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The mass of an asymptotically hyperbolic Riemannian manifold is a geometric invariant which has been introduced by Wang [START_REF] Wang | The mass of asymptotically hyperbolic manifolds[END_REF] and Chruściel and Herzlich [START_REF] Chruściel | The mass of asymptotically hyperbolic Riemannian manifolds[END_REF] using different approaches. The mass is computed in a fixed asymptotically hyperbolic end and gives a measure of the leading order deviation of the geometry Date: October 16, 2018. 2000 Mathematics Subject Classification. 53C21, (83C05, 83C30). from a hyperbolic background metric in the end. For the family of anti-de Sitter-Schwarzschild metrics the mass coincides with the mass parameter.

In both papers mentioned above, a positive mass theorem is proved for spin manifolds using an adaptation of Witten's spinor argument [START_REF] Witten | A new proof of the positive energy theorem[END_REF]. This theorem states that a complete asymptotically hyperbolic spin manifold of dimension n must have non-negative mass if its scalar curvature is at least equal to -n(n -1) (which is the scalar curvature of hyperbolic space of the same dimension). Previous work in the physics literature include [START_REF] Abbott | Stability of gravity with a cosmological constant[END_REF], [START_REF] Gibbons | Positive mass theorems for black holes[END_REF], [START_REF] Ashtekar | Asymptotically anti-de Sitter space-times[END_REF].

The positive mass theorem also contains a rigidity statement saying that the mass vanishes if and only if the manifold is isometric to hyperbolic space. In Witten's spinor argument the rigidity follows from the fact that vanishing mass forces a certain spinor field to satisfy the overdetermined Killing equation, which implies that the manifold is hyperbolic. Without the spin assumption the positive mass theorem for asymptotically hyperbolic manifolds is still open. Partial results have been obtained by Andersson, Cai, and Galloway in [START_REF] Andersson | Rigidity and positivity of mass for asymptotically hyperbolic manifolds[END_REF] where an adaptation of the minimal surface method of [START_REF] Schoen | On the proof of the positive mass conjecture in general relativity[END_REF] is used, see also [18, Section 5 5 6 ]. In [START_REF] Andersson | Rigidity and positivity of mass for asymptotically hyperbolic manifolds[END_REF] the rigidity is proved by first showing that the manifold is Einstein. This is done by an argument involving a deformation of the metric by the traceless Ricci tensor, if this is non-zero one can deform to a metric with strictly negative mass which gives a contradiction.

With the rigidity statement of the positive mass theorem in mind, it is natural to ask what happens if the mass is close to zero and the scalar curvature is at least equal to -n(n -1). Must the manifold then be close to hyperbolic space in some appropriate sense? Such a statement can never hold true globally, as the example of the anti-de Sitter-Schwarzschild metric shows.

The same question has been addressed in relation to the rigidity part of the positive mass theorem for asymptotically Euclidean manifolds: must an asymptotically Euclidean manifold with small mass and non-negative scalar curvature be close to Euclidean space in some sense? Asymptotically Euclidean spin manifolds with small mass have been studied by Bray and Finster, see [START_REF] Bray | Curvature estimates and the positive mass theorem[END_REF] and [START_REF] Finster | A level set analysis of the Witten spinor with applications to curvature estimates[END_REF]. From estimates on the spinor field in Witten's argument they find that the L 2 -norm of the curvature tensor (over the manifold minus an exceptional set) is bounded in terms of the mass. Lee [START_REF] Lee | On the near-equality case of the positive mass theorem[END_REF] studies asymptotically Euclidean manifolds which are conformally flat outside a compact set K. For such manifolds he proves that the conformal factor can be controlled by the mass, so that the conformal factor tends uniformly to one outside any ball containing K as the mass tends to zero. The argument by Lee does not require the manifold to be spin, but it needs the assumption that the positive mass theorem holds for any asymptotically Euclidean metric on the manifold.

In the present paper we will adapt the ideas of Lee to the setting of asymptotically hyperbolic manifolds. We define a class A(R 0 ) of n-dimensional asymptotically hyperbolic manifolds (M, g) which have scalar curvature greater than or equal to -n(n-1) and have a chart at infinity Φ : M \K → H n \B R0 , where K is a compact subset of M and R 0 is a given fixed radius. We require that Φ * g is conformal to the hyperbolic metric, that is

Φ * g = U κ b,
where κ = 4 n-2 , and Scal g = -n(n -1) on M \ K. Further, we assume that the positive mass theorem holds for any asymptotically hyperbolic metric on the manifold M . We prove that given any ε > 0, there is δ > 0 such that if a metric belongs to the class A(R 0 ) and has mass m < δ then the conformal factor U satisfies |U -1| < ε. We refer the reader to Definition 3.1 and Theorem A for precise statements of the results.

The most stringent assumption of our theorem is probably that the metric must be conformal to the hyperbolic metric outside a compact subset. However, in Appendix B we prove that every asymptotically hyperbolic manifold of scalar curvature greater than or equal to -n(n -1) can be approximated by metrics which are conformal to the hyperbolic metric outside a ball while changing its mass arbitrarily little. See Proposition B.1 for the precise statement. This result generalizes a proposition of Chruściel and Delay, [START_REF] Chruściel | Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature[END_REF]Proposition 6.2].

The overall strategy of the proof of Theorem A is as follows. We define a 1parameter family of asymptotically hyperbolic metrics involving a geometric property of (M, g), and we compute their mass. If the mass of (M, g) is close to zero and if it varies too widely with respect to the parameter, this yields a contradiction with the positive mass theorem. These ideas are inspired by [START_REF] Lee | On the near-equality case of the positive mass theorem[END_REF]. However, several complications arise in the asymptotically hyperbolic context.

One complication is to reduce the proof of the main theorem to the case of metrics with constant scalar curvature. This is achieved in Proposition 3.6 by a conformal transformation of the metric. In the asymptotically Euclidean context there is a simple formula for the change of mass under a conformal transformation of the metric (see for example [START_REF] Lee | On the near-equality case of the positive mass theorem[END_REF]Lemma 2.1]), which works nicely together with the equation for vanishing scalar curvature. The corresponding formula in the asymptotically hyperbolic case is not as easily combined with the Yamabe equation for constant scalar curvature. However, in Proposition 3.6 we give an estimate for the difference between the two masses in terms of the respective conformal factors.

Once this reduction has been done, we can assume that the metrics we are considering have constant scalar curvature Scal g = -n(n -1). A second complication we encounter is to find an appropriate 1-parameter family of metrics. We want a deformation that can be localized in the asymptotic region where the metric is conformal to the hyperbolic metric. In the view of [START_REF] Lee | On the near-equality case of the positive mass theorem[END_REF] and [START_REF] Andersson | Rigidity and positivity of mass for asymptotically hyperbolic manifolds[END_REF], a natural choice would be λ s = (ϕ s ) κ (gsχ Ric), where Ric = Ric + (n -1)g is the traceless part of the Ricci tensor, χ is a cut-off function whose support is contained in the asymptotic region, and ϕ s is a conformal factor such that the metrics λ s have constant scalar curvature -n(n -1). However, with this choice the formula for the derivative of the mass turns out to be tractable only if χ ≡ 1. Interestingly, this difficulty can be overcome by replacing Ric with a tensor measuring how far the metric g is from being static, see Lemma 3.10.

We also give a simpler proof for spin manifolds, see Theorem B. This argument is based on the fact that the mass controls a certain functional which measures how close (M, g) is to allow a Killing spinor, and this functional in turn depends continuously on the conformal factor U .

The small mass theorem of Lee [START_REF] Lee | On the near-equality case of the positive mass theorem[END_REF] appears as an ingredient in the proof of the Penrose inequality by Bray [START_REF] Bray | Proof of the Riemannian Penrose inequality using the positive mass theorem[END_REF] and Bray and Lee [START_REF] Bray | On the Riemannian Penrose inequality in dimensions less than eight[END_REF]. In a forthcoming work we plan to address an adaptation of Bray's proof of the Penrose inequality to the case of asymptotically hyperbolic manifolds. Note however that the necessity to replace Ric by a more complicated tensor in the definition of the 1-parameter family of metrics sheds light on what could be the analog of Bray's conformal flow on asymptotically hyperbolic manifolds. Even in the purely Riemannian context, the lapse function is likely to play an important role in its definition.

This paper is organized as follows. In Section 2 we give the definitions of asymptotically hyperbolic manifolds and their mass. Section 3 begins with the statement of our main result, Theorem A. In the first subsection we prove some results on the conformal factors at infinity for manifolds in A(R 0 ). In the second subsection we then give the proof of our main theorem deferring parts of the argument to the following subsections. The third subsection contains the argument to show that we can reduce to the case Scal = -n(n -1) everywhere by a conformal change while controlling the mass. The fourth and final subsection contains the proofs of the more technical lemmas. In Section 4 we give the alternative argument for spin manifolds. In Appendix A we collect details of the anti-de Sitter-Schwarzschild metric which are used in the paper. Finally, in Appendix B, we prove Proposition B.1 which shows that metrics which satisfy the assumptions of Theorems A and B are dense in the set of metrics which satisfy the standard assumptions of the positive mass theorem.
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Preliminaries

2.1. The mass of an asymptotically hyperbolic manifold. Following the work of Chruściel and Herzlich, [START_REF] Chruściel | The mass of asymptotically hyperbolic Riemannian manifolds[END_REF] and [START_REF] Herzlich | Mass formulae for asymptotically hyperbolic manifolds, AdS/CFT correspondence: Einstein metrics and their conformal boundaries[END_REF], we define the mass of an asymptotically hyperbolic manifold. For conformally compact manifolds the definition of the asymptotically hyperbolic mass coincides with the mass introduced by Wang in [START_REF] Wang | The mass of asymptotically hyperbolic manifolds[END_REF]. In this paper we denote n-dimensional hyperbolic space by H n and its metric is denoted by b. We fix a point in H n as origin. In polar coordinates around this point we have b = dr 2 + sinh 2 rσ on (0, ∞) × S n-1 where σ denotes the standard round metric on S n-1 and r is the distance from the origin. The open ball of radius R centered at the origin is denoted by B R and its closure is denoted by B R .

Let

N := {V ∈ C ∞ (H n ) | Hess b V = V b}
. This is a vector space with a basis consisting of the functions

V (0) = cosh r, V (1) = x 1 sinh r, . . . , V (n) = x n sinh r,
where the functions x 1 , . . . , x n are the coordinate functions on R n restricted to S n-1 . The vector space N is equipped with an inner product η of Lorentzian signature characterized by the condition that the basis above is orthonormal: η(V (0) , V (0) ) = 1, and η(V (i) , V (i) ) = -1 for i = 1, . . . , n. We give N a time orientation by specifying the vector V (0) to be future directed. The subset N + of positive functions then coincides with the interior of the future lightcone. We also denote by N 1 the subset of N + consisting of functions V with η(V, V ) = 1. In other words, N 1 is the unit hyperboloid in the future lightcone of N . For a point p 0 ∈ H n the function

V := cosh d b (p, •)
is in N 1 , and any function in N 1 can be given in this form.

A Riemannian manifold (M, g) is called asymptotically hyperbolic if there is a compact subset K ⊂ M and a diffeomorphism Φ : M \ K → H n \ B R for which Φ * g and b are uniformly equivalent on H n \ B R and

H n \BR |e| 2 + |∇ b e| 2 cosh r dµ b < ∞, (1a) 
H n \BR |Scal g + n(n -1)| cosh r dµ b < ∞, (1b) 
where e := Φ * gb and r is the (hyperbolic) distance from an arbitrary given point in H n . The diffeomorphism Φ is also called a chart, or a set of coordinates, at infinity.

The linear functional H Φ on N defined by

H Φ (V ) = H g Φ (V ) = lim r→∞ Sr V (div b e -d tr b e) + (tr b e)dV -e(∇ b V, •) (ν r ) dµ b
is called the mass functional of (M, g) with respect to Φ. Proposition 2.2 of [START_REF] Chruściel | The mass of asymptotically hyperbolic Riemannian manifolds[END_REF] tells us that the limit involved in the definition of H Φ exists and is finite when the decay conditions (1a)-(1b) are satisfied. If Φ is a chart at infinity as above and A is an isometry of the hyperbolic metric b then A • Φ is again a chart at infinity and it is not complicated to check that

H A•Φ (V ) = H Φ (V • A -1 ).
If Φ 1 , Φ 2 are charts at infinity as above, then [START_REF] Herzlich | Mass formulae for asymptotically hyperbolic manifolds, AdS/CFT correspondence: Einstein metrics and their conformal boundaries[END_REF]Theorem 2.3] tells us that there is an isometry A of b so that Φ 2 = A • Φ 1 modulo lower order terms which do not affect the mass functional.

The mass functional H Φ is timelike future directed if H Φ (V ) > 0 for all V ∈ N + . In this case the mass of the asymptotically hyperbolic manifold (M, g) is defined by

m g := 1 2(n -1)ω n-1 inf N 1 H g Φ (V ).
Here ω n-1 denotes the volume of the sphere (S n-1 , σ). The factor in front of the infimum is such that the mass of the space-like slice

g AdSS = dρ 2 1 + ρ 2 -2m ρ n-2 + ρ 2 σ
of the anti-de Sitter-Schwarzschild metric is equal to the parameter m in the metric. Note that Chruściel and Herzlich [11, (3.5) and (3.6)] define m g without this factor. If H g Φ is timelike future directed we may replace the coordinates at infinity Φ by A•Φ for a suitably chosen isometry A so that m g = 1 2(n-1)ωn-1 H g Φ (V (0) ). Coordinates with this property are called balanced.

The positive mass theorem for asymptotically hyperbolic manifolds, [11, Theorem 4.1] and [START_REF] Wang | The mass of asymptotically hyperbolic manifolds[END_REF]Theorem 1.1], states that the mass functional is timelike future directed or zero for complete asymptotically hyperbolic spin manifolds with scalar curvature Scal ≥ -n(n -1). In [START_REF] Andersson | Rigidity and positivity of mass for asymptotically hyperbolic manifolds[END_REF]Theorem 1.3] the same result is proved with the spin assumption replaced by assumptions on the dimension and on the geometry at infinity. 2.2. Conformally hyperbolic metrics. We now compute the mass functional of a metric g which is asymptotically hyperbolic and conformal to the hyperbolic metric in the chart at infinity. That is Φ * g = U κ b where U is a positive function and we set κ := 4 n-2 as we do throughout the paper. In this case e = f b where f := U κ -1. The metric g is asymptotically hyperbolic if e satisifies (1a)-(1b), which turns into weighted integral conditions on U and its first two derivatives. The mass functional becomes

H g Φ (V ) = (n -1) lim r→∞ Sr (f ∂ r V -V ∂ r f ) dµ b .
If g has constant scalar curvature -n(n -1), so that U is a solution to the Yamabe equation, it is known from [START_REF] Andersson | On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein's field equations[END_REF] that U has the expansion at infinity

U = 1 + 2 n n + 1 ve -nr + O(e -(n+1)r )
in polar coordinates, where v is a function on S n-1 . Then

H g Φ n i=0 a i V (i) = 4(n -1) n -2 S n-1 a 0 + n i=1 a i x i v dµ σ ,
and in particular we have

m g ≤ 1 2(n -1)ω n-1 H g Φ (V (0) ) = 2 (n -2)ω n-1 S n-1 v dµ σ (2) 
where equality holds if Φ is a balanced chart at infinity.

Asymptotically hyperbolic manifolds with small mass

In this section, we prove an analog of the main result of [START_REF] Lee | On the near-equality case of the positive mass theorem[END_REF]. We first introduce the following class of asymptotically hyperbolic manifolds. Definition 3.1. For R 0 > 0 we let A(R 0 ) be the class of 4-tuples (M, g, Φ, U ) such that

• (M, g) is a complete Riemannian manifold which is asymptotically hyperbolic with respect to Φ, where Φ is a diffeomorphism from the exterior of a compact set K ⊂ M to H n \ B R0 ; • Scal g ≥ -n(n -1), and Scal g = -n(n -1) on M \ K; • U is a positive function on H n \ B R0 such that U → 1 at infinity and Φ * g = U κ b; • the coordinates at infinity Φ are balanced;

• the positive mass theorem holds for any asymptotically hyperbolic metric on M .

We will prove the following theorem concerning the near-equality case for the positive mass theorem.

Theorem A. Let R 1 > R 0 and ε > 0. There is a constant δ > 0 so that |U -1| ≤ εe -nr on H n \ B R1 for all (M, g, Φ, U ) ∈ A(R 0 ) with m g < δ.
We fix once and for all the value of R 0 and abbreviate A = A(R 0 ).

3.1.

A priori estimates. We first prove estimates on the conformal factor U which are valid for any element of A. Lemma 3.2. There are positive constants A, A k , k = 0, 1, . . ., such that for any (M, g, Φ, U ) belonging to the class A we have

1 A ≤ U ≤ A, ∇ (k) (U -1) ≤ A k e -nr for k ≥ 0, on H n \ B R1 .
Note that these estimates are specific to the case of asymptotically hyperbolic geometry. In the Euclidean context they cannot be true due to the fact that the Yamabe equation (which is then the Laplace equation) is linear.

Proof. The assumption on the scalar curvature of Φ * g = U κ b on H n \ B R0 implies that U solves the Yamabe equation

- 4(n -1) n -2 ∆ b U -n(n -1)U = -n(n -1)U κ+1 (3) 
on H n \ B R0 . From Propositions A.1 and A.2 we know that there exists a solution U + of Equation ( 3) on H n \B R0 such that U + = 1+O(e -nr ) at infinity and U + → ∞ on ∂B R0 . Now the same argument as in [START_REF] Gicquaud | A large class of non constant mean curvature solutions of the Einstein constraint equations on an asymptotically hyperbolic manifold[END_REF]Proposition 3.6] can be used to show that U ≤ U + . Namely, the substitution U = e ϕ brings Equation (3) into the form

- 4(n -1) n -2 ∆ b ϕ + |dϕ| 2 b -n(n -1) = -n(n -1)e κϕ .
Subtracting the respective equations for ϕ + and ϕ gives

- 4(n -1) n -2 ∆ b (ϕ + -ϕ) + d(ϕ + -ϕ), d(ϕ + + ϕ) b + n(n -1
) (e κϕ+e κϕ ) = 0, and from the standard maximum principle we conclude that ϕ + ≥ ϕ, hence U + ≥ U . Similarly, from Proposition A.3, there exists a function U -such that U -solves Equation (3), U -= 1 + O(e -nr ) at infinity, and U -= 0 on ∂B R0 . From the maximum principle we also conclude that U -≤ U .

We can now finish the proof of the lemma. The existence of the constants A and A 0 follows from the fact that

U -≤ U ≤ U + on H n \ B R1 . Finally, since u = U -1 satisfies - 4(n -1) n -2 ∆ b u = -n(n -1) (1 + u) κ+1 -1 + n(n -1)u
we can apply elliptic regularity in balls of fixed radius as above and combine with standard bootstrap arguments to get the existence of constants A k for k ≥ 1.

From the estimates in Lemma 3.2 together with (2) we conclude that the mass of the elements of A is uniformly bounded. Corollary 3.3. There exists a constant C = C(R 0 ) such that for all elements (M, g, Φ, U ) belonging to the class A(R 0 ), the mass satisfies m g ≤ C.

The exponential decay stated in Theorem A will follow from the next proposition. Proposition 3.4. Let R 1 > R 0 be a fixed radius. There exists a constant C > 0 such that for any (M, g, Φ, U ) in the class A we have

|U -1| ≤ C sup H n \BR 1 |U -1| e -nr (4) 
on

H n \ B R1 .
Proof. In Appendix A we have described the solutions f m of (3) corresponding to anti-de Sitter-Schwarzschild metrics of mass m. For appropriate choice of m -< 0 < m + we have that f m+ and f m-solve (3) on H n \ B R0 with f m+ → ∞ on ∂B R0 and f m-= 0 on ∂B R0 . From the proof of Lemma 3.2 we know that

f m-≤ U ≤ f m+ on H n \ B R0 . Let 0 ≤ m ≤ m + . Then f m such that 1 ≤ f m ≤ f m+ is defined for r ≥ R 1 , see Appendix A for details.
From the proof of Proposition A.1 we know that 0 ≤ f m -1 ≤ Cme -nr for r ≥ r 1 (m) := max{R 1 , r((2m) 1/n )}. It is not complicated to extend this estimate to the whole interval r ≥ R 1 . Indeed, let µ > 0 be such that R 1 = r((2µ) 1/n ). If 0 ≤ m ≤ µ then we have r 1 (µ) = R 1 , hence the estimate already holds for r ≥ R 1 . Therefore it suffices to consider the case µ < m ≤ m + which corresponds to the situation

r 1 (m) > R 1 . Since f m is decreasing we have f m -1 ≤ f m (R 1 ) -1 ≤ f m+ (R 1 ) -1 on R 1 ≤ r ≤ r 1 (m)
, whereas me -nr ≥ µe -nr1(m) ≥ µe -nr1(m+) on this interval. It is now clear that up to increasing C if necessary, we can assume that the inequality 0 ≤ f m -1 ≤ Cme -nr holds for r ≥ R 1 . In the rest of the proof, the constant C > 0 might vary from line to line but remains independent of m.

Using Proposition A.3 we can similarly prove that the inequality Cme -nr ≤ f m -1 ≤ 0 holds for r ≥ R 1 in the case when m -≤ m ≤ 0. This yields

|f m -1| ≤ C|m|e -nr for m -≤ m ≤ m + and r ≥ R 1 . Let us now choose m, m ∈ (m -, m + ) so that f m (R 1 ) = inf ∂BR 1 U and f m (R 1 ) = sup ∂BR 1 U . Again, the use of the maximum principle as in the proof of Proposition A.1 yields f m ≤ U ≤ f m on H n \ B R1 .
Consequently, we have the estimate

|U -1| ≤ C max {|m|, |m|} e -nr on H n \ B R1 .
With all these preliminaries at hand, ( 4) is a simple consequence of the fact that there exists a constant C > 0 such that

|m| ≤ C|f m (R 1 ) -1| for m -≤ m ≤ m + . (5) 
Indeed, if we assume that this estimate holds, then

|U -1| ≤ C max f m (R 1 ) -1 , |f m (R 1 ) -1| e -nr = C max inf ∂BR 1 U -1 , sup ∂BR 1 U -1 e -nr = C max inf ∂BR 1 (U -1) , sup ∂BR 1 (U -1) e -nr ≤ C sup ∂BR 1 |U -1| e -nr ≤ C sup H n \BR 1 |U -1| e -nr .
Consequently, in order to complete the proof, we only need to prove [START_REF] Besse | Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]. In fact, (5) will follow from the monotonicity of f m if we show that

|m| ≤ C|f m (R 2 ) -1| for m -≤ m ≤ m + , (6) 
for some

R 2 > R 1 . We fix R 2 > max{r 0 (m + ), R 1 } and set x := f m (R 2 ). It is clear that f m-(R 2 ) ≤ x ≤ f m+ (R 2 ) for m -≤ m ≤ m + , and that r -1 (R 2 ) = x 2 n-2 sinh R 2 > a(m). Then (27) yields ∞ x 2 n-2 sinh R2 dρ ρ 1 + ρ 2 -2m ρ n-2 = ∞ R2 dr sinh r .
We define

F (x, m) := ∞ x 2 n-2 sinh R2 dρ ρ 1 + ρ 2 -2m ρ n-2
,

where f m-(R 2 ) ≤ x ≤ f m+ (R 2 ), m -≤ m ≤ m + . It is straightforward to check that ∂F ∂m = ∞ x 2 n-2 sinh R2 dρ 2ρ n-1 1 + ρ 2 -2m ρ n-2 3/2 ≥ ∞ f 2 n-2 m + (R 2 ) sinh R2 dρ 2ρ n-1 1 + ρ 2 -2m- ρ n-2 3/2
is positive and uniformly bounded away from zero, and that

∂F ∂x = - 2 (n -2)x 1 + x 4 n-2 (sinh R 2 ) 2 - 2m x 2 (sinh R2) n-2
is uniformly bounded. We conclude that there exists

C > 0 such that |m ′ (x)| < C for x ∈ (f m-(R 2 ), f m+ (R 2 )
). Finally, applying the mean value theorem we arrive at (6) and thus (5) follows.

Corollary 3.5. There exists a radius R 2 > R 1 such that for (M, g, Φ, U ) ∈ A the function |U -1| reaches its maximum over

H n \ B R1 in the annulus A R1,R2 = B R2 \ B R1 .
Proof. Choose R 2 such that Ce -nR2 ≤ 1. Then for any point such that r > R 2 we have

|U -1| ≤ C sup H n \BR 1 |U -1| e -nr < sup H n \BR 1 |U -1|.
3.2. Strategy of the proof of Theorem A. In this subsection we discuss the main strategy of the proof of Theorem A, deferring the proof of technical details to the next subsections. The first step is to reduce the proof of Theorem A to the particular case of metrics with constant scalar curvature Scal g = -n(n -1). For this we show that the conformal factor transforming the metric g to a metric with constant scalar curvature can be uniformly controlled on H n \ B R1 by the difference between the masses (more exactly of the time components H Φ (V (0) ) of the mass functional) of the two metrics. This is the content of the following proposition. Proposition 3.6. Given (M, g, Φ, U ) ∈ A, there exists a unique positive function w on M such that g := w κ g is asymptotically hyperbolic with constant scalar curvature Scal g = -n(n -1). The metric g has mass m g ≤ m g . Further, for p > n/2 there is a constant C > 0 independent of (M, g, Φ, U ) such that sup

H n \BR 1 U -U ≤ C m g -m g 1/p
, where U := U w.

This reduction turns out to be convenient for obtaining estimates in the second part of the proof. We introduce the restricted class A 0 (R 0 ) of 4-tuples (M, g, Φ, U ) ∈ A such that Scal g = -n(n -1) on all of M . To prove Theorem A we need to show the result for elements of A 0 = A 0 (R 0 ).

The basic idea is to apply the positive mass theorem to a certain 1-parameter family of metrics. To define it, we first modify the metric g in an annulus (see Equation [START_REF] Bray | On the Riemannian Penrose inequality in dimensions less than eight[END_REF]) and conformally transform it to fulfill the assumption Scal ≥ -n(n -1) of the positive mass theorem.

In the first lemma we prove the existence of a function V which solves ∆ g V = nV and which is asymptotic to

V (0) . For functions V 1 and V 2 on M we write V 1 ∼ V 2 if V 1 /V 2 tends to 1 at infinity. Let R ′ 0 , R ′′ 0 , R ′ 1 and R ′′ 1 be constants such that R 0 < R ′ 0 < R ′′ 0 < R 1 < R ′ 1 < R ′′ 1 .
We remind the reader that r denotes the distance function from the chosen origin in H n . Lemma 3.7. Let (M, g, Φ, U ) ∈ A. There exists a unique solution V g to the equation

∆ g V = nV (7) such that V g ∼ V (0)
. Further, there exist universal functions

V ± : H n \ B R ′ 0 → R such that for some constants C 0 , C 1 > 0 we have V ± -V (0) ≤ C 0 e -(n-1)r , V -≤ V g ≤ V + , and dV g -dV (0) g ≤ C 1 e -(n-1)r on H n \ B R ′ 0 .
Also, there are constants B 2 , B 3 , . . . depending only on R ′ 0 , R ′′ 0 and R ′′ 1 such that for any integer k ≥ 2 we have

∇ (k) V g ≤ B k on A R ′′ 0 ,R ′′ 1 . Define T := Ric g - Hess g V g
V g , where Ric g = Ric g + (n -1)g denotes the traceless part of the Ricci tensor and Hess g V = Hess g V -V g denotes the traceless part of the Hessian of V . From the computations in the proof of Lemma 3.10 it follows that the tensor V g T is actually the gradient of the mass at (M, g) in the space A 0 (R ′′ 1 ). We choose a smooth function χ such that

χ =      0 on B R ′′ 0 , 1 on A R1,R ′ 1 , 0 on H n \ B R ′′
1 , and define the metric

g s := g + sχT (8) 
for small values of the parameter s.

Next we recall the definition of the weighted local Sobolev spaces, see [START_REF] Gicquaud | A large class of non constant mean curvature solutions of the Einstein constraint equations on an asymptotically hyperbolic manifold[END_REF] for more details on these spaces. Let p ∈ (1, ∞), a non negative integer k, and δ ∈ R be given. We define the function space X k,p δ (M, R) as the set of functions u ∈ W k,p loc (M, R) such that the norm

u X k,p δ (M,R) = sup x∈M e δr(x) u W k,p (B1(x),R) (9) 
is finite. This space is a Banach space. We will conformally transform the metrics g s to have constant scalar curvature Scal = -n(n -1). The details of this are taken care of in the following lemma. Lemma 3.8. There exists s 0 > 0 such that for all s ∈ [-s 0 , s 0 ] and any

(M, g, Φ, U ) ∈ A 0 it holds that 1 2 g ≤ g s ≤ 2g
and

|Scal gs + n(n -1)| ≤ n -1.
Further, for any s ∈ [-s 0 , s 0 ] there exists a unique positive function ϕ s on M which is bounded from above and away from zero such that the metric

λ s := ϕ κ s g s has constant scalar curvature -n(n -1). The function ϕ s satisfies n -1 n 1/κ ≤ ϕ s ≤ n + 1 n 1/κ .
In addition, there are constants C 0 , C 1 , . . . such that

∇ (k) (ϕ s -1) ≤ C k e -nr (10) 
holds on H n \ B R1 for all k ≥ 0. Finally, the map s → ϕ s -1 from the interval

[-s 0 , s 0 ] to X 2,p δ (M, g) is C 2 for any p ∈ (n, ∞) and δ ∈ n 2 , n . For V = V (0) = cosh r we set H(s) := H λs Φ (V )
. This is the time component of the mass functional, which gives an upper bound on the mass, namely m λs ≤ 1 2(n-1)ωn-1 H(s). Since the coordinates at infinity are balanced for g, we have

m g = m λ0 = 1 2(n-1)ωn-1 H(0).
In what follows we will denote derivatives with respect to the parameter s by a dot.

Lemma 3.9. The map s → H(s) is a C 2 function. Further, there is a constant A independent of (M, g, Φ, U ) ∈ A 0 such that | Ḧ(s)| ≤ A.
In the next proposition we find that Ḣ(0) is related to the L 2 -norm of Ric g -1 V g HessV g on an annulus, which can be interpreted as a measure of "non-staticity" of the metric g on the annulus.

Lemma 3.10. Suppose (M, g, Φ, U ) ∈ A 0 and H(s) is defined as above, then

Ḣ(0) = M χV g Ric g - HessV g V g 2 g dµ g .
We are now ready to prove Theorem A.

Proof of Theorem A. We first assume that the metric g has constant scalar curvature. Applying Taylor's formula to H(s) on the interval (-s 0 , s 0 ) we find

H(s) = H(0) + s Ḣ(0) + s 0 (s -t) Ḧ(t)dt ≤ H(0) + s Ḣ(0) + A s 0 (s -t)dt ≤ H(0) + s Ḣ(0) + A 2 s 2 .
From the assumption that the positive mass theorem holds for any asymptotically hyperbolic metric on M we have

H(s) ≥ 2(n -1)ω n-1 m λs ≥ 0 for s ∈ (-s 0 , s 0 ). As a consequence, 0 ≤ H(0) + s Ḣ(0) + A 2 s 2 .
Assuming that H(0) ≤ 

(0) ≤ 2AH(0) = 4A(n -1)ω n-1 m g . ( 11 
)
Let ε be an arbitrary positive number. We claim that there exists δ > 0 such that any (M, g, Φ, U ) belonging to A 0 and having mass m g ≤ δ satisfies sup

H n \BR 1 |U -1| ≤ ε.
To prove this we argue by contradiction and assume that there is a sequence (M k , g k , Φ k , U k ) of elements of A 0 such that the mass m k := m g k tends to zero while |U k -1| ≥ ε. Using Lemmas 3.2, 3.7 and [15, Proposition 2.3] (Rellich theorems for weighted local Sobolev spaces), we construct functions U ∞ and V ∞ on

H n \ B R ′ 0 as limits of some subsequence of U k and V g k . Choose p ∈ (n, ∞) and δ ∈ n 2 , n . • From Lemma 3.2, the sequence U k -1 is bounded in X 3,p n (H n \ B R ′ 0 )
. Hence there exists a subsequence converging to a limit U ∞ -1 in X 2,p δ . • To construct V ∞ , it suffices to remark that the sequence V k is uniformly bounded in W 3,p (K) for any compact subset K ⊂ H n \ BR ′ 0 by standard elliptic regularity. Hence, by a diagonal process, we can construct a subsequence of functions V k converging in the W 2,p -norm on any compact subset. The function U ∞ solves (3) and

V ∞ solves ∆ g∞ V ∞ = nV ∞ , where g ∞ := U κ ∞ b.
They satisfy the asymptotics of Lemmas 3.2 and 3.7. Further, sup

H n \BR 1 |U ∞ -1| ≥ ε. ( 12 
)
The metric g ∞ has mass zero since the mass depends continuously on U -1 ∈ X 2,p δ (see the proof of Lemma 3.9). Lemma 3.10 together with the estimate [START_REF] Chruściel | The mass of asymptotically hyperbolic Riemannian manifolds[END_REF] 

applied to (M k , g k , Φ k , U k ) gives the inequality M χV g k Ric g k - HessV g k V g k 2 g k dµ g k ≤ 4A(n -1)ω n-1 m k
for any k. In particular, we obtain

H n \B R ′ 0 χV g∞ Ric g∞ - HessV g∞ V g∞ 2 g∞ dµ g∞ = 0
when we let k tend to infinity. Therefore

Ric g∞ = HessV g∞ V g∞ on A R ′′ 0 ,R ′ 1 .
By analyticity this equality holds on all of H n \ B R ′ 0 . From Proposition A.4 and the fact that the metric g ∞ has zero mass, we conclude that g ∞ is hyperbolic. This forces U ∞ = 1 which contradicts [START_REF] Finster | A level set analysis of the Witten spinor with applications to curvature estimates[END_REF]. We have thus proved the claim made above.

At this point, we would like to emphasize that the metric g ∞ is defined only on H n \ B R ′ 0 so it is not complete. In particular, the standard positive mass theorem does not apply. This is why Proposition A.4 is needed.

The proof of Theorem A in the general case Scal g ≥ -n(n -1) is then concluded by Proposition 3.6 followed by Proposition 3.4.

3.3.

Proof of Proposition 3.6. In this section we prove Proposition 3.6: the conformal factor transforming a metric g to a metric g with constant scalar curvature is controlled by the difference m gm g of their masses. This was used to reduce the proof of Theorem A to elements of the class A 0 . Such a reduction can also be found in [START_REF] Andersson | Rigidity and positivity of mass for asymptotically hyperbolic manifolds[END_REF]Proposition 3.13].

As it will become apparent, the proof of this proposition yields a simpler argument for Theorem A in the case U ≥ 1. However, since it is based on estimates for solutions to the Yamabe equation on H n \ B R1 , the argument cannot be generalized to arbitrary U . Indeed, one can find solutions to the Yamabe equation ( 3) on H n \ B R0 that oscillate around 1 to produce metrics with zero mass. This shows that the strategy of the proof of Proposition 3.6 is too weak to produce a full proof of Theorem A.

We first make a certain observation about (M, g, Φ, U ) ∈ A. If we set U = 1 + u, Equation ( 3) can be written in the form

∂ 2 r u + (n -1) coth r ∂ r u -nu = f (u) -sinh -2 r∆ σ u (13) 
where

f (u) := n(n -2) 4 (1 + u) n+2 n-2 -1 - n + 2 n -2 u .
We remark that the ordinary differential equation

u ′′ (r) + (n -1) coth r u ′ (r) -nu(r) = 0 has the solutions u 0 (r) = cosh r ∞ r 1 cosh 2 τ sinh n-1 τ dτ = 2 n n + 1 e -nr + O(e -(n+2)r ), u 1 (r) = cosh r.
Lemma 3.11. Suppose U = 1 + u is such that u satisfies (13) on H n \ B R0 and the metric U κ b is asymptotically hyperbolic with respect to the identity chart at infinity. Then v := u/u 0 satisfies

S n-1 v(s) dµ σ ≥ (n -2)ω n-1 2 m U κ b + ∞ s 1 - cosh s cosh r u 0 (r) u 0 (s) cosh r sinh n-1 r S n-1 f (u(r, θ)) dµ σ dr
where m U κ b is the mass of the metric U κ b. Equality holds if the identity chart at infinity is balanced for U κ b.

Proof. Substituting u = u 0 v into (13) we get

u 0 ∂ 2 r v + (2u ′ 0 + (n -1) coth r u 0 )∂ r v = f (u) -sinh -2 r∆ σ u.
If we multiply this equation by u 0 sinh n-1 r we obtain

∂ r u 2 0 sinh n-1 r ∂ r v = u 0 sinh n-1 r f (u) -sinh -2 r∆ σ u . Integration from t to ∞ gives u 2 0 sinh n-1 r ∂ r v |r=∞ -u 2 0 sinh n-1 r ∂ r v |r=t = ∞ t u 0 (r) sinh n-1 r f (u(r, θ)) -sinh -2 r∆ σ u(r, θ) dr. We observe that ∂ r v = O(1) by Lemma 3.2. Hence u 2 0 sinh n-1 r ∂ r v = O(e -(n+1)r
), so the first term in the left-hand side vanishes. Consequently we have

-∂ r v(t, θ) = 1 u 2 0 (t) sinh n-1 t ∞ t u 0 (r) sinh n-1 r f (u(r, θ)) -sinh -2 r∆ σ u(r, θ) dr.
Integrating from s to ∞ and changing order of integration we obtain

v(s, θ) -lim r→∞ v(r, θ) = ∞ s 1 u 2 0 (t) sinh n-1 t ∞ t u 0 (r) sinh n-1 r f (u(r, θ)) -sinh -2 r∆ σ u(r, θ) drdt = ∞ s r s 1 u 2 0 (t) sinh n-1 t dt u 0 (r) sinh n-1 r f (u(r, θ)) -sinh -2 r∆ σ u(r, θ) dr.
Here the integral over t is

r s 1 u 2 0 (t) sinh n-1 t dt = r s 1 cosh 2 t sinh n-1 t ∞ t 1 cosh 2 τ sinh n-1 τ dτ 2 dt = r s 1 ∞ t 1 cosh 2 τ sinh n-1 τ dτ ′ dt = 1 ∞ r 1 cosh 2 τ sinh n-1 τ dτ - 1 ∞ s 1 cosh 2 τ sinh n-1 τ dτ = cosh r u 0 (r) - cosh s u 0 (s) , thus v(s, θ) -lim r→∞ v(r, θ) = ∞ s cosh r u 0 (r) - cosh s u 0 (s) u 0 (r) sinh n-1 r f (u(r, θ)) -sinh -2 r∆ σ u(r, θ) dr.
From (2) we have

(n -2)ω n-1 2 m U κ b ≤ lim r→∞ S n-1
v(r, θ) dµ σ , so when we integrate over S n-1 we arrive at

S n-1 v(s, θ) dµ σ - (n -2)ω n-1 2 m U κ b ≥ ∞ s cosh r u 0 (r) - cosh s u 0 (s) u 0 (r) sinh n-1 r S n-1 f (u(r, θ)) dµ σ dr ≥ ∞ s 1 - cosh s cosh r u 0 (r) u 0 (s) cosh r sinh n-1 r S n-1 f (u(r, θ)) dµ σ dr,
with equality if the coordinates at infinity are balanced.

Proof of Proposition 3.6. The existence of the function w is guaranteed by [3, Theorem 1.2] which says that any asymptotically hyperbolic manifold is conformally related to one with scalar curvature -n(n -1). The function w is a solution of the Yamabe equation

- 4(n -1) n -2 ∆ g w + Scal g w = -n(n -1)w κ+1 . ( 14 
)
Since Scal g ≥ -n(n-1), the constant function 1 is a supersolution of [START_REF] Gicquaud | De l'équation de prescription de courbure scalaire aux équations de contrainte en relativité générale sur une variété asymptotiquement hyperbolique[END_REF]. Applying the maximum principle as in the proof of Lemma 3.2 we conclude that w ≤ 1.

Consequently, since both U and U satisfy the Yamabe equation ( 3), it follows from the proof of Lemma 3.

2 that U -≤ U ≤ U ≤ U + on H n \ B R0 . We set u = U -1, v = u -1
0 u, and we note that u ≤ u and v ≤ v. Since Φ are balanced coordinates at infinity for g (but not necessarily for g) we see from (2) that

m g -m g ≥ lim r→∞ 2 (n -2)ω n-1 S n-1 (v(r, θ) -v(r, θ)) dµ σ ≥ 0.
Again, since Φ are balanced coordinates at infinity for g we conclude from Lemma 3.11 that

S n-1 (v(s, θ) -v(s, θ)) dµ σ ≤ (n -2)ω n-1 2 m g -m g + ∞ s 1 - cosh s cosh r u 0 (r) u 0 (s) cosh r sinh n-1 r S n-1 (f (u(r, θ)) -f ( u(r, θ))) dµ σ dr. Observe that 0 ≤ cosh s cosh r u 0 (r) u 0 (s) ≤ 1.
Moreover, recall that u + = U + -1 > 0. Therefore we can use mean value theorem to show that

f (u) -f ( u) = f ′ (tu + (1 -t) u))(u -u) ≤ C(tu + (1 -t) u)(u -u) ≤ Cu + (u -u) = Cu 0 v + (u 0 v -u 0 v) = Cu 2 0 v + (v -v),
where 0 ≤ t ≤ 1, v + = u -1 0 u + , and the constant C > 0 depends only on f . Consequently, we can estimate

S n-1 (v(s, θ) -v(s, θ)) dµ σ ≤ (n -2)ω n-1 2 m g -m g + ∞ s F (r) S n-1 (v(r, θ) -v(r, θ)) dµ σ dr,
where F (r) := C ′ cosh r sinh n-1 r u 2 0 (r)v + (r). We now argue as in the proof of Gronwall's lemma and prove the estimate

S n-1 (v(s, θ) -v(s, θ)) dµ σ ≤ (n -2)ω n-1 2 m g -m g e ∞ s F (t) dt . ( 15 
)
We first consider the case when m gm g > 0 and set

G(s) := (n -2)ω n-1 2 m g -m g + ∞ s F (r) S n-1 (v(r, θ) -v(r, θ)) dµ σ dr.
Thus we have S n (v(s, θ)v(s, θ)) dµ σ ≤ G(s), and G(s)

≥ (n-2)ωn-1 2 m g -m g . It is also clear that G ′ (s) = -F (s) S n-1 (v(s, θ) -v(s, θ)) dµ σ ≥ -F (s)G(s). Since G(s) > 0 we conclude that G ′ (s) G(s) ≥ -F (s).
Integrating this inequality from s to ∞ we get

ln (n -2)ω n-1 2 m g -m g -ln G(s) ≥ - ∞ s F (t) dt.
This yields

G(s) ≤ (n -2)ω n-1 2 m g -m g e ∞ s F (t) dt ,
which in its turn implies [START_REF] Gicquaud | A large class of non constant mean curvature solutions of the Einstein constraint equations on an asymptotically hyperbolic manifold[END_REF]. Note that (15) also holds for m gm g = 0 which follows by passing to the limit when m gm g > 0 and m gm g → 0 in [START_REF] Gicquaud | A large class of non constant mean curvature solutions of the Einstein constraint equations on an asymptotically hyperbolic manifold[END_REF]. As a consequence we can estimate the L p -norm of vv over the annulus A r1,r2 where R 0 < r 1 < R 1 < r 2 . We have

v -v p L p (Ar 1 ,r 2 ) = Ar 1 ,r 2 (v -v) p dµ b ≤ Ar 1 ,r 2 (2v + ) p-1 (v -v) dµ b = r2 r1 (2v + ) p-1 sinh n-1 r S n-1 (v(r, θ) -v(r, θ)) dµ σ dr ≤ C m g -m g
for some positive constant C.

We are now about to obtain the estimate stated in the lemma. The equation for

U -U reads - 4(n -1) n -2 ∆ b (U -U ) -n(n -1) U -U = -n(n -1) U κ+1 -U κ+1 .
Since u 0 is bounded we have

U -U L p (Ar 1 ,r 2 ) = u -u L p (Ar 1 ,r 2 ) ≤ C m g -m g 1/p .
Here and in the rest of the proof the value of the positive constant C might vary from line to line but remains independent of (M, g, Φ, U ) ∈ A. By the mean value theorem we have

U κ+1 -U κ+1 = (κ + 1) tU + (1 -t) U κ U -U ≤ CU κ + U -U ≤ C U -U on A r1,r2 for some t ∈ [0, 1]. Hence U κ+1 -U κ+1 L p (Ar 1 ,r 2 ) ≤ C m g -m g 1/p .

Now elliptic regularity yields

U -U W 2,p (A r ′ 1 ,R 1 )
≤ C m gm g 1/p , where r 1 < r ′ 1 < R 1 , and by embedding theorems we conclude that sup

A r ′ 1 ,R 1 U -U ≤ C m g -m g 1/p .
Set ϕ := log U and ϕ := log U . Then ϕϕ is non-negative, tends to zero at infinity, and satisfies

- 4(n -1) n -2 ∆ b (ϕ -ϕ) + d(ϕ -ϕ), d(ϕ + ϕ) b + n(n -1) e κϕ -e κ ϕ = 0.
If the maximum of ϕϕ is attained at an interior point of H n \ B R1 we get a contradiction, and thus

log U -log U ≤ sup ∂BR 1 log U -log U on H n \ B R1
. By the mean value theorem we have

log U -log U = U -U tU + (1 -t) U          ≥ U -U U + (R 1 ) ≤ U -U U -(R 1 ) for some t ∈ [0, 1]. Thus U -U ≤ U + (R 1 ) log U -log U ≤ U + (R 1 ) sup ∂BR 1 log U -log U ≤ U + (R 1 ) U -(R 1 ) sup ∂BR 1 U -U ≤ C m g -m g 1/p
on H n \ B R1 , which concludes the proof of the proposition.

3.4. Proof of lemmas. We now complete the proof of Theorem A by proving the lemmas stated in Subsection 3.2.

Proof of Lemma 3.7. We first construct V ± . The construction being lengthy, we give only the argument for V + . We want V + to be a supersolution for Equation [START_REF] Bray | Curvature estimates and the positive mass theorem[END_REF],

-∆ g V + + nV + ≥ 0. Since g = U κ b on H n \ B R0 (0) the previous inequality is equivalent to -∆ b V + -2 dU U , dV + + nU κ V + ≥ 0.
We choose V + to be a function of r so

-V ′′ + -(n -1) coth rV ′ + -2 ∂ r U U V ′ + + nU κ V + ≥ 0,
where a prime denotes a derivative with respect to r. From Lemma 3.2, there exists a universal constant A ′ 1 depending only on R ′ 0 such that ∂r U U ≤ A ′ 1 e -nr . Assuming that V + , V ′ + ≥ 0, the previous inequality will be satisfied provided that

-V ′′ + -(n -1) coth rV ′ + -2A ′ 1 e -nr V ′ + + nϕ κ -V + = 0, (16) 
where ϕ -is the anti-de Sitter-Schwarzschild solution vanishing at r = R 0 . Let λ be a positive real number to be chosen later. From standard theory, there exists a unique solution to Equation ( 16) defined on

[R ′ 0 , ∞) such that V + (R ′ 0 ) = λ and V ′ + (R ′ 0 ) = 0.
We first claim that V + and V ′ + are both positive functions on (R ′ 0 , ∞). Indeed, rewriting Equation ( 16) as

V ′′ + + (n -1) coth r + 2A ′ 1 e -nr V ′ + = nϕ κ -V + , (17) 
setting R := inf{r > R ′ 0 , V + (r) ≤ 0}, and assuming that R < ∞, we have V + > 0 on (R ′ 0 , R) and V + (R) = 0. Hence, regarding [START_REF] Graham | Einstein metrics with prescribed conformal infinity on the ball[END_REF] as a first order homogeneous ordinary differential equation for V ′ + , we conclude that

V ′ + > 0 on (R ′ 0 , R). In particular, V + (R) ≥ V + (R ′ 0 ) = λ > 0.
This contradicts the definition of R. The claim is proved.

Next we prove that V + = αλ cosh r+O(e -(n-1)r ) for some constant α > 0. Hence setting λ = 1/α, we get a supersolution to Equation ( 7) such that V + ∼ cosh r = V (0) . To prove this second claim we set V + (r) := cosh rv + (r). By a straightforward calculation, we find that V + satisfies ( 16) if and only if v + satisfies

v ′′ + + 2 tanh r + (n -1) coth r + 2A ′ 1 e -nr v ′ + + 2A ′ 1 e -nr tanh r + n ϕ κ --1 v + = 0.
From the first claim we have v + > 0. We introduce k + := v ′ + v+ and obtain the following Riccati equation for k + ,

k ′ + + k 2 + + 2 tanh r + (n -1) coth r + 2A ′ 1 e -nr k + + 2A ′ 1 e -nr tanh r + n ϕ κ --1 = 0. ( 18 
)
Without loss of generality, we can assume that A ′ 1 is chosen so large that 2A ′ 1 e -nr tanh r

+ n ϕ κ --1 ≥ 0 on (R ′ 0 , ∞). From the boundary condition V ′ + (R ′ 0 ) = 0 we have v ′ + (R ′ 0 ) = -tanh R ′ 0 v + (R ′ 0 ) < 0. It is then fairly straightforward to argue that -1 < k + < 0 on (R ′ 0 , ∞).
For this let R be the smallest r > R ′ 0 such that k + (r) ≥ 0. Then k + (R) = 0 and, from Equation (18), k ′ + (R) < 0 so k + (r) > 0 for some r slightly smaller than R, contradicting the definition of R. This estimate can be further refined. We select α ∈ n 2 , n and set k - + := -e -α(r-r0) for some r 0 to be chosen later. Then k

- + ≥ -1 on the interval [r 0 , ∞). Hence (k - + ) ′ + (k - + ) 2 + 2 tanh r + (n -1) coth r + 2A ′ 1 e -nr k - + = α + e -α(r-r0) -2 tanh r -(n -1) coth r -2A ′ 1 e -nr e -α(r-r0) ≤ (α -n) e -α(r-r0) ,
where we used the inequality

2 tanh r + (n -1) coth r = 2 1 coth r + coth r + (n -3) coth r ≥ 2 + (n -3) coth r ≥ n -1.
Consequently, choosing r 0 large enough, we can ensure that

(k - + ) ′ + (k - + ) 2 + 2 tanh r + (n -1) coth r + 2A ′ 1 e -nr k - + + 2A ′ 1 e -nr tanh r + n ϕ κ --1 < 0 on the interval [r 0 , ∞). A slight modification of the previous argument shows that k - + ≤ k + ≤ 0. Equation (18) then implies k ′ + = O(e -nr
). Together with the fact that k + → 0 at infinity, this implies k + = O(e -nr ). Thus we infer that

log v + (r) = log λ + µ + O(e -nr )
for some constant µ. Hence,

v + (r) = λe µ + O(e -nr ).
This proves the second claim with α = e µ .

Finally remark that since k

+ (r) = v ′ + (r) v+(r) ≤ 0 and v + → 1 at infinity, it follows that v + (r) ≥ 1 so V + ≥ V (0) .
The construction of the subsolution

V -on H n \ B R ′ 0 is entirely similar. The only difference is that we select V -(R ′ 0 ) = 0 and V ′ -(R ′ 0 ) > 0. The function V -then satisfies V -≤ V (0) .
From now on we will work on the entire manifold M . Using the diffeomorphism Φ we define open sets

B ′ R in M through the relation Φ(M \ B ′ R ) = H n \ B R for R ≥ R 0 . The set B ′
R is the part of M inside an approximate geodesic sphere in the asymptotically hyperbolic end. By abusing notation we consider the functions V ± and V (0) as defined on M \ K through the diffeomorphism Φ.

Our proof of existence of the function V g follows [START_REF] Graham | Einstein metrics with prescribed conformal infinity on the ball[END_REF]. For any r > R ′ 0 there exists a unique function V r solving (7) inside the sphere of radius r with Dirichlet data V = V (0) on ∂B ′ r . From the maximum principle, V r ≥ 0. Then a second application of the maximum principle in the annulus [START_REF] Bray | Curvature estimates and the positive mass theorem[END_REF] in the weak sense. Hence V r ≤ V + (see for example [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 8.1] for more details). In particular, the functions V r are uniformly bounded on compact subsets. Then a standard argument using elliptic regularity and a diagonal extraction process yields the existence of the function V g . Similarly, we extend the function V -by zero on B ′ R ′ 0 . The function V -extended this way becomes a subsolution in the weak sense so the functions V r satisfy V r ≥ V -. In the limit, the function V g is pinched between V -and V + , that is

B ′ r \ B ′ R ′ 0 yields V r ≥ V -. We extend the function V + by λ on B ′ R ′ 0 . This new function V + is a C 1 -supersolution of
V -≤ V g ≤ V + .
This proves that V g -V (0) = O(e -(n-1)r ). We note that

∆ g V (0) = U -κ n cosh r + 2 ∂ r U U sinh r = nV (0) + O(e -(n-1)r ).
Hence, (-

∆ g + n) V g -V (0) = O(e -(n-1)r ).
The estimates for d(V g -V (0) ) and ∇ (k) V g follow from standard elliptic regularity. We finally prove uniqueness of V g . Assume that V 1 is the function we constructed before so that V -≤ V 1 ≤ V + and V 2 is another function satisfying ∆V 2 = nV 2 , V 2 ∼ V (0) . From the strong maximum principle we have V 1 > 0. We compute

nV 2 = ∆ V 2 V 1 V 1 = V 1 ∆ V 2 V 1 + 2 dV 1 , d V 2 V 1 + V 2 V 1 ∆V 1 = V 1 ∆ V 2 V 1 + 2 dV 1 , d V 2 V 1 + nV 2 , so 0 = ∆ V 2 V 1 + 2 dV 1 V 1 , d V 2 V 1 . Since V 1 ∼ V 2 , the function V 2 /V 1
tends to 1 at infinity. From the strong maximum principle (which can be applied here since if

V 2 /V 1 is not constant, the maximum of |V 2 /V 1 -1| is attained at some point p ∈ M ), we conclude that V 2 /V 1 = 1.
Proof of Lemma 3.8. From Lemmas 3.2 and 3.7, there are universal constants B 0 , B 1 , . . . such that

∇ (k) T ≤ B k for k = 0, 1, . . . on the support of χ. Hence |g s (X, X) -g(X, X)| = |sT (X, X)| ≤ |s|B 0 g(X, X) for any X ∈ T M . So if |s| ≤ 1 2B0 we have 1 2 g(X, X) ≤ g s (X, X) ≤ 3 2 g(X, X).
We denote by ∇ gs the Levi-Civita connection of g s . The difference between ∇ gs and ∇ g0 is a symmetric vector valued 2-tensor Γ(s),

∇ gs X Y -∇ g0 X Y = Γ(s)(X, Y ). In coordinates Γ(s) is given by Γ k ij (s) = 1 2 g kl s (∇ i (g s ) lj + ∇ j (g s ) il -∇ l (g s ) ij ) = s 2 g kl s (∇ i (χT lj ) + ∇ j (χT il ) -∇ l (χT ij )) ,
where we have denoted by ∇ = ∇ g0 the Levi-Civita connection of the metric g 0 = g. The scalar curvature of the metric g s can be written as follows,

Scal gs = g ij s Ric g0 ij + g jl s ∇ i Γ i jl (s) -∇ l Γ i ij (s) + Γ i ip (s)Γ p jl (s) -Γ i lp (s)Γ p ij (s) .
From this formula it is not complicated to see that there is a constant s 0 > 0, s 0 ≤ 1 2B0 , depending only on B 0 , B 1 , B 2 and n such that |Scal gs -Scal g | ≤ n -1 for |s| ≤ s 0 . From the bound on Scal gs it follows that the constant functions ϕ -= n-1 n 1/κ and ϕ + = n+1 n 1/κ are respectively a sub-solution and a supersolution of the Yamabe equation

- 4(n -1) n -2 ∆ gs ϕ s + Scal gs ϕ s + n(n -1)ϕ κ+1 s = 0. ( 19 
)
Arguing as in the proof of Proposition 3.6 there exists a unique solution ϕ s of ( 19) such that ϕ s is bounded from above and away from zero. Further ϕ -≤ ϕ s ≤ ϕ + . We next prove that the map s → ϕ s is C 2 . We consider the map

Ξ : Ω × [-s 0 , s 0 ] → X 0,p δ (u, s) → -4(n-1)
n-2 ∆ gs u + Scal gs (u + 1) + n(n -1)(u + 1) κ+1 , where Ω = {u ∈ X 2,p δ , u > -1}. Hence, for any s ∈ [-s 0 , s 0 ], u s = ϕ s -1 is the only solution to the equation Ξ(u, s) = 0. Further Ξ is a C 2 function. The differential of Ξ with respect to u at any point (u s , s) is given by

D u Ξ(u s , s) : X 2,p δ → X 0,p δ v → -4(n-1) n-2 ∆ gs v + (Scal gs + (κ + 1)n(n -1)ϕ κ s ) v. We remark that Scal gs + (κ + 1)n(n -1)ϕ κ s ≥ -(n + 1)(n -1) + (κ + 1)(n -1) 2 ≥ 2n(n -1) n -2 ,
from which it follows that the L 2 -kernel of D u Ξ(u s , s) is zero. From the Fredholm alternative (see [15, Proof of Proposition 5.1]), we conclude that D u Ξ(u s , s) is invertible. Using the implicit function theorem, this proves that the map s → ϕ s -1 ∈ X 2,p δ is C 2 . To prove the asymptotics of ϕ s , remark that the metric λ s falls into the class A(R ′′ 1 ). Hence the estimates [START_REF] Chruściel | Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature[END_REF] are consequences of Lemma 3.2.

Proof of Lemma 3.9. We first estimate the first and second derivatives of ϕ s with respect to s. We differentiate Equation ( 19) with respect to s and find the following equation for φs ,

- 4(n -1) n -2 ∆ gs φs + Scal gs φs + (κ + 1)n(n -1)ϕ κ s φs = 4(n -1) n -2
∂∆ gs ∂s ϕ s -∂Scal gs ∂s ϕ s .

Note that the right hand side has support in the annulus A R ′ 0 ,R1 . Thus, by Lemma 3.8, it is bounded by some universal constant C. We also remark that, since

Scal gs + (κ + 1)n(n -1)ϕ κ s > 2n(n -1) n -2
and since φs tends to zero at infinity (this is a consequence of φs ∈ X 2,p δ ), we have

sup | φs | ≤ n -2 2n(n -1) C.
By standard techniques one can then prove that φs X 2,p (H n \B R ′

0

) ≤ C for some universal constant C. The same strategy can then be used to study the second order derivative of ϕ s . However, the calculations are lengthy and we do not include the argument here.

The last step is to prove that H(s) is a C 2 function of s. For this we write H(s) as follows (see [19, page 114] or [START_REF] Chruściel | The mass of asymptotically hyperbolic Riemannian manifolds[END_REF] for more details),

H(s) = H λs Φ (V ) = SR 2 V (div b e s -d tr b e s ) + (tr b e s )dV -e s (∇ b V, •) (ν R2 ) dµ b + H n \BR 2 V Scal λs -Scal b + Q(e s , V ) dµ b = SR 2 V (div b e s -d tr b e s ) + (tr b e s )dV -e s (∇ b V, •) (ν R2 ) dµ b + H n \BR 2 Q(e s , V ) dµ b
where e s = λ sb = (ϕ κ s U κ -1)b, and Q(V, e) is an expression which is linear in V , quadratic in e s and its first derivatives, and cubic in (λ s ) -1 . It corresponds to the negative of the non-linear terms in the Taylor expansion of

H n \BR 2 V Scal λs -Scal b dµ b with respect to e s = λ s -b. Since λ s = (U ϕ s ) κ b on H n \ B R2 , this expression can be explicitly computed, Q(e s , V ) = V (n -1) 1 ψ 2 s -1 ∆ b ψ s + n(n -1) (ψ s -1) 2 ψ s + (n -1)(n -6) 4ψ s dψ s ψ s 2 b ,
where ψ s := (U ϕ s ) κ . Written in this form, one can conclude from standard theorems on differentiation of integrals that H(s) depends on s in a C 2 fashion.

From the estimates we have found for φ(s) and φ(s) together with Lemmas 3.2 and 3.8 it is not complicated to deduce that Ḣ(s) and Ḧ(s) are uniformly bounded on the interval [-s 0 , s 0 ].

Proof of Lemma 3.10. For λ s we have

e s = λ s -b = ϕ κ s g + sχ Ric g - HessV g V g -b,
the derivative of this with respect to s evaluated at s = 0 is

ė = κ φg + χ Ric g - HessV g V g =: e 1 + e 2 .
The conformal factors ϕ s satisfy the Yamabe equation

- 4(n -1) n -2 ∆ gs ϕ s + Scal gs ϕ s = -n(n -1)ϕ κ+1 s .
Differentiating this at s = 0 and using the fact that ϕ 0 = 1 we find that

- 4(n -1) n -2 ∆ g φ + Ṡcal g ( ġ) + Scal g φ = -n(n -1) n + 2 n -2 φ, or 4(n -1) n -2 (∆ g φ -n φ) = Ṡcal g ( ġ). ( 20 
)
We compute

Ḣ(0) = d ds H λs Φ (V ) |s=0 = lim r→∞ Sr V (div b ė -d tr b ė) + (tr b ė)dV -ė(∇ b V, •) (ν r ) dµ b = lim r→∞ Sr (V g (div g ė -d tr g ė) + (tr g ė)dV g -ė(∇ g V g , •)) (ν g r ) dµ g , (21) 
where we can change from the metric b to the metric g since g is asymptotically hyperbolic and the function V g has the asymptotics specified in Lemma 3.7. Note that since e 2 has compact support its contribution to Ḣ(0) is zero. For the terms with e 1 = κ φg in [START_REF] Kobayashi | Conformally-flatness and static space-time, Manifolds and Lie groups[END_REF] we have

Ḣ(0) = lim r→∞ Sr V g (div g e 1 -d tr g e 1 ) + (tr g e 1 )dV g -e 1 (∇ g V g , •) (ν g r ) dµ g = lim r→∞ 4(n -1) (n -2) Sr ( φdV g -V g d φ) (ν g r ) dµ g = 4(n -1) (n -2) M div g ( φdV g -V g d φ) dµ g = 4(n -1) (n -2) M ( φ∆ g V g -V g ∆ g φ) dµ g = 4(n -1) (n -2) M V g (n φ -∆ g φ) dµ g = - M V g Ṡcal g ( ġ) dµ g ,
where the last equality was obtained using [START_REF] Hijazi | Spectral properties of the Dirac operator and geometrical structures, Geometric methods for quantum field theory (Villa de Leyva[END_REF]. Here ġ = χ Ric g -HessV g

V g is traceless. So from the formula for the first variation of scalar curvature, see [START_REF] Besse | Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]Theorem 1.174], we obtain

Ṡcal g ( ġ) = div g div g ġ -∆ g tr g ġ -ġ, Ric g g = div g div g ġ -ġ, Ric g g = -χ Ric g 2 g + χ V g HessV g , Ric g + div g div g (χ Ric g ) -div g div g χ HessV g V g .
Thus, replacing this expression in the formula for Ḣ(0) and integrating by parts, we get

Ḣ(0) = M χV g Ric g 2 g dµ g -2 M χ Ric g , HessV g g dµ g + M χ 1 V g HessV g 2 g dµ g = M χV g Ric g - 1 V g HessV g 2 g dµ g .
4. An alternative argument for spin manifolds

In this section we will prove a version of Theorem A with an argument using spinors. This follows closely the ideas of [6, Section 12], see also the appendix of [START_REF] Lee | On the near-equality case of the positive mass theorem[END_REF]. We only give a sketch of the argument. We first introduce the following class of asymptotically hyperbolic manifolds. Definition 4.1. For R 0 > 0, we define the class A Spin (R 0 ) of 4-tuples (M, g, Φ, U ) such that

• (M, g) is a complete Riemannian spin manifold which is asymptotically hyperbolic with respect to Φ, where Φ is a diffeomorphism from the exterior of a compact set

K ⊂ M to H n \ B R0 ; • Scal g ≥ -n(n -1), and Scal g = -n(n -1) on M \ K; • U is a positive function on H n \ B R0 such that U → 1 at infinity and Φ * g = U κ b;
• the coordinates at infinity Φ are balanced.

We prove the following theorem on the near-equality case of the positive mass theorem for spin manifolds.

Theorem B. Let R 1 > R 0 and ε > 0. There is a constant δ > 0 so that |U -1| ≤ εe -nr on H n \ B R1 for all (M, g, Φ, U ) ∈ A Spin (R 0 ) with m g < δ.
We fix the constant R 0 > 0 and abbreviate A Spin (R 0 ) = A Spin . We begin by describing the relationship between Killing spinors and the asymptotically hyperbolic mass, for this we follow closely the discussion in [START_REF] Chruściel | The mass of asymptotically hyperbolic Riemannian manifolds[END_REF]Section 4].

Since M is a spin manifold there is a spin structure and an associated spinor bundle ΣM on (M, g). On ΣM we define the connection ∇ g by

∇ g X ϕ := ∇ g X ϕ + i 2 X • ϕ.
Here ∇ g is the Levi-Civita connection for the metric g, ϕ is a section of the spinor bundle, and the dot denotes the Clifford action of tangent vectors on spinors. Spinors ϕ which are parallel with respect to ∇ g are called (imaginary) Killing spinors.

We will now describe the Killing spinors on hyperbolic space. The ball model of hyperbolic space is given by the metric ω -2 ξ where ω(x) = 1 2 (1 -|x| 2 ) and ξ is the flat metric on the open unit ball B n in R n . In this model the Killing spinors on H n are all spinors of the form

ϕ s (x) = ω(x) -1/2 (1 -ix•)s.
Here s is a constant spinor on (B n , ξ), or equivalently an element of the spinor representation space Σ. For the Clifford action we identify points in B n with tangent vectors. For any Killing spinor ϕ s on H n its squared norm V s := |ϕ s | 2 is an element of N . Every element of N of the form V (0) -n i=1 a i V (i) where (a 1 , . . . , a n ) ∈ S n-1 is equal to V s for some Killing spinor ϕ s .

Using the connection ∇ g we define the Dirac operator D g by

D g ϕ := n i=1 e i • ∇ g ei ϕ = D g ϕ - in 2 ϕ,
where e i , i = 1, . . . , n, is an orthonormal frame for g and D g = n i=1 e i • ∇ g ei is the Dirac operator associated to ∇ g . The Schrödinger-Lichnerowicz formula for D g has a boundary term related to the asymptotically hyperbolic mass. If (M, g) is an asymptotically hyperbolic manifold with diffeomorphism Φ : M \ K → H n \ B at infinity, then the Killing spinor ϕ s on H n can be pulled back to a spinor Φ * ϕ s on M \ K. If ψ s is a spinor on M with D g ψ s = 0 and ψ s -Φ * ϕ s → 0 at infinity then the Schrödinger-Lichnerowicz formula for D g tells us that

M | ∇ g ψ s | 2 + Scal g + n(n -1) 4 |ψ s | 2 dµ g = 1 4 H Φ (V s ), (22) 
see [11, (4.11) and (4. [START_REF] Lee | On the near-equality case of the positive mass theorem[END_REF]].

We denote by H the space of positive smooth functions on H n \B R0 which satisfy the Yamabe equation ( 3) and tend to 1 at infinity. In the proof of Theorem B we use the functionals F s defined for U ∈ H by

F s (U ) := inf H n \BR 1 | ∇ g ψ| 2 g dµ g ψ -Φ * ϕ s → 0 at infinity where g = U κ b and s ∈ Σ. The infimum is attained by a spinor satisfying          ( ∇ g ) * ∇ g ψ := -∇ g ei - i 2 e i • ∇ g ei + i 2 e i • ψ = 0,
∇ g ν ψ = 0 at the inner boundary of (H n \ B R1 , g), ψ -Φ * ϕ s → 0 at infinity.

The following Lemma is similar to [6, Lemma 12, page 231]. Lemma 4.2. F s is continuous with respect to the C 1 topology on H.

Proof. Let U 1 , U 2 be functions in H and set g 1 = U κ 1 b, g 2 = U κ 2 b = W κ g 1 , where W := U 2 /U 1 .
Let ψ 1 and ψ 2 be the minimizers for F s (U 1 ) and F s (U 2 ). Using standard methods of identifying spinors for conformal metrics (see for example [20, Section 5.2]) we identify the spinor ψ 1 defined for the metric g 1 with the spinor ψ 1 for the metric g 2 . Further, we can express the covariant derivative ∇ g2 ψ 1 as a leading term which is ∇ g1 ψ 1 followed by terms involving dW and ψ 1 . We then compute

F s (U 2 ) = H n \BR 1 | ∇ g2 ψ 2 | 2 g2 dµ g2 ≤ H n \BR 1 | ∇ g2 ψ 1 | 2 g2 dµ g2 = H n \BR 1 | ∇ g1 ψ 1 | 2 g1 dµ g1 + E(W, ψ 1 ) = F s (U 1 ) + E(W, ψ 1 ).
Here the remainder E(W, ψ 1 ) is given by an integral over H n \ B R1 where each term in the integrand is quadratic in ψ 1 (containing ψ 1 or ∇ g1 ψ 1 ) and contains one or two factors of the type (1 -W q ) or dW . Since the minimizing spinor ψ for F s (U ) depends continuously on U we conclude that E(W, ψ 1 ) can be made arbitrarily small by choosing U 2 sufficiently close to U 1 in C 1 . By interchanging U 1 and U 2 we get an inequality in the other direction, and we conclude that F s is continuous.

Let s ± ∈ Σ be such that

V s ± = |ϕ s ± | 2 = V (0) ± V (1)
.

We define the functional F by

F (U ) := F s + (U ) + F s -(U ).
In the next Lemma we prove that the mass bounds F (U ).

Lemma 4.3. For (M, g, Φ, U ) ∈ A Spin we have

F (U ) ≤ (n -1)ω n-1 m g .
Proof. Since the integral in the definition of F s (U ) lacks the non-negative term involving scalar curvature and is taken over a smaller domain it is never larger than the integral in [START_REF] Lee | On the near-equality case of the positive mass theorem[END_REF]. Further, the infimum in the definition of F s (U ) can only decrease the value of the integral in ( 22) and we conclude that

F s ± (U ) ≤ 1 4 H Φ (V s ± ). Therefore F (U ) = F s + (U ) + F s -(U ) ≤ 1 4 (H Φ (V s + ) + H Φ (V s -)) = 1 4 H Φ (V (0) + V (1) ) + H Φ (V (0) -V (1) ) = 1 2 H Φ (V (0) ) = (n -1)ω n-1 m g
follows from (2). Proof. If F (U ) = 0 then F s + (U ) = 0 and F s -(U ) = 0 and both the infima are attained by non-trivial Killing spinors. The existence of a non-trivial Killing spinor implies that g is an Einstein metric with scalar curvature -n(n-1). Since the metric g is also conformally flat it must have constant negative curvature -1. Since U → 1 at infinity we conclude that U ≡ 1. If U ≡ 1 then g is the hyperbolic metric which has Killing spinors, and thus F (U ) = 0.

Proof of Theorem B. As in the proof of Theorem A we argue by contradiction. We assume that there is a sequence (M k , g k , Φ k , U k ) of elements of A Spin such that m g k tends to zero while |U k -1| ≥ ε. Arguing as in the proof of Theorem A, a subsequence of U k -1 will converge to a limit U ∞ -1 in X 2,p δ (H n \ B R1 ) for which sup H n \BR 1 |U ∞ -1| ≥ ε. From Lemma 4.2 we see that lim k→∞ F (U k ) = F (U ∞ ), and from Lemma 4.3 we have lim k→∞ F (U k ) = 0. Lemma 4.4 then tells us that U ∞ ≡ 1 which is a contradiction. From this we conclude that for every ε > 0 there is a δ > 0 such that for (M, g, Φ, U ) belonging to A Spin with m g ≤ δ it holds that sup H n \BR 1 |U -1| ≤ ε. The theorem now follows from Proposition 3.4. run from 2 to n. The Christoffel symbols of the metric g are given by

                               Γ 1 11 = f ′ f , Γ 1 1A = 0, Γ A 11 = 0, Γ A 1B = 1 ρ δ A B , Γ 1 AB = - ρ f 2 σ AB , Γ C AB = γ C AB ,
where γ C AB are the Christoffel symbols of the metric σ. The components of the curvature tensors of the metric g can then be computed,

                                             R L KIJ = 1 - 1 f 2 δ L I σ JK -δ L J σ IK , R 1 KIJ = 0, R 1 K1J = ρf ′ f 3 σ JK , Ric KJ = (n -2) 1 - 1 f 2 + ρf ′ f 3 σ JK , Ric 1J = 0, Ric 11 = (n -1) ρf ′ f , Scal = 2(n -1) f ′ ρf 3 + (n -1)(n -2) ρ 2 1 - 1 f 2 .
What is interesting about these formulas is that the curvature tensor depends only on the first derivative of f . In particular, Equation (24b) becomes

-n = 2 f ′ ρf 3 + n -2 ρ 2 1 - 1 f 2 . ( 25 
)
Defining u by the relation f (ρ) = u(ρ) -1 2 we get

u ′ ρ + (n -2) u -1 ρ 2 = n.
The general solution of this equation is given by

u(ρ) = 1 + ρ 2 - 2m ρ n-2
where m is a free parameter that can be identified with the mass. Our next goal is to find the lapse function V = V (ρ). Equation (24b) can be decomposed into radial, tangential, and mixed components. The mixed components vanish while the other two lead to the following equations.

       0 = (n -1)V ∂ ρ f ρf -∂ 2 ρ V + ∂ ρ f f ∂ ρ V + nf 2 V, 0 = V (n -2) 1 - 1 f 2 + ρ∂ ρ f f 3 - ρ f 2 ∂ ρ V + nρ 2 V. (26) 
The second equation can be combined with Equation [START_REF] Schoen | On the proof of the positive mass conjecture in general relativity[END_REF] to yield

V ′ V = - f ′ f .
Hence V = λ f . Up to a redefinition of t we can assume that V = 1 f . It is then checked by a simple calculation that the first line of Equation ( 26) is also fulfilled. Hence the anti-de Sitter-Schwarzschild metric can be written as follows,

γ AdSS = -1 + ρ 2 - 2m ρ n-2 dt 2 + dρ 2 1 + ρ 2 -2m ρ n-2 + ρ 2 σ.
We now study separately the cases m > 0 and m < 0.

A.2. The case of positive mass. The metric

g AdSS = dρ 2 1 + ρ 2 -2m ρ n-2 + ρ 2 σ
is only defined on the set {ρ ≥ a(m)} where a(m) is the unique solution of the equation

1 + ρ 2 - 2m ρ n-2 = 0. We define h m (ρ) = ∞ ρ ds s 1 + s 2 -2m s n-2
and the functions r and ϕ by e r = 1 + e -hm(ρ)

1e -hm(ρ) , ϕ 2 n-2 = ρ sinh r .

We note that r → r 0 (m) > 0 when ρ → a(m) + . The function r : (a(m), ∞) → (r 0 (m), ∞) is a smooth increasing function of ρ. We remark that

       ρ = ϕ 2 n-2 sinh r, dρ ρ 1 + ρ 2 -2m ρ n-2 = dr sinh r . ( 27 
)
The metric g AdSS can then be written as

g AdSS = ϕ 4 n-2 dr 2 + sinh 2 rσ .
The mean curvature of the hypersurfaces of constant ρ is given by

H = ϕ -2 n-2 (n -1) coth r + 2(n -1) n -2 ∂ r ϕ ϕ . (28) 
A simple calculation shows that ϕ and ∂ r ϕ are continuous at r = r 0 (m) and that the hypersurface r = r 0 (m) is a minimal surface.

We next show that the manifold can be doubled to a complete asymptotically hyperbolic manifold of constant scalar curvature. For this we first switch to the conformal ball model of hyperbolic space and set τ = e r -1 e r + 1 .

The metric g AdSS becomes g AdSS = 4ϕ As is well known, the inversion on R n \ {0} given by

i : x → b(m) 2 |x| 2 x
is a conformal transformation. Pulling back the metric g to the annulus b 2 (m) < |x| ≤ b(m) by i, we get the following extension of the metric g AdSS ,

g AdSS = 4f 4 n-2 m (1 -τ 2 ) 2 dτ 2 + τ 2 σ , where f 2 n-2 m (τ ) =      ϕ 2 n-2 (τ ) if b(m) ≤ τ ≤ 1, b(m) 2 ϕ 2 n-2 b(m) 2 τ 1 -τ 2 τ 2 -b(m) 4 if b(m) 2 ≤ τ ≤ b(m).
In the following propositions we collect the basic properties of the metric g AdSS . Most of them are useful in the course of the proof of our main results. See also [START_REF] Shi | Asymptotically hyperbolic metrics on the unit ball with horizons[END_REF]Section 2] for the three-dimensional case.

Proposition A.1. For each m > 0 the anti-de Sitter-Schwarzschild metric is asymptotically hyperbolic and is defined on

H n \ B b(m) 2 . Moreover, 1. f m > 1, lim τ →1 f m (τ ) = 1, lim τ →b(m) 2 f m (τ ) = ∞.
2. There exists a constant C > 0 independent of m such that f m ≤ 1 + Cme -nr provided that r ≥ r 1 (m), where r 1 is a non-decreasing continuous function of m such that r 1 (m) > r 0 (m). Consequently, f m = 1 + O(e -nr ) when r → ∞. 3. g AdSS has constant scalar curvature -n(n -1) and mass m. 4. ∂ r f m < 0. 5. The hypersurface r = r 0 (m) is the only compact minimal surface.

Proof. The mass of g AdSS is easily computed using [START_REF] Chruściel | The mass of asymptotically hyperbolic Riemannian manifolds[END_REF]Formula (2.25)], and Property 3 follows.

Fixing r ≥ r 0 (m), we remark that for all s ∈ (a(m), ∞),

h m (s) > h 0 (s) = 1 2 ln √ 1 + s 2 + 1 √ 1 + s 2 -1 .
In particular, if sinh r ≥ a(m) we get h m (sinh r) > ln coth r 2 .

Since h m (ρ) = ln coth r 2 , and since h m is decreasing, we have ρ > sinh r. It is also obvious that sinh r < ρ if sinh r < a(m). This proves that ϕ = ρ sinh r n-2 2

> 1 for any r ≥ r 0 (m).

We next find an upper bound for f m . First, it is clear that a(m) < (2m) 1/n . If we assume that ρ ≥ (2m) 1/n then ρ > a(m) and

h m (ρ) = ∞ ρ ds s √ 1 + s 2 1 - 2m (1+s 2 )s n-2 ≤ 1 1 -mρ -n ∞ ρ ds s √ 1 + s 2 = arcsinh(ρ -1 ) 1 -mρ -n .
Observe also that sinh r =

1 sinh hm(ρ) , hence ρ sinh r = ρ sinh h m (ρ). Set η(t) := sinh arcsinh(ρ -1 ) √ 1 -t .
Let R 1 > 0 be fixed, and assume that ρ ≥ max{r -1 (R 1 ), (2m) 1/n }. Using the mean value theorem and the inequality arcsinh(ρ -1 ) ≤ ρ -1 we have

sinh h m (ρ) ≤ η(mρ -n ) ≤ η(0) + mρ -n sup 0≤θ≤1 η ′ (θmρ -n ) = ρ -1 + mρ -n sup 0≤θ≤1 arcsinh(ρ -1 ) 2(1 -θmρ -n ) 3/2 cosh arcsinh(ρ -1 ) 1 -θmρ -n ≤ ρ -1 1 + Cmρ -n ,
for some constant C > 0 which does not depend on m. Since ρ ≥ sinh r it is now easy to check that f m = (ρ sinh h m (ρ)) n-2 2

≤ 1 + Cme -nr (possibly for a larger constant C > 0), provided that r ≥ r 1 (m) := max{R 1 , r((2m) 1/n )}. By definition, it is clear that r 1 (m) > r 0 (m). The second statement is thereby proved.

Next, f m solves the Yamabe equation

- 4(n -1) n -2 ∆ b f m + n(n -1) f n+2 n-2 m -f m = 0.
In polar normal coordinates we have det(b) = sinh n-1 r. Hence, from the well known formula

∆ b f m = 1 det(b) ∂ i det(b)b ij ∂ j f m we infer that ∂ r sinh n-1 r∂ r f m = n(n -2) 4 sinh n-1 r f n+2 n-2 m -f m .
Assume that ∂ r f m (r) ≥ 0 for some r. Then, ∂ r f m (r) > 0 for all r > r since f m > 1. This contradicts the fact that f m → 1 when r → ∞, f m > 1. Hence, ∂ r f m < 0 for all r.

We finally prove that the hypersurface r = r 0 (m) is the only minimal surface. From Formula (28), the sphere of constant ρ has mean curvature

H(ρ) = (n -1) 1 + 1 ρ 2 - 2m ρ n .
For any ρ > a(m) we have H(ρ) > 0. Thus by the maximum principle for minimal surfaces, if Σ is a minimal surface, then sup Σ ρ ≤ a(m), that is sup Σ τ ≤ b(m). By symmetry, we also have that inf Σ τ ≤ b(m). This proves that Σ coincides with the sphere r = r 0 (m). Proof. It is easy to see that a(m) is a continuous increasing function of m. Since the function ρ

→ 1 + ρ 2 -2m ρ n-2 is increasing, we know that ρ -(m) ≤ a(m) ≤ ρ + (m) provided that        0 ≤ 1 + ρ 2 + - 2m ρ n-2 + , 0 ≥ 1 + ρ 2 -- 2m ρ n-2 - .
One can select ρ + = (2m) 1/n . Assuming m > 1, we choose

ρ -= (2m) 1/n 1 - 1 (2m) 2/n .
Simple computations show that both inequalities are fulfilled. Hence for large m, a(m) ∼ (2m) 1/n . For small positive m, we obviously have 0 < a(m) < ρ + (m). So a(m) → 0 when m → 0 + .

We next turn our attention to the function r 0 . We first give an upper bound for h m (a(m)) as follows. Note that on the interval (a(m), ∞) we have

1 + s 2 - 2m s n-2 ≥ 1 + s 2 - 2m a(m) n-2 = 1 + s 2 -(1 + a(m) 2 ) = s 2 -a(m) 2 . Hence, ln coth r 0 (m) 2 = h m (a(m)) ≤ ∞ a(m) ds s s 2 -a(m) 2 = π 2a(m)
.

This implies that r 0 (m) → ∞ as m → ∞.

In order to estimate r 0 when m → 0 + we give a lower bound for h m (a(m)), assuming a(m) < 1,

ln coth r 0 (m) 2 = h m (a(m)) = ∞ a(m) ds s 1 + s 2 -a(m) n +a(m) n-2 s n-2 = ∞ a(m) ds s 2-n 2 s n -a(m) n + s n-2 -a(m) n-2 ≥ ∞ a(m) ds s 2-n 2 (s -a(m))(ns n-1 + (n -2)s n-3 ) ≥ ∞ a(m) ds √ s (s -a(m))(ns 2 + (n -2)) ≥ 1 √ 2n -2 1 a(m) ds s(s -a(m)) = 1 √ 2n -2 1 a(m) 1 dt t(t -1)
.

It is obvious that the last integral diverges when a(m) → 0 + . Hence r 0 (m) → 0 when m → 0. The limits of b follow from the relation b(m) = e r 0 (m) -1 e r 0 (m) +1 .

A.3. The case of negative mass. Remark that when m < 0 the function h(m) tends to a finite positive value at ρ = 0. Changing to the r coordinate, this means that the metric g = ϕ 4 n-2 (dr 2 + sinh 2 rσ) is only defined for r ≥ r 0 (m) such that

h m (0) = ∞ 0 ds s 1 + s 2 -2m s n-2 = ln 1 + e -r0(m)
1e -r0(m) .

The function ϕ satisfies ϕ(r 0 (m)) = 0.

Proposition A.3. The function m → r 0 (m) is continuous and strictly decreasing on the interval (-∞, 0). Further, 1.

   lim m→0 - r 0 (m) = 0 lim m→-∞ r 0 (m) = ∞ 2. The function f m := ϕ : H n \ B r0(m) ( 
0) → R + solves the Yamabe equation with zero boundary value on ∂B r0(m) (0) and satisfies f m < 1. 3. There exists a constant C > 0 independent of m such that f m ≥ 1 -Cme -nr provided that r ≥ r 1 (m), where r 1 is a non-increasing continuous function of m such that r 1 (m) > r 0 (m). Consequently,

f m = 1 + O(e -nr ) when r → ∞. 4. ∂ r f m > 0.
Proof. We remark that the integrand is positive and strictly increasing with respect to m. From dominated convergence, it is easy to argue that m → h m (0) is continuous. When |m| → ∞, the integrand tends to 0 so lim m→-∞ h m (0) = 0. This forces lim m→-∞ r 0 (m) = ∞. Similarly, when m → 0 -, by the monotone convergence theorem,

h m (0) → ∞ 0 ds s √ 1 + s 2 = ∞.
Hence, lim m→0 -r 0 (m) = 0. The properties of f m follow in the same manner as their counterparts in the case m > 0 (see Proposition A.1). We only remark that having fixed R 1 > 0 one may define r 1 (m) as r 1 (m) := max{R 1 , r((-Cm) 1/n )}, where the constant C > 0 depends on R 1 only. It is then obvious that r 1 (m) > r 0 (m).

A.4. A characterization of anti-de Sitter-Schwarzschild spacetimes. In this section, we give a characterization of anti-de Sitter-Schwarzschild metrics which is useful in the proof of Theorem A. See [START_REF] Kobayashi | Conformally-flatness and static space-time, Manifolds and Lie groups[END_REF] for similar results.

Proposition A.4. Let K be a compact subset of H n such that H n \ K is connected and let U, V be two functions defined on

H n \ K. Let g := U κ b. Assume that the metric -V 2 dt 2 + g is static with cosmological constant Λ = - n(n -1) 2 .
Assume further that the function U is bounded from above and away from zero and that the function V is positive, tends to infinity at infinity and has no critical point outside a compact set. Then there is a point x 0 ∈ H n and m ∈ R such that

U = f m (r),
where r := d b (x 0 , •).

Before diving into the proof, we explain briefly the underlying idea. The main aim is to prove that the metric g and the lapse function V are spherically symmetric around a point in H n . A first indication of this fact is Equation (31) which proves that the Ricci tensor has at most two distinct eigenvalues, one with multiplicity 1 in the direction of the gradient of V and another one with multiplicity n -1 on the orthogonal hyperplane. Another indication is given by Formula (33) which proves that the level sets of V are umbilic with constant sectional curvature. These two indications prove that the metric is actually a warped product (Formula (35)) and some further estimates on U allow us to conclude that U coincides with f m for some m.

Proof. In what follows, covariant derivatives and curvatures are defined with respect to the metric g unless stated otherwise.

Since g = U κ b on H n \ B R1 is conformally flat, it has vanishing Cotton-York tensor (see for example [START_REF] Chow | Hamilton's Ricci flow[END_REF]Proposition 1.62]). Since g has constant scalar curvature this is equivalent to

∇ i Ric jk -∇ j Ric ik = 0. ( 29 
)
From the static equations (24a)-(24b) it follows that Ric = Hess V V ,

The conformal transformation law of the mean curvature of the spheres of constant s is given by

H b U 1-κ = H g U - 2(n -1) n -2 ∂ s U. (34) 
We choose a coordinate chart (θ µ ) on the sphere and use it to define Fermi coordinates on H n \ V -1 (V 0 , ∞), so that g = ds 2 + f (s)σ µν dθ µ dθ ν .

(35)

From our previous discussion, both H g and H b are functions of s only so it follows from (34) that for any µ,

(1 -κ)H b U -κ ∂ µ U = H g ∂ µ U - 2(n -1) n -2 ∂ s ∂ µ U.
As s increases, the spheres of constant s become larger and larger and located further and further from V -1 (V 0 , ∞) so H b → n -1. From Formula (34) and the estimate on U the same is true for H g . As a consequence, the previous equation for ∂ µ U can be written as

∂ s ∂ µ U = (2 + o(1))∂ µ U.
In particular, ∂ µ U grows as e 2s unless ∂ µ U = 0. Such a growth is inconsistent with the decay assumption |∇U | = O(e -nr ). This implies that U is constant on the level sets of s.

Without loss of generality, we can assume that the level set V = V 0 is a sphere of radius R 1 centered at the origin of the hyperbolic space. From Propositions A. 

Appendix B. A density result

In this second appendix, we show that any asymptotically hyperbolic metric satisfying the decay assumptions of the positive mass theorem can be approximated by metrics which are conformal to the hyperbolic metric outside a compact set, while changing the mass functional by an arbitrarily small amount. This result is a refinement of [10, Proposition 6.2].

Proposition B.1. Let (M, g) be a C 2,α τ -asymptotically hyperbolic manifold for α ∈ (0, 1) and τ > 0 meaning that there exists a diffeomorphism Assume further that Scal g ∈ L ∞ and Scal g ≥ -n(n -1). Then for any ε > 0, there exist R > R 0 and λ R such that • |λ R -g| g < ε;

Φ : M \ K → H n \ B R0
• Φ * λ R is conformal to b outside B R , that is Φ * λ R = U κ b with U → 1 at infinity; • Scal λR ≥ -n(n -1) and Scal λR = -n(n -1) on H n \ B R . In addition, assuming that τ > n 2 and M (Scal g + n(n -1)) cosh r dµ g < ∞, we can also ensure that H λR Φ (V (i) ) -H g Φ (V (i) ) < ε for i = 0, . . . , n.

Note that if (M, g) is an asymptotically hyperbolic manifold in the above sense and E is a geometric tensor bundle over M then one can define weighted Hölder spaces C k,α δ (M, E) := {e -δr u | u ∈ C k,α (M, E)} with respective norms given by u C k,α δ (M,E) := e δr(x) u C k,α (M,E) . We refer the reader to [START_REF] Lee | Fredholm operators and Einstein metrics on conformally compact manifolds[END_REF] for more details on these spaces.

Proof. We select a smooth cut-off function χ : R → R such that χ ≡ 1 on (-∞, 0) and χ ≡ 0 on (1, ∞). We let r denote the distance from the origin in H n and set χ R (x) := χ(r(x) -R) for R > 0. We define the metric g R by

g R := χ R g + (1 -χ R )Φ * b.
To prove the theorem we construct a function v R such that the metric λ R := (1 + v R ) κ g R and show that λ R is as close as we want to g provided that R is large enough.

To simplify notation, we set Scal λ := Scal λ + n(n -1) for any metric λ on M .

We first remark that the scalar curvatures of g R and λ R are related through 

To construct the function v R we introduce the following auxiliary equation, 4(n -1)

n -2 (-∆ gR v R + nv R ) + n(n -1)f (v R ) + Scal gR v R = χ R Scal g -Scal gR , (37) 
where we use the notation

f (x) = (1 + x) κ+1 -1 -(κ + 1)x.
Note that if v R > -1 satisfies (37) we have Scal λR

(1 + v R ) κ+1 = χ R Scal g from (36). In particular, Scal λR ≥ 0 and Scal λR = 0 on H n \ B R+1 . That is to say, the metric λ R satisfies the second and the third assumptions of the theorem, provided that v R → 0 at infinity. We prove the existence of the function v R by the standard monotonicity method. We first remark that since g and g R coincide inside B R , the right hand side of (37) has support in the annulus A R,R+1 .

From the fact that e := Φ * gb belongs to C 2,α τ , one can easily conclude that χ R Scal g -Scal gR ≤ Ce -τ R Institutionen för Matematik, Kungliga Tekniska Högskolan, 100 44 Stockholm, Sweden E-mail address: dahl@math.kth.se Laboratoire de Mathématiques et de Physique Théorique, UFR Sciences et Technologie, Faculté Franc ¸ois Rabelais, Parc de Grandmont, 37200 Tours, France E-mail address: romain.gicquaud@lmpt.univ-tours.fr
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 2 , we write the previous inequality with s = -2H(0) A and get Ḣ
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 44 F (U ) = 0 if and only if U ≡ 1.

4 n- 2 ( 1 -

 21 τ 2 ) 2 dτ 2 + τ 2 σ and is defined on the annulus b(m) ≤ |x| < 1 in R n where τ = |x| and b(m) is given by b(m) = e r0(m) -1 e r0(m) + 1 .
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 2 a(m), r 0 (m) and b(m) are continuous increasing functions of m. Further, 1. a(m), r 0 (m), b(m) → 0 as m → 0, 2. a(m), r 0 (m) → ∞ and b(m) → 1 as m → ∞.

  2 and A.3, there are constants m -such that f m-(R 1 ) = 0 and m + such that f m+ (r) → ∞ when r → R 1 . By the intermediate value theorem, there exists m ∈ (m -, m + ) such that f m (R 1 ) equals the value of U on B R1 . By uniqueness of the solution of the Yamabe equation (3) with Dirichlet boundary values, we conclude that U = f m on H n \ B R1 . By analytic continuation, this equality must hold everywhere on H n \ K.

  such that e := Φ * gb belongs to C 2,α τ (M, S 2 M ), that is to say e ∈ C 2,α loc (M, S 2 M ) is such that e C 2,α δ (H n \BR 0 ,S 2 M) := sup x∈H n \BR 0 +1e δr(x) e C 2,α (B1(x),S 2 M) < ∞.

- 4 (n - 1 ) n - 2 ∆

 412 gR v R + Scal gR (1 + v R ) = Scal λR (1 + v R ) κ+1 .This equation can be rewritten as4(n -1) n -2 (-∆ gR v R + nv R ) + n(n -1) (1 + v R ) κ+1 -1 -(κ + 1)v R + Scal gR v R = Scal λR (1 + v R ) κ+1 -Scal gR .

Appendix A. The anti-de Sitter-Schwarzschild spacetime

In this appendix, we discuss the anti-de Sitter-Schwarzschild metrics in dimension n following [26, Section 2] where only the case n = 3 is treated. These metrics are also called Kottler metrics with negative cosmological constant. Furthermore we explicit the lapse function, see [START_REF] Stuchlík | Some properties of the Schwarzschild-de Sitter and Schwarzschildanti de Sitter spacetimes[END_REF] for the 3 + 1-dimensional case.

A.1. The metric in areal coordinate. Let g be a Riemannian metric on the n-dimensional manifold M and let γ := -V 2 dt 2 + g be a Lorentzian metric defined on the manifold M := R × M . If we assume that the function V does not depend on t then γ solves the Einstein equations with cosmological constant Λ, Ric γ -Scal γ 2 γ + Λγ = 0, if and only if

Ric g -

Such a metric g is called static. See also [11, 

In what follows we will always assume that when the metric is not indicated, the curvature tensors and the connection are defined with respect to the metric g. We are interested in the case of negative cosmological constant. We assume that

which can always be achieved by a rescaling. From Equation (23a), this imposes Scal g = -n(n -1). Taking the trace of Equation (23b) yields ∆V = nV so we can rewrite the system as

Ric g ij -

Note that the slice t = 0 is totally geodesic. In particular, marginally (outer) trapped surfaces correspond to minimal surfaces for the metric g. We now assume that the metric g is rotationally symmetric. Such a metric can be written in full generality as g = ds 2 + k(s) 2 σ where σ is the round metric on S n-1 . The mean curvature of a surface of constant s is given by H(s) = (n -1) ∂sk k . So, in a region where no surface of constant s is a minimal surface, k has non-vanishing derivative and we can use it as a radial (areal) coordinate ρ so that

In what follows we assume that the coordinate index 1 corresponds to the ρcoordinate while upper-case latin letters represent coordinates on the sphere and where Ric := Ric + (n -1)g denotes the traceless Ricci tensor and Hess V denotes the traceless Hessian of V (which in index notation is denoted by ∇i,j V ). From [START_REF] Witten | A new proof of the positive energy theorem[END_REF] and the fact that

Since g is conformally flat its Weyl tensor vanishes, so

where denotes the Kulkarni-Nomizu product (see for example [5, Definition 1.110]). As a consequence, we get

We set

This is possible only if ξ and ∇V V are colinear. We let λ be the function such that ξ = (n -1)λ ∇V V . Equation (30) then implies

for some function µ. The trace of this last equation gives a direct relation between λ and µ,

Hence,

By a straightforward calculation, we have

We now choose V 0 to be such that V has no critical point outside V -1 (-∞, V 0 ). We remark that V -1 (V 0 , ∞) is connected. Indeed if it was not, from the assumption that V is proper it would have one bounded connected component Ω. Since V = V 0 on ∂Ω, V reaches a local maximum on Ω which contradicts the assumption that V has no critical point on Ω. We let Σ 0 be the boundary of a connected component of

Equations ( 31) and (32) into

Taking the trace of this last equation with respect to j and k we get

This implies that µ is constant on the hypersurface Σ 0 . The second fundamental form S of Σ 0 is equal to the normalized Hessian of V restricted to T Σ 0 , that is

Hence the hypersurface Σ 0 is umbilic with constant mean curvature. From the conformal transformation law of the second fundamental form, Σ 0 is umbilic for the hyperbolic metric b as well. Since Σ 0 is also compact it is a round sphere. Note that the curvature of Σ 0 is given by the Gauss Formula,

From the form of the Riemann tensor of g and the special form of S, we immediately conclude that the metric induced on Σ 0 has constant curvature,

where we used the fact that

when restricted to T Σ 0 .

We claim that the level set

and open, it is path connected so we can join Σ 0 and Σ 1 by a path γ in V -1 (V 0 , ∞). If v is larger than V 0 and the supremum of V on γ, then Σ 0 , Σ 1 and γ are contained in the same connected component B of V -1 (-∞, v) ∪ K which is a ball. Then, for the gradient vector field ∇V the two hypersurfaces Σ 0 and Σ 1 are sources while the boundary of B is the only sink. Since ∇V has no zero outside V -1 (-∞, v) this contradicts the Poincaré-Hopf theorem.

Note that our reasoning applies to any v larger than V 0 , so the level sets V -1 (v) are all round spheres.

From (32) we conclude that dV V 2 can be expressed as a smooth function of V .

We define a function s :

Then |ds| = 1 so s can be interpreted as the distance function from V -1 (V 0 , ∞), see [START_REF] Petersen | Riemannian geometry[END_REF]. The second fundamental form of the level sets of s is given by (33) so we see that the metric g is rotationally symmetric. Our next step is to prove that the conformal factor can be expressed as a function of s.

We remark that we can reproduce the proof of Lemma 3.2 replacing B R0 by V -1 (V 0ε, ∞) and find two functions f ± solving the Yamabe equation ( 3) such that f -≤ U ≤ f + together with ∇ (k) (f ± -1) ≤ A k e -nr for any integer k ≥ 0.

Since the conformal factor is bounded away from zero and from infinity, the metrics g and b are uniformly equivalent. Hence, taking points located further and further from V -1 (V 0 , ∞) with respect to the hyperbolic metric yields points with s going to infinity. This proves that s is unbounded.

for some constant C depending only on e C 2,α τ . In particular, given ε > 0 small enough, the functions v ± R = ±ε are barriers for (37), that is,

As a consequence, there exists a function v R satisfying (37) and 

From standard analysis on asymptotically hyperbolic manifolds it follows that

From the previous estimate and the fact that e = Φ * gb ∈ C 2,α τ , we deduce that e Re C 2,α τ ′ → 0. We choose an arbitrary R 1 > R 0 . As in the proof of Lemma 3.9 we use formulas from [19, page 114] or [START_REF] Chruściel | The mass of asymptotically hyperbolic Riemannian manifolds[END_REF] to write for i = 0, . . . , n. From this expression it follows that it suffices to prove that

V (i) Scal λR -Scal g dµ b → 0 when R → ∞ get that the mass vector of λ R converges to that of g as R goes to infinity. This follows immediately from

and the fact that χR (1+vR) 1+κ -1 is uniformly bounded for R large enough and converges to 0 almost everywhere.