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ASYMPTOTICALLY HYPERBOLIC MANIFOLDS WITH SMALL
MASS

MATTIAS DAHL, ROMAIN GICQUAUD, AND ANNA SAKOVICH

ABSTRACT. For asymptotically hyperbolic manifolds of dimension n with scalar
curvature at least equal to —n(n — 1) the conjectured positive mass theorem
states that the mass is non-negative, and vanishes only if the manifold is iso-
metric to hyperbolic space. In this paper we study asymptotically hyperbolic
manifolds which are also conformally hyperbolic outside a ball of fixed radius,
and for which the positive mass theorem holds. For such manifolds we show
that the conformal factor tends to one as the mass tends to zero.
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1. INTRODUCTION

The mass of an asymptotically hyperbolic Riemannian manifold is a geometric
invariant which has been introduced by Wang [28] and Chrusciel and Herzlich
[11] using different approaches. The mass is computed in a fixed asymptotically
hyperbolic end and gives a measure of the leading order deviation of the geometry
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from a hyperbolic background metric in the end. For the family of anti-de Sitter-
Schwarzschild metrics the mass coincides with the mass parameter.

In both papers mentioned above, a positive mass theorem is proved for spin
manifolds using an adaptation of Witten’s spinor argument [29]. This theorem
states that a complete asymptotically hyperbolic spin manifold of dimension n
must have non-negative mass if its scalar curvature is at least equal to —n(n — 1)
(which is the scalar curvature of hyperbolic space of the same dimension). Previous
work in the physics literature include [I], [I3], [4].

The positive mass theorem also contains a rigidity statement saying that the
mass vanishes if and only if the manifold is isometric to hyperbolic space. In
Witten’s spinor argument the rigidity follows from the fact that vanishing mass
forces a certain spinor field to satisfy the overdetermined Killing equation, which
implies that the manifold is hyperbolic. Without the spin assumption the positive
mass theorem for asymptotically hyperbolic manifolds is still open. Partial results
have been obtained by Andersson, Cai, and Galloway in [2] where an adaptation
of the minimal surface method of [25] is used, see also [I8, Section 53]. In [2] the
rigidity is proved by first showing that the manifold is Einstein. This is done by
an argument involving a deformation of the metric by the traceless Ricci tensor, if
this is non-zero one can deform to a metric with strictly negative mass which gives
a contradiction.

With the rigidity statement of the positive mass theorem in mind, it is natural
to ask what happens if the mass is close to zero and the scalar curvature is at least
equal to —n(n — 1). Must the manifold then be close to hyperbolic space in some
appropriate sense? Such a statement can never hold true globally, as the example
of the anti-de Sitter-Schwarzschild metric shows.

The same question has been addressed in relation to the rigidity part of the
positive mass theorem for asymptotically Euclidean manifolds: must an asymptot-
ically Euclidean manifold with small mass and non-negative scalar curvature be
close to Euclidean space in some sense? Asymptotically Euclidean spin manifolds
with small mass have been studied by Bray and Finster, see [7] and [12]. From
estimates on the spinor field in Witten’s argument they find that the L?-norm of
the curvature tensor (over the manifold minus an exceptional set) is bounded in
terms of the mass. Lee [22] studies asymptotically Euclidean manifolds which are
conformally flat outside a compact set K. For such manifolds he proves that the
conformal factor can be controlled by the mass, so that the conformal factor tends
uniformly to one outside any ball containing K as the mass tends to zero. The
argument by Lee does not require the manifold to be spin, but it needs the assump-
tion that the positive mass theorem holds for any asymptotically Euclidean metric
on the manifold.

In the present paper we will adapt the ideas of Lee to the setting of asymptotically
hyperbolic manifolds. We define a class A(Rp) of n-dimensional asymptotically
hyperbolic manifolds (M, g) which have scalar curvature greater than or equal to
—n(n—1) and have a chart at infinity ® : M\ K — H"\ Bg,, where K is a compact
subset of M and Ry is a given fixed radius. We require that ®,g is conformal to
the hyperbolic metric, that is

d,g = U"b,

4, and Scal/ = —n(n — 1) on M \ K. Further, we assume that
the positive mass theorem holds for any asymptotically hyperbolic metric on the

where k =
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manifold M. We prove that given any € > 0, there is 6 > 0 such that if a metric
belongs to the class A(Rp) and has mass m < ¢ then the conformal factor U
satisfies [U — 1| < e. We refer the reader to Definition 31 and Theorem [A] for
precise statements of the results.

The most stringent assumption of our theorem is probably that the metric must
be conformal to the hyperbolic metric outside a compact subset. However, in
Appendix [Bl we prove that every asymptotically hyperbolic manifold of scalar cur-
vature greater than or equal to —n(n — 1) can be approximated by metrics which
are conformal to the hyperbolic metric outside a ball while changing its mass arbi-
trarily little. See Proposition [B.1l for the precise statement. This result generalizes
a proposition of Chrusciel and Delay, [I0, Proposition 6.2].

The overall strategy of the proof of Theorem [A] is as follows. We define a 1-
parameter family of asymptotically hyperbolic metrics involving a geometric prop-
erty of (M, g), and we compute their mass. If the mass of (M, g) is close to zero
and if it varies too widely with respect to the parameter, this yields a contradiction
with the positive mass theorem. These ideas are inspired by [22]. However, several
complications arise in the asymptotically hyperbolic context.

One complication is to reduce the proof of the main theorem to the case of
metrics with constant scalar curvature. This is achieved in Proposition by a
conformal transformation of the metric. In the asymptotically Euclidean context
there is a simple formula for the change of mass under a conformal transformation
of the metric (see for example [22] Lemma 2.1]), which works nicely together with
the equation for vanishing scalar curvature. The corresponding formula in the
asymptotically hyperbolic case is not as easily combined with the Yamabe equation
for constant scalar curvature. However, in Proposition 3.6l we give an estimate for
the difference between the two masses in terms of the respective conformal factors.

Once this reduction has been done, we can assume that the metrics we are con-
sidering have constant scalar curvature Scal’ = —n(n — 1). A second complication
we encounter is to find an appropriate 1-parameter family of metrics. We want a
deformation that can be localized in the asymptotic region where the metric is con-
formal to the hyperbolic metric. In the view of [22] and [2], a natural choice would
be As = (ps)"(g — sxRic), where Ric = Ric 4 (n — 1)g is the traceless part of the
Ricci tensor, x is a cut-off function whose support is contained in the asymptotic
region, and ¢, is a conformal factor such that the metrics A\s have constant scalar
curvature —n(n — 1). However, with this choice the formula for the derivative of
the mass turns out to be tractable only if yx = 1. Interestingly, this difficulty can
be overcome by replacing Ric with a tensor measuring how far the metric g is from
being static, see Lemma B.100

We also give a simpler proof for spin manifolds, see Theorem [Bl This argument
is based on the fact that the mass controls a certain functional which measures
how close (M, g) is to allow a Killing spinor, and this functional in turn depends
continuously on the conformal factor U.

The small mass theorem of Lee [22] appears as an ingredient in the proof of the
Penrose inequality by Bray [6] and Bray and Lee [8]. In a forthcoming work we plan
to address an adaptation of Bray’s proof of the Penrose inequality to the case of
asymptotically hyperbolic manifolds. Note however that the necessity to replace Ric
by a more complicated tensor in the definition of the 1-parameter family of metrics
sheds light on what could be the analog of Bray’s conformal flow on asymptotically



4 MATTIAS DAHL, ROMAIN GICQUAUD, AND ANNA SAKOVICH

hyperbolic manifolds. Even in the purely Riemannian context, the lapse function
is likely to play an important role in its definition.

This paper is organized as follows. In Section 2l we give the definitions of asymp-
totically hyperbolic manifolds and their mass. Section Bl begins with the statement
of our main result, Theorem [Al In the first subsection we prove some results on
the conformal factors at infinity for manifolds in A(Rp). In the second subsection
we then give the proof of our main theorem deferring parts of the argument to the
following subsections. The third subsection contains the argument to show that
we can reduce to the case Scal = —n(n — 1) everywhere by a conformal change
while controlling the mass. The fourth and final subsection contains the proofs of
the more technical lemmas. In Section ] we give the alternative argument for spin
manifolds. In Appendix [A] we collect details of the anti-de Sitter-Schwarzschild
metric which are used in the paper. Finally, in Appendix [Bl we prove Proposition
[B1 which shows that metrics which satisfy the assumptions of Theorems [Al and
[B] are dense in the set of metrics which satisfy the standard assumptions of the
positive mass theorem.

Acknowledgments. We thank Julien Cortier and Marc Herzlich for helpful com-
ments on a preliminary version of this article. We are also grateful to the referees for
their careful reading of an earlier version of the article. Their insightful comments
has led to many improvements of the presentation of our results.

2. PRELIMINARIES

2.1. The mass of an asymptotically hyperbolic manifold. Following the work
of Chrusciel and Herzlich, [T1] and [19], we define the mass of an asymptotically hy-
perbolic manifold. For conformally compact manifolds the definition of the asymp-
totically hyperbolic mass coincides with the mass introduced by Wang in [28]. In
this paper we denote n-dimensional hyperbolic space by H" and its metric is de-
noted by b. We fix a point in H” as origin. In polar coordinates around this point
we have b = dr? + sinh® o on (0, 00) x S~ where ¢ denotes the standard round
metric on S"~! and r is the distance from the origin. The open ball of radius R
centered at the origin is denoted by Bpr and its closure is denoted by Bg.

Let N := {V € C(H") | Hess’V = Vb}. This is a vector space with a basis
consisting of the functions

Vo) = coshr, V(1) = zlsinhr, ..., Viny = 2" sinhr,

where the functions z!,...,2" are the coordinate functions on R™ restricted to

S"~1. The vector space N is equipped with an inner product 7 of Lorentzian signa-
ture characterized by the condition that the basis above is orthonormal: 1(V{g), V(o)) =
1, and n(V(;), Vi) = =1 for i = 1,...,n. We give N a time orientation by spec-
ifying the vector V(gy to be future directed. The subset N T of positive functions
then coincides with the interior of the future lightcone. We also denote by A/! the
subset of Nt consisting of functions V with n(V, V) = 1. In other words, N'! is the
unit hyperboloid in the future lightcone of A. For a point pg € H" the function

V := coshdy(p, -)

is in A'!, and any function in A'! can be given in this form.
A Riemannian manifold (M, g) is called asymptotically hyperbolic if there is a
compact subset K C M and a diffeomorphism ® : M \ K — H" \ By for which
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®.g and b are uniformly equivalent on H"” \ Br and

/ (lef” + |Vbe|?) coshrdu® < oo, (1a)
Hn\BR

/ |Scal? 4 n(n — 1)| coshr du® < oo, (1b)
Hn\BR

where e := ®,g—b and r is the (hyperbolic) distance from an arbitrary given point
in H”. The diffeomorphism & is also called a chart, or a set of coordinates, at
infinity.

The linear functional He on N defined by

He(V) = HL(V) = lim (V(divb e —dtre) + (tr¥ e)dV — e(VPV, -)) (v,) dpt?

T—00 S
s

is called the mass functional of (M, g) with respect to ®. Proposition 2.2 of [11]
tells us that the limit involved in the definition of Hg exists and is finite when the
decay conditions ([Ta)-(IL) are satisfied. If @ is a chart at infinity as above and A
is an isometry of the hyperbolic metric b then Ao ® is again a chart at infinity and
it is not complicated to check that

Haos(V) = He(V o A1),

If @1, & are charts at infinity as above, then [I9, Theorem 2.3] tells us that there
is an isometry A of b so that ®3 = A o ®; modulo lower order terms which do not
affect the mass functional.

The mass functional Hg is timelike future directed if Hg (V) > 0 forall V e N,
In this case the mass of the asymptotically hyperbolic manifold (M, g) is defined
by

mY = __ inf HS (V).
2(n — Nwp_1 N1 ¢
Here w1 denotes the volume of the sphere (S"~! 7). The factor in front of the
infimum is such that the mass of the space-like slice
dp? 2

——— +
1 + p2 - pgznj2 re

gAdss =

of the anti-de Sitter-Schwarzschild metric is equal to the parameter m in the metric.
Note that Chrusciel and Herzlich [I1], (3.5) and (3.6)] define m¢ without this factor.
If H] is timelike future directed we may replace the coordinates at infinity ® by Ao®
for a suitably chosen isometry A so that m9 = WH;%(V(O)). Coordinates
with this property are called balanced.

The positive mass theorem for asymptotically hyperbolic manifolds, [11, Theo-
rem 4.1] and [28, Theorem 1.1}, states that the mass functional is timelike future
directed or zero for complete asymptotically hyperbolic spin manifolds with scalar
curvature Scal > —n(n —1). In [2] Theorem 1.3] the same result is proved with the
spin assumption replaced by assumptions on the dimension and on the geometry

at infinity.
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2.2. Conformally hyperbolic metrics. We now compute the mass functional
of a metric g which is asymptotically hyperbolic and conformal to the hyperbolic
metric in the chart at infinity. That is ®,g = U”b where U is a positive function
and we set kK = n472 as we do throughout the paper. In this case e = fb where
f = U" — 1. The metric g is asymptotically hyperbolic if e satisifies (Ta))-(1H),
which turns into weighted integral conditions on U and its first two derivatives.
The mass functional becomes
HI(V)=(n—1)lim [ (f0,V —Va,f)du".
T—>00 ST‘

If g has constant scalar curvature —n(n — 1), so that U is a solution to the

Yamabe equation, it is known from [3] that U has the expansion at infinity

n

2
e O

U=1+

in polar coordinates, where v is a function on S"~!. Then

" 4(n—1 - -
Hj <Z aiV(i)> = %2) /SWI <a0 + Zaixz> vdu’,
i=0 i

and in particular we have
1 2
I<—- HIVgp)=——— dp’ 2
= 2(n — Dwp—1 (Vo) (n —2)wp_1 ‘/an—lv a @
where equality holds if ® is a balanced chart at infinity.

3. ASYMPTOTICALLY HYPERBOLIC MANIFOLDS WITH SMALL MASS

In this section, we prove an analog of the main result of [22]. We first introduce
the following class of asymptotically hyperbolic manifolds.

Definition 3.1. For Ry > 0 we let A(Ry) be the class of 4-tuples (M, g, ®, U) such
that
e (M, g) is a complete Riemannian manifold which is asymptotically hyperbolic
with respect to ®, where @ is a diffeomorphism from the exterior of a compact
set K C M to H" \ Bpy;
e Scal? > —n(n —1), and ScalY = —n(n —1) on M \ K;
e U is a positive function on H" \ Bpg, such that U — 1 at infinity and
$.g=U"b;
e the coordinates at infinity ® are balanced;
e the positive mass theorem holds for any asymptotically hyperbolic metric on
M.

We will prove the following theorem concerning the near-equality case for the
positive mass theorem.

Theorem A. Let Ry > Ry and € > 0. There is a constant 6 > 0 so that
U -1 <ege™™
on H" \ Bpg, for all (M,g,®,U) € A(Ry) with m9 < 4.
We fix once and for all the value of Ry and abbreviate A = A(Rp).
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3.1. A priori estimates. We first prove estimates on the conformal factor U which
are valid for any element of A.

Lemma 3.2. There are positive constants A, Ag, k = 0,1,..., such that for any
(M, g,®,U) belonging to the class A we have

1
—<U<KA
A_U_ ’
V(k)(U—l) < Age™  fork >0,

on H™ \ Bg,.

Note that these estimates are specific to the case of asymptotically hyperbolic
geometry. In the Euclidean context they cannot be true due to the fact that the
Yamabe equation (which is then the Laplace equation) is linear.

Proof. The assumption on the scalar curvature of ®,g = U*b on H" \ Bg, implies
that U solves the Yamabe equation
4(n—1
- Lz)AbU—n(n— WU = —n(n - 1)U (3)
n —

on H" \ Bg,. From Propositions [A] and we know that there exists a solution
U, of Equation (@) on H"\ Bg, such that U; = 14+0(e~"") at infinity and Uy — 0o
on 0Bp,. Now the same argument as in [I5, Proposition 3.6] can be used to show
that U < U,. Namely, the substitution U = e¥ brings Equation (3)) into the form

4(n—1
o Sj_ 2 ) (Ab</7 + |d<P|12>) —nn—1)=—n(n—1)e".
Subtracting the respective equations for ¢, and ¢ gives
4(n—1)

n—9 (A(pr = @) + (d(ps — ), dlps + 9))p) +n(n — 1) (e"F — &%) = 0,

and from the standard maximum principle we conclude that ¢ > ¢, hence Uy > U.
Similarly, from Proposition [A.3] there exists a function U_ such that U_ solves
Equation @), U- = 1+ O(e™"") at infinity, and U- = 0 on dBpg,. From the
maximum principle we also conclude that U_ < U.

We can now finish the proof of the lemma. The existence of the constants A and
Ay follows from the fact that U_ < U < U; on H" \ Bpg,. Finally, since u=U —1

satisfies
4(n—1
—LQ)Abu =-nn—-1)(1+u)" —1)+n(n—-1)u
n —
we can apply elliptic regularity in balls of fixed radius as above and combine with
standard bootstrap arguments to get the existence of constants Ay for £ > 1. O

From the estimates in Lemma together with (2)) we conclude that the mass
of the elements of A is uniformly bounded.

Corollary 3.3. There exists a constant C = C(Ry) such that for all elements
(M, g,®,U) belonging to the class A(Ry), the mass satisfies m9 < C.

The exponential decay stated in Theorem [A]will follow from the next proposition.
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Proposition 3.4. Let Ry > Ry be a fized radius. There exists a constant C > 0
such that for any (M, g, ®,U) in the class A we have

|U—1|§C’< sup |U—1|> e """ 4)

H"\Br,

on H" \ Bg,.

Proof. In Appendix [Al we have described the solutions f,, of @) corresponding to
anti-de Sitter-Schwarzschild metrics of mass m. For appropriate choice of m_ <
0 < m4 we have that f,,, and f,,_ solve @) on H" \ Bg, with f,,, — oo on dBg,
and fp,_ = 0on dBg,. From the proof of LemmaB.2we know that f,,  <U < fo,,
on H" \ Bpg,.

Let 0 < m < my. Then fy, such that 1 < f,, < fy,, is defined for r > Ry,
see Appendix [Al for details. From the proof of Proposition [A.I] we know that
0 < frn—1< Cme " for r > r1(m) := max{Ry,r((2m)*/™)}. It is not complicated
to extend this estimate to the whole interval » > R;. Indeed, let p > 0 be such
that Ry = r((2u)"/™). If 0 < m < p then we have r1 () = Ry, hence the estimate
already holds for » > R;. Therefore it suffices to consider the case 4 < m < my
which corresponds to the situation r1(m) > R;. Since f,, is decreasing we have
fm =1 < fm(R1) =1 < fr(R1) =1 on Ry < r < ri(m), whereas me™"" >
pe="r1(m) > ye=nmi(m) on this interval. It is now clear that up to increasing C'
if necessary, we can assume that the inequality 0 < f,;, —1 < C'me™" holds for
r > Rj. In the rest of the proof, the constant C' > 0 might vary from line to line
but remains independent of m.

Using Proposition [A.3] we can similarly prove that the inequality Cme™"" <
fm — 1 <0 holds for r > Ry in the case when m_ < m < 0. This yields

[fm =1 < Clmle™™"

for m_ < m < my and r > R;. Let us now choose m,m € (m_,my) so that
fm(R1) = infop, U and fm(R1) = supyp, U. Again, the use of the maximum
principle as in the proof of Proposition [A] yields f,, < U < fm on H" \ Bg,.
Consequently, we have the estimate

U —1] < Cmax{|m|, [m]|} e

on H" \ Bg,.
With all these preliminaries at hand, (@) is a simple consequence of the fact that
there exists a constant C' > 0 such that

m| < Clfm(R1)—1] for m_<m<my. (5)
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Indeed, if we assume that this estimate holds, then
U — 1| < Cmax {|fm(R1) — 1|, |fm(R1) — 1|} ™"

=Cmax< | inf U—1|,|sup U—1]|,e™ ™"
OBRl BBRI

= Cmax\ | inf (U - 1)‘ Jsup (U—=1)| pe "
OBRl BBRI

<C (sup |U — 1|> e """
9Br,

<C| sup |U-1]]|e™ ™.
H"\BRI

Consequently, in order to complete the proof, we only need to prove (@). In fact,
@) will follow from the monotonicity of f,, if we show that

m| < Clfu(Re) ~ 1] for  m_ <m<my, (6)

for some Ry > Ry. We fix Ry > max{ro(m4),R1} and set & := f,,(Rz2). It is
clear that f,,_ (R2) < o < fm, (Rs) for m— < m < my, and that r—'(Ry) =

277 sinh Ry > a(m). Then (27) yields

/°° dp 7/00 dr
722 sinh R» pr /14 p2 — pg:lz R, sinhr’

F(a,m) = /:o dp

2 )
n=2sinh Rz p, /1 + p2 — %Zig
\/ P

where f, (R2) < @ < fm, (R2), m— < m < mg. It is straightforward to check

We define

that
oF 7/00 dp
6m z% sinh Ro 2pn_1 (1 + p2 _ 2m2)3/2
p’Vl*
> 7 dp
= | o 32
iy (ry) SINM B2 9 pn—1 (1 +p? — pT—,B)

is positive and uniformly bounded away from zero, and that
OF 2

. 4_ . m
P T G e —

is uniformly bounded. We conclude that there exists C' > 0 such that |m/(z)| < C

for € (fm_(R2), fm, (R2)). Finally, applying the mean value theorem we arrive
at (@) and thus (@) follows. O

Corollary 3.5. There exists a radius Ro > Ry such that for (M,g,®,U) € A
the function |U — 1| reaches its mazimum over H™ \ Bg, in the annulus Agr, r, =

Br, \ Bg, .
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Proof. Choose Ry such that Ce "2 < 1. Then for any point such that r > Ry we
have
[U—-1<C| sup |U-1]]e ™ < sup |U-1].
Hn\BRl H"\BRI
O

3.2. Strategy of the proof of Theorem [Al In this subsection we discuss the
main strategy of the proof of Theorem [A] deferring the proof of technical details to
the next subsections.

The first step is to reduce the proof of Theorem [A] to the particular case of
metrics with constant scalar curvature Scal’ = —n(n — 1). For this we show that
the conformal factor transforming the metric g to a metric with constant scalar
curvature can be uniformly controlled on H™ \ Bg, by the difference between the
masses (more exactly of the time components Hg(V(q)) of the mass functional) of
the two metrics. This is the content of the following proposition.

Proposition 3.6. Given (M, g, ®,U) € A, there exists a unique positive function w
on M such that g := w"g is asymptotically hyperbolic with constant scalar curvature
Scal! = —n(n — 1). The metric g has mass m9 < m9. Further, for p > n/2 there
is a constant C > 0 independent of (M, g, ®,U) such that

sup

~ \1/p
U—U‘SC(mg—mg) ,
H"\Br,

where U := Uw.

This reduction turns out to be convenient for obtaining estimates in the second
part of the proof. We introduce the restricted class Ao(Rp) of 4-tuples (M, g, ®,U) €
A such that Scal? = —n(n —1) on all of M. To prove Theorem [A] we need to show
the result for elements of Ay = Ao (Rp).

The basic idea is to apply the positive mass theorem to a certain 1-parameter
family of metrics. To define it, we first modify the metric g in an annulus (see
Equation () and conformally transform it to fulfill the assumption Scal > —n(n—
1) of the positive mass theorem.

In the first lemma we prove the existence of a function V' which solves A9V = nV
and which is asymptotic to V(o). For functions Vi and V5 on M we write V; ~ V4,
if V1/V4 tends to 1 at infinity.

Let R{, R{, R} and R/ be constants such that

Ry < R{ < Rj < Ry < R} < RY.

We remind the reader that r denotes the distance function from the chosen origin
in H"™.
Lemma 3.7. Let (M,g,®,U) € A. There exists a unique solution VI to the
equation

AV =nV (7)
such that V9 ~ V(o). Further, there exist universal functions

Vi H" \ BR() — R

such that for some constants Cy, C1 > 0 we have

[V — Vigy| < Coe= 1,
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V_ < Ve < VJra
and

V9 — dVg)|, < Cre= =0T

on H" \ Br,. Also, there are constants Ba, Bs, ... depending only on Ry, Ry and
R} such that for any integer k > 2 we have

’V(k)V‘q < By on AR{,’,R’I"
Define oy
9 Hess' VY
T := Ric” — T,

where Ric” = Ric? + (n — 1)g denotes the traceless part of the Ricci tensor and
Hess”V = Hess? V — Vg denotes the traceless part of the Hessian of V. From the
computations in the proof of Lemma [B.I0 it follows that the tensor V9T is actually
the gradient of the mass at (M, g) in the space Ao(RY).

We choose a smooth function x such that

0 on Bgy,
X = 1 on ARLR/17
0 on H"\ Bgy,
and define the metric
gs =g+ sxT (8)

for small values of the parameter s.

Next we recall the definition of the weighted local Sobolev spaces, see [15] for
more details on these spaces. Let p € (1,00), a non negative integer k, and § € R
be given. We define the function space Xf’p (M,R) as the set of functions u €

WP (M, R) such that the norm

loc
- or(x)
||u||X§,p(M7R) = 5;1]\36 ullwrr(B, (2).R) 9)

is finite. This space is a Banach space.
We will conformally transform the metrics gs to have constant scalar curvature
Scal = —n(n — 1). The details of this are taken care of in the following lemma.

Lemma 3.8. There exists so > 0 such that for all s € [—so, so| and any (M, g,P,U) €

Ag it holds that

1
§g§gs§2g

and
[Scal’ +n(n—1)| <n—1.

Further, for any s € [—so, so] there exists a unique positive function @5 on M which
is bounded from above and away from zero such that the metric

As = 05 0s

has constant scalar curvature —n(n — 1). The function ps satisfies

_ 1/k 1/k
<n 1) < g < <n+1) '
n n
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In addition, there are constants Cy,Cy, ... such that
V) (s —1)| < Cre™™ (10)

holds on H™ \ Bg, for all k > 0. Finally, the map s — @5 — 1 from the interval
[—s50, 50] to X;P(M, g) is C* for any p € (n,00) and § € (2,n).

For V' = V() = coshr we set H(s) := Hp*(V). This is the time component of
the mass functional, which gives an upper bound on the mass, namely m*s <
WH (s). Since the coordinates at infinity are balanced for g, we have

md = m = H(0). In what follows we will denote derivatives with

1
2(n—1)wn—1
respect to the parameter s by a dot.

Lemma 3.9. The map s — H(s) is a C? function. Further, there is a constant A
independent of (M, g, ®,U) € Ay such that

|H(s)] < A.

In the next proposition we find that H (0) is related to the L2-norm of Ric” —
%Hesng on an annulus, which can be interpreted as a measure of “non-staticity”
of the metric g on the annulus.

Lemma 3.10. Suppose (M, g, ®,U) € Ay and H(s) is defined as above, then
2

g HessV9 dps.

Ric” — Ve

H(0) = /M xV?

We are now ready to prove Theorem [Al

Proof of Theorem[Al. We first assume that the metric g has constant scalar curva-
ture. Applying Taylor’s formula to H(s) on the interval (—so, so) we find

H(s) = H(0) + sH(0) + /S(s — t)H(t)dt
0
< H(0) + sH(0) + A/S(s — t)dt
0

< H(0) + sH(0) + §$2.

From the assumption that the positive mass theorem holds for any asymptotically
hyperbolic metric on M we have H(s) > 2(n — 1)w,_1m™* > 0 for s € (—s¢, 50).
As a consequence,

0 < H(0) + sH(0) + Ag

2
. 252 . . . . . o 2H(0)
Assuming that H(0) < =, we write the previous inequality with s = —y/ =5~
and get
H(0) < /2AH(0) = \/4A(n — 1)w,_1m7. (11)

Let € be an arbitrary positive number. We claim that there exists § > 0 such
that any (M, g, ®,U) belonging to Ay and having mass m9 < § satisfies

sup |U—1|<e.
HH\BRI
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To prove this we argue by contradiction and assume that there is a sequence
(Mg, gr, @i, Ug) of elements of Ay such that the mass my := m9 tends to zero
while |Uy — 1| > . Using Lemmas B2, B.7 and [I5, Proposition 2.3] (Rellich the-
orems for weighted local Sobolev spaces), we construct functions Uy and Vo on
H" \ Bg, as limits of some subsequence of Uy and V9. Choose p € (n,00) and
0 € (%, n)

e From Lemma 3.2 the sequence Uy — 1 is bounded in X*(H" \ Bg; ). Hence

there exists a subsequence converging to a limit Uy, — 1 in Xg’p .

e To construct V., it suffices to remark that the sequence Vi is uniformly
bounded in W3P(K) for any compact subset K C H" \ B)Ré by standard
elliptic regularity. Hence, by a diagonal process, we can construct a subse-
quence of functions Vj, converging in the W2P-norm on any compact subset.

The function Uy solves @) and Vo solves A9~V = nV,, where goo = ULb.
They satisfy the asymptotics of Lemmas and 377 Further,

sup U — 1] > & (12)
H"\BRI

The metric g has mass zero since the mass depends continuously on U —1 € X(?’p
(see the proof of Lemma [B.9).

Lemma together with the estimate (1) applied to (My, gk, Pk, Ux) gives
the inequality

/ ngk
M

for any k. In particular, we obtain

[
Hn \BR6

when we let k tend to infinity. Therefore

o g  HessV 9
Ricc = ———
V90

on Agy gr. By analyticity this equality holds on all of H" \ B Rr),- From Proposition
[A4] and the fact that the metric g, has zero mass, we conclude that g is hyper-
bolic. This forces Uy, = 1 which contradicts [I2]). We have thus proved the claim
made above.

At this point, we would like to emphasize that the metric g, is defined only on
H™ \ Bpy so it is not complete. In particular, the standard positive mass theorem
does not apply. This is why Proposition [A.4] is needed.

The proof of Theorem [A]in the general case Scal? > —n(n—1) is then concluded
by Proposition followed by Proposition [3.4] d

2

gr ~ HessV9r

Ric Vo dptt < \/4A(n — 1)w,_1my,

9k

o 2
o goo H Vgoo
Ric™™ — % dpg= = 0

oo

3.3. Proof of Proposition[3.6l In this section we prove PropositionB.6t the con-
formal factor transforming a metric g to a metric ¢ with constant scalar curvature
is controlled by the difference m9 — m? of their masses. This was used to reduce
the proof of Theorem [A] to elements of the class Ay. Such a reduction can also be
found in [2 Proposition 3.13].
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As it will become apparent, the proof of this proposition yields a simpler argu-
ment for Theorem [A]in the case U > 1. However, since it is based on estimates for
solutions to the Yamabe equation on H" \ Bpg,, the argument cannot be general-
ized to arbitrary U. Indeed, one can find solutions to the Yamabe equation () on
H" \ Bg, that oscillate around 1 to produce metrics with zero mass. This shows
that the strategy of the proof of Proposition [B.Glis too weak to produce a full proof
of Theorem [Al

We first make a certain observation about (M, g, ®,U) € A. If weset U = 1+u,
Equation @) can be written in the form

O*u+ (n — 1) cothr dyu — nu = f(u) — sinh™ % rA%y (13)

where

) 2—#<(1+U):+§—1—n+2u).

n—2
We remark that the ordinary differential equation
u”(r) + (n — 1) cothru'(r) — nu(r) =0

has the solutions

1 2n

uo(r) = coshr/ dr =

e~ 10 e—(n+2)r ,
cosh? 7sinh" ! 7 n+1 ( )

u1(r) = coshr.

Lemma 3.11. Suppose U = 1+ u is such that u satisfies (I3) on H"\ Br, and the
metric U"b is asymptotically hyperbolic with respect to the identity chart at infinity.
Then v := u/ug satisfies

— 2)wn_ "
/ U(S) d/LU > (n )w 1mU b
Sn—1 2

+ /:0 (1 - zzzﬁizggg) coshrsinh” ' r (/Snl f(u(r,0)) du") dr

where mY"? is the mass of the metric U"b. Equality holds if the identity chart at
infinity is balanced for U"b.

Proof. Substituting u = ugv into ([I3) we get

uod?v + (2ufy + (n — 1) cothrug)dpv = f(u) — sinh ™2 A%,
If we multiply this equation by wg sinh” ™! 7 we obtain

Oy (uf sinh™ 7 drv) = ug sinh™ ! r (f(u) — sinh ™2 rA%u) .
Integration from ¢ to co gives

(ud sinh™ ' r Oyv) — (ud sinh" ' r 9,v)

|r=00 |r=t

= /too uo(r) sinh™ " r (f(u(r,0)) — sinh > rA%u(r, 0)) dr.

We observe that 9,v = O(1) by Lemma B2l Hence u2sinh™ ' 78,0 = O(e~ (D7),
so the first term in the left-hand side vanishes. Consequently we have
1

_o0(t,0) = ———
(t,6) ud(t) sinh™ ' ¢

/too uo(r) sinh" " r (f(u(r,0)) — sinh > rA%u(r, 0)) dr.
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Integrating from s to oo and changing order of integration we obtain
v(s,0) — lim v(r,6)
T—>00

= /OO ﬁ /OO uo(r) sinh™ 17 (f(u(r, 0)) — sinh ™2 rA%u(r, 9)) drdt
s U t

sinh™ !¢
o0 T 1
- /S (/S w2(t)sinh™ 11 dt) uo(r) sinh™ ' v (f(u(r,0)) — sinh > rA%u(r, 0)) dr.

Here the integral over ¢ is

" 1
[
s ug(t)sinh" ™ ¢
/T 1
s cosh?tsinh” t¢ (foo S dr) 2

t cosh? 7sinh"~1 71

/
T 1 )
oo 1
/S ( ft cosh? 7sinh™ 1+ dr

1 _ 1
i ey ——

r  cosh? 7sinh”~ 171 s cosh?rsinh®~ 17

coshr coshs

~ug(r)  uo(s)
thus
v(s,0) — rlggo v(r, 0)

= /OO <% — C;:(‘i;) uo(r) sinh" 17 (f(u(r, 0)) — sinh ™2 rA%u(r, 9)) dr.

From (2) we have
n — 2)wn— "
Mmlj b < lim v(r,0)du’,
2 r—=00 fon—1
so when we integrate over S"~! we arrive at

- 2 n— K
/ o(5,0) dp® — %mv b
n—1

§ /:o <u—<h> ) u—<h>> to(r)sinh™ 7 ( /S L f G0y dm') dr
> [ (- cosrsinn ([ ptatn o)t ) an

with equality if the coordinates at infinity are balanced. O

Proof of Proposition[38. The existence of the function w is guaranteed by [3, The-
orem 1.2] which says that any asymptotically hyperbolic manifold is conformally
related to one with scalar curvature —n(n — 1). The function w is a solution of the
Yamabe equation

4(n—1)

n—2

Since Scal? > —n(n—1), the constant function 1 is a supersolution of (I4)). Applying
the maximum principle as in the proof of Lemma we conclude that w < 1.

AY%w + ScalVw = —n(n — D)w"+. (14)



16 MATTIAS DAHL, ROMAIN GICQUAUD, AND ANNA SAKOVICH

Consequently, since both U and U satisfy the Yamabe equation (3], it follows from
the proof of Lemma 3.2 that U_ < U <U < Uy on H*\ Bg,. We set u = U— 1,
U= uo_lﬂ, and we note that u < u and v < v. Since ® are balanced coordinates at
infinity for g (but not necessarily for §) we see from (2)) that

m? —m? > lim 2 / (v(r,0) —o(r,0)) du’ > 0.
Sn—1

r—oo (n — 2)wp—_1

Again, since ® are balanced coordinates at infinity for g we conclude from Lemma

31T that
/nil(v(sﬁ) —0(s,0))du’ < % (mg - m§>

<+Lm(1 “M”““”>amnmmw*r(én1umuﬁ»_f@@ﬁ»)mf>dn

~ coshr ug(s)

Observe that

0 < cosh s ug(r)

<1.
coshr ugp(s) —
Moreover, recall that uy = Uy — 1 > 0. Therefore we can use mean value theorem
to show that

ftu+ (1 = t)u))(u—1u)
< C(tu+ (1 — t)u)(u— 1)

Cuy(u—1)

fu) = f(w)

IN

= Cugv (upv — ug?)

= Cudvy (v —7),

where 0 < t < 1, vy = u61u+, and the constant C' > 0 depends only on f.
Consequently, we can estimate

/Qn1@(&9)—4X&9»du”§;Ql:%%ﬁ:l(nﬂ__nﬁ>

S Tro ([ o - o

where F(r) := C' coshrsinh" ! ru2(r)vy (7).
We now argue as in the proof of Gronwall’s lemma and prove the estimate

/Snl(v(s,G) —0(s,0))du’ < % (mg _ mﬁ) o) F(t)dt (15)

We first consider the case when m9 — m9 > 0 and set
— 2)wn— = ° ~
G(s) == % (mg - mg) —|—/ F(r) (/ (v(r,0) —o(r, 0)) d,ug) dr.
s Snfl

Thus we have [, (v(s,0) —0(s,0)) du” < G(s), and G(s) > (7172)% (m9 —m?9).
It is also clear that

G'(s) = —F(s) /Snil(v(s,ﬁ) —0(s,0))du® > —F(5)G(s).
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Since G(s) > 0 we conclude that

> —F(s).

Integrating this inequality from s to co we get

— 2w _ oo
In (% (mg _ mq)) —InG(s) > —/ F(t)dt.

This yields

G(s) < (n— 22)Wn—1 (mg _ mg) o (1) dt7
which in its turn implies (I). Note that (IH) also holds for m? — mJ = 0 which
follows by passing to the limit when m9 —m9 > 0 and m9 —m9 — 0 in (I35).

As a consequence we can estimate the LP-norm of v — v over the annulus A, ,,

where Ry < r1 < R; < ry. We have

o= Wpn, oy = [ 0=

1,72

< /A (2047 (v — ) di”

71,72

_ / " (204 )71 sinh"1 7 < /S ) -, 9))d;f> dr

< le(m" — m§>

for some positive constant C.
We are now about to obtain the estimate stated in the lemma. The equation for

U — U reads

4(n—1 ~ ~ ~
—LZ)AZ’(U ~U)—n(n—1) (U - U) = —n(n—1) (U"‘*l - U"””*l) .
n —
Since ug is bounded we have

U — U”LP(A ) = flu— 17||LP(A

71,72 T1,7T2

)SC(mg—mg)l/p.

Here and in the rest of the proof the value of the positive constant C' might vary
from line to line but remains independent of (M, g, ®,U) € A. By the mean value
theorem we have

U O = (1) (0 + (1 - t)ﬁ)ﬁ (v-0)
<cus (U-0)
<C (U - (7)
on A,, ., for some ¢ € [0, 1]. Hence
Ut — ﬁKHHLP(An,TQ) <c (mg - mg)l/p-

Now elliptic regularity yields

~ \ 1/p
o=l =€ o)
W2’p(Ari,R1)
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where 7 < r] < Ry, and by embedding theorems we conclude that

~ ~\1/p
sup ‘U—U‘gC(mg—mg> .
A’I‘/I,Rl
Set ¢ :=logU and ¢ = log U. Then ¢ — @ is non-negative, tends to zero at
infinity, and satisfies
4(n—1)
n—2

(A — @) + (d(p — @), d(¢ + @))p) +n(n —1) (e““’ - e"@) =0.

If the maximum of ¢ — ¢ is attained at an interior point of H" \ Bg, we get a
contradiction, and thus

logU—logﬁ < sup (logU—logﬁ)
dBp,

on H" \ Bg,. By the mean value theorem we have

U-U ZU(R)
logU—logU':% L
tU+ (1 -t)U U-U

T U-(Ry)

for some t € [0,1]. Thus
U—U<Us(R) (1ogU ~log (7)

< U4 (Ry) sup (log U — log 17)

OBn,
Ui (1) -
< su (U - U)
U_(R1) oz,
N\ 1/p
<C (mg — mg)
on H™ \ Bg,, which concludes the proof of the proposition. O

3.4. Proof of lemmas. We now complete the proof of Theorem [Al by proving the
lemmas stated in Subsection

Proof of Lemma[371 We first construct V. The construction being lengthy, we
give only the argument for V.. We want V.. to be a supersolution for Equation (),

—AgVJr + TLVJr Z 0.
Since g = U"b on H" \ Bg,(0) the previous inequality is equivalent to

—AV, -2 <%,dv+> + UV, > 0.

We choose V. to be a function of r so

oU
—V{ —(n—1)cothrVy — 27\/}r +nU"V,. >0,
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where a prime denotes a derivative with respect to r. From Lemma[3.2] there exists

a universal constant A} depending only on Rj, such that BTUU < Ale"". Assuming

that Vi, V] >0, the previous inequality will be satisfied provided that

-V = (n—1)cothrV] —247e ™ V] +np"V, =0, (16)

where @_ is the anti-de Sitter-Schwarzschild solution vanishing at » = Rgy. Let A
be a positive real number to be chosen later. From standard theory, there exists
a unique solution to Equation (@) defined on [Ry, c0) such that Vi (R}) = A and
VL(Rj) = 0.

We first claim that V; and V| are both positive functions on (R, 00). Indeed,

rewriting Equation (6] as

VI + ((n—1)cothr +2A47e™"") V| = np" V., (17)
setting R := inf{r > R, V,(r) < 0}, and assuming that R < oo, we have V. > 0
on (R{,R) and Vi (R) = 0. Hence, regarding (I7)) as a first order homogeneous
ordinary differential equation for V|, we conclude that Vi > 0 on (Rj, R). In
particular, V4 (R) > Vi (Rj) = A > 0. This contradicts the definition of R. The
claim is proved.

Next we prove that V, = a\ coshr+0(e~(™~Y7) for some constant v > 0. Hence
setting A = 1/a, we get a supersolution to Equation (7)) such that Vi ~ coshr =
V(o). To prove this second claim we set V; (r) := coshrv (7). By a straightforward
calculation, we find that V satisfies (I0) if and only if v satisfies

v/} 4+ (2tanhr + (n — 1) cothr + 247 e™"") v/,
+ (2A%e ™ tanhr +n (¢ — 1)) vy = 0.

From the first claim we have vy > 0. We introduce ky := Z—i and obtain the

following Riccati equation for k4,
K, + k% + (2tanhr + (n — 1) cothr + 247 e™"") ky 18)
+ (2A%e " tanhr +n (" — 1)) = 0.

Without loss of generality, we can assume that A} is chosen so large that
2A7e " tanhr + n (ga’i — 1) >0

on (Rj,00). From the boundary condition VJ (R{) = 0 we have
v, (Rgy) = — tanh Ryvy (Ry) < 0.

It is then fairly straightforward to argue that —1 < k4 < 0 on (R, o0). For this let
R be the smallest r > R{, such that k4 (r) > 0. Then k4 (R) = 0 and, from Equation
@8, ', (R) < 0so ky(r) > 0 for some r slightly smaller than R, contradicting the
definition of R. This estimate can be further refined. We select o € (%, n) and set

ki = —e=2(r=70) for some 7y to be chosen later. Then kT > —1 on the interval
[ro,00). Hence

(k3) + (k7)* + (2tanhr + (n — 1) cothr + 2A%e™"") k.
= (a + e_a(r—ro) — 2tanhr — (n — 1) cothr — 2A/1€—n7‘) e_a(r_m)

< (CY _ n) efa(rfro),
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where we used the inequality

1
2tanhr + (n — 1) cothr = 2 (— + cothr) + (n —3)cothr

cothr
> 2+ (n—3)cothr
>n—1.

Consequently, choosing ry large enough, we can ensure that
(ky) + (k3)* + (2tanhr + (n — 1) cothr + 2A%e™"") k.
+ (247e ™ tanhr +n (¢ —1)) <0

on the interval [rg, 00). A slight modification of the previous argument shows that
ki < ki < 0. Equation (I8) then implies &/, = O(e™""). Together with the fact
that k4 — 0 at infinity, this implies ky = O(e™™"). Thus we infer that

logvy(r) =logA\+ p+O(e™™")
for some constant p. Hence,
vy (r) = Xet + O(e™™).

This proves the second claim with o = e”.

() < 0 and vy — 1 at infinity, it follows

Finally remark that since ki (r) = 5 <

that vy (r) > 1 so Vi > V).

The construction of the subsolution V_ on H"\ B r;, 1s entirely similar. The only
difference is that we select V_(R{) = 0 and V' (R{) > 0. The function V_ then
satisfies V_ < V).

From now on we will work on the entire manifold M. Using the diffeomorphism
® we define open sets B}, in M through the relation ®(M \ By) = H" \ Bg for
R > Ry. The set B}, is the part of M inside an approximate geodesic sphere in the
asymptotically hyperbolic end. By abusing notation we consider the functions Vi
and V(o) as defined on M \ K through the diffeomorphism .

Our proof of existence of the function V¥ follows [I7]. For any r > R{, there exists
a unique function V" solving () inside the sphere of radius r with Dirichlet data
V' = Vjpy on 0B;.. From the maximum principle, V" > 0. Then a second application

of the maximum principle in the annulus B’,.\ B . yields V™ > V_. We extend the
function V. by A on B, ;- This new function V is a C'-supersolution of (7)) in the
weak sense. Hence V" < V (see for example [16] Theorem 8.1] for more details).
In particular, the functions V" are uniformly bounded on compact subsets. Then a
standard argument using elliptic regularity and a diagonal extraction process yields
the existence of the function V9. Similarly, we extend the function V_ by zero on
Bg%. The function V_ extended this way becomes a subsolution in the weak sense
so the functions V" satisfy V™ > V_. In the limit, the function V9 is pinched
between V_ and V., that is
Vo<VIL< V.
This proves that V9 — V) = O(e~(»=Dr),
We note that

oU (-
AWy =U"" <ncoshr + 27 s1nhr> =nV +O(e (n=1)r),
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Hence,
(=8 4m) (V0 — V) = O~

The estimates for d(V9—V|g)) and ‘V(k)Vg‘ follow from standard elliptic regularity.

We finally prove uniqueness of V9. Assume that V7 is the function we constructed
before so that V_ < V3 < V4 and V5 is another function satisfying AVe = nlj,
Vo ~ V(o). From the strong maximum principle we have V; > 0. We compute

Va
Vo=A =V
wva=a ()

v, VANV
=ViA—=+2(dV;.d| = —A
Vi + <V1’ (1)>+Vl Vi

Vs Vs
— VA2 42 2
nag +2(wa (7)) + v

Ve _Jdvi (Vi
=A=+4+2(—.d| = .
0=2y + <V1’ <Vl>>

Since Vi ~ V4, the function Vo/V; tends to 1 at infinity. From the strong maximum
principle (which can be applied here since if V5/V] is not constant, the maximum
of |Va/Vi — 1| is attained at some point p € M), we conclude that V,/V; =1. O

SO

Proof of Lemma[3.8 From LemmasB3.2land[3.7, there are universal constants By, B, . . .

such that
‘VWT} < B,

for k =0,1,... on the support of x. Hence
|9s(X, X) = g(X, X)| = [sT(X, X)| < [s|Bog(X, X)
for any X € TM. So if |s| < ﬁ we have

1 3

We denote by V9¢ the Levi-Civita connection of gs. The difference between V9s
and V9% is a symmetric vector valued 2-tensor I'(s),

VLY —VRY =T'(s)(X,Y).
In coordinates I'(s) is given by
k L ok
5(s) = 595" (Vilgs)y + Vi(gs)a = Vi(gs)is)

S
= §gfl (VilxTi;) + Vi (xTu) — Vi(xTi5)) ,

where we have denoted by V = V9 the Levi-Civita connection of the metric go = g¢.
The scalar curvature of the metric g; can be written as follows,

Scal9s = gijicf; + ¢! (Vil"él(s) — Vll"ﬁj(s) + l"ﬁp(s)l"?l(s) — fp(s)l"fj (s)) )

From this formula it is not complicated to see that there is a constant sy > 0,

sp < ﬁ, depending only on Bg, B, By and n such that

[Scal?* — Scal’| <n —1
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for |s| < sg. From the bound on Scal?® it follows that the constant functions

p_ = (”Tfl)l/N and ¢4 = (”T“)l/ﬁ are respectively a sub-solution and a super-
solution of the Yamabe equation
4(n—1
- 7(71 5 )Agscps + Scal%p, +n(n — 1)t = 0. (19)

Arguing as in the proof of Proposition [3.0] there exists a unique solution ¢ of (I9)
such that ¢, is bounded from above and away from zero. Further p_ < @5 < .
We next prove that the map s +— ¢, is C?. We consider the map

= Qx [—80780] — Xg’p
(u,s) — —%A%u—l—&algs(u—i—l)—i—n(n— 1)(u+ )5+

where Q = {u € X(?’p, u > —1}. Hence, for any s € [—sg, o], us = ps— 1 is the only
solution to the equation Z(u, s) = 0. Further Z is a C? function. The differential
of E with respect to u at any point (us, s) is given by

D, E(us,s): XpP — X27P
v —%Agsv + (Scal?* + (k + 1)n(n — 1)) v.
We remark that
Scal? + (k + n(n — 1) > —(n+1)(n — 1) + (s + 1)(n — 1)?
S 2n(n — 1)7

- n-—-2
from which it follows that the L?-kernel of D,=(us, s) is zero. From the Fredholm
alternative (see [I5, Proof of Proposition 5.1]), we conclude that D,Z(us,s) is
invertible. Using the implicit function theorem, this proves that the map s —
ps— 1€ X(?’p is C2.

To prove the asymptotics of s, remark that the metric A, falls into the class
A(RY). Hence the estimates (I0) are consequences of Lemma [32 O

Proof of Lemma[3.9 We first estimate the first and second derivatives of ¢, with
respect to s. We differentiate Equation (I9) with respect to s and find the following
equation for ¢y,
4(n—1
B 5L -2 )AgSSbS + Scal? ¢, + (’i + 1)”(” - 1)‘P?¢s
4(n — 1) OA9- 0Scal?*
e — Ps — Ps-
n—2 0Os ds

Note that the right hand side has support in the annulus Ag; g,. Thus, by Lemma
3.8 it is bounded by some universal constant C. We also remark that, since

2n(n —1)
n—2

Scal?* + (k + 1)n(n — 1)pf >

and since g tends to zero at infinity (this is a consequence of g4 € X?’p ), we have
n—2
5| < ————C.
Sup || < 2n(n —1)

By standard techniques one can then prove that ||gs]| X2p(HN\ By ) < C for some
0

universal constant C. The same strategy can then be used to study the second
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order derivative of ¢,. However, the calculations are lengthy and we do not include
the argument here.

The last step is to prove that H(s) is a C? function of s. For this we write H(s)
as follows (see [19, page 114] or [I1] for more details),

H(s) = Hy' (V)

= / (V(divb es —dtrley) + (trl es)dV — e (VY )) (vR,) du®
Shy
—|—/ (V (ScalAs - Sca1b> + Q(es, V)) du®
H"™\Br,
= / (V(divb es —dtr’ey) + (trbes)dV — es (VP )) (vr,) du®
Sk

+ / Qles, V) du®
H"\BR2

where e, = A\s — b = (pU" — 1)b, and Q(V, e) is an expression which is linear in

V, quadratic in e, and its first derivatives, and cubic in (As)~!. It corresponds to

the negative of the non-linear terms in the Taylor expansion of

/ % (Scal’\*”‘ — Scalb) dp®
H"\BR2

with respect to e; = As — b. Since A\; = (Uyp;)"b on H™ \ Bpg,, this expression can
be explicitly computed,

1

Qes, V)=V ((n — (ﬁ _ 1) Ay +n(n — 1) W= VP (=D =6) | dv,

Vs 41hs Ps

where 95 := (Ugs)". Written in this form, one can conclude from standard theo-
rems on differentiation of integrals that H(s) depends on s in a C? fashion.
From the estimates we have found for ¢(s) and ¢(s) together with Lemmas

and B8 it is not complicated to deduce that H(s) and H(s) are uniformly bounded
on the interval [—sg, so]. O

S

Proof of Lemma[3 10 For \; we have

" o g HessV9
s =As — b=} (g—l—sx(f{lc— Ve ))—b,

the derivative of this with respect to s evaluated at s =0 is

. HessV9
é:mbg-i-x(Ricg— oo )z:el+e2.

Ve

The conformal factors ¢ satisfy the Yamabe equation

4(n—1
—L;Agﬂps + Scal? p, = —n(n — 1)t
n—
Differentiating this at s = 0 and using the fact that @9 = 1 we find that
4n—1 . 2
—LQ)A% + Scal’(§) + Scal’p = —n(n — 1)n + 2(,27,
_ " —

2

b

)
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L:__ 21) (A9 — ng) = Scal?(g). (20)

We compute
. d N
H()=— (Hz®

0) ds ( @ (V))|s:0

= lim (V(divb ¢ —dtrbe) + (teb e)dV — ¢(VPV, -)) (v,) dpt? (21)

T—00 S.
s

= lim (VI(div? é — dtr9 ) + (tr9 €)dV9 — e(VIVI, ) (v) dp?,
T—>00 ST
where we can change from the metric b to the metric g since g is asymptotically
hyperbolic and the function V9 has the asymptotics specified in Lemma 3.7 Note
that since ey has compact support its contribution to H (0) is zero. For the terms
with e! = kg in 2I) we have

H(0) = lim (VI9(divie' —dtrde') + (tr9 e')dVI — e' (VIVY, ) (v9) dp?

T—00 S'r
oy M 1) 5dV 9 9d5) (19 g
- tm 2 [ (v = VId) () d
4(n —1) / . , .
=—2 [ div? (pdV9 — VIdyp) du?
=2 Sy M :
4(n—1) / ; )
_2n=4 GAIVI — VIANIG) dud
=2 ' :
_4(n-1) g (0 g, g
= - / V9Scal?(g) du?,
M

where the last equality was obtained using ([20). Here ¢ = x (Roicg — H%bgvg) is

traceless. So from the formula for the first variation of scalar curvature, see [5,
Theorem 1.174], we obtain

Scal?(g) = div? div? g — A9 tr9 g — (g, Ric?),,
= div? div? § — (g, Ric”),
g XHésng
div v

2 912 X © g I g gl T I g
= —x |Ric ’ + Ve <HessV ,Ric > + div? div? (xRic") — div*
9 4
Thus, replacing this expression in the formula for H(0) and integrating by parts,
we get

. o gl|2 o °
(0) = / AV [Rie”|” du? 2 / x (Ric!, Hessv) dps
M 9 M g

|y, 2
+ — ’Hessvg} dp?
/MXVg g H
2
:/ ng d'LLg
M

- 1 o
Ric’ — — HessVY
Ve .
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4. AN ALTERNATIVE ARGUMENT FOR SPIN MANIFOLDS

In this section we will prove a version of Theorem [A] with an argument using
spinors. This follows closely the ideas of [6, Section 12], see also the appendix of
[22]. We only give a sketch of the argument. We first introduce the following class
of asymptotically hyperbolic manifolds.

Definition 4.1. For Ry > 0, we define the class ASPi"(Ry) of 4-tuples (M, g, ®,U)
such that

e (M,g) is a complete Riemannian spin manifold which is asymptotically hy-
perbolic with respect to ®, where ® is a diffeomorphism from the exterior
of a compact set K C M to H" \ Bp,;

e Scal’ > —n(n—1), and ScalY = —n(n —1) on M \ K;

e U is a positive function on H" \ Bpg, such that U — 1 at infinity and
$.g=U"b;

e the coordinates at infinity ® are balanced.

We prove the following theorem on the near-equality case of the positive mass
theorem for spin manifolds.

Theorem B. Let Ry > Ry and ¢ > 0. There is a constant § > 0 so that
U -1 <ege™ ™
on H™ \ Bg, for all (M, g,®,U) € ASP™(Ry) with m9 < 4.

We fix the constant Ry > 0 and abbreviate ASP(Ry) = AP, We begin by de-
scribing the relationship between Killing spinors and the asymptotically hyperbolic
mass, for this we follow closely the discussion in [T}, Section 4].

Since M is a spin manifold there is a spin structure and an associated spinor
bundle SM on (M, g). On SM we define the connection V¥ by

V9o = Vo + %X "
Here VY is the Levi-Civita connection for the metric g, ¢ is a section of the spinor
bundle, and the dot denotes the Clifford action of tangent vectors on spinors.
Spinors ¢ which are parallel with respect to V¢ are called (imaginary) Killing
spinors.

We will now describe the Killing spinors on hyperbolic space. The ball model of
hyperbolic space is given by the metric w™2¢ where w(z) = (1 —[z|?) and £ is the
flat metric on the open unit ball B in R™. In this model the Killing spinors on H"
are all spinors of the form

ws(x) = w(:v)_l/2(1 —ix)s.

Here s is a constant spinor on (B™,¢), or equivalently an element of the spinor
representation space Y. For the Clifford action we identify points in B™ with
tangent vectors. For any Killing spinor ¢, on H" its squared norm Vi := [p|?
is an element of N. Every element of N of the form Vi) — %", a;V(;) where
(ai,...,a,) € S" 1 is equal to Vi for some Killing spinor ¢s.
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Using the connection V9 we define the Dirac operator Dy by

n

~ ~ mn
Dipi=3 ei-Vip=D9— T,
=1
where ¢;, i = 1,...,n, is an orthonormal frame for g and D9 = "  ¢; - Vi is

the Dirac operator associated to V9. The Schrodinger-Lichnerowicz formula for Dy
has a boundary term related to the asymptotically hyperbolic mass. If (M, g) is an
asymptotically hyperbolic manifold with diffeomorphism ® : M \ K — H" \ B at
infinity, then the Killing spinor ¢, on H"” can be pulled back to a spinor ®*¢p, on
M\ K. If 4 is a spinor on M with BW)S =0 and ¢ — ®*ps — 0 at infinity then
the Schrodinger-Lichnerowicz formula for D9 tells us that

/ (ﬁgwsIQ " Mw) o = L Ha (1), (22)
M

see [11l (4.11) and (4.22)].

We denote by H the space of positive smooth functions on H"\ Bg, which satisfy
the Yamabe equation (B and tend to 1 at infinity. In the proof of Theorem [B] we
use the functionals Fs defined for U € H by

Fo(U) := inf{/ V992 dp?
H"\BRI
where g = U”b and s € 3. The infimum is attained by a spinor satisfying

@y 9= (V2 - fe) (V24 e ) w =0,
V94 = 0 at the inner boundary of (H" \ Bg, ,g),

P — ®*ps — 0 at infinity.

P — P*p, — 0 at inﬁnity}

The following Lemma is similar to [6, Lemma 12, page 231].
Lemma 4.2. F; is continuous with respect to the C* topology on H.

Proof. Let Uy, Uz be functions in H and set g1 = Uy'b, g2 = U5b = W"g;, where
W := Us/U;. Let 91 and 19 be the minimizers for Fs(U;) and Fs(Uz). Using
standard methods of identifying spinors for conformal metrics (see for example [20,
Section 5.2]) we identify the spinor ¢; defined for the metric g; with the spinor
11 for the metric go. Further, we can express the covariant derivative V929 as
a leading term which is V914, followed by terms involving dW and ;. We then
compute

Fo(Us) = / [V924py |2, dpu2
HH\BRI
S/ |§92m|§2 dlugz
HH\BRI -

- / G912, dp + E(W,4b1)
H"\BRI

= Fs(Ur) + E(W,41).

Here the remainder E(W, 1)) is given by an integral over H" \ Bg, where each term
in the integrand is quadratic in 7 (containing 7 or V9'1);) and contains one or
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two factors of the type (1 — WY) or dW. Since the minimizing spinor ) for F,(U)
depends continuously on U we conclude that E(W,11) can be made arbitrarily
small by choosing Us sufficiently close to U; in C'. By interchanging U; and Us we
get an inequality in the other direction, and we conclude that F; is continuous. [

Let s* € ¥ be such that
Vot =l ]” = Vio) £ Vo).
We define the functional F by
FU) = F+(U) + F,-(U).
In the next Lemma we prove that the mass bounds F(U).
Lemma 4.3. For (M, g,®,U) € ASP'™ we have
F(U) < (n— Dwyp—1m?.

Proof. Since the integral in the definition of F,(U) lacks the non-negative term
involving scalar curvature and is taken over a smaller domain it is never larger
than the integral in ([22]). Further, the infimum in the definition of 7, (U) can only
decrease the value of the integral in ([22]) and we conclude that

Fex(U) < iH@(VSi).

Therefore
F(U) = Fer (U) + Fo-(U)
1
<7 (Ho(Vi+) + Hao(Vs-))
1
= 7 (He(Vio) + Viny) + He(Vio) = Vi)
1
= §H<I>(V(O))
=(n—Dwp_1m?
follows from (2)). O

Lemma 4.4. F(U) =0 if and only if U = 1.

Proof. If F(U) = 0 then F,+(U) = 0 and F,-(U) = 0 and both the infima are
attained by non-trivial Killing spinors. The existence of a non-trivial Killing spinor
implies that g is an Einstein metric with scalar curvature —n(n—1). Since the metric
g is also conformally flat it must have constant negative curvature —1. Since U — 1
at infinity we conclude that U = 1. If U = 1 then g is the hyperbolic metric which
has Killing spinors, and thus F(U) = 0. O

Proof of Theorem[B. As in the proof of Theorem [A]l we argue by contradiction. We
assume that there is a sequence (M, gr, ®r,Uy) of elements of ASP™ such that
m9 tends to zero while |Uy — 1| > e. Arguing as in the proof of Theorem [A] a
subsequence of Uy, — 1 will converge to a limit Uy, — 1 in X(?’p (H™\ Bpg,) for which
SUPgn\ By, [Uss — 1| 2 €. From Lemma .2 we see that limy—ec F(Uk) = F(Us),
and from Lemma, we have limy_, oo F(Uy) = 0. Lemma [£4] then tells us that
U =1 which is a contradiction. From this we conclude that for every € > 0 there
is a 6 > 0 such that for (M, g, ®,U) belonging to ASPI" with m9 < § it holds that
supgn\ g, |U — 1] < &. The theorem now follows from Proposition 3.4 O
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APPENDIX A. THE ANTI-DE SITTER-SCHWARZSCHILD SPACETIME

In this appendix, we discuss the anti-de Sitter-Schwarzschild metrics in dimen-
sion n following [26, Section 2] where only the case n = 3 is treated. These metrics
are also called Kottler metrics with negative cosmological constant. Furthermore
we explicit the lapse function, see [27] for the 3 + 1-dimensional case.

A.1. The metric in areal coordinate. Let g be a Riemannian metric on the
n-dimensional manifold M and let

yi==V3dt* + ¢

be a Lorentzian metric defined on the manifold M := R x M. If we assume that
the function V' does not depend on t then = solves the Einstein equations with
cosmological constant A,

Ric” — Scal”

v+ Ay =0,
if and only if
Scal? = 2A, (23a)
Hess? V. A9V
Ricd — _ ——ag=0. 23b
ic % + v g (23b)

Such a metric g is called static. See also [I1, Equations (0.1)-(0.2)]. In what
follows we will always assume that when the metric is not indicated, the curva-
ture tensors and the connection are defined with respect to the metric g. We are
interested in the case of negative cosmological constant. We assume that

A= _M7

2
which can always be achieved by a rescaling. From Equation (23al), this imposes
Scal? = —n(n — 1). Taking the trace of Equation (230) yields AV =nV so we can

rewrite the system as

Scal? = —n(n — 1), (24a)
Hess!, V
V

Note that the slice ¢ = 0 is totally geodesic. In particular, marginally (outer)
trapped surfaces correspond to minimal surfaces for the metric g. We now assume
that the metric g is rotationally symmetric. Such a metric can be written in full
generality as g = ds® + k(s)?0 where o is the round metric on S"~!. The mean
curvature of a surface of constant s is given by H(s) = (n — 1)%’“. So, in a region
where no surface of constant s is a minimal surface, k¥ has non-vanishing derivative
and we can use it as a radial (areal) coordinate p so that

g = f(p)dp® + p’o.

In what follows we assume that the coordinate index 1 corresponds to the p-
coordinate while upper-case latin letters represent coordinates on the sphere and
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run from 2 to n. The Christoffel symbols of the metric g are given by

/
o =L,
Iia=0,

Fﬁ =0,

FfB = %527
Ihp = _%UABa
FgB :%?B’

where 7G5 are the Christoffel symbols of the metric . The components of the
curvature tensors of the metric g can then be computed,

1
RLK[J = (1 - F) (51L0JK - 55@1{) )
RlK[J =0,
!/
RlKlJ = FUJKa

Ricgy = |:(7’L—2) (1—i>+§._§:| OJK,

f2
RiClJ = Oa
RiCll = (n — 1)p7f/,
Sca1:2(n—1)%+w (1—%).

What is interesting about these formulas is that the curvature tensor depends
only on the first derivative of f. In particular, Equation (24h) becomes

—n=2p§3+np—;2(1—%). (25)

Defining u by the relation f(p) = u(p)~z we get

' u—1

—+n-2
S =2

= n.

The general solution of this equation is given by

’Lb(p) =1 +p2 )

where m is a free parameter that can be identified with the mass. Our next goal
is to find the lapse function V = V(p). Equation (24DL) can be decomposed into
radial, tangential, and mixed components. The mixed components vanish while the
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other two lead to the following equations.

0=(n— 1)V‘9P—f -2V + %@V +nf?V,
pf f
1 PO, f P (26)
0=V [(n—2) (1_F> + f’; } —Fa,,v+np2v.
The second equation can be combined with Equation (28] to yield
VI f/
v

Hence V = % Up to a redefinition of ¢ we can assume that V = % It is then

checked by a simple calculation that the first line of Equation (26]) is also fulfilled.
Hence the anti-de Sitter-Schwarzschild metric can be written as follows,

2m dp?
=—(1+4+p%— dt? + —————— + p?o.
YAdSS ( P p"_2> 1+ 2 pi“fz P

We now study separately the cases m > 0 and m < 0.

A.2. The case of positive mass. The metric
dp? 2
AdSS = +po
g R P

is only defined on the set {p > a(m)} where a(m) is the unique solution of the

equation
2m

pn—2

> ds
() = [
P sw/l—i-s?—jfg

and the functions r and ¢ by

1+ p* — =0.

We define

1+ e~ hm(p) 2 p

- 1— e_hM(P) ’

e

(pn—2 e - .
sinh r

We note that 7 — r9(m) > 0 when p — a(m)™. The function r : (a(m),o0) —
(ro(m), 00) is a smooth increasing function of p. We remark that
p= goﬁ sinh r,
dp dr (27)

0 /1+p2— p%rg "~ sinhr’

The metric gaqss can then be written as

gadss = @77 (dr® +sinh®ro) .
The mean curvature of the hypersurfaces of constant p is given by

2(n—1) 0rp
n—2 ¢

H=¢p w2 [(n — 1) cothr + (28)

A simple calculation shows that ¢ and 0,¢ are continuous at r = ro(m) and that
the hypersurface r = ro(m) is a minimal surface.
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We next show that the manifold can be doubled to a complete asymptotically
hyperbolic manifold of constant scalar curvature. For this we first switch to the
conformal ball model of hyperbolic space and set

e —1
T= .
e +1
The metric gaqss becomes
dpnte

9adss = [Ty (dr* +7°0)

and is defined on the annulus b(m) < |z| < 1 in R™ where 7 = |z| and b(m) is given
by
eralm) _ 1
ero(m) 4 1°
As is well known, the inversion on R™ \ {0} given by
b(m)®
|2
is a conformal transformation. Pulling back the metric g to the annulus b?(m) <
|z| < b(m) by i, we get the following extension of the metric gadss,

b(m) =

1T

_4_
4fm

gAdss = -2 (d7'2 +7%0),
where
) 90%(7) if b(m) <7 <1,
fm () = 2 <b(m)2) 1— 72

b(m)? -2 72— b(m)

In the following propositions we collect the basic properties of the metric gaqss.
Most of them are useful in the course of the proof of our main results. See also [20],
Section 2] for the three-dimensional case.

= if b(m)? < 7 < b(m).

Proposition A.1. For each m > 0 the anti-de Sitter-Schwarzschild metric is
asymptotically hyperbolic and is defined on H™ \ By(p,2. Moreover,
1. fm > 1, lim, fm(T) =1, limfﬁb(m)z fm(T) = 00.
2. There ezists a constant C' > 0 independent of m such that fp,, <14+Cme™""
provided that v > r1(m), where r1 is a non-decreasing continuous function of
m such that r1(m) > ro(m). Consequently, fm =1+ O(e™"") when r — oo.
3. gaass has constant scalar curvature —m(n — 1) and mass m.
4. Opfm < 0.

5. The hypersurface r = ro(m) is the only compact minimal surface.

Proof. The mass of gaass is easily computed using [I1], Formula (2.25)], and Prop-
erty 3 follows.
Fixing r > ro(m), we remark that for all s € (a(m), 00),

11 V1+s24+1

hm(8) > ho(s) = ) n\/l—l——sz—I.

In particular, if sinhr > a(m) we get

hu(sinh7) > In (coth g) .
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Since hm(p) = Incoth &, and since hy, is decreasing, we have p > sinhr. It is also

obvious that sinhr < p if sinhr < a(m). This proves that ¢ = (Sin”hr)%z > 1 for
any r > ro(m).

We next find an upper bound for f,,,. First, it is clear that a(m) < (2m)/". If
we assume that p > (2m)'/™ then p > a(m) and

& ds
hm(p) = /
p svV1+s2,/1 2m

T e

< 1 /OO ds
T V1-mpJ, sV1+s?
arcsinh(p~!)
V1—mp™" .
Observe also that sinhr = m, hence f— = psinhhp,(p). Set
arcsinh(p~!) >

VI—t '

Let Ry > 0 be fixed, and assume that p > max{r~(R;), (2m)'/"}. Using the mean
value theorem and the inequality arcsinh(p=!) < p~! we have

n(t) = sinh <

sinh ha (p) < n(mp™")

<n(0) +mp™" sup n'(Bmp™")
0<0<1

e me ™ su arcsinh(p~!) cosh arcsinh(p~1)
g P 02eer \ 2(1— Bmp )32 V1= 0mp=7

<p H(1+Cmp™"),

for some constant C' > 0 which does not depend on m. Since p > sinhr it is now
easy to check that f,, = (psinh hm(p))% < 14 Cme™™" (possibly for a larger
constant C' > 0), provided that r > r1(m) := max{Ry,r((2m)"/™)}. By definition,
it is clear that ri(m) > ro(m). The second statement is thereby proved.
Next, f, solves the Yamabe equation
—gﬁlﬁAWm+Mn—U(m+—ﬁJ=0

n—2

nt2
n—2
In polar normal coordinates we have y/det(b) = sinh” ' r. Hence, from the well

known formula
1 g
Abfr, = ———0; (/det(b)bY 0, frn
= (Vaet®)b7; 1,0 )

we infer that

-2 n+2
Oy (sinh"_1 r(?rfm) = % sinh” ! r ( U fm> .
Assume that 9, f,,(7) > 0 for some 7. Then, O, f,(r) > 0 for all r > 7 since f,,, > 1.
This contradicts the fact that f,,, — 1 when r — oo, f,, > 1. Hence, 0, f,,, < 0 for
all r.
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We finally prove that the hypersurface r = ro(m) is the only minimal surface.
From Formula (28]), the sphere of constant p has mean curvature

1 2m
Hp=n-1)/1+ - — —.
(p) = ( ) poiair

For any p > a(m) we have H(p) > 0. Thus by the maximum principle for minimal
surfaces, if ¥ is a minimal surface, then supy, p < a(m), that is supy, 7 < b(m). By

symmetry, we also have that infs, 7 < b(m). This proves that ¥ coincides with the
sphere r = ro(m). O

Proposition A.2. a(m), ro(m) and b(m) are continuous increasing functions of
m. Further,

1. a(m),ro(m),b(m) = 0 as m — 0,
2. a(m),ro(m) = oo and b(m) = 1 as m — co.

Proof. Tt is easy to see that a(m) is a continuous increasing function of m. Since
2m

the function p — 1+ p? — w7 Is increasing, we know that p_ (m) < a(m) < py(m)
provided that

2m
0<1+4p8 - —=,

Py

2
0>1+4p2 - ="

n—2"°

1/n

One can select p; = (2m)'/™. Assuming m > 1, we choose

— (o) 1
p— = (2m) 1 Gmy
Simple computations show that both inequalities are fulfilled. Hence for large m,
a(m) ~ (2m)*/™. For small positive m, we obviously have 0 < a(m) < p4(m). So
a(m) — 0 when m — 0%,

We next turn our attention to the function ry. We first give an upper bound for
hm(a(m)) as follows. Note that on the interval (a(m),c0) we have

2m 2m
LU I . L
+s sgn—2 — +s a(m)n72
=1+s*—(1+a(m)?
= 5% —a(m)?.

Hence,

In (coth %m)) = hm(a(m)) < /G::l) s\/ﬁcﬁw = 2@7(Tm)'

This implies that ro(m) — co as m — oo.
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In order to estimate ro when m — 01 we give a lower bound for h,,(a(m)),
assuming a(m) < 1,

In (coth %m)) = hm(a(m))
ds

/m>s\/1+82 a(m)" ta(m)r—2

sn2

B / ds
a(m) S \/Sn _ n 4 gn— 2 _ (m)n—Z

>

& ds
B /a(m> 5273 /(s —a(m))(ns"~! + (n — 2)s" %)

> ds
= [
a(m) V/5y/(s — a(m))(ns? + (n — 2))
- 1 /1 ds
T V20 =2 Jam) /s(s — a(m))

! am dt
V-2, JtE—-1)

It is obvious that the last integral diverges when a(m) — 0%. Hence 79(m) — 0

when m — 0.

The limits of b follow from the relation b(m) = 2= O

oML

A.3. The case of negative mass. Remark that when m < 0 the function h(m)

tends to a finite positive value at p = 0. Changing to the r coordinate, this means
4

that the metric g = 72 (dr? + sinh? TU) is only defined for r > ro(m) such that

1 4 e=ro(m)
/ =In = o—rotm)”
1 + 52 2m2 — €

The function ¢ satisfies ¢(ro(m)) = 0.

Proposition A.3. The function m — ro(m) is continuous and strictly decreasing
on the interval (—o0,0). Further,

1.
lim ro(m) =0
m—0~
lim ro(m) = oo
m——oo

2. The function fm = ¢ : H" \ B m)(0) = Ry solves the Yamabe equation
with zero boundary value on OBy (,,)(0) and satisfies fp, < 1.

3. There ezists a constant C' > 0 independent of m such that f,, > 1—Cme™""
provided that r > r1(m), where r1 is a non-increasing continuous function of
m such that r1(m) > ro(m). Consequently, fm =1+ O(e™"") when r — oo.

4. Op fn > 0.

Proof. We remark that the integrand is positive and strictly increasing with respect
to m. From dominated convergence, it is easy to argue that m +— h,,(0) is continu-
ous. When |m| — oo, the integrand tends to 0 so limy,— oo hyn (0) = 0. This forces
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limy,—— 0o ro(m) = oo. Similarly, when m — 07, by the monotone convergence
theorem,

* ds
hm(0) — /0 i 00
Hence, lim,,_,o- 7o(m) = 0.

The properties of f,, follow in the same manner as their counterparts in the
case m > 0 (see Proposition [AT]). We only remark that having fixed Ry > 0 one
may define r1(m) as r1(m) := max{Ry,r((—Cm)'/™)}, where the constant C' > 0
depends on R; only. It is then obvious that 1 (m) > ro(m). O

A.4. A characterization of anti-de Sitter-Schwarzschild spacetimes. In
this section, we give a characterization of anti-de Sitter-Schwarzschild metrics which
is useful in the proof of Theorem [A] See [21] for similar results.

Proposition A.4. Let K be a compact subset of H"™ such that H" \ K is connected
and let U,V be two functions defined on H" \ K. Let g := U*b. Assume that the
metric

—V2dt? 4+ ¢
is static with cosmological constant
n(n—1)
— g

Assume further that the function U is bounded from above and away from zero and
that the function V 1is positive, tends to infinity at infinity and has no critical point
outside a compact set. Then there is a point xo € H" and m € R such that

U= fm(r)a

A=-—

where r := d°(zg, ).

Before diving into the proof, we explain briefly the underlying idea. The main
aim is to prove that the metric g and the lapse function V' are spherically symmetric
around a point in H™. A first indication of this fact is Equation (3I]) which proves
that the Ricci tensor has at most two distinct eigenvalues, one with multiplicity 1
in the direction of the gradient of V' and another one with multiplicity n — 1 on the
orthogonal hyperplane. Another indication is given by Formula (33)) which proves
that the level sets of V' are umbilic with constant sectional curvature. These two
indications prove that the metric is actually a warped product (Formula ([B3])) and
some further estimates on U allow us to conclude that U coincides with f,, for
some m.

Proof. In what follows, covariant derivatives and curvatures are defined with respect
to the metric g unless stated otherwise.

Since g = U"b on H" \ Bp, is conformally flat, it has vanishing Cotton-York
tensor (see for example [9], Proposition 1.62]). Since g has constant scalar curvature
this is equivalent to

ViRicjx — V;Ricg, = 0. (29)
From the static equations (24al)-(24D) it follows that
. He
Ric — Hess v

V 3
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where Ric := Ric + (n —1)g denotes the traceless Ricci tensor and Hess V' denotes

the traceless Hessian of V' (which in index notation is denoted by V”V) From
[29) and the fact that

Hess V' 1 <H<oess V+A—Vg> _ Hess V +g
\%4 \%4 n 1% ’
we conclude
VeV ViV
0=V, v V; v
_v, V?7kV v, VikV
\%4 \%4
Vi,V ViRV VEVYY VRV VY
vV Vv vV Vv
. iV VLV WV VRV v,V
v vV Vv v v
Since g is conformally flat its Weyl tensor vanishes, so
Scal 1 - 1 1 -
= 72n(n_1)g@g+lec®g: —§g®g+ leC@g,

where ® denotes the Kulkarni-Nomizu product (see for example [5] Definition
1.110]). As a consequence, we get

0 @l VIV ViV VWV VIV VY,V

kij Ty AT YA
= (G1i9r; — 91 Gki) vV _ ViVwiv ViV Vv
= \9liGkj 915 9ki v % % v %
; ; : . vV
i (RlCligkj + Ricg g1 — Ricyjgr: — Rlckiglj) Vv
_ _%j,kv ViV %i_’kv V;V
Vv vV Vv (30)

1 ViV ._'_%m'v ,_él,jv }_ﬁfw’v |\ Vv
n—29 Vv Gkj % gii Vv ki Vv gij Vv

n—1(Vi,VV,V  ViVViV
n-2\ vV V VoV

1 (V.VVV ViV ViV
- 9kj — 7 9ki
n-2\ vV VvV vV v

We set &; = vi"}v v‘j/v' Contracting the previous equation with $ we get
V;V V.V

This is possible only if £ and % are colinear. We let A\ be the function such that
¢ = (n—1)AXY. Equation (30) then implies

ViV V.V VeV v,V
0= <7Tk+/\9ik> > —<L+)\gjk> -

|4 V V
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This is possible only if

o

VikV ViV ViV
Vv T Agik = p vV Vv

for some function p. The trace of this last equation gives a direct relation between
A and p,

2

wldv
A== |—
n|V
Hence,
. Vi,V ViV, Vo oulav]?
Ric;; = —22— = ’ I | gi. 31
icij = = = p e | Y (31)
By a straightforward calculation, we have
av

Vi

? 1 av *\ v,v
v _2<1+[,u<1 n) 1] % ) v (32)
We now choose Vj to be such that V has no critical point outside V ~!(—o0, V). We
remark that V~1(Vj, 00) is connected. Indeed if it was not, from the assumption
that V' is proper it would have one bounded connected component 2. Since V = 1}
on 01, V reaches a local maximum on  which contradicts the assumption that V'
has no critical point on 2. We let ¥y be the boundary of a connected component

of V71(—o0,Vp). Equation ([B2) shows that ’%’2 is constant along ¥y. Plugging
Equations BI) and (32) into

o o

ViV VikV
Vi—t - V= =0,
we get
B V,VVV o1 |av V.V V.V o1V
O‘““( Vv V. nl|V gﬂ’“>_vﬂ“<v vV v |7k
2 av*\ u 2\ |dV |? V.V V.V
1+2(1-|—= Eli-2) == e — gip—— | .
th +n< v >+n< n)‘V <ng g”“v)

Taking the trace of this last equation with respect to j and k we get

1|av|? dv v,V
— =] viu=|{du, — —1)0 .
~ v I Ku V>+(n )u] v

This implies that p is constant on the hypersurface ¥y. The second fundamental
form S of ¥y is equal to the normalized Hessian of V restricted to T3, that is

VZVoy v |?
( -£ 9ij- (33)

v~ av] v
Hence the hypersurface ¥y is umbilic with constant mean curvature. From the
conformal transformation law of the second fundamental form, Xy is umbilic for
the hyperbolic metric b as well. Since ¥ is also compact it is a round sphere.
Note that the curvature of ¥ is given by the Gauss Formula,

Sij =

1
RE“:R+§S®S.
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From the form of the Riemann tensor of g and the special form of S, we immediately
conclude that the metric induced on ¥y has constant curvature,

1 HessV  HessV

1 1
RE0 — _— Ri Z
9 B9 MO IT sy @ Tav
R DR Héssv@ L1 HéssV+ o HéssV+
ST Ty T Ty v Y v Y
1 pldv dv

2
2 @) +1 v 1-£ 2 @)
gog 2|dV|2 n gog

9 2
) goyg,

2 g n—2n|V Vv

A G P
\% 2|dV|2 n

where we used the fact that

1 1w
2 n—2n

av

%

when restricted to TX.

We claim that the level set V=1(Vp) is connected. Assume that it contains two
connected components Yo, ¥1. Since V~1(Vj, 00) is connected and open, it is path
connected so we can join X and X1 by a path v in V=1(Vf, 00). If v is larger than
Vo and the supremum of V on ~, then ¥y, ¥; and « are contained in the same
connected component B of V ~!(—o0o,v) UK which is a ball. Then, for the gradient
vector field VV the two hypersurfaces ¥y and ¥y are sources while the boundary
of B is the only sink. Since VV has no zero outside V ~!(—o0,v) this contradicts
the Poincaré-Hopf theorem.

Note that our reasoning applies to any v larger than Vp, so the level sets V=1 (v)
are all round spheres.

From (32) we conclude that ’% ’2 can be expressed as a smooth function of V.
We define a function s : H" \ V~1(Vp,00) — Ry as s := f o V where

vl
f(”):/%m'

Then |ds| = 1 so s can be interpreted as the distance function from V ~1(Vp, c0),
see [24]. The second fundamental form of the level sets of s is given by B3] so we
see that the metric g is rotationally symmetric.

Our next step is to prove that the conformal factor can be expressed as a function
of s.

We remark that we can reproduce the proof of Lemma replacing Br, by
V=1(Vy — ,00) and find two functions fi solving the Yamabe equation (3] such
that f_ < U < fy together with ’V(k)(fi — 1)’ < Ape ™" for any integer k > 0.

Since the conformal factor is bounded away from zero and from infinity, the
metrics g and b are uniformly equivalent. Hence, taking points located further and
further from V—1(Vj, c0) with respect to the hyperbolic metric yields points with
s going to infinity. This proves that s is unbounded.
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The conformal transformation law of the mean curvature of the spheres of con-
stant s is given by

HPU'™ = HIU — 2("7_21)3& (34)
"

We choose a coordinate chart (6#) on the sphere and use it to define Fermi
coordinates on H™ \ V~1(Vp, c0), so that

g =ds* + f(s)0,,do"do"” . (35)
From our previous discussion, both H9 and H® are functions of s only so it follows
from (B34) that for any pu,

(n—1)

(1 - r)HU"9,U = H9,U — 2 950,U.

n—2

As s increases, the spheres of constant s become larger and larger and located
further and further from V~=%(Vp, 00) so H® — n — 1. From Formula (34) and the
estimate on U the same is true for HY. As a consequence, the previous equation
for 9,U can be written as

asa,u[] = (2 + 0(1))8#[]

In particular, 8,U grows as e?* unless 9,U = 0. Such a growth is inconsistent
with the decay assumption |VU| = O(e~""). This implies that U is constant on
the level sets of s.

Without loss of generality, we can assume that the level set V' = V} is a sphere of
radius Ry centered at the origin of the hyperbolic space. From Propositions[A.2]and
[A-3] there are constants m_ such that f,, (R1) = 0 and m such that f,, (1) — oo
when r — R;. By the intermediate value theorem, there exists m € (m_, m4) such
that f,,,(R1) equals the value of U on Bg,. By uniqueness of the solution of the
Yamabe equation (B]) with Dirichlet boundary values, we conclude that U = f,,
on H" \ Bgr,. By analytic continuation, this equality must hold everywhere on
H"\ K. O

APPENDIX B. A DENSITY RESULT

In this second appendix, we show that any asymptotically hyperbolic metric
satisfying the decay assumptions of the positive mass theorem can be approximated
by metrics which are conformal to the hyperbolic metric outside a compact set,
while changing the mass functional by an arbitrarily small amount. This result is
a refinement of [I0, Proposition 6.2].

Proposition B.1. Let (M, g) be a C2>*-asymptotically hyperbolic manifold for o €
(0,1) and 7 > 0 meaning that there exists a diffeomorphism

&: M\ K — H"\ Bg,
such that e :== ®,g — b belongs to C>*(M, S>M), that is to say e € C2*(M,S>*M)

loc
18 such that

o or(x)
He||C§’“(H"\BRD,S2M) = IGHSEEROH e H€||cz,a(31(m),s2M) < 0.

Assume further that Scal? € L> and Scal? > —n(n—1). Then for any e > 0, there
exist R > Ry and \r such that

i |)\R _g|q <ég;
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o O A\p is conformal to b outside Bg, that is P g = U%b with U — 1 at
nfinity;
e Scal®® > —n(n —1) and Scal*® = —n(n — 1) on H" \ Bg.

In addition, assuming that T > % and [,,(Scal? + n(n — 1)) coshr dud < co, we

can also ensure that
‘Hé»R(V(i)) - Hc%(v(i))‘ <e
fori=0,...,n.

Note that if (M, g) is an asymptotically hyperbolic manifold in the above sense
and F is a geometric tensor bundle over M then one can define weighted Holder
spaces Cg’o‘(M, E) = {e%u | u € C»*(M, E)} with respective norms given by

R or(x :
|\u||c§,a(M)E) o G )UHC’C’O‘(M,E)' We refer the reader to [23] for more details on
these spaces.

Proof. We select a smooth cut-off function x : R — R such that y =1 on (—o0,0)
and x =0 on (1,00). We let r denote the distance from the origin in H" and set
xr(x) = x(r(z) — R) for R > 0. We define the metric g by

gr = Xxrg + (1 — xg)P"D.
To prove the theorem we construct a function vy such that the metric Ag =

(14 vg)"gr and show that Ag is as close as we want to g provided that R is large
enough.

A
To simplify notation, we set Scal := Scal* 4+ n(n — 1) for any metric A on M.
We first remark that the scalar curvatures of gg and Ag are related through

4(n—1
_dn-1) 5 )AngR + Scal?® (1 4+ vg) = Scal*?(1 + vg)" .
n —
This equation can be rewritten as
4(n—1)

— (—=A”yp + nvg) + n(n — 1) [(1 +oR)" —1— (k+ l)vR} (36)

+ Scal vg = Scal " (1 4 vg)*+! — Scal™.
To construct the function vg we introduce the following auxiliary equation,
% (=A9%yp +nog) +n(n—1)f(vr) + Scal” v = XRS/CEIQ —Scal””, (37)
where we use the notation
flz) =10 +2)"" —1—(k+ 1)z
Note that if vg > —1 satisfies (87) we have

A .
Scal (1 + vg)"*! = yxScal’

from [BE). In particular, S/CEIAR > 0 and S/CEIAR = 0 on H"\ Bryi. That is to
say, the metric Ar satisfies the second and the third assumptions of the theorem,
provided that vg — 0 at infinity. We prove the existence of the function vy by
the standard monotonicity method. We first remark that since g and gr coincide
inside Bpg, the right hand side of (87) has support in the annulus Ag p+1.

From the fact that e := ®,g — b belongs to C2*, one can easily conclude that

XRS/CEIQ — S/CEIQR < Ce R
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for some constant C' depending only on |le[| 2.«. In particular, given € > 0 small
enough, the functions ’UE = ¢ are barriers for (8), that is,

A(n—1 —9R 9  ——gr

L2) (=A%) +nok) +n(n—1)f(vh) + Scal’" vl > XRScalg - ScalgR,
n—

4(n — 1 —~gr — ——gRr

L; (=A% vy +nvy) +n(n—1)f(vy) + Scal”” v < XRScalg — Scal’™.
n—

As a consequence, there exists a function vy satisfying (B37) and
—& <wRr < g,

see for example [I4, Proposition 2.1] for more details.
Since Ap = (1+wvg)"g inside B, we immediately get that |[Ar — g| < Ce in this
region. Outside Br, we can just use the fact that e € C?® and conclude

IAr —g| < |Ar — b +]g —b] < 2¢

if R is large enough.
From standard analysis on asymptotically hyperbolic manifolds it follows that

. /\g /\g 4
vg € C2%. Since e € C2* we see that HXRScal — Scal RHCD’Q — 0 as R — oo for

any 7 € (2,7). This implies that [vrllg2,e — 0.
Let eg := ®,Agr —b. From the previousT estimate and the fact that e = ®,g—b €
C%, we deduce that |leg — e[|z« — 0. We choose an arbitrary Ry > Ry. As in

the proof of Lemma [3.9] we use formulas from [19, page 114] or [I1] to write
Hé»R Vi) — Hz (Vo))

= /SR (V(l) [divb(eR —e) —dtr’(eg — e)}
+tx¥ (e — €)dVy) — (er — €)(V* V), -)) (vr,) dp®

—— —
—|—/ (V(i) <Scal " Scalg> + Q(er, Viy) — Qle, V(l))> dp®
HH\BRI

for i = 0,...,n. From this expression it follows that it suffices to prove that
— A —
fH"\BRl Vi (Scal " Scalg) du® — 0 when R — oo to get that the mass vector

of Ar converges to that of g as R goes to infinity. This follows immediately from

— A —
/ Vi) (Scal - Scalg> dpb
H"\BRI

and the fact that (14—5# — 1 is uniformly bounded for R large enough and
converges to 0 almost everywhere. (|

—g XR b
< VigyScal ’7 - 1‘ du
/HH\BR1 (0) (14 vg)ts
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