns4 321 247 200 4-FullIns3 91 57 494-FullIns4 571 332 302 5-FullIns3 127 127 645-FullIns4 925 772 447 1-Inser 4 31 40 321-Inser 5 98 145 91 1-Inser 6 300 406 2762-Inser 4 48 56 52 2-Inser 5 197 251 2403-Inser 3 13 13 16 3-Inser 4 69 92 843-Inser 5 350 578 436 4-Inser 3 15 15 204-Inser 4 94 120 124 miles250 67 48 16le450 5a 381 368 339 le450 5b 386 382 343le450 5 397 401 385 le450 5d 400 403 385le450 15a 373 365 339 le450 15b 378 372 336le450 15 420 418 396 le450 15d 416 415 401le450 25a 351 348 293 le450 25 416 412 394le450 25d 411 409 384
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vertex with too few neighbors in the boundary set. To avoid this ase we add aredution on the graph before eah k-oloring.3.7 Vertex redutionBefore eah k-oloring, we delete some verties of the graph by using the fol-lowing property: for eah vertex x, if the degree of x is stritly lower than k, xand its adjaent edges an be erased from the graph [13℄. Indeed, assume x hask � 1 neighbors. In the worst ase, those neighbors must have di�erent olors.Then the vertex x an take the kth olor. It does not interfere in the oloringof the remaining verties beause all its neighbors have already been olored.Therefore we an onsider from the beginning that it will take a olor unusedby its neighbors and delete it from the graph before the oloring. We apply thispriniple reursively by examining the remaining verties until having totallyredued the graph or being enable to delete any other vertex.4 Experimental resultsOur LDC algorithms have been implemented on a PC AMDAthlon Xp 2000+ inC language. We performed tests on random graphs and on benhmark instanesused at the omputational symposium COLOR02.4.1 Random graphsRandom graphs GN;d have been reated. For eah graph, N is the number ofverties and d its density. We generated graphs with densities 0.1, 0.5 and 0.9.We give the results of our experiments over average of 5 instanes in Table 3.For eah type of graph, we give the number of edges M and the values LB andUB of our initial bounds. Algorithms Kdi � LDC and Kseq � LDC havebeen applied to eah instane, using a CPU time limit of half an hour. For eahalgorithm, we give the average hromati number and the CPU time when theprogram is able to ompute. Otherwise, when less than 5 instanes have beensolved, we indiate the number of solved instanes in brakets. Starting fromN = 30, we inrease the size of random graphs by step 10 until less than 3instanes are solved.Our algorithms are not very eÆient on random graphs in omparison withthe results of other exat methods [21, 15, 7℄. Indeed, Desrosiers, Galinier andHertz are able to solve graphs with density 0.5 and with up to 100 verties. Thisis mainly due to the fat that edges repartition in the graph is homogeneous,17



Table 3: Results on random graphsLDCProblem M LB UB Kdi T Kseq TG(30,.1) 43.8 2.8 3.0 3.0 0.00 3.0 0.00G(40,.1) 75.8 3.0 3.6 3.2 0.00 3.2 0.00G(50,.1) 123.2 3.0 4.2 4.0 0.00 4.0 0.78G(60,.1) 177.0 3.0 4.6 4.0[2℄ 0.00 4.0 2.54G(70,.1) 237.8 3.0 5.0 4.0 2.66G(80,.1) 320.4 3.0 5.0 4.2[4℄ 103.16G(90,.1) 397.0 3.2 5.6 4.6[3℄ 104.80G(100,.1) 477.2 3.0 5.6 5.0[4℄ 190.99G(110,.1) 604.4 3.8 6.0 5.0[4℄ 91.90G(120,.1) 711.8 3.2 6.4 [0℄ *G(30,.5) 211.2 5.2 8.2 7.0 11.18 7.0 2.92G(40,.5) 380.0 6.2 9.8 8.2 6.19 8.2 6.16G(50,.5) 608.6 6.2 12.0 6.0[3℄ 97.93 9.4[3℄ 83.12G(60,.5) 881.8 6.6 12.8 [0℄ * [0℄ *G(30,.9) 392 15.2 16.2 15.8 0.02 15.8 0.01G(40,.9) 699.8 18.2 22.6 18.8 7.11 18.8 0.44G(50,.9) 1103.6 20.8 25.4 22.8 13.2 22.8 10.79G(60,.9) 1606.6 24.0 30.6 [0℄ * 26.2[4℄ 105.02G(70,.9) 2172.6 25.0 33.4 28[1℄ 684.8
18



induing a large linearwidth. For a graph with 50 verties, we have (see Table 2)Fmax(N2) = 41 when the graph density is 0:5 and Fmax(N2) = 46 when thegraph density is 0:9. Nevertheless, results of Table 3 reet learly the possi-bilities and the limits of our method. We are able to solve graphs with density0:9 and 60 verties. These graphs have a very large linearwidth but are alsovery onstrained : at eah step only few on�gurations are generated despitethe big size of the boundary sets. The deomposition method is not eÆienton random graphs with density 0:5. Indeed, the large size of the linearwidthindues the possibility to generate an exponential number of on�gurations andthe 0:5 density does not limit enough the number of valid on�gurations. Ourlinear-deomposition method works better on graphs with small density. In-deed, the maximum size of the boundary set an be very redued by the vertexnumbering N2. For this kind of random graphs, we are able to solve instaneswith up to 100 verties.4.2 DIMACS and COLOR02 instanesWe performed tests on benhmark instanes used at the omputational sympo-sium COLOR02, among whih well-known DIMACS instanes (see desriptionof the instanes at http://mat.gsia.mu.edu/COLOR02).We �rst apply on eah instane the lower bound and upper bound desribedin setion 3.5. Results are reported in table 4. For eah graph we give thenumber of verties N , the number of edges M , and the values LB and UB ofour initial bounds. At this stage, the lower bound equals the upper bound forsome of the DIMACS instanes, so we did not apply any k-oloring algorithmon these graphs.We ompare our LDC algorithms with the reent results of the exat Branh-and-Cut algorithm of Mendez Diaz and Zabala [9℄.We use a CPU time limit ofhalf an hour. The results of our experiments are reported in table 5. Thetime olumn for B&C is only indiative sine the results are from di�erentmahines. They used C++ ode using ABACUS framework and CPLEX 6.0LP solver on a Sun ULTRA workstation. Their CPU time limit was two hours.Comparing their time results for the same implementation of Dsat that weuse, our omputer seems to run three times faster than their omputer. Wereport also the results of Desrosiers, Galinier and Hertz [7℄ in V CS olumns.Column btk ontains the number of baktraks needed by their exat algorithmto solve an instane redued to a vertex-ritial subgraph. Values are enlosedin parentheses when their algorithm is not able to �nd the hromati number19



Table 4: Lower bound and Upper bound resultsProblem N M LB UB Problem N M LB UBfpsol2.i.1 496 11654 65 65 1-FullIns3 30 100 3 5fpsol2.i.2 451 8691 30 30 1-FullIns4 93 593 3 6fpsol2.i.3 425 8688 30 30 1-FullIns5 282 3247 3 8inithx.i.1 864 18707 54 54 2-FullIns3 52 201 4 5inithx.i.2 645 13979 31 31 2-FullIns4 212 1621 4 6inithx.i.3 621 13969 31 31 2-FullIns5 852 12201 4 7le450-5a 450 5714 5 11 3-FullIns3 80 346 5 6le450-5b 450 5734 5 11 3-FullIns4 405 3524 2 7le450-5 450 9803 4 13 4-FullIns3 114 541 6 7le450-5d 450 9757 4 12 4-FullIns4 690 6650 2 8le450-15a 450 8168 13 18 5-FullIns3 154 792 7 8le450-15b 450 8169 15 17 5-FullIns4 1085 11395 2 9le450-15 450 16680 11 25 1-Inser 4 67 232 2 5le450-15d 450 16750 11 26 1-Inser 5 202 1227 2 6le450-25a 450 8260 20 25 1-Inser 6 607 6337 2 7le450 25b 450 8263 25 25 2-Inser 3 37 72 2 4le450-25 450 17343 22 30 2-Inser 4 149 541 2 5le450-25d 450 17425 19 29 2-Inser 5 597 3936 2 6mulsol.i.1 197 3925 49 49 3-Inser 3 56 110 2 4mulsol.i.2 188 3885 31 31 3-Inser 4 281 1046 2 5mulsol.i.3 184 3916 31 31 3-Inser 5 1406 9695 2 6mulsol.i.4 185 3946 31 31 4-Inser 3 79 156 2 4mulsol.i.5 186 3973 31 31 4-Inser 4 475 1795 2 5shool1 385 19095 14 14 mug100-1 100 166 3 4shool1 nsh 352 14612 14 14 mug100-25 100 166 3 4zeroin.i.1 211 4100 49 49 mug88-1 88 146 3 4zeroin.i.2 211 3541 30 30 mug88-25 88 146 3 4zeroin.i.3 206 3540 30 30 games120 120 638 9 9anna 138 493 11 11 miles250 128 387 7 8david 87 812 11 11 miles500 128 2340 20 20homer 561 1629 13 13 miles750 128 4226 31 31huk 74 602 11 11 miles1000 128 6432 42 42jean 80 508 10 10 miles1500 128 10396 73 7320



within the time limit.The Fmax olumn indiates for eah graph the maximal value of the bound-ary set reahed by our algorithm. We give the hromati number of the graphand the CPU time when the program is able to ompute. Otherwise, aster-isks in the time olumn indiate that the program exeeded the time limit. Inthis ase, we report the best lower and upper bounds of the hromati numberobtained by the algorithm.The results of Kseq-LDC are equivalent or better than those of Kdi-LDCon the tested instanes, that is why we report only Kseq-LDC results. Ouralgorithm runs very fast on mug instanes (0.0 or 0.1 seond), beause thevertex linear ordering hosen provides small linearwidths for these graphs (Fmaxolumn). For these instanes, the results of Kdi-LDC and Kseq-LDC are thesame, sine UB = LB + 1. B&C and V CS found the hromati number, butspent time to explore the Branh-and-Cut tree. Our algorithms are also able tosolve some instanes whih have a large linearwidth, beause all the partitions ofthe boundary set have not neessarily to be generated. We found the hromatinumber of 13 instanes, 12 of whih solved in less than 30 seonds. The LDCalgorithm is the �rst to our knowledge to �nd the hromati number of theinstane 4-Inser 3 (bolded in table 5) with an exat method.5 ConlusionsIn this paper, we have presented an original method to solve the graph ol-oring problem by an exat way. This method has the advantage of solvingeasily large instanes whih have a small linearwidth, suh as mug instanes,and allows us to solve the diÆult instane 4-Inser 3. We onsider using thelinear-deomposition mixed with heuristis approah to deal with unboundedlinearwidth instanes.Referenes[1℄ H. L. Bodlaender. A tourist guide through treewidth. Ata Cybernetia, 11:1{21,1993.[2℄ H. L. Bodlaender. A linear time algorithm for �nding tree-deompositions ofsmall treewidth. SIAM Journal on Computing, 25(6):1305{1317, 1996.[3℄ D. Brelaz. New methods to olor the verties of a graph. Communiations of theACM, 22(4):251{256, april 1979. 21



Table 5: Results on COLOR02 instanesLDC B&C VCSProblem Fmax k T k T k btkmug88 1 8 4 0.0 4 485 4 2204467mug88 25 8 4 0.0 4 1690 4 942961mug100 1 7 4 0.1 4 4029 4 1406570mug100 25 8 4 0.0 4 5498 4 9741701-FullIns4 27 5 7.3 5 703 5 61-FullIns5 26 4-6 * 4-6 * 6 2712-FullIns3 9 5 0.0 5 3 5 12-FullIns4 19 5-6 * 5-6 * 6 82-FullIns5 20 5-7 * 5-7 * 7 7153-FullIns3 11 6 0.0 6 1 6 03-FullIns4 20 3-7 * 6-7 * 7 104-FullIns3 11 7 0.0 7 3 7 14-FullIns4 17 4-8 * 7-8 * 8 125-FullIns3 13 8 0.0 8 3 8 15-FullIns4 17 3-9 * 7-9 *1-Inser 4 21 4-5 * 2-5 * 5 1042960361-Inser 5 20 3-6 * 4-6 * * (133727661)1-Inser 6 18 3-7 * 4-7 * * (50929137)2-Inser 4 28 3-5 * 4-5 * * (154902785)2-Inser 5 18 3-6 * 3-6 * * (48458541)3-Inser 3 16 4 23.3 4 10 4 7236163-Inser 4 28 3-5 * 3-5 * * (95076991)3-Inser 5 17 3-6 * 3-6 * * (13784327)4-Inser 3 20 4 1774 3-4 * * (228367528)4-Inser 4 27 3-5 * 3-5 * * (70891706)miles250 9 8 0.0 8 0le450 5a 15 5-9 * 5-9 * 5 0le450 5b 16 5-9 * 5-9 * 5 0le450 5 22 5-6 * 5 0le450 5d 46 5-7 * 5-10 * 5 0le450 15a 21 15-18 * 15-17 * 15 0le450 15b 21 15-17 * 15-17 * 15 0le450 15 21 15-25 * 15-24 * 15 0le450 15d 21 15-26 * 15-23 * 15 0le450 25a 25 25 0.0 25 0le450 25 30 25-28 * 25-28 * 25 0le450 25d 30 25-28 * 25-28 * 25 022
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