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ASYMPTOTICALLY HYPERBOLIC MANIFOLDS WITH SMALL

MASS

MATTIAS DAHL, ROMAIN GICQUAUD, AND ANNA SAKOVICH

Abstract. For asymptotically hyperbolic manifolds of dimension n with scalar
curvature at least equal to −n(n − 1) the conjectured positive mass theorem
states that the mass is non-negative, and vanishes only if the manifold is iso-
metric to hyperbolic space. In this paper we study asymptotically hyperbolic
manifolds which are also conformally hyperbolic outside a ball of fixed radius,
and for which the positive mass theorem holds. For such manifolds we show
that the conformal factor tends to one as the mass tends to zero.
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1. Introduction

The mass of an asymptotically hyperbolic Riemannian manifold is a geometric
invariant which has been introduced by Wang [28] and Chruściel and Herzlich
[11] using different approaches. The mass is computed in a fixed asymptotically
hyperbolic end and gives a measure of the leading order deviation of the geometry
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from a hyperbolic background metric in the end. For the family of anti-de Sitter-
Schwarzschild metrics the mass coincides with the mass parameter.

In both papers mentioned above, a positive mass theorem is proved for spin
manifolds using an adaptation of Witten’s spinor argument [29]. This theorem
states that a complete asymptotically hyperbolic spin manifold of dimension n
must have non-negative mass if its scalar curvature is at least equal to −n(n− 1)
(which is the scalar curvature of hyperbolic space of the same dimension). Previous
work in the physics literature include [1], [13], [4].

The positive mass theorem also contains a rigidity statement saying that the
mass vanishes if and only if the manifold is isometric to hyperbolic space. In
Witten’s spinor argument the rigidity follows from the fact that vanishing mass
forces a certain spinor field to satisfy the overdetermined Killing equation, which
implies that the manifold is hyperbolic. Without the spin assumption the positive
mass theorem for asymptotically hyperbolic manifolds is still open. Partial results
have been obtained by Andersson, Cai, and Galloway in [2] where an adaptation
of the minimal surface method of [25] is used, see also [18, Section 5 5

6 ]. In [2] the
rigidity is proved by first showing that the manifold is Einstein. This is done by
an argument involving a deformation of the metric by the traceless Ricci tensor, if
this is non-zero one can deform to a metric with strictly negative mass which gives
a contradiction.

With the rigidity statement of the positive mass theorem in mind, it is natural
to ask what happens if the mass is close to zero and the scalar curvature is at least
equal to −n(n− 1). Must the manifold then be close to hyperbolic space in some
appropriate sense? Such a statement can never hold true globally, as the example
of the anti-de Sitter-Schwarzschild metric shows.

The same question has been addressed in relation to the rigidity part of the
positive mass theorem for asymptotically Euclidean manifolds: must an asymptot-
ically Euclidean manifold with small mass and non-negative scalar curvature be
close to Euclidean space in some sense? Asymptotically Euclidean spin manifolds
with small mass have been studied by Bray and Finster, see [7] and [12]. From
estimates on the spinor field in Witten’s argument they find that the L2-norm of
the curvature tensor (over the manifold minus an exceptional set) is bounded in
terms of the mass. Lee [22] studies asymptotically Euclidean manifolds which are
conformally flat outside a compact set K. For such manifolds he proves that the
conformal factor can be controlled by the mass, so that the conformal factor tends
uniformly to one outside any ball containing K as the mass tends to zero. The
argument by Lee does not require the manifold to be spin, but it needs the assump-
tion that the positive mass theorem holds for any asymptotically Euclidean metric
on the manifold.

In the present paper we will adapt the ideas of Lee to the setting of asymptotically
hyperbolic manifolds. We define a class A(R0) of n-dimensional asymptotically
hyperbolic manifolds (M, g) which have scalar curvature greater than or equal to
−n(n−1) and have a chart at infinity Φ : M \K → H

n\BR0 , where K is a compact
subset of M and R0 is a given fixed radius. We require that Φ∗g is conformal to
the hyperbolic metric, that is

Φ∗g = Uκb,

where κ = 4
n−2 , and Scalg = −n(n − 1) on M \ K. Further, we assume that

the positive mass theorem holds for any asymptotically hyperbolic metric on the
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manifold M . We prove that given any ε > 0, there is δ > 0 such that if a metric
belongs to the class A(R0) and has mass m < δ then the conformal factor U
satisfies |U − 1| < ε. We refer the reader to Definition 3.1 and Theorem A for
precise statements of the results.

The most stringent assumption of our theorem is probably that the metric must
be conformal to the hyperbolic metric outside a compact subset. However, in
Appendix B we prove that every asymptotically hyperbolic manifold of scalar cur-
vature greater than or equal to −n(n− 1) can be approximated by metrics which
are conformal to the hyperbolic metric outside a ball while changing its mass arbi-
trarily little. See Proposition B.1 for the precise statement. This result generalizes
a proposition of Chruściel and Delay, [10, Proposition 6.2].

The overall strategy of the proof of Theorem A is as follows. We define a 1-
parameter family of asymptotically hyperbolic metrics involving a geometric prop-
erty of (M, g), and we compute their mass. If the mass of (M, g) is close to zero
and if it varies too widely with respect to the parameter, this yields a contradiction
with the positive mass theorem. These ideas are inspired by [22]. However, several
complications arise in the asymptotically hyperbolic context.

One complication is to reduce the proof of the main theorem to the case of
metrics with constant scalar curvature. This is achieved in Proposition 3.6 by a
conformal transformation of the metric. In the asymptotically Euclidean context
there is a simple formula for the change of mass under a conformal transformation
of the metric (see for example [22, Lemma 2.1]), which works nicely together with
the equation for vanishing scalar curvature. The corresponding formula in the
asymptotically hyperbolic case is not as easily combined with the Yamabe equation
for constant scalar curvature. However, in Proposition 3.6 we give an estimate for
the difference between the two masses in terms of the respective conformal factors.

Once this reduction has been done, we can assume that the metrics we are con-
sidering have constant scalar curvature Scalg = −n(n− 1). A second complication
we encounter is to find an appropriate 1-parameter family of metrics. We want a
deformation that can be localized in the asymptotic region where the metric is con-
formal to the hyperbolic metric. In the view of [22] and [2], a natural choice would

be λs = (ϕs)
κ(g − sχR̊ic), where R̊ic = Ric + (n − 1)g is the traceless part of the

Ricci tensor, χ is a cut-off function whose support is contained in the asymptotic
region, and ϕs is a conformal factor such that the metrics λs have constant scalar
curvature −n(n − 1). However, with this choice the formula for the derivative of
the mass turns out to be tractable only if χ ≡ 1. Interestingly, this difficulty can
be overcome by replacing R̊ic with a tensor measuring how far the metric g is from
being static, see Lemma 3.10.

We also give a simpler proof for spin manifolds, see Theorem B. This argument
is based on the fact that the mass controls a certain functional which measures
how close (M, g) is to allow a Killing spinor, and this functional in turn depends
continuously on the conformal factor U .

The small mass theorem of Lee [22] appears as an ingredient in the proof of the
Penrose inequality by Bray [6] and Bray and Lee [8]. In a forthcoming work we plan
to address an adaptation of Bray’s proof of the Penrose inequality to the case of
asymptotically hyperbolic manifolds. Note however that the necessity to replace R̊ic
by a more complicated tensor in the definition of the 1-parameter family of metrics
sheds light on what could be the analog of Bray’s conformal flow on asymptotically
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hyperbolic manifolds. Even in the purely Riemannian context, the lapse function
is likely to play an important role in its definition.

This paper is organized as follows. In Section 2 we give the definitions of asymp-
totically hyperbolic manifolds and their mass. Section 3 begins with the statement
of our main result, Theorem A. In the first subsection we prove some results on
the conformal factors at infinity for manifolds in A(R0). In the second subsection
we then give the proof of our main theorem deferring parts of the argument to the
following subsections. The third subsection contains the argument to show that
we can reduce to the case Scal = −n(n − 1) everywhere by a conformal change
while controlling the mass. The fourth and final subsection contains the proofs of
the more technical lemmas. In Section 4 we give the alternative argument for spin
manifolds. In Appendix A we collect details of the anti-de Sitter-Schwarzschild
metric which are used in the paper. Finally, in Appendix B, we prove Proposition
B.1 which shows that metrics which satisfy the assumptions of Theorems A and
B are dense in the set of metrics which satisfy the standard assumptions of the
positive mass theorem.

Acknowledgments. We thank Julien Cortier and Marc Herzlich for helpful com-
ments on a preliminary version of this article. We are also grateful to the referees for
their careful reading of an earlier version of the article. Their insightful comments
has led to many improvements of the presentation of our results.

2. Preliminaries

2.1. The mass of an asymptotically hyperbolic manifold. Following the work
of Chruściel and Herzlich, [11] and [19], we define the mass of an asymptotically hy-
perbolic manifold. For conformally compact manifolds the definition of the asymp-
totically hyperbolic mass coincides with the mass introduced by Wang in [28]. In
this paper we denote n-dimensional hyperbolic space by H

n and its metric is de-
noted by b. We fix a point in H

n as origin. In polar coordinates around this point
we have b = dr2 + sinh2 rσ on (0,∞)× Sn−1 where σ denotes the standard round
metric on Sn−1 and r is the distance from the origin. The open ball of radius R
centered at the origin is denoted by BR and its closure is denoted by BR.

Let N := {V ∈ C∞(Hn) | Hessb V = V b}. This is a vector space with a basis
consisting of the functions

V(0) = cosh r, V(1) = x1 sinh r, . . . , V(n) = xn sinh r,

where the functions x1, . . . , xn are the coordinate functions on R
n restricted to

Sn−1. The vector space N is equipped with an inner product η of Lorentzian signa-
ture characterized by the condition that the basis above is orthonormal: η(V(0), V(0)) =
1, and η(V(i), V(i)) = −1 for i = 1, . . . , n. We give N a time orientation by spec-

ifying the vector V(0) to be future directed. The subset N+ of positive functions

then coincides with the interior of the future lightcone. We also denote by N 1 the
subset of N+ consisting of functions V with η(V, V ) = 1. In other words, N 1 is the
unit hyperboloid in the future lightcone of N . For a point p0 ∈ H

n the function

V := coshdb(p, ·)
is in N 1, and any function in N 1 can be given in this form.

A Riemannian manifold (M, g) is called asymptotically hyperbolic if there is a
compact subset K ⊂ M and a diffeomorphism Φ : M \ K → H

n \ BR for which
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Φ∗g and b are uniformly equivalent on H
n \BR and

∫

Hn\BR

(
|e|2 + |∇be|2

)
cosh r dµb <∞, (1a)

∫

Hn\BR

|Scalg + n(n− 1)| cosh r dµb <∞, (1b)

where e := Φ∗g− b and r is the (hyperbolic) distance from an arbitrary given point
in H

n. The diffeomorphism Φ is also called a chart, or a set of coordinates, at
infinity.

The linear functional HΦ on N defined by

HΦ(V ) = Hg
Φ(V ) = lim

r→∞

∫

Sr

(
V (divb e− d trb e) + (trb e)dV − e(∇bV, ·)

)
(νr) dµ

b

is called the mass functional of (M, g) with respect to Φ. Proposition 2.2 of [11]
tells us that the limit involved in the definition of HΦ exists and is finite when the
decay conditions (1a)-(1b) are satisfied. If Φ is a chart at infinity as above and A
is an isometry of the hyperbolic metric b then A ◦Φ is again a chart at infinity and
it is not complicated to check that

HA◦Φ(V ) = HΦ(V ◦A−1).

If Φ1, Φ2 are charts at infinity as above, then [19, Theorem 2.3] tells us that there
is an isometry A of b so that Φ2 = A ◦ Φ1 modulo lower order terms which do not
affect the mass functional.

The mass functional HΦ is timelike future directed if HΦ(V ) > 0 for all V ∈ N+.
In this case the mass of the asymptotically hyperbolic manifold (M, g) is defined
by

mg :=
1

2(n− 1)ωn−1
inf
N 1

Hg
Φ(V ).

Here ωn−1 denotes the volume of the sphere (Sn−1, σ). The factor in front of the
infimum is such that the mass of the space-like slice

gAdSS =
dρ2

1 + ρ2 − 2m
ρn−2

+ ρ2σ

of the anti-de Sitter-Schwarzschild metric is equal to the parameterm in the metric.
Note that Chruściel and Herzlich [11, (3.5) and (3.6)] define mg without this factor.
IfHg

Φ is timelike future directed we may replace the coordinates at infinity Φ byA◦Φ
for a suitably chosen isometry A so that mg = 1

2(n−1)ωn−1
Hg

Φ(V(0)). Coordinates

with this property are called balanced.
The positive mass theorem for asymptotically hyperbolic manifolds, [11, Theo-

rem 4.1] and [28, Theorem 1.1], states that the mass functional is timelike future
directed or zero for complete asymptotically hyperbolic spin manifolds with scalar
curvature Scal ≥ −n(n− 1). In [2, Theorem 1.3] the same result is proved with the
spin assumption replaced by assumptions on the dimension and on the geometry
at infinity.
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2.2. Conformally hyperbolic metrics. We now compute the mass functional
of a metric g which is asymptotically hyperbolic and conformal to the hyperbolic
metric in the chart at infinity. That is Φ∗g = Uκb where U is a positive function
and we set κ := 4

n−2 as we do throughout the paper. In this case e = fb where

f := Uκ − 1. The metric g is asymptotically hyperbolic if e satisifies (1a)-(1b),
which turns into weighted integral conditions on U and its first two derivatives.
The mass functional becomes

Hg
Φ(V ) = (n− 1) lim

r→∞

∫

Sr

(f∂rV − V ∂rf) dµ
b.

If g has constant scalar curvature −n(n − 1), so that U is a solution to the
Yamabe equation, it is known from [3] that U has the expansion at infinity

U = 1 +
2n

n+ 1
ve−nr +O(e−(n+1)r)

in polar coordinates, where v is a function on Sn−1. Then

Hg
Φ

(
n∑

i=0

aiV(i)

)
=

4(n− 1)

n− 2

∫

Sn−1

(
a0 +

n∑

i=1

aix
i

)
v dµσ,

and in particular we have

mg ≤ 1

2(n− 1)ωn−1
Hg

Φ(V(0)) =
2

(n− 2)ωn−1

∫

Sn−1

v dµσ (2)

where equality holds if Φ is a balanced chart at infinity.

3. Asymptotically hyperbolic manifolds with small mass

In this section, we prove an analog of the main result of [22]. We first introduce
the following class of asymptotically hyperbolic manifolds.

Definition 3.1. For R0 > 0 we let A(R0) be the class of 4-tuples (M, g,Φ, U) such
that

• (M, g) is a complete Riemannian manifold which is asymptotically hyperbolic
with respect to Φ, where Φ is a diffeomorphism from the exterior of a compact
set K ⊂M to H

n \BR0 ;
• Scalg ≥ −n(n− 1), and Scalg = −n(n− 1) on M \K;
• U is a positive function on H

n \ BR0 such that U → 1 at infinity and
Φ∗g = Uκb;

• the coordinates at infinity Φ are balanced;
• the positive mass theorem holds for any asymptotically hyperbolic metric on
M .

We will prove the following theorem concerning the near-equality case for the
positive mass theorem.

Theorem A. Let R1 > R0 and ε > 0. There is a constant δ > 0 so that

|U − 1| ≤ εe−nr

on H
n \BR1 for all (M, g,Φ, U) ∈ A(R0) with m

g < δ.

We fix once and for all the value of R0 and abbreviate A = A(R0).
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3.1. A priori estimates. We first prove estimates on the conformal factor U which
are valid for any element of A.

Lemma 3.2. There are positive constants A, Ak, k = 0, 1, . . ., such that for any

(M, g,Φ, U) belonging to the class A we have

1

A
≤ U ≤ A,

∣∣∣∇(k)(U − 1)
∣∣∣ ≤ Ake

−nr for k ≥ 0,

on H
n \BR1 .

Note that these estimates are specific to the case of asymptotically hyperbolic
geometry. In the Euclidean context they cannot be true due to the fact that the
Yamabe equation (which is then the Laplace equation) is linear.

Proof. The assumption on the scalar curvature of Φ∗g = Uκb on H
n \BR0 implies

that U solves the Yamabe equation

− 4(n− 1)

n− 2
∆bU − n(n− 1)U = −n(n− 1)Uκ+1 (3)

on H
n \BR0 . From Propositions A.1 and A.2 we know that there exists a solution

U+ of Equation (3) on H
n\BR0 such that U+ = 1+O(e−nr) at infinity and U+ → ∞

on ∂BR0 . Now the same argument as in [15, Proposition 3.6] can be used to show
that U ≤ U+. Namely, the substitution U = eϕ brings Equation (3) into the form

−4(n− 1)

n− 2

(
∆bϕ+ |dϕ|2b

)
− n(n− 1) = −n(n− 1)eκϕ.

Subtracting the respective equations for ϕ+ and ϕ gives

−4(n− 1)

n− 2

(
∆b(ϕ+ − ϕ) + 〈d(ϕ+ − ϕ), d(ϕ+ + ϕ)〉b

)
+ n(n− 1) (eκϕ+ − eκϕ) = 0,

and from the standard maximum principle we conclude that ϕ+ ≥ ϕ, hence U+ ≥ U .
Similarly, from Proposition A.3, there exists a function U− such that U− solves
Equation (3), U− = 1 + O(e−nr) at infinity, and U− = 0 on ∂BR0 . From the
maximum principle we also conclude that U− ≤ U .

We can now finish the proof of the lemma. The existence of the constants A and
A0 follows from the fact that U− ≤ U ≤ U+ on H

n \BR1 . Finally, since u = U − 1
satisfies

−4(n− 1)

n− 2
∆bu = −n(n− 1)

(
(1 + u)κ+1 − 1

)
+ n(n− 1)u

we can apply elliptic regularity in balls of fixed radius as above and combine with
standard bootstrap arguments to get the existence of constants Ak for k ≥ 1. �

From the estimates in Lemma 3.2 together with (2) we conclude that the mass
of the elements of A is uniformly bounded.

Corollary 3.3. There exists a constant C = C(R0) such that for all elements

(M, g,Φ, U) belonging to the class A(R0), the mass satisfies mg ≤ C.

The exponential decay stated in Theorem A will follow from the next proposition.
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Proposition 3.4. Let R1 > R0 be a fixed radius. There exists a constant C > 0
such that for any (M, g,Φ, U) in the class A we have

|U − 1| ≤ C

(
sup

Hn\BR1

|U − 1|
)
e−nr (4)

on H
n \BR1 .

Proof. In Appendix A we have described the solutions fm of (3) corresponding to
anti-de Sitter-Schwarzschild metrics of mass m. For appropriate choice of m− <
0 < m+ we have that fm+ and fm−

solve (3) on H
n \BR0 with fm+ → ∞ on ∂BR0

and fm−
= 0 on ∂BR0 . From the proof of Lemma 3.2 we know that fm−

≤ U ≤ fm+

on H
n \BR0 .

Let 0 ≤ m ≤ m+. Then fm such that 1 ≤ fm ≤ fm+ is defined for r ≥ R1,
see Appendix A for details. From the proof of Proposition A.1 we know that
0 ≤ fm−1 ≤ Cme−nr for r ≥ r1(m) := max{R1, r((2m)1/n)}. It is not complicated
to extend this estimate to the whole interval r ≥ R1. Indeed, let µ > 0 be such
that R1 = r((2µ)1/n). If 0 ≤ m ≤ µ then we have r1(µ) = R1, hence the estimate
already holds for r ≥ R1. Therefore it suffices to consider the case µ < m ≤ m+

which corresponds to the situation r1(m) > R1. Since fm is decreasing we have
fm − 1 ≤ fm(R1) − 1 ≤ fm+(R1) − 1 on R1 ≤ r ≤ r1(m), whereas me−nr ≥
µe−nr1(m) ≥ µe−nr1(m+) on this interval. It is now clear that up to increasing C
if necessary, we can assume that the inequality 0 ≤ fm − 1 ≤ Cme−nr holds for
r ≥ R1. In the rest of the proof, the constant C > 0 might vary from line to line
but remains independent of m.

Using Proposition A.3 we can similarly prove that the inequality Cme−nr ≤
fm − 1 ≤ 0 holds for r ≥ R1 in the case when m− ≤ m ≤ 0. This yields

|fm − 1| ≤ C|m|e−nr

for m− ≤ m ≤ m+ and r ≥ R1. Let us now choose m,m ∈ (m−,m+) so that
fm(R1) = inf∂BR1

U and fm(R1) = sup∂BR1
U . Again, the use of the maximum

principle as in the proof of Proposition A.1 yields fm ≤ U ≤ fm on H
n \ BR1 .

Consequently, we have the estimate

|U − 1| ≤ Cmax {|m|, |m|} e−nr

on H
n \BR1 .

With all these preliminaries at hand, (4) is a simple consequence of the fact that
there exists a constant C > 0 such that

|m| ≤ C|fm(R1)− 1| for m− ≤ m ≤ m+. (5)
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Indeed, if we assume that this estimate holds, then

|U − 1| ≤ Cmax
{∣∣fm(R1)− 1

∣∣ , |fm(R1)− 1|
}
e−nr

= Cmax

{∣∣∣∣ inf∂BR1

U − 1

∣∣∣∣ ,
∣∣∣∣∣ sup∂BR1

U − 1

∣∣∣∣∣

}
e−nr

= Cmax

{∣∣∣∣ inf∂BR1

(U − 1)

∣∣∣∣ ,
∣∣∣∣∣ sup∂BR1

(U − 1)

∣∣∣∣∣

}
e−nr

≤ C

(
sup
∂BR1

|U − 1|
)
e−nr

≤ C

(
sup

Hn\BR1

|U − 1|
)
e−nr.

Consequently, in order to complete the proof, we only need to prove (5). In fact,
(5) will follow from the monotonicity of fm if we show that

|m| ≤ C|fm(R2)− 1| for m− ≤ m ≤ m+, (6)

for some R2 > R1. We fix R2 > max{r0(m+), R1} and set x := fm(R2). It is
clear that fm−

(R2) ≤ x ≤ fm+(R2) for m− ≤ m ≤ m+, and that r−1(R2) =

x
2

n−2 sinhR2 > a(m). Then (27) yields
∫ ∞

x
2

n−2 sinhR2

dρ

ρ
√
1 + ρ2 − 2m

ρn−2

=

∫ ∞

R2

dr

sinh r
.

We define

F (x,m) :=

∫ ∞

x
2

n−2 sinhR2

dρ

ρ
√
1 + ρ2 − 2m

ρn−2

,

where fm−
(R2) ≤ x ≤ fm+(R2), m− ≤ m ≤ m+. It is straightforward to check

that

∂F

∂m
=

∫ ∞

x
2

n−2 sinhR2

dρ

2ρn−1
(
1 + ρ2 − 2m

ρn−2

)3/2

≥
∫ ∞

f
2

n−2
m+(R2)

sinhR2

dρ

2ρn−1
(
1 + ρ2 − 2m−

ρn−2

)3/2

is positive and uniformly bounded away from zero, and that

∂F

∂x
= − 2

(n− 2)x
√
1 + x

4
n−2 (sinhR2)2 − 2m

x2(sinhR2)n−2

is uniformly bounded. We conclude that there exists C > 0 such that |m′(x)| < C
for x ∈ (fm−

(R2), fm+(R2)). Finally, applying the mean value theorem we arrive
at (6) and thus (5) follows. �

Corollary 3.5. There exists a radius R2 > R1 such that for (M, g,Φ, U) ∈ A
the function |U − 1| reaches its maximum over H

n \BR1 in the annulus AR1,R2 =

BR2 \BR1 .
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Proof. Choose R2 such that Ce−nR2 ≤ 1. Then for any point such that r > R2 we
have

|U − 1| ≤ C

(
sup

Hn\BR1

|U − 1|
)
e−nr < sup

Hn\BR1

|U − 1|.

�

3.2. Strategy of the proof of Theorem A. In this subsection we discuss the
main strategy of the proof of Theorem A, deferring the proof of technical details to
the next subsections.

The first step is to reduce the proof of Theorem A to the particular case of
metrics with constant scalar curvature Scalg = −n(n− 1). For this we show that
the conformal factor transforming the metric g to a metric with constant scalar
curvature can be uniformly controlled on H

n \ BR1 by the difference between the
masses (more exactly of the time components HΦ(V(0)) of the mass functional) of
the two metrics. This is the content of the following proposition.

Proposition 3.6. Given (M, g,Φ, U) ∈ A, there exists a unique positive function w
onM such that g̃ := wκg is asymptotically hyperbolic with constant scalar curvature

Scalg̃ = −n(n− 1). The metric g̃ has mass mg̃ ≤ mg. Further, for p > n/2 there

is a constant C > 0 independent of (M, g,Φ, U) such that

sup
Hn\BR1

∣∣∣U − Ũ
∣∣∣ ≤ C

(
mg −mg̃

)1/p
,

where Ũ := Uw.

This reduction turns out to be convenient for obtaining estimates in the second
part of the proof. We introduce the restricted classA0(R0) of 4-tuples (M, g,Φ, U) ∈
A such that Scalg = −n(n− 1) on all of M . To prove Theorem A we need to show
the result for elements of A0 = A0(R0).

The basic idea is to apply the positive mass theorem to a certain 1-parameter
family of metrics. To define it, we first modify the metric g in an annulus (see
Equation (8)) and conformally transform it to fulfill the assumption Scal ≥ −n(n−
1) of the positive mass theorem.

In the first lemma we prove the existence of a function V which solves ∆gV = nV
and which is asymptotic to V(0). For functions V1 and V2 on M we write V1 ∼ V2
if V1/V2 tends to 1 at infinity.

Let R′
0, R

′′
0 , R

′
1 and R′′

1 be constants such that

R0 < R′
0 < R′′

0 < R1 < R′
1 < R′′

1 .

We remind the reader that r denotes the distance function from the chosen origin
in H

n.

Lemma 3.7. Let (M, g,Φ, U) ∈ A. There exists a unique solution V g to the

equation

∆gV = nV (7)

such that V g ∼ V(0). Further, there exist universal functions

V± : Hn \BR′
0
→ R

such that for some constants C0, C1 > 0 we have
∣∣V± − V(0)

∣∣ ≤ C0e
−(n−1)r,
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V− ≤ V g ≤ V+,

and ∣∣dV g − dV(0)
∣∣
g
≤ C1e

−(n−1)r

on H
n \ BR′

0
. Also, there are constants B2, B3, . . . depending only on R′

0, R
′′
0 and

R′′
1 such that for any integer k ≥ 2 we have

∣∣∣∇(k)V g
∣∣∣ ≤ Bk on AR′′

0 ,R′′
1
.

Define

T := R̊ic
g − H̊ess

g
V g

V g
,

where R̊ic
g
= Ricg + (n − 1)g denotes the traceless part of the Ricci tensor and

H̊ess
g
V = Hessg V − V g denotes the traceless part of the Hessian of V . From the

computations in the proof of Lemma 3.10 it follows that the tensor V gT is actually
the gradient of the mass at (M, g) in the space A0(R

′′
1 ).

We choose a smooth function χ such that

χ =





0 on BR′′
0
,

1 on AR1,R′
1
,

0 on H
n \BR′′

1
,

and define the metric

gs := g + sχT (8)

for small values of the parameter s.
Next we recall the definition of the weighted local Sobolev spaces, see [15] for

more details on these spaces. Let p ∈ (1,∞), a non negative integer k, and δ ∈ R

be given. We define the function space Xk,p
δ (M,R) as the set of functions u ∈

W k,p
loc (M,R) such that the norm

‖u‖Xk,p

δ
(M,R) = sup

x∈M
eδr(x) ‖u‖Wk,p(B1(x),R)

(9)

is finite. This space is a Banach space.
We will conformally transform the metrics gs to have constant scalar curvature

Scal = −n(n− 1). The details of this are taken care of in the following lemma.

Lemma 3.8. There exists s0 > 0 such that for all s ∈ [−s0, s0] and any (M, g,Φ, U) ∈
A0 it holds that

1

2
g ≤ gs ≤ 2g

and

|Scalgs + n(n− 1)| ≤ n− 1.

Further, for any s ∈ [−s0, s0] there exists a unique positive function ϕs on M which

is bounded from above and away from zero such that the metric

λs := ϕκ
sgs

has constant scalar curvature −n(n− 1). The function ϕs satisfies

(
n− 1

n

)1/κ

≤ ϕs ≤
(
n+ 1

n

)1/κ

.
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In addition, there are constants C0, C1, . . . such that
∣∣∣∇(k)(ϕs − 1)

∣∣∣ ≤ Cke
−nr (10)

holds on H
n \ BR1 for all k ≥ 0. Finally, the map s 7→ ϕs − 1 from the interval

[−s0, s0] to X2,p
δ (M, g) is C2 for any p ∈ (n,∞) and δ ∈

(
n
2 , n

)
.

For V = V(0) = cosh r we set H(s) := Hλs

Φ (V ). This is the time component of

the mass functional, which gives an upper bound on the mass, namely mλs ≤
1

2(n−1)ωn−1
H(s). Since the coordinates at infinity are balanced for g, we have

mg = mλ0 = 1
2(n−1)ωn−1

H(0). In what follows we will denote derivatives with

respect to the parameter s by a dot.

Lemma 3.9. The map s 7→ H(s) is a C2 function. Further, there is a constant A
independent of (M, g,Φ, U) ∈ A0 such that

|Ḧ(s)| ≤ A.

In the next proposition we find that Ḣ(0) is related to the L2-norm of R̊ic
g −

1
V g H̊essV

g on an annulus, which can be interpreted as a measure of “non-staticity”
of the metric g on the annulus.

Lemma 3.10. Suppose (M, g,Φ, U) ∈ A0 and H(s) is defined as above, then

Ḣ(0) =

∫

M

χV g

∣∣∣∣∣R̊ic
g − H̊essV g

V g

∣∣∣∣∣

2

g

dµg.

We are now ready to prove Theorem A.

Proof of Theorem A. We first assume that the metric g has constant scalar curva-
ture. Applying Taylor’s formula to H(s) on the interval (−s0, s0) we find

H(s) = H(0) + sḢ(0) +

∫ s

0

(s− t)Ḧ(t)dt

≤ H(0) + sḢ(0) +A

∫ s

0

(s− t)dt

≤ H(0) + sḢ(0) +
A

2
s2.

From the assumption that the positive mass theorem holds for any asymptotically
hyperbolic metric on M we have H(s) ≥ 2(n − 1)ωn−1m

λs ≥ 0 for s ∈ (−s0, s0).
As a consequence,

0 ≤ H(0) + sḢ(0) +
A

2
s2.

Assuming that H(0) ≤ 2s20
A , we write the previous inequality with s = −

√
2H(0)

A

and get

Ḣ(0) ≤
√
2AH(0) =

√
4A(n− 1)ωn−1mg. (11)

Let ε be an arbitrary positive number. We claim that there exists δ > 0 such
that any (M, g,Φ, U) belonging to A0 and having mass mg ≤ δ satisfies

sup
Hn\BR1

|U − 1| ≤ ε.



ASYMPTOTICALLY HYPERBOLIC MANIFOLDS WITH SMALL MASS 13

To prove this we argue by contradiction and assume that there is a sequence
(Mk, gk,Φk, Uk) of elements of A0 such that the mass mk := mgk tends to zero
while |Uk − 1| ≥ ε. Using Lemmas 3.2, 3.7 and [15, Proposition 2.3] (Rellich the-
orems for weighted local Sobolev spaces), we construct functions U∞ and V∞ on
H

n \ BR′
0
as limits of some subsequence of Uk and V gk . Choose p ∈ (n,∞) and

δ ∈
(
n
2 , n

)
.

• From Lemma 3.2, the sequence Uk− 1 is bounded in X3,p
n (Hn \BR′

0
). Hence

there exists a subsequence converging to a limit U∞ − 1 in X2,p
δ .

• To construct V∞, it suffices to remark that the sequence Vk is uniformly
bounded in W 3,p(K) for any compact subset K ⊂ H

n \ B̊R′
0
by standard

elliptic regularity. Hence, by a diagonal process, we can construct a subse-
quence of functions Vk converging in the W 2,p-norm on any compact subset.

The function U∞ solves (3) and V∞ solves ∆g∞V∞ = nV∞, where g∞ := Uκ
∞b.

They satisfy the asymptotics of Lemmas 3.2 and 3.7. Further,

sup
Hn\BR1

|U∞ − 1| ≥ ε. (12)

The metric g∞ has mass zero since the mass depends continuously on U − 1 ∈ X2,p
δ

(see the proof of Lemma 3.9).
Lemma 3.10 together with the estimate (11) applied to (Mk, gk,Φk, Uk) gives

the inequality

∫

M

χV gk

∣∣∣∣∣R̊ic
gk − H̊essV gk

V gk

∣∣∣∣∣

2

gk

dµgk ≤
√
4A(n− 1)ωn−1mk

for any k. In particular, we obtain

∫

Hn\BR′
0

χV g∞

∣∣∣∣∣R̊ic
g∞ − H̊essV g∞

V g∞

∣∣∣∣∣

2

g∞

dµg∞ = 0

when we let k tend to infinity. Therefore

R̊ic
g∞

=
H̊essV g∞

V g∞

on AR′′
0 ,R

′
1
. By analyticity this equality holds on all of Hn \BR′

0
. From Proposition

A.4 and the fact that the metric g∞ has zero mass, we conclude that g∞ is hyper-
bolic. This forces U∞ = 1 which contradicts (12). We have thus proved the claim
made above.

At this point, we would like to emphasize that the metric g∞ is defined only on
H

n \BR′
0
so it is not complete. In particular, the standard positive mass theorem

does not apply. This is why Proposition A.4 is needed.
The proof of Theorem A in the general case Scalg ≥ −n(n−1) is then concluded

by Proposition 3.6 followed by Proposition 3.4. �

3.3. Proof of Proposition 3.6. In this section we prove Proposition 3.6: the con-
formal factor transforming a metric g to a metric g̃ with constant scalar curvature
is controlled by the difference mg −mg̃ of their masses. This was used to reduce
the proof of Theorem A to elements of the class A0. Such a reduction can also be
found in [2, Proposition 3.13].
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As it will become apparent, the proof of this proposition yields a simpler argu-
ment for Theorem A in the case U ≥ 1. However, since it is based on estimates for
solutions to the Yamabe equation on H

n \ BR1 , the argument cannot be general-
ized to arbitrary U . Indeed, one can find solutions to the Yamabe equation (3) on
H

n \ BR0 that oscillate around 1 to produce metrics with zero mass. This shows
that the strategy of the proof of Proposition 3.6 is too weak to produce a full proof
of Theorem A.

We first make a certain observation about (M, g,Φ, U) ∈ A. If we set U = 1+u,
Equation (3) can be written in the form

∂2ru+ (n− 1) coth r ∂ru− nu = f(u)− sinh−2 r∆σu (13)

where

f(u) :=
n(n− 2)

4

(
(1 + u)

n+2
n−2 − 1− n+ 2

n− 2
u

)
.

We remark that the ordinary differential equation

u′′(r) + (n− 1) coth r u′(r) − nu(r) = 0

has the solutions

u0(r) = cosh r

∫ ∞

r

1

cosh2 τ sinhn−1 τ
dτ =

2n

n+ 1
e−nr +O(e−(n+2)r),

u1(r) = cosh r.

Lemma 3.11. Suppose U = 1+u is such that u satisfies (13) on H
n \BR0 and the

metric Uκb is asymptotically hyperbolic with respect to the identity chart at infinity.

Then v := u/u0 satisfies
∫

Sn−1

v(s) dµσ ≥ (n− 2)ωn−1

2
mUκb

+

∫ ∞

s

(
1− cosh s

cosh r

u0(r)

u0(s)

)
cosh r sinhn−1 r

(∫

Sn−1

f(u(r, θ)) dµσ

)
dr

where mUκb is the mass of the metric Uκb. Equality holds if the identity chart at

infinity is balanced for Uκb.

Proof. Substituting u = u0v into (13) we get

u0∂
2
rv + (2u′0 + (n− 1) coth r u0)∂rv = f(u)− sinh−2 r∆σu.

If we multiply this equation by u0 sinh
n−1 r we obtain

∂r
(
u20 sinh

n−1 r ∂rv
)
= u0 sinh

n−1 r
(
f(u)− sinh−2 r∆σu

)
.

Integration from t to ∞ gives
(
u20 sinh

n−1 r ∂rv
)
|r=∞

−
(
u20 sinh

n−1 r ∂rv
)
|r=t

=

∫ ∞

t

u0(r) sinh
n−1 r

(
f(u(r, θ))− sinh−2 r∆σu(r, θ)

)
dr.

We observe that ∂rv = O(1) by Lemma 3.2. Hence u20 sinh
n−1 r ∂rv = O(e−(n+1)r),

so the first term in the left-hand side vanishes. Consequently we have

−∂rv(t, θ) =
1

u20(t) sinh
n−1 t

∫ ∞

t

u0(r) sinh
n−1 r

(
f(u(r, θ)) − sinh−2 r∆σu(r, θ)

)
dr.



ASYMPTOTICALLY HYPERBOLIC MANIFOLDS WITH SMALL MASS 15

Integrating from s to ∞ and changing order of integration we obtain

v(s, θ)− lim
r→∞

v(r, θ)

=

∫ ∞

s

1

u20(t) sinh
n−1 t

∫ ∞

t

u0(r) sinh
n−1 r

(
f(u(r, θ))− sinh−2 r∆σu(r, θ)

)
drdt

=

∫ ∞

s

(∫ r

s

1

u20(t) sinh
n−1 t

dt

)
u0(r) sinh

n−1 r
(
f(u(r, θ))− sinh−2 r∆σu(r, θ)

)
dr.

Here the integral over t is
∫ r

s

1

u20(t) sinh
n−1 t

dt

=

∫ r

s

1

cosh2 t sinhn−1 t
(∫∞

t
1

cosh2 τ sinhn−1 τ
dτ
)2 dt

=

∫ r

s

(
1∫∞

t
1

cosh2 τ sinhn−1 τ
dτ

)′

dt

=
1∫∞

r
1

cosh2 τ sinhn−1 τ
dτ

− 1∫∞

s
1

cosh2 τ sinhn−1 τ
dτ

=
cosh r

u0(r)
− cosh s

u0(s)
,

thus

v(s, θ)− lim
r→∞

v(r, θ)

=

∫ ∞

s

(
cosh r

u0(r)
− cosh s

u0(s)

)
u0(r) sinh

n−1 r
(
f(u(r, θ))− sinh−2 r∆σu(r, θ)

)
dr.

From (2) we have

(n− 2)ωn−1

2
mUκb ≤ lim

r→∞

∫

Sn−1

v(r, θ) dµσ ,

so when we integrate over Sn−1 we arrive at
∫

Sn−1

v(s, θ) dµσ − (n− 2)ωn−1

2
mUκb

≥
∫ ∞

s

(
cosh r

u0(r)
− cosh s

u0(s)

)
u0(r) sinh

n−1 r

(∫

Sn−1

f(u(r, θ)) dµσ

)
dr

≥
∫ ∞

s

(
1− cosh s

cosh r

u0(r)

u0(s)

)
cosh r sinhn−1 r

(∫

Sn−1

f(u(r, θ)) dµσ

)
dr,

with equality if the coordinates at infinity are balanced. �

Proof of Proposition 3.6. The existence of the function w is guaranteed by [3, The-
orem 1.2] which says that any asymptotically hyperbolic manifold is conformally
related to one with scalar curvature −n(n− 1). The function w is a solution of the
Yamabe equation

− 4(n− 1)

n− 2
∆gw + Scalgw = −n(n− 1)wκ+1. (14)

Since Scalg ≥ −n(n−1), the constant function 1 is a supersolution of (14). Applying
the maximum principle as in the proof of Lemma 3.2 we conclude that w ≤ 1.
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Consequently, since both U and Ũ satisfy the Yamabe equation (3), it follows from

the proof of Lemma 3.2 that U− ≤ Ũ ≤ U ≤ U+ on H
n \BR0 . We set ũ = Ũ − 1,

ṽ = u−1
0 ũ, and we note that ũ ≤ u and ṽ ≤ v. Since Φ are balanced coordinates at

infinity for g (but not necessarily for g̃) we see from (2) that

mg −mg̃ ≥ lim
r→∞

2

(n− 2)ωn−1

∫

Sn−1

(v(r, θ) − ṽ(r, θ)) dµσ ≥ 0.

Again, since Φ are balanced coordinates at infinity for g we conclude from Lemma
3.11 that
∫

Sn−1

(v(s, θ)− ṽ(s, θ)) dµσ ≤ (n− 2)ωn−1

2

(
mg −mg̃

)

+

∫ ∞

s

(
1− cosh s

cosh r

u0(r)

u0(s)

)
cosh r sinhn−1 r

(∫

Sn−1

(f(u(r, θ))− f(ũ(r, θ))) dµσ

)
dr.

Observe that

0 ≤ cosh s

cosh r

u0(r)

u0(s)
≤ 1.

Moreover, recall that u+ = U+ − 1 > 0. Therefore we can use mean value theorem
to show that

f(u)− f(ũ) = f ′(tu+ (1 − t)ũ))(u− ũ)

≤ C̃(tu+ (1− t)ũ)(u− ũ)

≤ C̃u+(u − ũ)

= C̃u0v+(u0v − u0ṽ)

= C̃u20v+(v − ṽ),

where 0 ≤ t ≤ 1, v+ = u−1
0 u+, and the constant C̃ > 0 depends only on f .

Consequently, we can estimate
∫

Sn−1

(v(s, θ)− ṽ(s, θ)) dµσ ≤ (n− 2)ωn−1

2

(
mg −mg̃

)

+

∫ ∞

s

F (r)

(∫

Sn−1

(v(r, θ) − ṽ(r, θ)) dµσ

)
dr,

where F (r) := C′ cosh r sinhn−1 r u20(r)v+(r).
We now argue as in the proof of Gronwall’s lemma and prove the estimate

∫

Sn−1

(v(s, θ)− ṽ(s, θ)) dµσ ≤ (n− 2)ωn−1

2

(
mg −mg̃

)
e
∫

∞

s
F (t) dt. (15)

We first consider the case when mg −mg̃ > 0 and set

G(s) :=
(n− 2)ωn−1

2

(
mg −mg̃

)
+

∫ ∞

s

F (r)

(∫

Sn−1

(v(r, θ)− ṽ(r, θ)) dµσ

)
dr.

Thus we have
∫
Sn(v(s, θ) − ṽ(s, θ)) dµσ ≤ G(s), and G(s) ≥ (n−2)ωn−1

2

(
mg −mg̃

)
.

It is also clear that

G′(s) = −F (s)
∫

Sn−1

(v(s, θ) − ṽ(s, θ)) dµσ ≥ −F (s)G(s).
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Since G(s) > 0 we conclude that

G′(s)

G(s)
≥ −F (s).

Integrating this inequality from s to ∞ we get

ln

(
(n− 2)ωn−1

2

(
mg −mg̃

))
− lnG(s) ≥ −

∫ ∞

s

F (t) dt.

This yields

G(s) ≤ (n− 2)ωn−1

2

(
mg −mg̃

)
e
∫

∞

s
F (t) dt,

which in its turn implies (15). Note that (15) also holds for mg −mg̃ = 0 which
follows by passing to the limit when mg −mg̃ > 0 and mg −mg̃ → 0 in (15).

As a consequence we can estimate the Lp-norm of v − ṽ over the annulus Ar1,r2

where R0 < r1 < R1 < r2. We have

‖v − ṽ‖pLp(Ar1,r2)
=

∫

Ar1,r2

(v − ṽ)p dµb

≤
∫

Ar1,r2

(2v+)
p−1(v − ṽ) dµb

=

∫ r2

r1

(2v+)
p−1 sinhn−1 r

(∫

Sn−1

(v(r, θ) − ṽ(r, θ)) dµσ

)
dr

≤ C
(
mg −mg̃

)

for some positive constant C.
We are now about to obtain the estimate stated in the lemma. The equation for

U − Ũ reads

−4(n− 1)

n− 2
∆b(U − Ũ)− n(n− 1)

(
U − Ũ

)
= −n(n− 1)

(
Uκ+1 − Ũκ+1

)
.

Since u0 is bounded we have

‖U − Ũ‖Lp(Ar1,r2 )
= ‖u− ũ‖Lp(Ar1,r2)

≤ C
(
mg −mg̃

)1/p
.

Here and in the rest of the proof the value of the positive constant C might vary
from line to line but remains independent of (M, g,Φ, U) ∈ A. By the mean value
theorem we have

Uκ+1 − Ũκ+1 = (κ+ 1)
(
tU + (1− t)Ũ

)κ (
U − Ũ

)

≤ CUκ
+

(
U − Ũ

)

≤ C
(
U − Ũ

)

on Ar1,r2 for some t ∈ [0, 1]. Hence

‖Uκ+1 − Ũκ+1‖Lp(Ar1,r2)
≤ C

(
mg −mg̃

)1/p
.

Now elliptic regularity yields
∥∥∥U − Ũ

∥∥∥
W 2,p(Ar′

1
,R1

)
≤ C

(
mg −mg̃

)1/p
,
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where r1 < r′1 < R1, and by embedding theorems we conclude that

sup
Ar′1,R1

∣∣∣U − Ũ
∣∣∣ ≤ C

(
mg −mg̃

)1/p
.

Set ϕ := logU and ϕ̃ := log Ũ . Then ϕ − ϕ̃ is non-negative, tends to zero at
infinity, and satisfies

−4(n− 1)

n− 2

(
∆b(ϕ− ϕ̃) + 〈d(ϕ − ϕ̃), d(ϕ+ ϕ̃)〉b

)
+ n(n− 1)

(
eκϕ − eκϕ̃

)
= 0.

If the maximum of ϕ − ϕ̃ is attained at an interior point of Hn \ BR1 we get a
contradiction, and thus

logU − log Ũ ≤ sup
∂BR1

(
logU − log Ũ

)

on H
n \BR1 . By the mean value theorem we have

logU − log Ũ =
U − Ũ

tU + (1 − t)Ũ





≥ U − Ũ

U+(R1)

≤ U − Ũ

U−(R1)

for some t ∈ [0, 1]. Thus

U − Ũ ≤ U+(R1)
(
logU − log Ũ

)

≤ U+(R1) sup
∂BR1

(
logU − log Ũ

)

≤ U+(R1)

U−(R1)
sup
∂BR1

(
U − Ũ

)

≤ C
(
mg −mg̃

)1/p

on H
n \BR1 , which concludes the proof of the proposition. �

3.4. Proof of lemmas. We now complete the proof of Theorem A by proving the
lemmas stated in Subsection 3.2.

Proof of Lemma 3.7. We first construct V±. The construction being lengthy, we
give only the argument for V+. We want V+ to be a supersolution for Equation (7),

−∆gV+ + nV+ ≥ 0.

Since g = Uκb on H
n \BR0(0) the previous inequality is equivalent to

−∆bV+ − 2

〈
dU

U
, dV+

〉
+ nUκV+ ≥ 0.

We choose V+ to be a function of r so

−V ′′
+ − (n− 1) coth rV ′

+ − 2
∂rU

U
V ′
+ + nUκV+ ≥ 0,
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where a prime denotes a derivative with respect to r. From Lemma 3.2, there exists
a universal constant A′

1 depending only on R′
0 such that ∂rU

U ≤ A′
1e

−nr. Assuming
that V+, V

′
+ ≥ 0, the previous inequality will be satisfied provided that

− V ′′
+ − (n− 1) coth rV ′

+ − 2A′
1e

−nrV ′
+ + nϕκ

−V+ = 0, (16)

where ϕ− is the anti-de Sitter-Schwarzschild solution vanishing at r = R0. Let λ
be a positive real number to be chosen later. From standard theory, there exists
a unique solution to Equation (16) defined on [R′

0,∞) such that V+(R
′
0) = λ and

V ′
+(R

′
0) = 0.

We first claim that V+ and V ′
+ are both positive functions on (R′

0,∞). Indeed,
rewriting Equation (16) as

V ′′
+ +

(
(n− 1) coth r + 2A′

1e
−nr
)
V ′
+ = nϕκ

−V+, (17)

setting R := inf{r > R′
0, V+(r) ≤ 0}, and assuming that R < ∞, we have V+ > 0

on (R′
0, R) and V+(R) = 0. Hence, regarding (17) as a first order homogeneous

ordinary differential equation for V ′
+, we conclude that V ′

+ > 0 on (R′
0, R). In

particular, V+(R) ≥ V+(R
′
0) = λ > 0. This contradicts the definition of R. The

claim is proved.
Next we prove that V+ = αλ cosh r+O(e−(n−1)r) for some constant α > 0. Hence

setting λ = 1/α, we get a supersolution to Equation (7) such that V+ ∼ cosh r =
V(0). To prove this second claim we set V+(r) := cosh rv+(r). By a straightforward
calculation, we find that V+ satisfies (16) if and only if v+ satisfies

v′′+ +
(
2 tanh r + (n− 1) coth r + 2A′

1e
−nr
)
v′+

+
(
2A′

1e
−nr tanh r + n

(
ϕκ
− − 1

))
v+ = 0.

From the first claim we have v+ > 0. We introduce k+ :=
v′
+

v+
and obtain the

following Riccati equation for k+,

k′+ + k2+ +
(
2 tanh r + (n− 1) coth r + 2A′

1e
−nr
)
k+

+
(
2A′

1e
−nr tanh r + n

(
ϕκ
− − 1

))
= 0.

(18)

Without loss of generality, we can assume that A′
1 is chosen so large that

2A′
1e

−nr tanh r + n
(
ϕκ
− − 1

)
≥ 0

on (R′
0,∞). From the boundary condition V ′

+(R
′
0) = 0 we have

v′+(R
′
0) = − tanhR′

0v+(R
′
0) < 0.

It is then fairly straightforward to argue that −1 < k+ < 0 on (R′
0,∞). For this let

R be the smallest r > R′
0 such that k+(r) ≥ 0. Then k+(R) = 0 and, from Equation

(18), k′+(R) < 0 so k+(r) > 0 for some r slightly smaller than R, contradicting the

definition of R. This estimate can be further refined. We select α ∈
(
n
2 , n

)
and set

k−+ := −e−α(r−r0) for some r0 to be chosen later. Then k−+ ≥ −1 on the interval
[r0,∞). Hence

(k−+)
′ + (k−+)

2 +
(
2 tanh r + (n− 1) coth r + 2A′

1e
−nr
)
k−+

=
(
α+ e−α(r−r0) − 2 tanh r − (n− 1) coth r − 2A′

1e
−nr
)
e−α(r−r0)

≤ (α− n) e−α(r−r0),
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where we used the inequality

2 tanh r + (n− 1) coth r = 2

(
1

coth r
+ coth r

)
+ (n− 3) coth r

≥ 2 + (n− 3) coth r

≥ n− 1.

Consequently, choosing r0 large enough, we can ensure that

(k−+)′ + (k−+)
2 +

(
2 tanh r + (n− 1) coth r + 2A′

1e
−nr
)
k−+

+
(
2A′

1e
−nr tanh r + n

(
ϕκ
− − 1

))
< 0

on the interval [r0,∞). A slight modification of the previous argument shows that
k−+ ≤ k+ ≤ 0. Equation (18) then implies k′+ = O(e−nr). Together with the fact
that k+ → 0 at infinity, this implies k+ = O(e−nr). Thus we infer that

log v+(r) = logλ+ µ+O(e−nr)

for some constant µ. Hence,

v+(r) = λeµ +O(e−nr).

This proves the second claim with α = eµ.

Finally remark that since k+(r) =
v′
+(r)

v+(r) ≤ 0 and v+ → 1 at infinity, it follows

that v+(r) ≥ 1 so V+ ≥ V(0).
The construction of the subsolution V− on H

n \BR′
0
is entirely similar. The only

difference is that we select V−(R
′
0) = 0 and V ′

−(R
′
0) > 0. The function V− then

satisfies V− ≤ V(0).
From now on we will work on the entire manifold M . Using the diffeomorphism

Φ we define open sets B′
R in M through the relation Φ(M \ B′

R) = H
n \ BR for

R ≥ R0. The set B
′
R is the part of M inside an approximate geodesic sphere in the

asymptotically hyperbolic end. By abusing notation we consider the functions V±
and V(0) as defined on M \K through the diffeomorphism Φ.

Our proof of existence of the function V g follows [17]. For any r > R′
0 there exists

a unique function V r solving (7) inside the sphere of radius r with Dirichlet data
V = V(0) on ∂B

′
r. From the maximum principle, V r ≥ 0. Then a second application

of the maximum principle in the annulus B′
r \B′

R′
0
yields V r ≥ V−. We extend the

function V+ by λ on B′
R′

0
. This new function V+ is a C1-supersolution of (7) in the

weak sense. Hence V r ≤ V+ (see for example [16, Theorem 8.1] for more details).
In particular, the functions V r are uniformly bounded on compact subsets. Then a
standard argument using elliptic regularity and a diagonal extraction process yields
the existence of the function V g. Similarly, we extend the function V− by zero on
B′

R′
0
. The function V− extended this way becomes a subsolution in the weak sense

so the functions V r satisfy V r ≥ V−. In the limit, the function V g is pinched
between V− and V+, that is

V− ≤ V g ≤ V+.

This proves that V g − V(0) = O(e−(n−1)r).
We note that

∆gV(0) = U−κ

(
n cosh r + 2

∂rU

U
sinh r

)
= nV(0) +O(e−(n−1)r).
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Hence,

(−∆g + n)
(
V g − V(0)

)
= O(e−(n−1)r).

The estimates for d(V g−V(0)) and
∣∣∇(k)V g

∣∣ follow from standard elliptic regularity.
We finally prove uniqueness of V g. Assume that V1 is the function we constructed

before so that V− ≤ V1 ≤ V+ and V2 is another function satisfying ∆V2 = nV2,
V2 ∼ V(0). From the strong maximum principle we have V1 > 0. We compute

nV2 = ∆

(
V2
V1
V1

)

= V1∆
V2
V1

+ 2

〈
dV1, d

(
V2
V1

)〉
+
V2
V1

∆V1

= V1∆
V2
V1

+ 2

〈
dV1, d

(
V2
V1

)〉
+ nV2,

so

0 = ∆
V2
V1

+ 2

〈
dV1
V1

, d

(
V2
V1

)〉
.

Since V1 ∼ V2, the function V2/V1 tends to 1 at infinity. From the strong maximum
principle (which can be applied here since if V2/V1 is not constant, the maximum
of |V2/V1 − 1| is attained at some point p ∈M), we conclude that V2/V1 = 1. �

Proof of Lemma 3.8. From Lemmas 3.2 and 3.7, there are universal constantsB0, B1, . . .
such that ∣∣∣∇(k)T

∣∣∣ ≤ Bk

for k = 0, 1, . . . on the support of χ. Hence

|gs(X,X)− g(X,X)| = |sT (X,X)| ≤ |s|B0g(X,X)

for any X ∈ TM . So if |s| ≤ 1
2B0

we have

1

2
g(X,X) ≤ gs(X,X) ≤ 3

2
g(X,X).

We denote by ∇gs the Levi-Civita connection of gs. The difference between ∇gs

and ∇g0 is a symmetric vector valued 2-tensor Γ(s),

∇gs
XY −∇g0

X Y = Γ(s)(X,Y ).

In coordinates Γ(s) is given by

Γk
ij(s) =

1

2
gkls (∇i(gs)lj +∇j(gs)il −∇l(gs)ij)

=
s

2
gkls (∇i(χTlj) +∇j(χTil)−∇l(χTij)) ,

where we have denoted by∇ = ∇g0 the Levi-Civita connection of the metric g0 = g.
The scalar curvature of the metric gs can be written as follows,

Scalgs = gijs Ricg0ij + gjls

(
∇iΓ

i
jl(s)−∇lΓ

i
ij(s) + Γi

ip(s)Γ
p
jl(s)− Γi

lp(s)Γ
p
ij(s)

)
.

From this formula it is not complicated to see that there is a constant s0 > 0,
s0 ≤ 1

2B0
, depending only on B0, B1, B2 and n such that

|Scalgs − Scalg| ≤ n− 1



22 MATTIAS DAHL, ROMAIN GICQUAUD, AND ANNA SAKOVICH

for |s| ≤ s0. From the bound on Scalgs it follows that the constant functions

ϕ− =
(
n−1
n

)1/κ
and ϕ+ =

(
n+1
n

)1/κ
are respectively a sub-solution and a super-

solution of the Yamabe equation

− 4(n− 1)

n− 2
∆gsϕs + Scalgsϕs + n(n− 1)ϕκ+1

s = 0. (19)

Arguing as in the proof of Proposition 3.6 there exists a unique solution ϕs of (19)
such that ϕs is bounded from above and away from zero. Further ϕ− ≤ ϕs ≤ ϕ+.

We next prove that the map s 7→ ϕs is C2. We consider the map

Ξ : Ω× [−s0, s0] → X0,p
δ

(u, s) 7→ − 4(n−1)
n−2 ∆gsu+ Scalgs(u+ 1) + n(n− 1)(u+ 1)κ+1,

where Ω = {u ∈ X2,p
δ , u > −1}. Hence, for any s ∈ [−s0, s0], us = ϕs−1 is the only

solution to the equation Ξ(u, s) = 0. Further Ξ is a C2 function. The differential
of Ξ with respect to u at any point (us, s) is given by

DuΞ(us, s) : X2,p
δ → X0,p

δ

v 7→ − 4(n−1)
n−2 ∆gsv + (Scalgs + (κ+ 1)n(n− 1)ϕκ

s ) v.

We remark that

Scalgs + (κ+ 1)n(n− 1)ϕκ
s ≥ −(n+ 1)(n− 1) + (κ+ 1)(n− 1)2

≥ 2n(n− 1)

n− 2
,

from which it follows that the L2-kernel of DuΞ(us, s) is zero. From the Fredholm
alternative (see [15, Proof of Proposition 5.1]), we conclude that DuΞ(us, s) is
invertible. Using the implicit function theorem, this proves that the map s 7→
ϕs − 1 ∈ X2,p

δ is C2.
To prove the asymptotics of ϕs, remark that the metric λs falls into the class

A(R′′
1 ). Hence the estimates (10) are consequences of Lemma 3.2. �

Proof of Lemma 3.9. We first estimate the first and second derivatives of ϕs with
respect to s. We differentiate Equation (19) with respect to s and find the following
equation for ϕ̇s,

− 4(n− 1)

n− 2
∆gs ϕ̇s + Scalgs ϕ̇s + (κ+ 1)n(n− 1)ϕκ

s ϕ̇s

=
4(n− 1)

n− 2

∂∆gs

∂s
ϕs −

∂Scalgs

∂s
ϕs.

Note that the right hand side has support in the annulus AR′
0,R1

. Thus, by Lemma
3.8, it is bounded by some universal constant C. We also remark that, since

Scalgs + (κ+ 1)n(n− 1)ϕκ
s >

2n(n− 1)

n− 2

and since ϕ̇s tends to zero at infinity (this is a consequence of ϕ̇s ∈ X2,p
δ ), we have

sup |ϕ̇s| ≤
n− 2

2n(n− 1)
C.

By standard techniques one can then prove that ‖ϕ̇s‖X2,p(Hn\BR′
0
) ≤ C for some

universal constant C. The same strategy can then be used to study the second
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order derivative of ϕs. However, the calculations are lengthy and we do not include
the argument here.

The last step is to prove that H(s) is a C2 function of s. For this we write H(s)
as follows (see [19, page 114] or [11] for more details),

H(s) = Hλs

Φ (V )

=

∫

SR2

(
V (divb es − d trb es) + (trb es)dV − es(∇bV, ·)

)
(νR2) dµ

b

+

∫

Hn\BR2

(
V
(
Scalλs − Scalb

)
+Q(es, V )

)
dµb

=

∫

SR2

(
V (divb es − d trb es) + (trb es)dV − es(∇bV, ·)

)
(νR2) dµ

b

+

∫

Hn\BR2

Q(es, V ) dµb

where es = λs − b = (ϕκ
sU

κ − 1)b, and Q(V, e) is an expression which is linear in
V , quadratic in es and its first derivatives, and cubic in (λs)

−1. It corresponds to
the negative of the non-linear terms in the Taylor expansion of

∫

Hn\BR2

V
(
Scalλs − Scalb

)
dµb

with respect to es = λs − b. Since λs = (Uϕs)
κb on H

n \ BR2 , this expression can
be explicitly computed,

Q(es, V ) = V

(
(n− 1)

(
1

ψ2
s

− 1

)
∆bψs + n(n− 1)

(ψs − 1)2

ψs
+

(n− 1)(n− 6)

4ψs

∣∣∣∣
dψs

ψs

∣∣∣∣
2

b

)
,

where ψs := (Uϕs)
κ. Written in this form, one can conclude from standard theo-

rems on differentiation of integrals that H(s) depends on s in a C2 fashion.
From the estimates we have found for ϕ̇(s) and ϕ̈(s) together with Lemmas 3.2

and 3.8 it is not complicated to deduce that Ḣ(s) and Ḧ(s) are uniformly bounded
on the interval [−s0, s0]. �

Proof of Lemma 3.10. For λs we have

es = λs − b = ϕκ
s

(
g + sχ

(
R̊ic

g − H̊essV g

V g

))
− b,

the derivative of this with respect to s evaluated at s = 0 is

ė = κϕ̇g + χ

(
R̊ic

g − H̊essV g

V g

)
=: e1 + e2.

The conformal factors ϕs satisfy the Yamabe equation

−4(n− 1)

n− 2
∆gsϕs + Scalgsϕs = −n(n− 1)ϕκ+1

s .

Differentiating this at s = 0 and using the fact that ϕ0 = 1 we find that

−4(n− 1)

n− 2
∆gϕ̇+ ˙Scal

g
(ġ) + Scalgϕ̇ = −n(n− 1)

n+ 2

n− 2
ϕ̇,
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or
4(n− 1)

n− 2
(∆gϕ̇− nϕ̇) = ˙Scalg(ġ). (20)

We compute

Ḣ(0) =
d

ds

(
Hλs

Φ (V )
)
|s=0

= lim
r→∞

∫

Sr

(
V (divb ė− d trb ė) + (trb ė)dV − ė(∇bV, ·)

)
(νr) dµ

b

= lim
r→∞

∫

Sr

(V g(divg ė− d trg ė) + (trg ė)dV g − ė(∇gV g, ·)) (νgr ) dµg,

(21)

where we can change from the metric b to the metric g since g is asymptotically
hyperbolic and the function V g has the asymptotics specified in Lemma 3.7. Note
that since e2 has compact support its contribution to Ḣ(0) is zero. For the terms
with e1 = κϕ̇g in (21) we have

Ḣ(0) = lim
r→∞

∫

Sr

(
V g(divg e1 − d trg e1) + (trg e1)dV g − e1(∇gV g, ·)

)
(νgr ) dµ

g

= lim
r→∞

4(n− 1)

(n− 2)

∫

Sr

(ϕ̇dV g − V gdϕ̇) (νgr ) dµ
g

=
4(n− 1)

(n− 2)

∫

M

divg (ϕ̇dV g − V gdϕ̇) dµg

=
4(n− 1)

(n− 2)

∫

M

(ϕ̇∆gV g − V g∆gϕ̇) dµg

=
4(n− 1)

(n− 2)

∫

M

V g (nϕ̇−∆gϕ̇) dµg

= −
∫

M

V g ˙Scalg(ġ) dµg,

where the last equality was obtained using (20). Here ġ = χ
(
R̊ic

g − H̊essV g

V g

)
is

traceless. So from the formula for the first variation of scalar curvature, see [5,
Theorem 1.174], we obtain

˙Scalg(ġ) = divg divg ġ −∆g trg ġ − 〈ġ,Ricg〉g
= divg divg ġ − 〈ġ, R̊icg〉g

= −χ
∣∣∣R̊icg

∣∣∣
2

g
+

χ

V g

〈
H̊essV g, R̊ic

g
〉
+ divg divg(χR̊ic

g
)− divg divg

χH̊essV g

V g
.

Thus, replacing this expression in the formula for Ḣ(0) and integrating by parts,
we get

Ḣ(0) =

∫

M

χV g
∣∣∣R̊icg

∣∣∣
2

g
dµg − 2

∫

M

χ
〈
R̊ic

g
, H̊essV g

〉
g
dµg

+

∫

M

χ
1

V g

∣∣∣H̊essV g
∣∣∣
2

g
dµg

=

∫

M

χV g

∣∣∣∣R̊ic
g − 1

V g
H̊essV g

∣∣∣∣
2

g

dµg.
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�

4. An alternative argument for spin manifolds

In this section we will prove a version of Theorem A with an argument using
spinors. This follows closely the ideas of [6, Section 12], see also the appendix of
[22]. We only give a sketch of the argument. We first introduce the following class
of asymptotically hyperbolic manifolds.

Definition 4.1. For R0 > 0, we define the class ASpin(R0) of 4-tuples (M, g,Φ, U)
such that

• (M, g) is a complete Riemannian spin manifold which is asymptotically hy-
perbolic with respect to Φ, where Φ is a diffeomorphism from the exterior
of a compact set K ⊂M to H

n \BR0 ;
• Scalg ≥ −n(n− 1), and Scalg = −n(n− 1) on M \K;
• U is a positive function on H

n \ BR0 such that U → 1 at infinity and
Φ∗g = Uκb;

• the coordinates at infinity Φ are balanced.

We prove the following theorem on the near-equality case of the positive mass
theorem for spin manifolds.

Theorem B. Let R1 > R0 and ε > 0. There is a constant δ > 0 so that

|U − 1| ≤ εe−nr

on H
n \BR1 for all (M, g,Φ, U) ∈ ASpin(R0) with m

g < δ.

We fix the constant R0 > 0 and abbreviate ASpin(R0) = ASpin. We begin by de-
scribing the relationship between Killing spinors and the asymptotically hyperbolic
mass, for this we follow closely the discussion in [11, Section 4].

Since M is a spin manifold there is a spin structure and an associated spinor

bundle ΣM on (M, g). On ΣM we define the connection ∇̂g by

∇̂g
Xϕ := ∇g

Xϕ+
i

2
X · ϕ.

Here ∇g is the Levi-Civita connection for the metric g, ϕ is a section of the spinor
bundle, and the dot denotes the Clifford action of tangent vectors on spinors.

Spinors ϕ which are parallel with respect to ∇̂g are called (imaginary) Killing
spinors.

We will now describe the Killing spinors on hyperbolic space. The ball model of
hyperbolic space is given by the metric ω−2ξ where ω(x) = 1

2 (1− |x|2) and ξ is the
flat metric on the open unit ball Bn in R

n. In this model the Killing spinors on H
n

are all spinors of the form

ϕs(x) = ω(x)−1/2(1 − ix·)s.
Here s is a constant spinor on (Bn, ξ), or equivalently an element of the spinor
representation space Σ. For the Clifford action we identify points in Bn with
tangent vectors. For any Killing spinor ϕs on H

n its squared norm Vs := |ϕs|2
is an element of N . Every element of N of the form V(0) −

∑n
i=1 aiV(i) where

(a1, . . . , an) ∈ Sn−1 is equal to Vs for some Killing spinor ϕs.
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Using the connection ∇̂g we define the Dirac operator D̂g by

D̂gϕ :=

n∑

i=1

ei · ∇̂g
eiϕ = Dgϕ− in

2
ϕ,

where ei, i = 1, . . . , n, is an orthonormal frame for g and Dg =
∑n

i=1 ei · ∇g
ei is

the Dirac operator associated to ∇g. The Schrödinger-Lichnerowicz formula for D̂g

has a boundary term related to the asymptotically hyperbolic mass. If (M, g) is an
asymptotically hyperbolic manifold with diffeomorphism Φ : M \K → H

n \ B at
infinity, then the Killing spinor ϕs on H

n can be pulled back to a spinor Φ∗ϕs on

M \K. If ψs is a spinor on M with D̂gψs = 0 and ψs −Φ∗ϕs → 0 at infinity then

the Schrödinger-Lichnerowicz formula for D̂g tells us that
∫

M

(
|∇̂gψs|2 +

Scalg + n(n− 1)

4
|ψs|2

)
dµg =

1

4
HΦ(Vs), (22)

see [11, (4.11) and (4.22)].
We denote by H the space of positive smooth functions on H

n\BR0 which satisfy
the Yamabe equation (3) and tend to 1 at infinity. In the proof of Theorem B we
use the functionals Fs defined for U ∈ H by

Fs(U) := inf

{∫

Hn\BR1

|∇̂gψ|2g dµg

∣∣∣∣∣ ψ − Φ∗ϕs → 0 at infinity

}

where g = Uκb and s ∈ Σ. The infimum is attained by a spinor satisfying




(∇̂g)∗∇̂gψ := −
(
∇g

ei −
i

2
ei·
)(

∇g
ei +

i

2
ei·
)
ψ = 0,

∇̂g
νψ = 0 at the inner boundary of (Hn \BR1 , g),

ψ − Φ∗ϕs → 0 at infinity.

The following Lemma is similar to [6, Lemma 12, page 231].

Lemma 4.2. Fs is continuous with respect to the C1 topology on H.

Proof. Let U1, U2 be functions in H and set g1 = Uκ
1 b, g2 = Uκ

2 b = Wκg1, where
W := U2/U1. Let ψ1 and ψ2 be the minimizers for Fs(U1) and Fs(U2). Using
standard methods of identifying spinors for conformal metrics (see for example [20,
Section 5.2]) we identify the spinor ψ1 defined for the metric g1 with the spinor
ψ1 for the metric g2. Further, we can express the covariant derivative ∇g2ψ1 as
a leading term which is ∇g1ψ1 followed by terms involving dW and ψ1. We then
compute

Fs(U2) =

∫

Hn\BR1

|∇̂g2ψ2|2g2 dµg2

≤
∫

Hn\BR1

|∇̂g2ψ1|2g2 dµg2

=

∫

Hn\BR1

|∇̂g1ψ1|2g1 dµg1 + E(W,ψ1)

= Fs(U1) + E(W,ψ1).

Here the remainder E(W,ψ1) is given by an integral over Hn \BR1 where each term
in the integrand is quadratic in ψ1 (containing ψ1 or ∇g1ψ1) and contains one or
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two factors of the type (1−W q) or dW . Since the minimizing spinor ψ for Fs(U)
depends continuously on U we conclude that E(W,ψ1) can be made arbitrarily
small by choosing U2 sufficiently close to U1 in C1. By interchanging U1 and U2 we
get an inequality in the other direction, and we conclude that Fs is continuous. �

Let s± ∈ Σ be such that

Vs± = |ϕs± |2 = V(0) ± V(1).

We define the functional F by

F(U) := Fs+(U) + Fs−(U).

In the next Lemma we prove that the mass bounds F(U).

Lemma 4.3. For (M, g,Φ, U) ∈ ASpin we have

F(U) ≤ (n− 1)ωn−1m
g.

Proof. Since the integral in the definition of Fs(U) lacks the non-negative term
involving scalar curvature and is taken over a smaller domain it is never larger
than the integral in (22). Further, the infimum in the definition of Fs(U) can only
decrease the value of the integral in (22) and we conclude that

Fs±(U) ≤ 1

4
HΦ(Vs± ).

Therefore

F(U) = Fs+(U) + Fs−(U)

≤ 1

4
(HΦ(Vs+) +HΦ(Vs−))

=
1

4

(
HΦ(V(0) + V(1)) +HΦ(V(0) − V(1))

)

=
1

2
HΦ(V(0))

= (n− 1)ωn−1m
g

follows from (2). �

Lemma 4.4. F(U) = 0 if and only if U ≡ 1.

Proof. If F(U) = 0 then Fs+(U) = 0 and Fs−(U) = 0 and both the infima are
attained by non-trivial Killing spinors. The existence of a non-trivial Killing spinor
implies that g is an Einstein metric with scalar curvature−n(n−1). Since the metric
g is also conformally flat it must have constant negative curvature −1. Since U → 1
at infinity we conclude that U ≡ 1. If U ≡ 1 then g is the hyperbolic metric which
has Killing spinors, and thus F(U) = 0. �

Proof of Theorem B. As in the proof of Theorem A we argue by contradiction. We
assume that there is a sequence (Mk, gk,Φk, Uk) of elements of ASpin such that
mgk tends to zero while |Uk − 1| ≥ ε. Arguing as in the proof of Theorem A, a

subsequence of Uk − 1 will converge to a limit U∞ − 1 in X2,p
δ (Hn \BR1) for which

sup
Hn\BR1

|U∞ − 1| ≥ ε. From Lemma 4.2 we see that limk→∞ F(Uk) = F(U∞),

and from Lemma 4.3 we have limk→∞ F(Uk) = 0. Lemma 4.4 then tells us that
U∞ ≡ 1 which is a contradiction. From this we conclude that for every ε > 0 there
is a δ > 0 such that for (M, g,Φ, U) belonging to ASpin with mg ≤ δ it holds that
sup

Hn\BR1
|U − 1| ≤ ε. The theorem now follows from Proposition 3.4. �
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Appendix A. The anti-de Sitter-Schwarzschild spacetime

In this appendix, we discuss the anti-de Sitter-Schwarzschild metrics in dimen-
sion n following [26, Section 2] where only the case n = 3 is treated. These metrics
are also called Kottler metrics with negative cosmological constant. Furthermore
we explicit the lapse function, see [27] for the 3 + 1-dimensional case.

A.1. The metric in areal coordinate. Let g be a Riemannian metric on the
n-dimensional manifold M and let

γ := −V 2dt2 + g

be a Lorentzian metric defined on the manifold M := R ×M . If we assume that
the function V does not depend on t then γ solves the Einstein equations with
cosmological constant Λ,

Ricγ − Scalγ

2
γ + Λγ = 0,

if and only if

Scalg = 2Λ, (23a)

Ricg − Hessg V

V
+

∆gV

V
g = 0. (23b)

Such a metric g is called static. See also [11, Equations (0.1)-(0.2)]. In what
follows we will always assume that when the metric is not indicated, the curva-
ture tensors and the connection are defined with respect to the metric g. We are
interested in the case of negative cosmological constant. We assume that

Λ = −n(n− 1)

2
,

which can always be achieved by a rescaling. From Equation (23a), this imposes
Scalg = −n(n− 1). Taking the trace of Equation (23b) yields ∆V = nV so we can
rewrite the system as

Scalg = −n(n− 1), (24a)

Ricgij −
Hessgij V

V
+ ngij = 0. (24b)

Note that the slice t = 0 is totally geodesic. In particular, marginally (outer)
trapped surfaces correspond to minimal surfaces for the metric g. We now assume
that the metric g is rotationally symmetric. Such a metric can be written in full
generality as g = ds2 + k(s)2σ where σ is the round metric on Sn−1. The mean
curvature of a surface of constant s is given by H(s) = (n− 1)∂sk

k . So, in a region
where no surface of constant s is a minimal surface, k has non-vanishing derivative
and we can use it as a radial (areal) coordinate ρ so that

g = f(ρ)2dρ2 + ρ2σ.

In what follows we assume that the coordinate index 1 corresponds to the ρ-
coordinate while upper-case latin letters represent coordinates on the sphere and
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run from 2 to n. The Christoffel symbols of the metric g are given by





Γ1
11 =

f ′

f
,

Γ1
1A = 0,

ΓA
11 = 0,

ΓA
1B =

1

ρ
δAB,

Γ1
AB = − ρ

f2
σAB,

ΓC
AB = γCAB,

where γCAB are the Christoffel symbols of the metric σ. The components of the
curvature tensors of the metric g can then be computed,





RL
KIJ =

(
1− 1

f2

)(
δLI σJK − δLJ σIK

)
,

R1
KIJ = 0,

R1
K1J =

ρf ′

f3
σJK ,

RicKJ =

[
(n− 2)

(
1− 1

f2

)
+
ρf ′

f3

]
σJK ,

Ric1J = 0,

Ric11 = (n− 1)
ρf ′

f
,

Scal = 2(n− 1)
f ′

ρf3
+

(n− 1)(n− 2)

ρ2

(
1− 1

f2

)
.

What is interesting about these formulas is that the curvature tensor depends
only on the first derivative of f . In particular, Equation (24b) becomes

− n = 2
f ′

ρf3
+
n− 2

ρ2

(
1− 1

f2

)
. (25)

Defining u by the relation f(ρ) = u(ρ)−
1
2 we get

u′

ρ
+ (n− 2)

u− 1

ρ2
= n.

The general solution of this equation is given by

u(ρ) = 1 + ρ2 − 2m

ρn−2

where m is a free parameter that can be identified with the mass. Our next goal
is to find the lapse function V = V (ρ). Equation (24b) can be decomposed into
radial, tangential, and mixed components. The mixed components vanish while the
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other two lead to the following equations.




0 = (n− 1)V
∂ρf

ρf
− ∂2ρV +

∂ρf

f
∂ρV + nf2V,

0 = V

[
(n− 2)

(
1− 1

f2

)
+
ρ∂ρf

f3

]
− ρ

f2
∂ρV + nρ2V.

(26)

The second equation can be combined with Equation (25) to yield

V ′

V
= −f

′

f
.

Hence V = λ
f . Up to a redefinition of t we can assume that V = 1

f . It is then

checked by a simple calculation that the first line of Equation (26) is also fulfilled.
Hence the anti-de Sitter-Schwarzschild metric can be written as follows,

γAdSS = −
(
1 + ρ2 − 2m

ρn−2

)
dt2 +

dρ2

1 + ρ2 − 2m
ρn−2

+ ρ2σ.

We now study separately the cases m > 0 and m < 0.

A.2. The case of positive mass. The metric

gAdSS =
dρ2

1 + ρ2 − 2m
ρn−2

+ ρ2σ

is only defined on the set {ρ ≥ a(m)} where a(m) is the unique solution of the
equation

1 + ρ2 − 2m

ρn−2
= 0.

We define

hm(ρ) =

∫ ∞

ρ

ds

s
√
1 + s2 − 2m

sn−2

and the functions r and ϕ by

er =
1 + e−hm(ρ)

1− e−hm(ρ)
, ϕ

2
n−2 =

ρ

sinh r
.

We note that r → r0(m) > 0 when ρ → a(m)+. The function r : (a(m),∞) →
(r0(m),∞) is a smooth increasing function of ρ. We remark that





ρ = ϕ
2

n−2 sinh r,

dρ

ρ
√
1 + ρ2 − 2m

ρn−2

=
dr

sinh r
. (27)

The metric gAdSS can then be written as

gAdSS = ϕ
4

n−2

(
dr2 + sinh2 rσ

)
.

The mean curvature of the hypersurfaces of constant ρ is given by

H = ϕ− 2
n−2

[
(n− 1) coth r +

2(n− 1)

n− 2

∂rϕ

ϕ

]
. (28)

A simple calculation shows that ϕ and ∂rϕ are continuous at r = r0(m) and that
the hypersurface r = r0(m) is a minimal surface.
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We next show that the manifold can be doubled to a complete asymptotically
hyperbolic manifold of constant scalar curvature. For this we first switch to the
conformal ball model of hyperbolic space and set

τ =
er − 1

er + 1
.

The metric gAdSS becomes

gAdSS =
4ϕ

4
n−2

(1 − τ2)2
(
dτ2 + τ2σ

)

and is defined on the annulus b(m) ≤ |x| < 1 in R
n where τ = |x| and b(m) is given

by

b(m) =
er0(m) − 1

er0(m) + 1
.

As is well known, the inversion on R
n \ {0} given by

i : x 7→ b(m)2

|x|2 x

is a conformal transformation. Pulling back the metric g to the annulus b2(m) <
|x| ≤ b(m) by i, we get the following extension of the metric gAdSS,

gAdSS =
4f

4
n−2
m

(1− τ2)2
(
dτ2 + τ2σ

)
,

where

f
2

n−2
m (τ) =





ϕ
2

n−2 (τ) if b(m) ≤ τ ≤ 1,

b(m)2ϕ
2

n−2

(
b(m)2

τ

)
1− τ2

τ2 − b(m)4
if b(m)2 ≤ τ ≤ b(m).

In the following propositions we collect the basic properties of the metric gAdSS.
Most of them are useful in the course of the proof of our main results. See also [26,
Section 2] for the three-dimensional case.

Proposition A.1. For each m > 0 the anti-de Sitter-Schwarzschild metric is

asymptotically hyperbolic and is defined on H
n \Bb(m)2 . Moreover,

1. fm > 1, limτ→1 fm(τ) = 1, limτ→b(m)2 fm(τ) = ∞.

2. There exists a constant C > 0 independent of m such that fm ≤ 1+Cme−nr

provided that r ≥ r1(m), where r1 is a non-decreasing continuous function of

m such that r1(m) > r0(m). Consequently, fm = 1+O(e−nr) when r → ∞.

3. gAdSS has constant scalar curvature −n(n− 1) and mass m.

4. ∂rfm < 0.
5. The hypersurface r = r0(m) is the only compact minimal surface.

Proof. The mass of gAdSS is easily computed using [11, Formula (2.25)], and Prop-
erty 3 follows.

Fixing r ≥ r0(m), we remark that for all s ∈ (a(m),∞),

hm(s) > h0(s) =
1

2
ln

√
1 + s2 + 1√
1 + s2 − 1

.

In particular, if sinh r ≥ a(m) we get

hm(sinh r) > ln
(
coth

r

2

)
.
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Since hm(ρ) = ln coth r
2 , and since hm is decreasing, we have ρ > sinh r. It is also

obvious that sinh r < ρ if sinh r < a(m). This proves that ϕ =
(

ρ
sinh r

)n−2
2 > 1 for

any r ≥ r0(m).
We next find an upper bound for fm. First, it is clear that a(m) < (2m)1/n. If

we assume that ρ ≥ (2m)1/n then ρ > a(m) and

hm(ρ) =

∫ ∞

ρ

ds

s
√
1 + s2

√
1− 2m

(1+s2)sn−2

≤ 1√
1−mρ−n

∫ ∞

ρ

ds

s
√
1 + s2

=
arcsinh(ρ−1)√

1−mρ−n
.

Observe also that sinh r = 1
sinhhm(ρ) , hence

ρ
sinh r = ρ sinhhm(ρ). Set

η(t) := sinh

(
arcsinh(ρ−1)√

1− t

)
.

Let R1 > 0 be fixed, and assume that ρ ≥ max{r−1(R1), (2m)1/n}. Using the mean
value theorem and the inequality arcsinh(ρ−1) ≤ ρ−1 we have

sinhhm(ρ) ≤ η(mρ−n)

≤ η(0) +mρ−n sup
0≤θ≤1

η′(θmρ−n)

= ρ−1 +mρ−n sup
0≤θ≤1

(
arcsinh(ρ−1)

2(1− θmρ−n)3/2
cosh

(
arcsinh(ρ−1)√
1− θmρ−n

))

≤ ρ−1
(
1 + Cmρ−n

)
,

for some constant C > 0 which does not depend on m. Since ρ ≥ sinh r it is now

easy to check that fm = (ρ sinhhm(ρ))
n−2
2 ≤ 1 + Cme−nr (possibly for a larger

constant C > 0), provided that r ≥ r1(m) := max{R1, r((2m)1/n)}. By definition,
it is clear that r1(m) > r0(m). The second statement is thereby proved.

Next, fm solves the Yamabe equation

−4(n− 1)

n− 2
∆bfm + n(n− 1)

(
f

n+2
n−2
m − fm

)
= 0.

In polar normal coordinates we have
√

det(b) = sinhn−1 r. Hence, from the well
known formula

∆bfm =
1√

det(b)
∂i

(√
det(b)bij∂jfm

)

we infer that

∂r
(
sinhn−1 r∂rfm

)
=
n(n− 2)

4
sinhn−1 r

(
f

n+2
n−2
m − fm

)
.

Assume that ∂rfm(r̄) ≥ 0 for some r̄. Then, ∂rfm(r) > 0 for all r > r̄ since fm > 1.
This contradicts the fact that fm → 1 when r → ∞, fm > 1. Hence, ∂rfm < 0 for
all r.
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We finally prove that the hypersurface r = r0(m) is the only minimal surface.
From Formula (28), the sphere of constant ρ has mean curvature

H(ρ) = (n− 1)

√
1 +

1

ρ2
− 2m

ρn
.

For any ρ > a(m) we have H(ρ) > 0. Thus by the maximum principle for minimal
surfaces, if Σ is a minimal surface, then supΣ ρ ≤ a(m), that is supΣ τ ≤ b(m). By
symmetry, we also have that infΣ τ ≤ b(m). This proves that Σ coincides with the
sphere r = r0(m). �

Proposition A.2. a(m), r0(m) and b(m) are continuous increasing functions of

m. Further,

1. a(m), r0(m), b(m) → 0 as m→ 0,
2. a(m), r0(m) → ∞ and b(m) → 1 as m→ ∞.

Proof. It is easy to see that a(m) is a continuous increasing function of m. Since
the function ρ 7→ 1+ρ2− 2m

ρn−2 is increasing, we know that ρ−(m) ≤ a(m) ≤ ρ+(m)

provided that





0 ≤ 1 + ρ2+ − 2m

ρn−2
+

,

0 ≥ 1 + ρ2− − 2m

ρn−2
−

.

One can select ρ+ = (2m)1/n. Assuming m > 1, we choose

ρ− = (2m)1/n

√
1− 1

(2m)2/n
.

Simple computations show that both inequalities are fulfilled. Hence for large m,
a(m) ∼ (2m)1/n. For small positive m, we obviously have 0 < a(m) < ρ+(m). So
a(m) → 0 when m→ 0+.

We next turn our attention to the function r0. We first give an upper bound for
hm(a(m)) as follows. Note that on the interval (a(m),∞) we have

1 + s2 − 2m

sn−2
≥ 1 + s2 − 2m

a(m)n−2

= 1 + s2 − (1 + a(m)2)

= s2 − a(m)2.

Hence,

ln

(
coth

r0(m)

2

)
= hm(a(m)) ≤

∫ ∞

a(m)

ds

s
√
s2 − a(m)2

=
π

2a(m)
.

This implies that r0(m) → ∞ as m→ ∞.
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In order to estimate r0 when m → 0+ we give a lower bound for hm(a(m)),
assuming a(m) < 1,

ln

(
coth

r0(m)

2

)
= hm(a(m))

=

∫ ∞

a(m)

ds

s
√
1 + s2 − a(m)n+a(m)n−2

sn−2

=

∫ ∞

a(m)

ds

s2−
n
2

√
sn − a(m)n + sn−2 − a(m)n−2

≥
∫ ∞

a(m)

ds

s2−
n
2

√
(s− a(m))(nsn−1 + (n− 2)sn−3)

≥
∫ ∞

a(m)

ds
√
s
√
(s− a(m))(ns2 + (n− 2))

≥ 1√
2n− 2

∫ 1

a(m)

ds√
s(s− a(m))

=
1√

2n− 2

∫ 1
a(m)

1

dt√
t(t− 1)

.

It is obvious that the last integral diverges when a(m) → 0+. Hence r0(m) → 0
when m→ 0.

The limits of b follow from the relation b(m) = er0(m)−1
er0(m)+1

. �

A.3. The case of negative mass. Remark that when m < 0 the function h(m)
tends to a finite positive value at ρ = 0. Changing to the r coordinate, this means

that the metric g = ϕ
4

n−2 (dr2 + sinh2 rσ) is only defined for r ≥ r0(m) such that

hm(0) =

∫ ∞

0

ds

s
√
1 + s2 − 2m

sn−2

= ln
1 + e−r0(m)

1− e−r0(m)
.

The function ϕ satisfies ϕ(r0(m)) = 0.

Proposition A.3. The function m 7→ r0(m) is continuous and strictly decreasing

on the interval (−∞, 0). Further,

1. 



lim
m→0−

r0(m) = 0

lim
m→−∞

r0(m) = ∞

2. The function fm := ϕ : Hn \ Br0(m)(0) → R+ solves the Yamabe equation

with zero boundary value on ∂Br0(m)(0) and satisfies fm < 1.

3. There exists a constant C > 0 independent of m such that fm ≥ 1−Cme−nr

provided that r ≥ r1(m), where r1 is a non-increasing continuous function of

m such that r1(m) > r0(m). Consequently, fm = 1+O(e−nr) when r → ∞.

4. ∂rfm > 0.

Proof. We remark that the integrand is positive and strictly increasing with respect
to m. From dominated convergence, it is easy to argue that m 7→ hm(0) is continu-
ous. When |m| → ∞, the integrand tends to 0 so limm→−∞ hm(0) = 0. This forces
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limm→−∞ r0(m) = ∞. Similarly, when m → 0−, by the monotone convergence
theorem,

hm(0) →
∫ ∞

0

ds

s
√
1 + s2

= ∞.

Hence, limm→0− r0(m) = 0.
The properties of fm follow in the same manner as their counterparts in the

case m > 0 (see Proposition A.1). We only remark that having fixed R1 > 0 one
may define r1(m) as r1(m) := max{R1, r((−Cm)1/n)}, where the constant C > 0
depends on R1 only. It is then obvious that r1(m) > r0(m). �

A.4. A characterization of anti-de Sitter-Schwarzschild spacetimes. In
this section, we give a characterization of anti-de Sitter-Schwarzschild metrics which
is useful in the proof of Theorem A. See [21] for similar results.

Proposition A.4. Let K be a compact subset of Hn such that Hn \K is connected

and let U, V be two functions defined on H
n \K. Let g := Uκb. Assume that the

metric

−V 2dt2 + g

is static with cosmological constant

Λ = −n(n− 1)

2
.

Assume further that the function U is bounded from above and away from zero and

that the function V is positive, tends to infinity at infinity and has no critical point

outside a compact set. Then there is a point x0 ∈ H
n and m ∈ R such that

U = fm(r),

where r := db(x0, ·).
Before diving into the proof, we explain briefly the underlying idea. The main

aim is to prove that the metric g and the lapse function V are spherically symmetric
around a point in H

n. A first indication of this fact is Equation (31) which proves
that the Ricci tensor has at most two distinct eigenvalues, one with multiplicity 1
in the direction of the gradient of V and another one with multiplicity n− 1 on the
orthogonal hyperplane. Another indication is given by Formula (33) which proves
that the level sets of V are umbilic with constant sectional curvature. These two
indications prove that the metric is actually a warped product (Formula (35)) and
some further estimates on U allow us to conclude that U coincides with fm for
some m.

Proof. In what follows, covariant derivatives and curvatures are defined with respect
to the metric g unless stated otherwise.

Since g = Uκb on H
n \ BR1 is conformally flat, it has vanishing Cotton-York

tensor (see for example [9, Proposition 1.62]). Since g has constant scalar curvature
this is equivalent to

∇iR̊icjk −∇jR̊icik = 0. (29)

From the static equations (24a)-(24b) it follows that

R̊ic =
H̊ess V

V
,
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where R̊ic := Ric + (n− 1)g denotes the traceless Ricci tensor and H̊ess V denotes

the traceless Hessian of V (which in index notation is denoted by ∇̊i,jV ). From
(29) and the fact that

Hess V

V
=

1

V

(
H̊ess V +

∆V

n
g

)
=

H̊ess V

V
+ g,

we conclude

0 = ∇i
∇̊j,kV

V
−∇j

∇̊i,kV

V

= ∇i

∇2
j,kV

V
−∇j

∇2
i,kV

V

=
∇i∇j∇kV

V
− ∇j∇i∇kV

V
−

∇2
j,kV

V

∇iV

V
+

∇2
i,kV

V

∇jV

V

= −Rl
kij

∇lV

V
−

∇2
j,kV

V

∇iV

V
+

∇2
i,kV

V

∇jV

V
.

Since g is conformally flat its Weyl tensor vanishes, so

R =
Scal

2n(n− 1)
g ? g +

1

n− 2
R̊ic ? g = −1

2
g ? g +

1

n− 2
R̊ic ? g,

where ? denotes the Kulkarni-Nomizu product (see for example [5, Definition
1.110]). As a consequence, we get

0 = −Rl
kij

∇lV

V
−

∇2
j,kV

V

∇iV

V
+

∇2
i,kV

V

∇jV

V

= (gligkj − gljgki)
∇lV

V
−

∇2
j,kV

V

∇iV

V
+

∇2
i,kV

V

∇jV

V

− 1

n− 2

(
R̊icligkj + R̊ickjgli − R̊icljgki − R̊ickiglj

) ∇lV

V

= −∇̊j,kV

V

∇iV

V
+

∇̊i,kV

V

∇jV

V

− 1

n− 2

(
∇̊l,iV

V
gkj +

∇̊k,jV

V
gli −

∇̊l,jV

V
gki −

∇̊k,iV

V
glj

)
∇lV

V

=
n− 1

n− 2

(
∇̊i,kV

V

∇jV

V
− ∇̊j,kV

V

∇iV

V

)

− 1

n− 2

(
∇̊l,iV

V

∇lV

V
gkj −

∇̊l,jV

V

∇lV

V
gki

)
.

(30)

We set ξi :=
∇̊i,jV

V
∇jV
V . Contracting the previous equation with ∇kV

V we get

0 = ξi
∇jV

V
− ξj

∇iV

V
.

This is possible only if ξ and ∇V
V are colinear. We let λ be the function such that

ξ = (n− 1)λ∇V
V . Equation (30) then implies

0 =

(
∇̊i,kV

V
+ λgik

)
∇jV

V
−
(
∇̊j,kV

V
+ λgjk

)
∇iV

V
.
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This is possible only if

∇̊i,kV

V
+ λgik = µ

∇iV

V

∇kV

V

for some function µ. The trace of this last equation gives a direct relation between
λ and µ,

λ =
µ

n

∣∣∣∣
dV

V

∣∣∣∣
2

.

Hence,

R̊icij =
∇̊i,jV

V
= µ

∇iV

V

∇jV

V
− µ

n

∣∣∣∣
dV

V

∣∣∣∣
2

gij . (31)

By a straightforward calculation, we have

∇i

∣∣∣∣
dV

V

∣∣∣∣
2

= 2

(
1 +

[
µ

(
1− 1

n

)
− 1

] ∣∣∣∣
dV

V

∣∣∣∣
2
)

∇iV

V
. (32)

We now choose V0 to be such that V has no critical point outside V −1(−∞, V0). We
remark that V −1(V0,∞) is connected. Indeed if it was not, from the assumption
that V is proper it would have one bounded connected component Ω. Since V = V0
on ∂Ω, V reaches a local maximum on Ω which contradicts the assumption that V
has no critical point on Ω. We let Σ0 be the boundary of a connected component

of V −1(−∞, V0). Equation (32) shows that
∣∣dV
V

∣∣2 is constant along Σ0. Plugging
Equations (31) and (32) into

∇i
∇̊j,kV

V
−∇j

∇̊i,kV

V
= 0,

we get

0 = ∇iµ

(
∇jV

V

∇kV

V
− 1

n

∣∣∣∣
dV

V

∣∣∣∣
2

gjk

)
−∇jµ

(
∇iV

V

∇kV

V
− 1

n

∣∣∣∣
dV

V

∣∣∣∣
2

gik

)

+ µ

[
1 +

2

n

(
1−

∣∣∣∣
dV

V

∣∣∣∣
2
)

+
µ

n

(
1− 2

n

) ∣∣∣∣
dV

V

∣∣∣∣
2
]

︸ ︷︷ ︸
=: θ

(
gik

∇jV

V
− gjk

∇iV

V

)
.

Taking the trace of this last equation with respect to j and k we get

1

n

∣∣∣∣
dV

V

∣∣∣∣
2

∇iµ =

[〈
dµ,

dV

V

〉
+ (n− 1)θµ

] ∇iV

V
.

This implies that µ is constant on the hypersurface Σ0. The second fundamental
form S of Σ0 is equal to the normalized Hessian of V restricted to TΣ0, that is

Sij =
∇2

i,jV

|dV | =
V

|dV |

(
1− µ

n

∣∣∣∣
dV

V

∣∣∣∣
2
)
gij . (33)

Hence the hypersurface Σ0 is umbilic with constant mean curvature. From the
conformal transformation law of the second fundamental form, Σ0 is umbilic for
the hyperbolic metric b as well. Since Σ0 is also compact it is a round sphere.

Note that the curvature of Σ0 is given by the Gauss Formula,

RΣ0 = R+
1

2
S ? S.
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From the form of the Riemann tensor of g and the special form of S, we immediately
conclude that the metric induced on Σ0 has constant curvature,

RΣ0 = −1

2
g ? g +

1

n− 2
R̊ic ? g +

1

2

HessV

|dV | ?
HessV

|dV |

= −1

2
g ? g +

1

n− 2

H̊essV

V
? g +

1

2

V 2

|dV |2

(
H̊essV

V
+ g

)
?

(
H̊essV

V
+ g

)

= −1

2
g ? g − 1

n− 2

µ

n

∣∣∣∣
dV

V

∣∣∣∣
2

g ? g +
1

2

V 2

|dV |2

(
1− µ

n

∣∣∣∣
dV

V

∣∣∣∣
2
)2

g ? g

=


−1

2
− 1

n− 2

µ

n

∣∣∣∣
dV

V

∣∣∣∣
2

+
1

2

V 2

|dV |2

(
1− µ

n

∣∣∣∣
dV

V

∣∣∣∣
2
)2

 g ? g,

where we used the fact that

H̊ess

V
= −µ

n

∣∣∣∣
dV

V

∣∣∣∣
2

g

when restricted to TΣ0.
We claim that the level set V −1(V0) is connected. Assume that it contains two

connected components Σ0,Σ1. Since V
−1(V0,∞) is connected and open, it is path

connected so we can join Σ0 and Σ1 by a path γ in V −1(V0,∞). If v is larger than
V0 and the supremum of V on γ, then Σ0, Σ1 and γ are contained in the same
connected component B of V −1(−∞, v)∪K which is a ball. Then, for the gradient
vector field ∇V the two hypersurfaces Σ0 and Σ1 are sources while the boundary
of B is the only sink. Since ∇V has no zero outside V −1(−∞, v) this contradicts
the Poincaré-Hopf theorem.

Note that our reasoning applies to any v larger than V0, so the level sets V −1(v)
are all round spheres.

From (32) we conclude that
∣∣dV
V

∣∣2 can be expressed as a smooth function of V .

We define a function s : Hn \ V −1(V0,∞) → R+ as s := f ◦ V where

f(v) :=

∫ v

V0

1

|dV | .

Then |ds| = 1 so s can be interpreted as the distance function from V −1(V0,∞),
see [24]. The second fundamental form of the level sets of s is given by (33) so we
see that the metric g is rotationally symmetric.

Our next step is to prove that the conformal factor can be expressed as a function
of s.

We remark that we can reproduce the proof of Lemma 3.2 replacing BR0 by
V −1(V0 − ε,∞) and find two functions f± solving the Yamabe equation (3) such
that f− ≤ U ≤ f+ together with

∣∣∇(k)(f± − 1)
∣∣ ≤ Ake

−nr for any integer k ≥ 0.
Since the conformal factor is bounded away from zero and from infinity, the

metrics g and b are uniformly equivalent. Hence, taking points located further and
further from V −1(V0,∞) with respect to the hyperbolic metric yields points with
s going to infinity. This proves that s is unbounded.
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The conformal transformation law of the mean curvature of the spheres of con-
stant s is given by

HbU1−κ = HgU − 2(n− 1)

n− 2
∂sU. (34)

We choose a coordinate chart (θµ) on the sphere and use it to define Fermi
coordinates on H

n \ V −1(V0,∞), so that

g = ds2 + f(s)σµνdθ
µdθν . (35)

From our previous discussion, both Hg and Hb are functions of s only so it follows
from (34) that for any µ,

(1− κ)HbU−κ∂µU = Hg∂µU − 2(n− 1)

n− 2
∂s∂µU.

As s increases, the spheres of constant s become larger and larger and located
further and further from V −1(V0,∞) so Hb → n − 1. From Formula (34) and the
estimate on U the same is true for Hg. As a consequence, the previous equation
for ∂µU can be written as

∂s∂µU = (2 + o(1))∂µU.

In particular, ∂µU grows as e2s unless ∂µU = 0. Such a growth is inconsistent
with the decay assumption |∇U | = O(e−nr). This implies that U is constant on
the level sets of s.

Without loss of generality, we can assume that the level set V = V0 is a sphere of
radius R1 centered at the origin of the hyperbolic space. From Propositions A.2 and
A.3, there are constantsm− such that fm−

(R1) = 0 andm+ such that fm+(r) → ∞
when r → R1. By the intermediate value theorem, there exists m ∈ (m−,m+) such
that fm(R1) equals the value of U on BR1 . By uniqueness of the solution of the
Yamabe equation (3) with Dirichlet boundary values, we conclude that U = fm
on H

n \ BR1 . By analytic continuation, this equality must hold everywhere on
H

n \K. �

Appendix B. A density result

In this second appendix, we show that any asymptotically hyperbolic metric
satisfying the decay assumptions of the positive mass theorem can be approximated
by metrics which are conformal to the hyperbolic metric outside a compact set,
while changing the mass functional by an arbitrarily small amount. This result is
a refinement of [10, Proposition 6.2].

Proposition B.1. Let (M, g) be a C2,α
τ -asymptotically hyperbolic manifold for α ∈

(0, 1) and τ > 0 meaning that there exists a diffeomorphism

Φ :M \K → H
n \BR0

such that e := Φ∗g − b belongs to C2,α
τ (M,S2M), that is to say e ∈ C2,α

loc (M,S2M)
is such that

‖e‖C2,α
δ

(Hn\BR0 ,S
2M) := sup

x∈Hn\BR0+1

eδr(x) ‖e‖C2,α(B1(x),S2M) <∞.

Assume further that Scalg ∈ L∞ and Scalg ≥ −n(n− 1). Then for any ε > 0, there
exist R > R0 and λR such that

• |λR − g|g < ε;
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• Φ∗λR is conformal to b outside BR, that is Φ∗λR = Uκb with U → 1 at

infinity;

• ScalλR ≥ −n(n− 1) and ScalλR = −n(n− 1) on H
n \BR.

In addition, assuming that τ > n
2 and

∫
M (Scalg + n(n− 1)) cosh r dµg < ∞, we

can also ensure that ∣∣∣HλR

Φ (V(i))−Hg
Φ(V(i))

∣∣∣ < ε

for i = 0, . . . , n.

Note that if (M, g) is an asymptotically hyperbolic manifold in the above sense
and E is a geometric tensor bundle over M then one can define weighted Hölder

spaces Ck,α
δ (M,E) := {e−δru | u ∈ Ck,α(M,E)} with respective norms given by

‖u‖Ck,α

δ
(M,E)

:=
∥∥eδr(x)u

∥∥
Ck,α(M,E)

. We refer the reader to [23] for more details on

these spaces.

Proof. We select a smooth cut-off function χ : R → R such that χ ≡ 1 on (−∞, 0)
and χ ≡ 0 on (1,∞). We let r denote the distance from the origin in H

n and set
χR(x) := χ(r(x) −R) for R > 0. We define the metric gR by

gR := χRg + (1 − χR)Φ
∗b.

To prove the theorem we construct a function vR such that the metric λR :=
(1 + vR)

κgR and show that λR is as close as we want to g provided that R is large
enough.

To simplify notation, we set Ŝcal
λ
:= Scalλ + n(n − 1) for any metric λ on M .

We first remark that the scalar curvatures of gR and λR are related through

−4(n− 1)

n− 2
∆gRvR + ScalgR(1 + vR) = ScalλR(1 + vR)

κ+1.

This equation can be rewritten as

4(n− 1)

n− 2
(−∆gRvR + nvR) + n(n− 1)

[
(1 + vR)

κ+1 − 1− (κ+ 1)vR
]

+ Ŝcal
gR
vR = Ŝcal

λR

(1 + vR)
κ+1 − Ŝcal

gR
.

(36)

To construct the function vR we introduce the following auxiliary equation,

4(n− 1)

n− 2
(−∆gRvR + nvR) + n(n− 1)f(vR) + Ŝcal

gR
vR = χRŜcal

g − Ŝcal
gR
, (37)

where we use the notation

f(x) = (1 + x)κ+1 − 1− (κ+ 1)x.

Note that if vR > −1 satisfies (37) we have

Ŝcal
λR

(1 + vR)
κ+1 = χRŜcal

g

from (36). In particular, Ŝcal
λR ≥ 0 and Ŝcal

λR

= 0 on H
n \ BR+1. That is to

say, the metric λR satisfies the second and the third assumptions of the theorem,
provided that vR → 0 at infinity. We prove the existence of the function vR by
the standard monotonicity method. We first remark that since g and gR coincide
inside BR, the right hand side of (37) has support in the annulus AR,R+1.

From the fact that e := Φ∗g − b belongs to C2,α
τ , one can easily conclude that∣∣∣χRŜcal

g − Ŝcal
gR
∣∣∣ ≤ Ce−τR
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for some constant C depending only on ‖e‖C2,α
τ

. In particular, given ε > 0 small

enough, the functions v±R = ±ε are barriers for (37), that is,




4(n− 1)

n− 2

(
−∆gRv+R + nv+R

)
+ n(n− 1)f(v+R) + Ŝcal

gR
v+R ≥ χRŜcal

g − Ŝcal
gR
,

4(n− 1)

n− 2

(
−∆gRv−R + nv−R

)
+ n(n− 1)f(v−R) + Ŝcal

gR
v−R ≤ χRŜcal

g − Ŝcal
gR
.

As a consequence, there exists a function vR satisfying (37) and

−ε ≤ vR ≤ ε,

see for example [14, Proposition 2.1] for more details.
Since λR = (1+ vR)

κg inside BR, we immediately get that |λR − g| ≤ Cε in this
region. Outside BR, we can just use the fact that e ∈ C2,α

τ and conclude

|λR − g| ≤ |λR − b|+ |g − b| ≤ 2ε

if R is large enough.
From standard analysis on asymptotically hyperbolic manifolds it follows that

vR ∈ C2,α
n . Since e ∈ C2,α

τ we see that
∥∥∥χRŜcal

g − Ŝcal
gR
∥∥∥
C0,α

τ′

→ 0 as R → ∞ for

any τ ′ ∈
(
n
2 , τ
)
. This implies that ‖vR‖C2,α

τ′
→ 0.

Let eR := Φ∗λR− b. From the previous estimate and the fact that e = Φ∗g− b ∈
C2,α

τ , we deduce that ‖eR − e‖C2,α

τ′
→ 0. We choose an arbitrary R1 > R0. As in

the proof of Lemma 3.9 we use formulas from [19, page 114] or [11] to write

HλR

Φ (V(i))−Hg
Φ(V(i))

=

∫

SR1

(
V(i)

[
divb(eR − e)− d trb(eR − e)

]

+ trb(eR − e)dV(i) − (eR − e)(∇bV(i), ·)
)
(νR1) dµ

b

+

∫

Hn\BR1

(
V(i)

(
Ŝcal

λR − Ŝcal
g
)
+Q(eR, V(i))−Q(e, V(i))

)
dµb

for i = 0, . . . , n. From this expression it follows that it suffices to prove that
∫
Hn\BR1

V(i)

(
Ŝcal

λR − Ŝcal
g
)
dµb → 0 when R → ∞ to get that the mass vector

of λR converges to that of g as R goes to infinity. This follows immediately from∣∣∣∣∣

∫

Hn\BR1

V(i)

(
Ŝcal

λR − Ŝcal
g
)
dµb

∣∣∣∣∣ ≤
∫

Hn\BR1

V(0)Ŝcal
g
∣∣∣∣

χR

(1 + vR)1+κ
− 1

∣∣∣∣ dµb

and the fact that χR

(1+vR)1+κ − 1 is uniformly bounded for R large enough and

converges to 0 almost everywhere. �
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pp. 197–206.

22. D. A. Lee, On the near-equality case of the positive mass theorem, Duke Math. J. 148 (2009),
no. 1, 63–80.

23. J. M. Lee, Fredholm operators and Einstein metrics on conformally compact manifolds, Mem.
Amer. Math. Soc. 183 (2006), no. 864, vi+83.

24. P. Petersen, Riemannian geometry, second ed., Graduate Texts in Mathematics, vol. 171,
Springer, New York, 2006.

25. R. Schoen and S. T. Yau, On the proof of the positive mass conjecture in general relativity,
Comm. Math. Phys. 65 (1979), no. 1, 45–76.

26. Y. Shi and L.-F. Tam, Asymptotically hyperbolic metrics on the unit ball with horizons,
Manuscripta Math. 122 (2007), no. 1, 97–117.
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