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Abstract

We prove a version of the maximum principle, in the sense of Pontryagin, for the optimal
control of a stochastic partial differential equation driven by a finite dimensional Wiener
process. The equation is formulated in a semi-abstract form that allows direct applications
to a large class of controlled stochastic parabolic equations. We allow for a diffusion coefficient
dependent on the control parameter, and the space of control actions is general, so that in
particular we need to introduce two adjoint processes. The second adjoint process takes
values in a suitable space of operators on L4.

1 Introduction

The problem of finding sufficient conditions for optimality for a stochastic optimal control prob-
lem with infinite dimensional state equation, along the lines of the Pontryagin maximum prin-
ciple, was already addressed in the early 80’s in the pioneering paper [1].

Despite the fact that the finite dimensional analogue of the problem has been solved, in
complete generality, more than 20 years ago (see the well known paper by S. Peng [13]) the
infinite dimensional case still has important open issues both on the side of the generality of
the abstract model and on the side of its applicability to systems modeled by stochastic partial
differential equations (SPDEs).

In particular, whereas the Pontryagin maximum principle for infinite dimensional stochastic
control problems is a well known result as far as the control domain is convex (or the diffusion
does not depend on the control), see [1, 8], for the general case (that is when the control domain
need not be convex and the diffusion coefficient can contain a control variable) existing results
are limited to abstract evolution equations under assumptions that are not satisfied by the large
majority of concrete SPDEs.

The technical obstruction is related to the fact that (as it was pointed out in [13]) if the control
domain is not convex the optimal control has to be perturbed by the so called “spike variation”.
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Then if the control enters the diffusion, the irregularity in time of the Brownian trajectories
imposes to take into account a second variation process. Thus the stochastic maximum principle
has to involve an adjoint process for the second variation. In the finite dimensional case such a
process can be characterized as the solution of a matrix valued backward stochastic differential
equation (BSDE) while in the infinite dimensional case the process naturally lives in a non-
Hilbertian space of operators and its characterization is much more difficult. Moreover the
applicability of the abstract results to concrete controlled SPDEs is another delicate step due
to the specific difficulties that they involve such as the lack of regularity of Nemytskii-type
coefficients in Lp spaces.

The present results (that were anticipated in the 6th International Symposium on BSDEs
and Applications - Los Angeles, 2011 - and published in a short version in [5]) are, as far as
we know, the only ones that can cover, for instance, a controlled stochastic heat equation (with
finite dimensional noise) such as:











dXt(x) = AXt(x) dt+ b(x,Xt(x), ut) dt+
m
∑

j=1

σj(x,Xt(x), ut) dβ
j
t , t ∈ [0, T ], x ∈ O,

X0(x) = x0(x),
(1.1)

with A = ∆x with appropriate boundary conditions, and a cost functional as follows:

J(u) = E

∫ T

0

∫

O

l(x,Xt(x), ut) dx dt + E

∫

O

h(x,XT (x)) dx,

O ⊂ R
n being a bounded open set with regular boundary.

We stress the fact that in this paper the state equation is formulated, as above, only in a
semi-abstract way in order, on one side, to cope with all the difficulties carried by the concrete
non-linearities and on the other to take advantage of the regularizing properties of the leading
elliptic operator.

Concerning other results on the infinite dimensional stochastic Pontryagin maximum prin-
ciple, as we already mentioned in [1] and [8] the case of diffusion independent on the control is
treated (with the difference that in [8] a complete characterization of the adjoint process to the
first variation as the unique mild solution to a suitable BSDE is achieved). Then in [19] the
case of linear state equation and cost functional is addressed. In this case as well, the second
variation process is not needed.

The pioneering paper [14] is the first one in which the general case is addressed with, in
addition, a general class of noises possibly with jumps. The adjoint process of the second vari-
ation (Pt)t∈[0,T ] is characterized as the solution of a BSDE in the (Hilbertian) space of Hilbert
Schmidt operators. This forces to assume a very strong regularity on the abstract state equation
and control functional that prevents application of the general results to SPDEs. Recently in
[10] Pt was characterized as “transposition solution” of a backward stochastic evolution equation
in L(L2(O)). Coefficients are required to be twice Fréchet-differentiable as operators in L2(O).
Finally even more recently in a couple of preprints [3] [4] the process Pt is characterized in a
similar way as it is in [5] and here. Roughly speaking it is characterized as a suitable stochastic
bilinear form (see relation (5.6)). As it is the case in [10], in [3] and [4] as well the regularity
assumptions on the coefficients are too restrictive to apply directly the general results to con-
trolled SPDEs. On the other side in [4] an unbounded diffusion term is included in the model
that can not be covered by the present results. Finally other variants of the problem have been
studied. For instance in [6] a maximum principle for a SPDE with noise and control on the
boundary but control independent diffusion is addressed, see also [11] for a case with delay.
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The paper is structured as follows. In Section 2 we fix notations and standing assumptions.
In Section 3 we state the main result. In Section 4 we recall the spike variation technique
and introduce the first variation process, the corresponding adjoint process and the second
variation process together with crucial estimates on them. We stress here the fact that the
structure of the second variation process forces to develop a theory in the Lp spaces for the state
equation and its perturbations through spike variation. In section 5 we complete the proof of
the stochastic maximum principle. This is achieved by characterizing the adjoint of the second
variation as a progressive process (Pt)t∈[0,T ] with values in the space of linear bounded operators

L4 → (L4)∗ = L4/3. Namely Pt is defined through the stochastic bilinear form

〈Ptf, g〉 = E
Ft

∫ T

t
〈H̄sY

t,f
s , Y t,g

s 〉 ds + E
Ft〈h̄Y t,f

T , Y t,g
T 〉, P− a.s.

where (Y t,f
s )s∈[t,T ] is the mild solution of a suitable infinite dimensional forward stochastic equa-

tion (see equation (5.1)). The study of the regularity of process (Pt)t∈[0,T ] is one of the main
technical issues of this paper (together with the Lp estimates of the first and second variations)
and exploits the specific properties of the semigroup generated by the elliptic differential opera-
tor. Finally in the Appendix we report some results on stochastic integration in Lp spaces. For
the reader’s convenience we give complete and direct proofs of some results (including a version
of the Itô inequality, see (A.1)). Such results are particular cases of the ones obtained in the
framework of stochastic calculus in UMD Banach spaces, see [17].

2 Notations and preliminaries

We begin by formulating an abstract form of the controlled PDE.
Let (D,D,m) be a measure space with finite measure (in the applications D is an open subset

of RN and m is the Lebesgue measure). We will consider the usual real spaces Lp(D,D,m),
p ∈ [1,∞), which are shortly denoted by Lp and endowed with the usual norm ‖ · ‖p.

Let (W 1
t , . . . ,W

d
t )t≥0 be a standard, d-dimensional Wiener process defined in some complete

probability space (Ω,F ,P). We denote by (Ft)t≥0 the corresponding natural filtration, aug-
mented in the usual way, and we denote by P the progressive σ-algebra on Ω× [0,∞) (or on a
finite interval [0, T ], by abuse of notation). We will assume that there exist regular conditional
probabilities P(·|Ft) given any Ft: this holds for instance if the Wiener process is canonically
realized on the space of Rd-valued continuous functions.

As the space of control actions we take a separable metric space U , endowed with its Borel
σ-algebra B(U). In general, we denote B(Λ) the Borel σ-algebra of any topological space Λ.
We fix a finite time horizon T > 0 and by a control process we mean any progressive process
(ut)t∈[0,T ] with values in U .

We consider the following controlled stochastic equation:

{

dXt(x) = AXt(x) dt+ b(t, x,Xt(x), ut) dt+
∑d

j=1 σj(t, x,Xt(x), ut) dW
j
t ,

X0(x) = x0(x)
(2.1)

and the cost functional

J(u) = E

∫ T

0

∫

D
l(t, x,Xt(x), ut)m(dx) dt + E

∫

D
h(x,XT (x))m(dx). (2.2)

A control process u is called optimal if it minimizes the cost over all control processes. Denoting
by X the corresponding trajectory we say that (u,X) is an optimal pair.
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Hypothesis 2.1 1. The operator A is the infinitesimal generator of a strongly continuous
semigroup (etA)t≥0 of linear bounded operators on L2. We assume that there exist constants
p̄ > 8 and M > 0 such that for p ∈ [2, p̄] we have etA(Lp) ⊂ Lp and ‖etAf‖p ≤M‖f‖p for
every t ∈ [0, T ] and f ∈ Lp.

2. For φ = b or φ = l or φ = σj , j = 1, . . . , d, the functions

φ(ω, t, x, r, u) : Ω× [0, T ]×D × R× U → R, h(ω, x, r) : Ω×D × R → R,

are assumed to be measurable with respect to P ⊗D⊗B(R)⊗B(U) and B(R) (respectively,
FT ⊗D ⊗ B(R) and B(R)).

3. For every (ω, t, x, u), the functions r 7→ φ(ω, t, x, r, u) and r 7→ h(ω, x, r) are continuous
and have first and second derivatives, denoted φ′ and φ′′ (respectively, h′ and h′′), which
are also continuous functions of r. We also assume that

(|φ′|+ |φ′′|+ |h′|+ |h′′|)(ω, t, x, r, u) ≤ K,

(|φ|+ |h|)(ω, t, x, r, u) ≤ K(|r|+ |ψ̄(x)|),
for some constant K, some ψ̄ ∈ Lp̄ and for all (ω, t, x, r, u).

4. x0 ∈ Lp̄.

From now on we adopt the convention of summation over repeated indices, so that we will
drop the symbol

∑d
j=1 in (2.1).

Under the stated assumptions, for every control process u there exists a unique solution of
the state equation (2.1) in the so-called mild sense, i.e. an adapted process (Xt)t∈[0,T ] with
values in L2, with continuous trajectories, satisfying P-a.s.

Xt = etAx0 +

∫ t

0
e(t−s)Ab(s, ·,Xs(·), us) ds +

∫ t

0
e(t−s)Aσj(s, ·,Xs(·), us) dW j

s , t ∈ [0, T ].

(2.3)
Here and below, equalities like (2.3) are understood to holdm-a.e., and uniqueness is understood
up to modification of L2-valued random processes.

We need to prove the following higher summability property of trajectories. We introduce
the notation

|||X|||p = sup
t∈[0,T ]

(E‖Xt‖pp)1/p. (2.4)

Proposition 2.2 For every p ∈ [2, p̄], (Xt)t∈[0,T ] is a progressive process with values in Lp,
satisfying supt∈[0,T ] E‖Xt‖pp <∞.

Proof. We consider the Banach space of progressive Lp-valued processes (Xt)t∈[0,T ] such that
the norm |||X|||p is finite. For such a process X we define

Γ(X)t = etAx0 +

∫ t

0
e(t−s)Ab(s, ·,Xs(·), us) ds+

∫ t

0
e(t−s)Aσj(s, ·,Xs(·), us) dW j

s .

It can be proved that the map Γ is a contraction with respect to the norm ||| · |||p, provided T
is sufficiently small. Its unique fixed point is then the required solution. The restriction on T is
then removed in a standard way by subdividing [0, T ] into appropriate subintervals.
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The fact that Γ is a well defined contraction follows from moment estimates of the stochastic
integrals in Lp. We limit ourselves to showing the contraction property assuming for simplicity
b = 0. In this case, if |||X|||p + |||Y |||p <∞, we have by (A.2)

E‖Γ(X)t − Γ(Y )t‖pp ≤ cp

∫ t

0
E‖e(t−s)A[σ(s, ·,Xs(·), us)− σ(s, ·, Ys(·), us)]‖pLp(D;Rd)

ds t(p−2)/2.

Using the Lp-boundedness of etA and the Lipschitz character of σ which follows from Hypothesis
2.1-3 we obtain

E‖Γ(X)t − Γ(Y )t‖pp ≤ C

∫ t

0
E‖Xs − Ys‖pds t(p−2)/2 ≤ C|||X − Y |||ppT p/2

for some constant C independent of T . The contraction property follows immediately for T
sufficiently small.

3 Statement of the main result

3.1 Statement of the stochastic maximum principle

For our main result we also need the following assumptions.

Hypothesis 3.1 There exists a complete orthonormal basis (ei)i≥1 in L
2 which is also a Schauder

basis of L4.

Hypothesis 3.2 The restriction of (etA)t≥0 to the space L4 is a strongly continuous analytic
semigroup and the domain of its infinitesimal generator is compactly embedded in L4.

We note that Hypothesis 3.1 is satisfied for a large class of measure spaces (D,D,m), typically
with a basis of Haar type.

In the following a basic role will be played by the space of linear bounded operators L4 →
(L4)∗ = L4/3 endowed with the usual operator norm, that we simply denote by L. Clearly, L
may be identified with the space of bounded bilinear forms on L4. The duality between g ∈ L4

and h ∈ L4/3 will be denoted 〈h, g〉. As it is customary when dealing with spaces of operators
endowed with the operator norm, when considering random variables or processes with values
in L, the latter will be endowed with the Borel σ-algebra of the weak topology (the weakest
topology making all the functions T 7→ 〈Tf, g〉 continuous, f, g ∈ L4); note that this is in general
different from the Borel σ-algebra of the topology corresponding to the operator norm ‖T‖L.

For u ∈ U and X, p, q1, . . . , qd ∈ L2 denote

H(t, u,X, p, q1, . . . , qd) =

∫

D
[l(t, x,X(x), u) + b(t, x,X(x), u)p(x) + σj(t, x,X(x), u)qj(x)]m(dx)

Theorem 3.3 Let (X,u) be an optimal pair. Then there exist progressive processes (Pt)t∈[0,T ]

and (pt, q
1
t , . . . , q

d
t )t∈[0,T ], with values in L and (L2)d+1 respectively, for which the following

inequality holds, P-a.s. for a.e. t ∈ [0, T ]: for every v ∈ U ,

H(t, v,Xt, pt, q
1
t , . . . , q

d
t )−H(t, ut,Xt, pt, q

1
t , . . . , q

d
t )

+
1

2
〈Pt[σj(t, ·,Xt(·), v) − σj(t, ·,Xt(·), ut)], σj(t, ·,Xt(·), v) − σj(t, ·,Xt(·), ut)〉 ≥ 0.

The process (p, q1, . . . , qd) satisfies supt∈[0,T ] E‖pt‖22 + E
∫ T
0

∑d
j=1 ‖q

j
t ‖22 dt <∞, and it is the

unique solution to equation (4.17) below.
The process P satisfies supt∈[0,T ] E‖Pt‖2L < ∞ and it is defined in Proposition 5.3 below

(formula (5.6)).

(p, q1, . . . , qd) and P will be called the first and second adjoint process, respectively.
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3.2 Application to stochastic PDEs of parabolic type

The purpose of this short subsection is to show that the main result can be immediately applied
to concrete cases of controlled stochastic PDE of parabolic type on domains of Euclidean space.

Let D be a bounded open subset of Rn with smooth boundary ∂D, and letm be the Lebesgue
measure. Consider the following PDE of reaction-diffusion type







dXt(x) = ∆Xt(x) dt + b(t, x,Xt(x), ut) dt+
∑d

j=1 σj(t, x,Xt(x), ut) dW
j
t , t ∈ [0, T ], x ∈ D,

Xt(x) = 0, t ∈ [0, T ], x ∈ ∂D,
X0(x) = x0(x), x ∈ D,

(3.1)
and the cost functional (2.2). In this example the Wiener process, the space of control actions and
the space of control processes are as before; on the coefficients b, σj , l, h we make the assumptions
of Hypothesis 2.1, points 2 and 3; finally we suppose x0 ∈ Lp̄ for some p̄ > 8.

We claim that all the conclusions of Theorem 3.3 hold true.
Indeed, we can define the operator A = ∆ as an unbounded operator in L2 with domain

H2(D)∩H1
0 (D) (the standard Sobolev spaces). Then A generates a strongly continuous, analytic

contraction semigroup in all the spaces Lp, 1 < p < ∞, and the domain of A is compactly
embedded: see e.g. [9] or [12]. Therefore Hypothesis 2.1, point 1, and Hypothesis 3.2 hold true.
Finally, Hypothesis 3.1 is verified by a Haar basis.

By similar arguments instead of ∆ one can consider more general operators of elliptic type
with appropriate boundary conditions.

4 The spike variation method and the first adjoint process

Throughout this section we assume that Hypothesis 2.1 holds, whereas Hypotheses 3.1 and 3.2
will be needed only starting from the next section.

4.1 Spike variation method and expansion of the state and the cost

Suppose that u is an optimal control and X the corresponding optimal trajectory. We fix
t0 ∈ (0, T ) and ǫ > 0 such that [t0, t0 + ǫ] ⊂ (0, T ), we fix a control process v and we introduce
in the usual way the spike variation process

uǫt =

{

vt, if t ∈ [t0, t0 + ǫ],
ut, if t /∈ [t0, t0 + ǫ].

We denote by Xǫ the trajectory corresponding to uǫ. We are going to construct two L2-valued
stochastic processes, denoted Y ǫ and Zǫ, in such a way that the difference X −Xǫ − Y ǫ −Zǫ is
small (in the sense of Proposition 4.4 below) and the difference of the cost functional J(uǫ)−J(u)
can be expressed in an appropriate form involving Y ǫ and Zǫ up to a small remainder: see
Proposition 4.5.

Define
δǫσj(t, x) = σj(t, x,Xt(x), u

ǫ
t)− σj(t, x,Xt(x), ut)

and consider the stochastic PDE






dY ǫ
t (x) = AY ǫ

t (x) dt + b′(t, x,Xt(x), ut)Y
ǫ
t (x) dt

+σ′j(t, x,Xt(x), ut)Y
ǫ
t (x) dW

j
t + δǫσj(t, x) dW

j
t ,

Y ǫ
0 (x) = 0.

(4.1)
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By the standard theory of stochastic evolution equations in Hilbert spaces, see e.g. [2], there
exists a unique solution to (4.1) in the mild sense, i.e. a progressive process (Y ǫ

t )t∈[0,T ] with
values in L2, satisfying supt∈[0,T ] E‖Y ǫ

t ‖22 <∞ and, for every t ∈ [0, T ],

Y ǫ
t =

∫ t

0
e(t−s)A[b′(s, ·,Xs(·), us)Y ǫ

s (·) + δǫb(s, ·)] ds

+

∫ t

0
e(t−s)A[σ′j(s, ·,Xs(·), us)Y ǫ

s (·) + δǫσj(s, ·)] dW j
s , P− a.s.

(4.2)

For the sequel we need the following more precise result.

Proposition 4.1 For every p ∈ [2, p̄], (Y ǫ
t )t∈[0,T ] is a progressive process with values in Lp,

satisfying
|||Y ǫ|||p = sup

t∈[0,T ]
(E‖Y ǫ

t ‖pp)1/p ≤ Cǫ1/2.

To prove this result we need the following lemma, that will be used several times.

Lemma 4.2 Given P ⊗D-measurable processes ā, ᾱ, b̄j , β̄j consider the linear equation:

{

dVt(x) = AVt(x) dt + ā(t, x)Vt(x) dt+ ᾱ(t, x) dt+ b̄j(t, x)Vt(x) dW
j
t + β̄j(t, x) dW j

t ,
V0(x) = 0.

(4.3)
Suppose ā, b̄j bounded and p ∈ [2, p̄]. Then the following holds.

1. There exists a unique solution to (4.3) in the mild sense, i.e. a progressive process (Vt)t∈[0,T ]

with values in Lp, satisfying

|||V |||p = sup
t∈[0,T ]

(E‖Vt‖pp)1/p ≤ C

∫ T

0
(E‖ᾱt‖pp)1/pdt+ C

(
∫ T

0
(E‖β̄t‖pp)2/p

)1/2

(4.4)

and, for every t ∈ [0, T ],

Vt =

∫ t

0
e(t−s)A[ā(s, ·)Vs(·)+ ᾱ(s, ·)] ds+

∫ t

0
e(t−s)A[b̄j(s, ·)Vs(·)+ β̄j(s, ·)] dW j

s , P−a.s.

provided the right-hand side of (4.4) is finite.

2. If in addition supt∈[0,T ] E(‖ᾱt‖pp+ ‖β̄t‖pp) <∞ and ā, b̄j are supported in a time interval of
length ǫ, then

sup
t∈[0,T ]

(E‖Vt‖pp)1/p ≤ C ǫ sup
t∈[0,T ]

(E‖ᾱt‖pp)1/p + C
√
ǫ sup

t∈[0,T ]
(E‖β̄t‖pp)1/p.

or equivalently
|||V |||p ≤ C ǫ |||ᾱ|||p + C

√
ǫ |||β̄|||p. (4.5)

3. In the case p = 2 we have

sup
t∈[0,T ]

E‖Vt‖22 ≤ C

∫ T

0
E‖ᾱt‖22 dt+C

∫ T

0
E‖β̄t‖22dt = C (‖ᾱ‖2L2(Ω×D×[0,T ])+‖β̄‖2L2(Ω×D×[0,T ])).

(4.6)
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In (4.4), (4.5), (4.6) we set ‖β̄t‖p := ‖β̄t‖Lp(D;Rd), and the constant C depends on the bounds

on ā, b̄j , on the semigroup (etA), and on p and T .

Proof. We consider again the Banach space of progressive Lp-valued processes (Vt)t∈[0,T ] en-

dowed with the norm |||V |||p = supt∈[0,T ](E‖Vt‖pp)1/p. By the same arguments as in the proof of
Proposition 2.2 we can prove that the map Γ defined as

Γ(V )t =

∫ t

0
e(t−s)Aā(s, ·)Vs(·) ds +

∫ t

0
e(t−s)A b̄j(s, ·)Vs(·) dW j

s

is a (linear) contraction with respect to the norm ||| · |||p, provided T is sufficiently small.
Therefore there exists a unique solution V and it satisfies the inequality

|||V |||p ≤ C |||
∫ ·

0
e(·−s)Aᾱ(s) ds|||p + |||

∫ ·

0
e(·−s)Aβ̄j(s) dW j

s |||p.

The inequality (4.4) follows from an estimate of those stochastic integrals, using (A.1) and
the Lp-boundedness of etA. The restriction on T is then removed by subdividing [0, T ] into
appropriate subintervals. Finally, (4.5) and (4.6) follow from (4.4) and the Hölder inequality.

Proof of Proposition 4.1. This is an immediate corollary of the previous lemma, noting that
|||δǫσj|||p ≤ C as a consequence of the linear growth condition on σj (Hypothesis 2.1-4) and the
fact that |||X|||p <∞ by Proposition 2.2.

Define
δǫb(t, x) = b(t, x,Xt(x), u

ǫ
t)− b(t, x,Xt(x), ut),

δǫb′(t, x) = b′(t, x,Xt(x), u
ǫ
t)− b′(t, x,Xt(x), ut),

δǫσ′j(t, x) = σ′j(t, x,Xt(x), u
ǫ
t)− σ′j(t, x,Xt(x), ut),

and consider the following stochastic PDE:



































dZǫ
t (x) = AZǫ

t (x) dt+ b′(t, x,Xt(x), ut)Z
ǫ
t (x) dt

+
1

2
b′′(t, x,Xt(x), ut)Y

ǫ
t (x)

2 dt+ δǫb(t, x) dt+ δǫb′(t, x)Y ǫ
t (x) dt

+σ′j(t, x,Xt(x), ut)Z
ǫ
t (x) dW

j
t +

1

2
σ′′j (t, x,Xt(x), ut)Y

ǫ
t (x)

2 dW j
t

+δǫσ′j(t, x)Y
ǫ
t (x) dW

j
t ,

Zǫ
0(x) = 0

(4.7)

By the standard theory there exists a unique solution to (4.7) in the mild sense, i.e. a progressive
process (Zǫ

t )t∈[0,T ] with values in L2, satisfying supt∈[0,T ] E‖Zǫ
t‖22 <∞ and, for every t ∈ [0, T ],

Zǫ
t =

∫ t

0
e(t−s)A[b′(s, ·,Xs(·), us)Zǫ

s(·) +
1

2
b′′(s, ·,Xs(·), us)Y ǫ

s (·)2 + δǫb(s, ·) + δǫb′(s, ·)Y ǫ
s (·)] ds

+

∫ t

0
e(t−s)A[σ′j(s, ·,Xs(·), us)Zǫ

s(·) +
1

2
σ′′j (s, ·,Xs(·), us)Y ǫ

s (·)2 + δǫσ′j(s, ·)Y ǫ
s (·)] dW j

s , P-a.s.

(4.8)
For the sequel we need the following result.

Proposition 4.3 For every p ∈ [2, p̄/2], (Zǫ
t )t∈[0,T ] is a progressive process with values in Lp,

satisfying
|||Zǫ|||p = sup

t∈[0,T ]
(E‖Zǫ

t‖pp)1/p ≤ Cǫ.
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Proof. The result follows from Lemma 4.2 applied to equation (4.7). In particular inequality
(4.4) shows that

|||Zǫ|||p ≤ C

∫ T

0
(E‖1

2
b′′(t,Xt, ut)(Y

ǫ
t )

2 + δǫb(t) + δǫb′(t)Y ǫ
t ‖pp)1/pdt

+C

(
∫ T

0
(E‖1

2
σ′′(t,Xt, ut)(Y

ǫ
t )

2 + δǫσ′(t)Y ǫ
t ‖pp)2/p

)1/2

.

The proof is now concluded estimating the right-hand side of this inequality.
Since ‖σ′′(t,Xt, ut)(Y

ǫ
t )

2‖p ≤ C‖(Y ǫ
t )

2‖p = C‖Y ǫ
t ‖22p we have

(
∫ T

0
(E‖σ′′(t,Xt, ut)(Y

ǫ
t )

2‖pp)2/p
)1/2

≤ C

(
∫ T

0
(E‖Y ǫ

t ‖2p2p)2/p
)1/2

≤ C|||Y ǫ|||22p ≤ Cǫ,

by Proposition 4.1, since 2p ≤ p̄.
Next we note that |||δǫb|||p ≤ C, as a consequence of the linear growth condition on b

(Hypothesis 2.1-3) and the fact that |||X|||p < ∞ by Proposition 2.2. Since δǫb is supported in

[t0, t0 + ǫ] it follows that
∫ T
0 (E‖δǫb(t)‖pp)1/pdt ≤ Cǫ.

The other terms are treated in a similar way.

Proposition 4.4 We have

sup
t∈[0,T ]

(E‖Xǫ
t −Xt − Y ǫ

t − Zǫ
t‖22)1/2 = o(ǫ).

As usual, o(ǫ) denotes any function of ǫ such that o(ǫ)/ǫ → 0 as ǫ → 0. During the proof
we will use the Taylor formula in the following form: for a twice continuously differentiable real
function g on R, and for r, h ∈ R,

g(r + h) = g(r) + g′(r)h+

∫ 1

0

∫ 1

0
g′′(r + λµh)µdλdµh2. (4.9)

Since
∫ 1
0

∫ 1
0 µdλdµ = 1/2 this can also be written

g(r + h) = g(r) + g′(r)h+
1

2
g′′(r)h2 +

∫ 1

0

∫ 1

0
[g′′(r + λµh)− g′′(r)]µdλdµh2. (4.10)

Proof. We set Rǫ = Y ǫ + Zǫ. We first show that X + Rǫ is a solution of the following
equation in L2:

Xt +Rǫ
t = etAx0 +

∫ t

0
e(t−s)Ab(s, ·,Xs(·) +Rǫ

s(·), us) ds −
∫ t

0
e(t−s)AGǫ(s, ·) ds

+

∫ t

0
e(t−s)Aσj(s, ·,Xs(·) +Rǫ

s(·), us) dW j
s −

∫ t

0
e(t−s)AΛǫ

j(s, ·) dW j
s ,

(4.11)

where Gǫ = Gǫ,1 +Gǫ,2 +Gǫ,3, Λǫ
j = Λǫ,1

j + Λǫ,2
j + Λǫ,3

j ,

Gǫ,1(s, x) =

∫ 1

0

∫ 1

0
[b′′(s, x,Xs(x) + λµRǫ

s(x), u
ǫ
s)− b′′(s, x,Xs(x), us)]µdλdµR

ǫ
s(x)

2,

Gǫ,2(s, x) =
1

2
b′′(s, x,Xs(x), us) (Z

ǫ
s(x)

2 + 2Y ǫ
s (x)Z

ǫ
s(x)), Gǫ,3(s, x) = δǫb′(s, x)Zǫ

s(x),

Λǫ,1
j (s, x) =

∫ 1

0

∫ 1

0
[σ′′j (s, x,Xs(x) + λµRǫ

s(x), u
ǫ
s)− σ′′j (s, x,Xs(x), us)]µdλdµR

ǫ
s(x)

2,

Λǫ,2
j (s, x) =

1

2
σ′′j (s, x,Xs(x), us) (Z

ǫ
s(x)

2 + 2Y ǫ
s (x)Z

ǫ
s(x)), Λǫ,3

j (s, x) = δǫσ′j(s, x)Z
ǫ
s(x).
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To verify (4.11) we use the Taylor formula (4.9) and obtain

b(s, x,Xs(x) +Rǫ
s(x), u

ǫ
s) = b(s, x,Xs(x), u

ǫ
s) + b′(s, x,Xs(x), u

ǫ
s)R

ǫ
s(x)

+

∫ 1

0

∫ 1

0
b′′(s, x,Xs(x) + λµRǫ

s(x), u
ǫ
s)µdλdµR

ǫ
s(x)

2,(4.12)

σj(s, x,Xs(x) +Rǫ
s(x), u

ǫ
s) = σj(s, x,Xs(x), u

ǫ
s) + σ′j(s, x,Xs(x), u

ǫ
s)R

ǫ
s(x)

+

∫ 1

0

∫ 1

0
σ′′j (s, x,Xs(x) + λµRǫ

s(x), u
ǫ
s)µdλdµR

ǫ
s(x)

2.(4.13)

We apply e(t−s)A to (4.12) and integrate
∫ t
0 ds, we apply e

(t−s)A to (4.13) and integrate
∫ t
0 dW

j
s ,

and we add the resulting equalities. Comparing with (2.3), (4.2) and (4.8) we obtain (4.11).
Since Xǫ is the trajectory corresponding to uǫ we have

Xǫ
t = etAx0 +

∫ t

0
e(t−s)Ab(s, ·,Xǫ

s(·), uǫs) ds+
∫ t

0
e(t−s)Aσj(s, ·,Xǫ

s(·), uǫs) dW j
s .

Comparing with (4.11) we see that ∆ǫ := Xǫ −X −Rǫ solves

∆ǫ
t =

∫ t

0
e(t−s)Ab̄ǫ(s, ·)∆ǫ

s(·) ds +
∫ t

0
e(t−s)AGǫ(s, ·) ds

+

∫ t

0
e(t−s)Aσ̄ǫj(s, ·)∆ǫ

s(·) dW j
s +

∫ t

0
e(t−s)AΛǫ

j(s, ·) dW j
s ,

where

b̄ǫ(s, x) =

∫ 1

0
b′(s, x,Xs(x) +Rǫ

s(x) + λ∆ǫ
s(x), u

ǫ
s) dλ,

σ̄ǫj(s, x) =

∫ 1

0
σ′j(s, x,Xs(x) +Rǫ

s(x) + λ∆ǫ
s(x), u

ǫ
s) dλ,

are bounded coefficients, uniformly in ǫ. We can then apply Lemma 4.2 and specifically inequality
(4.6) arriving at

sup
t∈[0,T ]

(E‖Xǫ
t −Xt − Y ǫ

t −Zǫ
t‖22)1/2 = sup

t∈[0,T ]
E‖∆ǫ

t‖22 ≤ C (‖Gǫ‖2L2(Ω×D×[0,T ])+ ‖Λǫ‖2L2(Ω×D×[0,T ])).

To finish the proof it remains to verify that the L2(Ω×D × [0, T ])-norm of each term Gǫ,i, Λǫ,i
j

(i = 1, 2, 3) is o(ǫ).
Let us verify that ‖Gǫ,1‖L2(Ω×D×[0,T ]) = o(ǫ). Write Gǫ,1(t, x) = Qǫ

t(x)R
ǫ
t(x)

2 where

Qǫ
t(x) =

∫ 1

0

∫ 1

0
[b′′(t, x,Xt(x) + λµRǫ

t(x), u
ǫ
t)− b′′(t, x,Xt(x), ut)]µdλdµ.

Next take p ∈ (2, p̄/4], which is possible because p̄ > 8, and let q > 1 be such that 1
2 = 1

p + 1
q .

Then
‖Gǫ,1‖L2(Ω×D×[0,T ]) ≤ ‖Qǫ‖Lq(Ω×D×[0,T ])‖(Rǫ)2‖Lp(Ω×D×[0,T ]).

Since

‖(Rǫ)2‖Lp(Ω×D×[0,T ]) = ‖Rǫ‖2L2p(Ω×D×[0,T ]) ≤ C|||Rǫ|||22p ≤ C(|||Y ǫ|||22p + |||Zǫ|||22p) ≤ C(ǫ+ ǫ2)

by Propositions 4.1 and 4.3, it remains to show that ‖Qǫ‖Lq(Ω×D×[0,T ]) → 0 as ǫ → 0. We argue
by contradiction: assume that there exists δ > 0 and a sequence ǫn → 0 such that

E

∫ T

0

∫

D

∣

∣

∣

∣

∫ 1

0

∫ 1

0
[b′′(t, x,Xt(x) + λµRǫ

t(x), u
ǫ
t)− b′′(t, x,Xt(x), ut)]µdλdµ

∣

∣

∣

∣

q

m(dx)dt ≥ δ.

(4.14)
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Since ‖Rǫ‖L2(Ω×D×[0,T ]) ≤ C|||Rǫ|||2 ≤ C(|||Y ǫ|||2 + |||Zǫ|||2) → 0, there exists a subsequence
ǫnk

such that Rǫnk → 0 a.s. with respect to the product measure P(dω)m(dx)dt. Since r 7→
b′′(t, x, r, u) is continuous, and due to the special definition of uǫ, it follows that b′′(t, x,Xt(x) +
λµR

ǫnk
t (x), u

ǫnk
t ) → b′′(t, x,Xt(x), ut) a.s. with respect to

P(dω)m(dx)dtdλdµ. By dominated convergence this contradicts (4.14).
The proof that ‖Λǫ,1

j ‖L2(Ω×D×[0,T ]) → 0 is identical. The other terms Gǫ,i, Λǫ,i
j are treated in

a standard way using Propositions 4.1 and 4.3.

Define

δǫl(t, x) = l(t, x,Xt(x), u
ǫ
t)− l(t, x,Xt(x), ut),

δǫl′(t, x) = l′(t, x,Xt(x), u
ǫ
t)− l′(t, x,Xt(x), ut).

Proposition 4.5 We have

J(uǫ)− J(u) = E

∫ T

0

∫

D
δǫl(t, x)m(dx) dt

+E

∫ T

0

∫

D
l′(t, x,Xt(x), ut)(Y

ǫ
t (x) + Zǫ

t (x))m(dx) dt

+
1

2
E

∫ T

0

∫

D
l′′(t, x,Xt(x), ut)Y

ǫ
t (x)

2m(dx) dt

+E

∫

D
h′(x,Xt(x))(Y

ǫ
T (x) + Zǫ

T (x))m(dx) +
1

2
E

∫

D
h′′(x,XT (x))Y

ǫ
T (x)

2m(dx) + o(ǫ).

(4.15)

Proof. We still denote Rǫ = Y ǫ + Zǫ. We have

J(uǫ)− J(u) = E

∫ T

0

∫

D
[l(t, x,Xǫ

t (x), u
ǫ
t)− l(t, x,Xt(x), ut)]m(dx) dt

+E

∫

D
[h(x,Xǫ

T (x))− h(x,XT (x))]m(dx).

We first consider

E

∫ T

0

∫

D
[l(t, x,Xǫ

t (x), u
ǫ
t)− l(t, x,Xt(x), ut)]m(dx) dt = A1 +A2 +A3,

where

A1 = E

∫ T

0

∫

D
[l(t, x,Xǫ

t (x), u
ǫ
t)− l(t, x,Xt(x) +Rǫ

t(x), u
ǫ
t)]m(dx) dt,

A2 = E

∫ T

0

∫

D
[l(t, x,Xt(x) +Rǫ

t(x), u
ǫ
t)− l(t, x,Xt(x) +Rǫ

t(x), ut)]m(dx) dt,

A3 = E

∫ T

0

∫

D
[l(t, x,Xt(x) +Rǫ

t(x), ut)− l(t, x,Xt(x), ut)]m(dx) dt.

From Proposition 4.4 it follows that A1 = o(ǫ). Next applying the Taylor formula (4.9) twice in
A2 we have

A2 = E

∫ T

0

∫

D

(

δǫl(t, x) + δǫl′(t, x)Rǫ
t(x)

+

∫ 1

0

∫ 1

0
[l′′(t, x,Xt(x) + λµRǫ

t(x), u
ǫ
t)− l′′(t, x,Xt(x) + λµRǫ

t(x), ut)]µdλdµR
ǫ
t(x)

2

)

m(dx) dt

= E

∫ T

0

∫

D
δǫl(t, x)m(dx) dt + o(ǫ),
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as it follows easily from Propositions 4.3 and 4.3. Applying the Taylor formula (4.10) we have

A3 = E

∫ T

0

∫

D

(

l′(t, x,Xt(x), ut)R
ǫ
t(x) +

1

2
l′′(t, x,Xt(x), ut)R

ǫ
t(x)

2

+

∫ 1

0

∫ 1

0
[l′′(t, x,Xt(x) + λµRǫ

t(x), ut)− l′′(t, x,Xt(x), ut)]µdλdµR
ǫ
t(x)

2

)

m(dx) dt

= E

∫ T

0

∫

D

(

l′(t, x,Xt(x), ut)R
ǫ
t(x) +

1

2
l′′(t, x,Xt(x), ut)Y

ǫ
t (x)

2

)

m(dx) dt+ o(ǫ).

The last equality is verified noting that

E

∫ T

0

∫

D
l′′(t, x,Xt(x), ut) (2Y

ǫ
t (x)Z

ǫ
t (x) + Zǫ

t (x)
2)m(dx) dt = o(ǫ),

by Propositions 4.3 and 4.3, and that

E

∫ T

0

∫

D

(
∫ 1

0

∫ 1

0
[l′′(t, x,Xt(x)+λµR

ǫ
t(x), ut)−l′′(t, x,Xt(x), ut)]µdλdµR

ǫ
t(x)

2

)

m(dx) dt = o(ǫ)

which can be proved by the same arguments used to treat the term Gǫ,1 in the proof of Propo-
sition 4.4.

In a similar way one proves

E

∫

D
[h(x,Xǫ

T (x))− h(x,XT (x))]m(dx)

= E

∫

D
h′(x,Xt(x))(Y

ǫ
T (x) + Zǫ

T (x))m(dx) +
1

2
E

∫

D
h′′(x,XT (x))Y

ǫ
T (x)

2m(dx) + o(ǫ),

and the proof is finished.

4.2 The first adjoint process

The first adjoint process is defined as the solution of the backward stochastic PDE







−dpt(x) = −dqjt (x) dW j
t + [A∗pt(x) + b′(t, x,Xt(x), ut)pt(x)

+σ′j(t, x,Xt(x), ut)q
j
t (x) + l′(t, x,Xt(x), ut)] dt

pT (x) = h′(x,XT (x))

(4.16)

where A∗ denotes the adjoint of A in L2. By the result in [7] there exists a unique solution, i.e.
a progressive process (pt, q

1
t , . . . , q

d
t )t∈[0,T ] with values in (L2)d+1, such that

sup
t∈[0,T ]

E‖pt‖22 + E

∫ T

0

d
∑

j=1

‖qjt ‖22 dt <∞,

and satisfying the equation in the mild sense: for every t ∈ [0, T ],

pt +

∫ T

t
e(s−t)A∗

qjs dW
j
s = e(T−t)A∗

h′(·,XT (·)) +
∫ T

t
e(s−t)A∗

[b′(s, ·,Xs(·), us)ps(·)
+σ′j(s, ·,Xs(·), us)qjs(·) + l′(s, ·,Xs(·), us)] ds, P− a.s.

(4.17)

where (etA
∗

) denotes the adjoint semigroup of (etA) in L2, which admits A∗ as its generator.
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Proposition 4.6 Define

H̄(t, x) = l′′(t, x,Xt(x), ut) + pt(x)b
′′(t, x,Xt(x), ut) + qjt (x)σ

′′
j (t, x,Xt(x), ut),

h̄(x) = h′′(x,XT (x)).
(4.18)

Then we have

J(uǫ)− J(u) = E

∫ T

0

∫

D
[δǫl(t, x) + pt(x)δ

ǫb(t, x) + qjt (x)δ
ǫσj(t, x)] dsm(dx)

+
1

2
E

∫ T

0

∫

D
H̄(t, x)Y ǫ

t (x)
2 dsm(dx) +

1

2
E

∫

D
h̄(x)Y ǫ

T (x)
2m(dx) + o(ǫ).

Proof. We claim that the following duality relations hold:

E

∫ T

0

∫

D
l′(t, x,Xt(x), ut)Y

ǫ
t (x)m(dx) dt + E

∫

D
h′(x,Xt(x))Y

ǫ
T (x)m(dx)

= E

∫ T

0

∫

D
δǫσj(t, x)q

j
t (x)m(dx) dt,

(4.19)

E

∫ T

0

∫

D
l′(t, x,Xt(x), ut)Z

ǫ
t (x)m(dx) dt + E

∫

D
h′(x,Xt(x))Z

ǫ
T (x)m(dx)

= E

∫ T

0

∫

D
[δǫb(t, x) +

1

2
b′′(t, x,Xt(x), ut)Y

ǫ
t (x)

2 + δǫb′(t, x)Y ǫ
t (x)]pt(x)m(dx) dt

+E

∫ T

0

∫

D
[
1

2
σ′′j (t, x,Xt(x), ut)Y

ǫ
t (x)

2 + δǫσ′j(t, x)Y
ǫ
t (x)]q

j
t (x)m(dx) dt.

(4.20)

If A is a bounded operator and equations (4.1) and (4.7) are valid in the sense of Ito differentials
in L2 then (4.19) and (4.20) follow from an application of the Ito formula to the processes
〈Y ǫ

t , pt〉L2 and 〈Zǫ
t , pt〉L2 respectively, where 〈·, ·〉L2 denotes the scalar product in L2. In the

general case a regularization procedure is needed, where in particular the operator A is replaced
by its Yosida approximation An and then n→ ∞. We omit writing down this standard part of
the proof: one can find the details of these arguments (applied to BSDEs) in [16] or (applied to
forward SDEs and control problems) in [15]. One can also look at Subsection 5.2 below where
we use similar arguments in a more complicated setting.

Now the proof is concluded substituting (4.19) and (4.20) in (4.15), provided we can prove

E

∫ T

0

∫

D
δǫb′(t, x)Y ǫ

t (x)pt(x)m(dx) dt = o(ǫ), E

∫ T

0

∫

D
δǫσ′j(t, x)Y

ǫ
t (x)q

j
t (x)m(dx) dt = o(ǫ).

Since the proof is very similar, we only prove the second equality. Since δǫσ′j is bounded and
supported in [t0, t0 + ǫ] we have, using the Hölder inequality and recalling the norm ||| · |||p
introduced in (2.4),

∣

∣

∣

∣

E

∫ T

0

∫

D
δǫσ′j(t, x)Y

ǫ
t (x)q

j
t (x)m(dx) dt

∣

∣

∣

∣

≤ CE

∫ T

0
1[t0,t0+ǫ](t)‖Y ǫ

t ‖2‖qt‖2 dt

≤ C|||Y ǫ|||2
∫ T

0
1[t0,t0+ǫ](t)(E‖qt‖22)1/2 dt ≤ C |||Y ǫ|||2

(
∫ T

0
1[t0,t0+ǫ](t)E‖qt‖22 dt

)1/2 √
ǫ.

The last integral tends to 0 as ǫ → 0, since E
∫ T
0 ‖qt‖22 dt < ∞. It follows that the right-hand

side is o(ǫ), because |||Y ǫ|||2 ≤ C
√
ǫ by Proposition 4.1.
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4.3 Some formal computations and heuristics

In order to motivate some of the constructions below, and to make a connection with the finite-
dimensional case treated in [13], in this paragraph we proceed in a formal way.

We wish to prove that

E

∫ T

0

∫

D
H̄(t, x)Y ǫ

t (x)
2 dsm(dx) + E

∫

D
h̄(x)Y ǫ

T (x)
2m(dx)

= E

∫ T

0
〈Ptδ

ǫσj(t, ·), δǫσj(t, ·)〉L2 dt+ o(ǫ),

(4.21)

for an appropriate operator-valued process Pt. In view of Proposition 4.6 the stochastic maxi-
mum principle then can be shown to hold by the usual arguments as in [13] or [18].

We denote by Ht the multiplication operator by the function H̄(t, ·) and by h the multipli-
cation operator by the function h̄(·). We pretend that they are bounded operators on the space
L2.

Next we consider the operator-valued BSDE

{

−dPt = −Qj
t dW

j
t + [A∗Pt + PtA+BtPt + PtBt + Cj

t PtC
j
t + Cj

tQ
j
t +Qj

tC
j
t +Ht] dt

PT = h,
(4.22)

where by Bt, C
j
t we denote the (self-adjoint) multiplication operators by b′(t, ·,Xt(·), ut) and

σ′j(t, ·,Xt(·), ut) respectively. Suppose that we can find a good solution in the space of bounded

linear operators on L2. Then applying the Ito formula to 〈PtY
ǫ
t , Y

ǫ
t 〉L2 , integrating from 0 to T

and taking expectations we obtain

E

∫ T

0
〈HtY

ǫ
t , Y

ǫ
t 〉L2 dt+ E〈hY ǫ

T , Y
ǫ
T 〉L2 = E

∫ T

0
[〈Ptδ

ǫσj(t, ·), δǫσj(t, ·)〉L2

+2〈Ptδ
ǫb(t, ·), Y ǫ

t 〉L2 + 2〈PtC
j
t Y

ǫ
t , δ

ǫb(t, ·)〉L2 − 2〈Qj
tY

ǫ
t , δ

ǫσj(t, ·)〉L2 ] dt.

If we were able to prove, in analogy with the finite-dimensional case, that

E

∫ T

0
[2〈Ptδ

ǫb(t, ·), Y ǫ
t 〉L2 + 2〈PtC

j
t Y

ǫ
t , δ

ǫb(t, ·)〉L2 − 2〈Qj
tY

ǫ
t , δ

ǫσj(t, ·)〉L2 ] dt = o(ǫ),

then (4.21) would follow and the proof would be finished. However in this argument finding a
solution of the operator-valued BSDE (4.22) that allows to make the previous argument rigorous
seems a very difficult task. So we follow a different strategy of proof, that we outline below.

For fixed t ∈ [0, T ] and f ∈ H, denote by (Y t,f
s )s∈[t,T ] the mild solution to

{

dY t,f
s (x) = AY t,f

s (x) ds + b′(s, x,Xs(x), us)Y
t,f
s (x) ds + σ′j(s, x,Xs(x), us)Y

t,f
s (x) dW j

s ,

Y t,f
t (x) = f(x)

This equation has to be compared with (4.1).

Then taking g ∈ L2, applying the Ito formula to 〈PsY
t,f
s , Y t,g

s 〉L2 over the interval [t, T ],
integrating from t to T and taking conditional expectation given Ft we formally obtain

〈Ptf, g〉L2 = E
Ft

∫ T

t
〈HsY

t,f
s , Y t,g

s 〉L2 ds + E
Ft〈hY t,f

T , Y t,g
T 〉L2

= E
Ft

∫ T

t

∫

D
H̄(s, x)Y t,f

s (x)Y t,g
s (x)m(dx) ds + E

Ft

∫

D
h̄(x)Y t,f

T (x)Y t,g
T (x)m(dx).

(4.23)
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The interesting fact is that this formula can be used to define Pt: more precisely, in Proposition
5.2 below, we will prove that if f ∈ L4 then (Y t,f

s )s∈[t,T ] is a progressive process with values in
L4, satisfying

sup
s∈[t,T ]

(EFt‖Y t,f
s ‖44)1/4 ≤ C‖f‖4.

As a consequence we will show that the right-hand side of (4.23) defines a continuous bilinear
form on L4 (or equivalently a linear bounded operator from L4 to L4/3 = (L4)∗) and we will set,
for f, g ∈ L4,

〈Ptf, g〉 = E
Ft

∫ T

t

∫

D
H̄(s, x)Y t,f

s (x)Y t,g
s (x)m(dx) ds + E

Ft

∫

D
h̄(x)Y t,f

T (x)Y t,g
T (x)m(dx).

Note that no reference to the BSDE (4.22) is needed to give this definition. Finally, it turns out
that (4.21) can be proved to hold with this definition of Pt.

5 End of the proof of the stochastic maximum principle

As explained above, we are going to introduce the second adjoint process, an appropriate
operator-valued process (Pt) that will allow us to conclude the proof of Theorem 3.3.

Throughout this section we assume that Hypotheses 2.1, 3.1 and 3.2 are satisfied.
The symbols (etA)t≥0 and A will also denote the restriction of the semigroup to the space L4

and its infinitesimal generator in L4. We need to recall some standard facts and constructions
on analytic semigroups: see for instance [12] or [9]. Without loss of generality we can assume
that A is boundedly invertible (if not, we replace A by A − cI for sufficiently large constant
c > 0 and we modify the drift coefficient accordingly). The domain of A is endowed with the
norm ‖f‖D(A) := ‖Af‖4. By the analyticity assumption, one can define the fractional powers
(−A)η of −A in a standard way, for every η ∈ (0, 1). Each fractional power is a linear, in
general unbounded, operator in L4, with domain denoted D(−A)η. Endowed with the norm
‖f‖D(−A)η := ‖(−A)ηf‖4, each space D(−A)η is a Banach space and we have the continuous
embeddings

D(A) ⊂ D(−A)η ⊂ D(−A)ρ ⊂ L4, 0 < ρ < η < 1.

By analyticity, etA(L4) ⊂ D(A) for every t > 0, and for every 0 < η < 1 there exist constants
C1, Cη > 0 such that for every f ∈ L4 and t ∈ (0, T ],

‖etAf‖D(A) = ‖AetAf‖4 ≤
C1

t
‖f‖4, ‖etAf‖D(−A)η = ‖(−A)ηetAf‖4 ≤

Cη

tη
‖f‖4.

Finally, as a consequence of the compact embeddingD(A) ⊂ L4, every embeddingD(−A)η ⊂ L4

is also compact, 0 < η < 1.

Remark 5.1 In most of what follows, we will only use the estimate ‖(−A)ηetAf‖4 ≤ Cη

tη ‖f‖4
and the compact embedding D(−A)η ⊂ L4 for one, sufficiently small value of η > 0. This might
eventually lead to a weakening of Hypothesis 3.2, but we not discuss those extensions in this
paper.

For fixed t ∈ [0, T ] and f ∈ L4, we consider the stochastic PDE

{

dY t,f
s (x) = AY t,f

s (x) ds + b′(s, x,Xs(x), us)Y
t,f
s (x) ds + σ′j(s, x,Xs(x), us)Y

t,f
s (x) dW j

s ,

Y t,f
t (x) = f(x).

(5.1)
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As a special case of Proposition 2.2 (with p = 4), for every t ∈ [0, T ] there exists a unique mild

solution, i.e. an adapted process (Y t,f
s )s∈[t,T ] with continuous trajectories in L4, satisfying P-a.s.

Y t,f
s = e(s−t)Af +

∫ s

t
e(s−r)Ab′(r, ·,Xr(·), ur)Y t,f

r (·) dr,+
∫ s

t
e(s−r)Aσ′j(r, ·,Xr(·), ur)Y t,f

r (·) dW j
r ,

for every s ∈ [t, T ]. In addition we have sup0≤t≤s≤T E‖Y t,f
s ‖44 <∞.

Proposition 5.2 There exists a constant C such that for f ∈ L4, 0 ≤ t ≤ s ≤ T

(EFt‖Y t,f
s ‖44)1/4 ≤ C‖f‖4, P− a.s. (5.2)

and for 0 ≤ t ≤ t+ h ≤ s ≤ T

(E‖Y t+h,f
s − Y t,f

s ‖44)1/4 ≤ C[ sup
t∈[0,T ]

‖(etA − e(t+h)A)f‖4 + h1/2‖f‖4]. (5.3)

Moreover for every η ∈ (0, 1/4) there exists a constant Cη such that for f ∈ D(−A)η ⊂ L4,
0 ≤ t < s ≤ T

(EFt‖Y t,(−A)ηf
s ‖44)1/4 ≤ Cη(s− t)−η‖f‖4, P− a.s. (5.4)

We notice that the above relation indicates that equation (5.1) regularizes the initial data (roughly
speaking sends data in D(−A)−η to L4.

Proof. For brevity we write the proof in the case b ≡ 0 and denote by Cj(r) the multiplication
operator in L4 by the (bounded) function σ′j(r, ·,Xr(·), ur). So the equation for Y t,x is

Y t,f
s = e(s−t)Af +

∫ s

t
e(s−r)ACj(r)Y

t,f
r dW j

r , s ∈ [t, T ].

Using the conditional inequality (A.3) for p = 4 we obtain

E
Ft

∥

∥

∥

∥

∫ s

t
e(s−r)ACj(r)Y

t,f
r dW j

r

∥

∥

∥

∥

4

4

≤ C

∫ s

t
E
Ft‖e(s−r)ACj(r)Y

t,f
r ‖44 dr ≤ C

∫ s

t
E
Ft‖Y t,f

r ‖44 dr,

and since ‖e(s−t)Af‖44 ≤ C‖f‖44 it follows that for every s ∈ [t, T ] we have, P-a.s.

E
Ft‖Y t,f

s ‖44 ≤ C‖f‖44 + C

∫ s

t
E
Ft‖Y t,f

r ‖44 dr. (5.5)

Take a dense countable set D ⊂ [t, T ]. Then, P-a.s., (5.5) holds simultaneously for every s ∈ D.
Since Y t,x has continuous trajectories in L4, there exists a set N with P(N) = 0 such that

s→ ‖Y t,f
s (ω)‖44 is continuous on [t, T ] for every ω /∈ N . Discarding a set of P-measure zero, and

given any s ∈ [t, T ], we take a sequence (sn) ⊂ D, sn → s and by the conditional Fatou Lemma

E
Ft‖Y t,f

s ‖44 = E
Ft lim inf

n→∞
‖Y t,f

sn ‖44 ≤ lim inf
n→∞

E
Ft‖Y t,f

sn ‖44
≤ C‖f‖44 +C lim inf

n→∞

∫ sn

t
E
Ft‖Y t,f

r ‖44 dr = C‖f‖44 + C

∫ s

t
E
Ft‖Y t,f

r ‖44 dr.

It follows that, P-a.s. (5.5) holds for every s ∈ [t, T ], so that (5.2) follows from a pathwise
application of Gronwall’s lemma.
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The proof of (5.4) is very similar: by (5.5) we have

E
Ft‖Y t,(−A)ηf

s ‖44 ≤ C‖(−A)ηe(s−t)Af‖44 + C

∫ s

t
E
Ft‖Y t,(−A)ηf

r ‖44 dr

≤ Cη(s − t)−4η‖f‖44 + C

∫ s

t
E
Ft‖Y t,(−A)ηf

r ‖44 dr

and (5.4) follows again from a variant of Gronwall’s lemma.
To prove (5.3) we first write, for s ∈ [t+ h, T ],

Y t+h,f
s − Y t,f

s = (e(s−t−h)A − e(s−t)A)f −
∫ t+h

t
e(s−r)ACj(r)Y

t,f
r dW j

r

+

∫ s

t+h
e(s−r)ACj(r)(Y

t+h,f
r − Y t,f

r ) dW j
r =: I + II + III.

Then we have, using (A.2) for p = 4,

‖I‖4 ≤ sup
t∈[0,T ]

‖(etA − e(t+h)A)f‖4,

E‖II‖44 ≤ ch

∫ t+h

t
E‖Y t,f

r ‖44 dr ≤ ch2‖f‖44,

E‖III‖44 ≤ c

∫ s

t+h
E‖Y t+h,f

r − Y t,f
r ‖44 dr.

Therefore

E‖Y t+h,f
s − Y t,f

s ‖44 ≤ c[ sup
t∈[0,T ]

‖(etA − e(t+h)A)f‖4 + h2‖f‖44] + c

∫ s

t+h
E‖Y t+h,f

r − Y t,f
r ‖44 dr

and (5.3) follows from Gronwall’s lemma.

Recall that we denoted by L the space of linear bounded operators L4 → (L4)∗ = L4/3

endowed with the usual operator norm and with the Borel σ-algebra of the weak topology. The
duality between g ∈ L4 and h ∈ L4/3 is denoted 〈h, g〉. We note that, by the Hölder inequality,
every H ∈ L2 can be identified with the corresponding multiplication operator, i.e. with a
unique H ∈ L satisfying

〈Hf, g〉 =
∫

D
H(x)f(x)g(x)m(dx), f, g ∈ L4

and, moreover, ‖H‖L ≤ ‖H‖2. Similar remarks apply to H̄(t, x) and h̄(x) defined in (4.18).
The definition of the second adjoint process P , along with some of its properties, is given in

the following proposition.

Proposition 5.3 There exists a progressive process (Pt)t∈[0,T ] with values in L, such that for
t ∈ [0, T ], f, g ∈ L4,

〈Ptf, g〉 = E
Ft

∫ T

t
〈H̄sY

t,f
s , Y t,g

s 〉 ds + E
Ft〈h̄Y t,f

T , Y t,g
T 〉, P− a.s. (5.6)

We have
sup

t∈[0,T ]
E‖Pt‖2L <∞, (5.7)
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and for every f, g ∈ L4 we have, for ǫ ↓ 0,

E|〈Pt+ǫ − Pt)f, g〉| → 0. (5.8)

Moreover, for every η ∈ (0, 1/4) there exists a constant Cη such that for f, g ∈ D(−A)η ⊂ L4,
0 ≤ t < T ,

|〈Pt(−A)ηf, (−A)ηg〉| ≤ Cη‖f‖4‖g‖4(T−t)−2η

[

(
∫ T

t
E
Ft‖H̄s‖22ds

)1/2

+
(

E
Ft‖h̄‖22

)1/2

]

, P−a.s.

(5.9)
which immediately implies

E sup
{

|〈Pt(−A)ηf, (−A)ηg〉|2 : f, g ∈ D(−A)η , ‖f‖4 ≤ 1, ‖g‖4 ≤ 1
}

≤ Cη(T − t)−4η

[

E

∫ T

0
‖H̄s‖22ds+ E‖h̄‖22

]

.
(5.10)

Remark 5.4 1. Formula (5.6) can be written more explicitly as follows:

〈Ptf, g〉 = E
Ft

∫ T

t

∫

D
H̄(s, x)Y t,f

s (x)Y t,g
s (x)m(dx) ds + E

Ft

∫

D
h̄(x)Y t,f

T (x)Y t,g
T (x)m(dx).

Clearly, (5.6) defines uniquely (Pt) up to modification.

2. In the following, for T ∈ L we will use the notation

|||T ||| := sup
{

|〈T (−A)ηf, (−A)ηg〉| : f, g ∈ D(−A)η, ‖f‖4 ≤ 1, ‖g‖4 ≤ 1
}

(5.11)

(5.10) can then be written

E |||Pt|||2 ≤ Cη(T − t)−4η

[

E

∫ T

0
‖H̄s‖22ds+ E‖h̄‖22

]

. (5.12)

3. Note that for L4-valued, Ft-measurable random variables F,G we have

〈PtF,G〉 = E
Ft

∫ T

t
〈H̄sY

t,F
s , Y t,G

s 〉 ds + E
Ft〈h̄Y t,F

T , Y t,G
T 〉, P− a.s. (5.13)

The equality being trivial if F and G are simple random variables and easily passing to
the limit.

Proof of Proposition 5.3. Fix η ∈ (0, 1/4), f, g ∈ D(−A)η ⊂ L4, 0 ≤ t < T . Using the
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conditional Hölder inequality and (5.4) we have

∣

∣

∣

∣

E
Ft

∫ T

t
〈H̄sY

t,(−A)ηf
s , Y t,(−A)ηg

s 〉 ds+ E
Ft〈h̄Y t,(−A)ηf

T , Y
t,(−A)ηg
T 〉

∣

∣

∣

∣

≤ E
Ft

∫ T

t
‖H̄s‖2‖Y t,(−A)ηf

s ‖4‖Y t,(−A)ηg
s ‖4 ds+ E

Ft [‖h̄‖2‖Y t,(−A)ηf
T ‖4‖Y t,(−A)ηg

T ‖4]

≤
∫ T

t
(EFt‖H̄s‖22)1/2(EFt‖Y t,(−A)ηf

s ‖44)1/4(EFt‖Y t,(−A)ηg
s ‖44)1/4 ds

+(EFt‖h̄‖2‖2)1/2(EFt‖Y t,(−A)ηf
T ‖44)1/4(EFt‖Y t,(−A)ηg

T ‖44)1/4

≤ c‖f‖4‖g‖4
∫ T

t
(EFt‖H̄s‖22)1/2(s− t)−2η ds+ c‖f‖4‖g‖4(EFt‖h̄‖2‖2)1/2(T − t)−2η

≤ c‖f‖4‖g‖4
[

(
∫ T

t
E
Ft‖H̄s‖22ds

)1/2(∫ T

t
(s− t)−4ηds

)1/2

+ (EFt‖h̄‖2‖2)1/2(T − t)−2η

]

≤ c‖f‖4‖g‖4(T − t)−2η

[

(
∫ T

t
E
Ft‖H̄s‖22ds

)1/2

+
(

E
Ft‖h̄‖22

)1/2

]

,

(5.14)
where c is a constant independent of f, g, t. Using (5.2) instead of (5.4) this inequality also holds
for η = 0.

Now fix a dense set F in L4. For f, g ∈ F let us define 〈Ptf, g〉 by formula (5.6), by fixing an
arbitrary version of the conditional expectations on the right-hand side. By (5.14) with η = 0,
there exists a set N of probability zero such that for ω /∈ F we have

|〈Pt(ω)f, g〉| ≤ c‖f‖4‖g‖4, f, g ∈ F.

Thus, the mapping (f, g) 7→ 〈Pt(ω)f, g〉 extends from F × F to a continuous bilinear form on
L4 (or equivalently an element of L), still denoted Pt(ω). Set Pt(ω) = 0 for ω ∈ N . Using
again (5.14) with η = 0, it is easily proved that equality (5.6) holds for every f, g ∈ L4,
by approximating f, g with elements of F . Thus, an L-valued process (Pt)t∈[0,T ] has been
constructed with the required properties. (Pt) is adapted by construction. Similar arguments
also show the existence of a progressive modification of (Pt), as required.

(5.9) follows at once from (5.14). (5.14) with η = 0 gives

‖Pt‖ ≤ c

[

(
∫ T

t
E
Ft‖H̄s‖22ds

)1/2

+
(

E
Ft‖h̄‖22

)1/2

]

,

which implies (5.7).
It remains to prove (5.8). We sketch the proof in the case h̄ = 0 for short.

〈(Pt+ǫ − Pt)f, g〉 = (EFt+ǫ − E
Ft)

∫ T

t
〈H̄sY

t,f
s , Y t,g

s 〉 ds

−E
Ft+ǫ

∫ t+ǫ

t
〈H̄sY

t,f
s , Y t,g

s 〉 ds+ E
Ft

∫ T

t+ǫ
[〈H̄sY

t+ǫ,f
s , Y t+ǫ,g

s 〉 − 〈H̄sY
t,f
s , Y t,g

s 〉] ds.

The first summand tends to zero in L1(Ω,P) by the downwards martingale convergence theorem,
the third one due to (5.3) and the second one is easy to treat by dominated convergence Theorem.

We are now ready to finish the proof of our main result, by showing that the formula (4.21)
introduced during our heuristic discussion actually holds (more precisely we will prove (5.15)
below).
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End of the proof of Theorem 3.3. We claim that the following holds:

E

∫ T

0
〈H̄sY

ǫ
s , Y

ǫ
s 〉 ds + E〈h̄Y ǫ

T , Y
ǫ
T 〉 = E

∫ T

0
〈Psδ

ǫσj(s, ·), δǫσj(s, ·)〉 ds + o(ǫ). (5.15)

Admitting this for a moment, if follows from Proposition 4.6 that

J(uǫ)− J(u) = E

∫ T

0

∫

D
[δǫl(t, x) + pt(x)δ

ǫb(t, x) + qjt (x)δ
ǫσj(t, x)] dsm(dx)

+E

∫ T

0
〈Psδ

ǫσj(s, ·), δǫσj(s, ·)〉 ds + o(ǫ).

The optimality of u implies that J(uǫ)− J(u) ≥ 0. Diving by ǫ and letting ǫ → 0, the required
conclusion is obtained by standard arguments, see e.g. [13] or [18].

So it only remains to prove (5.15). Recalling that Y ǫ
s = 0 for s ≤ t0, the left-hand side of

(5.15) equals

E

∫ t0+ǫ

t0

〈H̄sY
ǫ
s , Y

ǫ
s 〉 ds + E

∫ T

t0+ǫ
〈H̄sY

ǫ
s , Y

ǫ
s 〉 ds + E〈h̄Y ǫ

T , Y
ǫ
T 〉.

It is easily checked that the first integral is o(ǫ). Using the formula

Y ǫ
s = Y

t0+ǫ,Y ǫ
t0+ǫ

s , s ≥ t0 + ǫ,

which follows by comparing the equations (5.1) and (4.1) satisfied by Y t0+ǫ,f and Y ǫ, we obtain

E

∫ T

0
〈H̄sY

ǫ
s , Y

ǫ
s 〉 ds+ E〈h̄Y ǫ

T , Y
ǫ
T 〉

= o(ǫ) + E

∫ T

t0+ǫ
〈H̄sY

t0+ǫ,Y ǫ
t0+ǫ

s , Y
t0+ǫ,Y ǫ

t0+ǫ

s 〉 ds+ E〈h̄Y t0+ǫ,Y ǫ
t0+ǫ

T , Y
t0+ǫ,Y ǫ

t0+ǫ

T 〉

= o(ǫ) + E〈Pt0+ǫY
ǫ
t0+ǫ, Y

ǫ
t0+ǫ〉,

(5.16)

where the last equality follows from an application of (5.13). Next we claim that

E〈(Pt0+ǫ − Pt0)Y
ǫ
t0+ǫ, Y

ǫ
t0+ǫ〉 = o(ǫ), (5.17)

E〈Pt0Y
ǫ
t0+ǫ, Y

ǫ
t0+ǫ〉 = E

∫ t0+ǫ

t0

〈Psδ
ǫσj(s, ·), δǫσj(s, ·)〉 ds + o(ǫ). (5.18)

The required formula (5.15) will now be a consequence of (5.17) and (5.18), which are proved
in the following two subsection below. The proof of Theorem 3.3 will then be finished.

5.1 Proof of (5.17)

It is convenient to rewrite (5.17) in the form

E〈(Pt0+ǫ − Pt0) ǫ
−1/2Y ǫ

t0+ǫ, ǫ
−1/2Y ǫ

t0+ǫ〉 → 0. (5.19)

By Proposition 4.1 there exists a constant C0 independent of ǫ such that

(E‖ǫ−1/2Y ǫ
t0+ǫ‖44)1/4 ≤ C0, (E‖ǫ−1/2Y ǫ

t0+ǫ‖84)1/8 ≤ C0. (5.20)

Next we fix η ∈ (0, 1/4) and notice that for every δ > 0 we have, by the Markov inequality,

P(‖ǫ−1/2(−A)−ηY ǫ
t0+ǫ‖D(−A)η > C0δ

−1/4) = P(‖ǫ−1/2Y ǫ
t0+ǫ‖4 > C0δ

−1/4) ≤ δ.
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Therefore setting Kδ = {f ∈ L4 : f ∈ D(−A)η, ‖f‖D(−A)η ≤ C0δ
−1/4} and denoting Ωδ,ǫ the

event {ǫ−1/2(−A)−ηY ǫ
t0+ǫ ∈ Kδ} we obtain

P(Ωc
δ,ǫ) = P(ǫ−1/2(−A)−ηY ǫ

t0+ǫ /∈ Kδ) ≤ δ.

We note that, since D(−A)η is compactly embedded in L4, the set Kδ is a compact subset of
L4. Moreover, for f ∈ Kδ we have

‖f‖4 ≤ c‖f‖D(−A)η ≤ cC0δ
−1/4, (5.21)

i.e. Kδ is contained in a ball of L4 centered at 0 with radius proportional to δ−1/4.
We have

E〈(Pt0+ǫ − Pt0) ǫ
−1/2Y ǫ

t0+ǫ, ǫ
−1/2Y ǫ

t0+ǫ〉
= E[〈(Pt0+ǫ − Pt0) ǫ

−1/2Y ǫ
t0+ǫ, ǫ

−1/2Y ǫ
t0+ǫ〉1Ωc

δ,ǫ
] + E[〈(Pt0+ǫ − Pt0) ǫ

−1/2Y ǫ
t0+ǫ, ǫ

−1/2Y ǫ
t0+ǫ〉1Ωδ,ǫ

]

=: Aǫ
1 +Aǫ

2.

By the Hölder inequality

|Aǫ
1| ≤ (E‖Pt0+ǫ − Pt0‖2L)1/2(E‖ǫ−1/2Y ǫ

t0+ǫ‖84)1/4P(Ωc
δ,ǫ)

1/4,

and from (5.7), (5.20) we conclude that |Aǫ
1| ≤ cP(Ωc

δ,ǫ)
1/4 ≤ cδ1/4 for some constant c indepen-

dent of δ and ǫ.
On the other hand, recalling the definition of Ωδ,ǫ,

|Aǫ
2| ≤ E sup

f∈Kδ

|〈(Pt0+ǫ − Pt0) (−A)ηf, (−A)ηf〉1Ωδ,ǫ
|.

Since Kδ is compact in L4, it can be covered by a finite number Nδ of open balls with radius
δ and centers denoted f δi , i = 1, . . . , Nδ. Since D(−A)η is dense in L4, we can assume that
f δi ∈ D(−A)η. Given f ∈ Kδ, let i be such that ‖f − f δi ‖4 < δ; then writing

〈(Pt0+ǫ − Pt0)(−A)ηf, (−A)ηf〉 = 〈(Pt0+ǫ − Pt0)(−A)ηf δi , (−A)ηf δi 〉
−〈(Pt0+ǫ − Pt0)(−A)η(f − f δi ), (−A)η(f − f δi )〉+ 2〈(Pt0+ǫ − Pt0)(−A)ηf, (−A)η(f − f δi )〉

and recalling the notation introduced in (5.11) we obtain

|〈(Pt0+ǫ − Pt0)(−A)ηf, (−A)ηf〉| ≤ |〈(Pt0+ǫ − Pt0)(−A)ηf δi , (−A)ηf δi 〉|
+|||Pt0+ǫ − Pt0 ||| δ2 + 2|||Pt0+ǫ − Pt0 ||| ‖f‖4 δ.

Recalling (5.21) we conclude that

sup
f∈Kδ

|〈(Pt0+ǫ − Pt0) (−A)ηf, (−A)ηf〉 ≤
Nδ
∑

i=1

|〈(Pt0+ǫ − Pt0)(−A)ηf δi , (−A)ηf δi 〉|

+2 sup
t∈[t0,t0+ǫ]

|||Pt||| δ2 + c sup
t∈[t0,t0+ǫ]

|||Pt||| δ3/4,

for some constant c. Taking expectation, it follows from (5.12) that

|Aǫ
2| ≤

Nδ
∑

i=1

E|〈(Pt0+ǫ − Pt0)(−A)ηf δi , (−A)ηf δi 〉|+ c(T − t0 − ǫ)−2η[δ2 + δ3/4],

for some constant c independent of ǫ and δ. By (5.8) we conclude that

lim sup
ǫ↓0

|Aǫ
2| ≤ c(T − t0)

−2η[δ2 + δ3/4].

Letting δ → 0 we obtain |Aǫ
1|+ |Aǫ

2| → 0 and the proof of (5.17) is finished.
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5.2 Proof of (5.18)

In order to make appropriate computations on E〈Pt0 Y
ǫ
t0+ǫ, Y

ǫ
t0+ǫ〉 we perform an approximation

of both Pt0 and Y ǫ
t0+ǫ.

To approximate Pt0 we use the basis (ei)i≥1 of Hypothesis 3.1. We introduce the projection
operators ΠNf =

∑N
i=1〈f, ei〉2ei, f ∈ L2, where 〈·, ·〉2 denotes the scalar product of L2. Each

ΠN is an orthogonal projection in L2. Since we assume that (ei)i≥1 is a Schauder basis of L4,
the restriction of ΠN to L4 is a bounded linear operator in L4, satisfying ‖ΠNf − f‖4 → 0 for
every f ∈ L4 and supN ‖ΠN‖L(L4,L4) <∞. Then we define

PN
t (ω)f :=

N
∑

i,j=1

〈Pt(ω)ei, ej〉〈ei, f〉2ej , f ∈ L4.

Then PN
t (ω) is a linear bounded operator on L4, which extends to a linear bounded operator

on L2, with values in the finite-dimensional subspace spanned by e1, . . . , eN . Moreover

〈PN
t (ω)f, g〉2 =

N
∑

i,j=1

〈Pt(ω)ei, ej〉〈ei, f〉2〈ej , g〉2 = 〈Pt(ω)ΠNf,ΠNg〉, f, g ∈ L4. (5.22)

In the following we will consider PN as a stochastic process with values in L2(L
2), the space of

Hilbert-Schmidt operators on L2.
In order to approximate Y ǫ

t0+ǫ we introduce

Jn = (nI −A)−1, An = AJn, Y ǫ,n
t (ω) = JnY

ǫ
t (ω).

Note that An are the Yosida approximations of the operator A.
We are going to approximate E〈Pt0 Y

ǫ
t0+ǫ, Y

ǫ
t0+ǫ〉 by E〈PN

t0 Y
ǫ,n
t0+ǫ, Y

ǫ,n
t0+ǫ〉2.

Y ǫ,n is a process with values in L2 which admits an Ito differential that we are going to
compute. Recall equation (4.2) satisfied by Y ǫ, that we now re-write in the following way: for
s ≥ t0,

Y ǫ
s =

∫ s

t0

e(s−r)A[B(r)Y ǫ
r + δǫb(r)] dr +

∫ s

t0

e(s−r)A[Cj(r)Y
ǫ
r + δǫσj(r)] dW

j
r , P− a.s.

where B(r), Cj(r) denote the multiplication operators by the functions b′(r, ·,Xr(·), ur) and
σ′j(r, ·,Xr(·), ur) respectively. Applying Jn to both sides it is not hard to conclude that Y ǫ,n

t has
the Ito differential

dY ǫ,n
s = An Y

ǫ,n
s ds + [JnB(s)Y ǫ

s + Jnδ
ǫb(s)] ds + [JnCj(s)Y

ǫ
s + Jnδ

ǫσj(s)] dW
j
s .

In the following for y, z ∈ L2, we denote by y ⊗ z the rank-one operator f 7→ 〈f, z〉2 y on
L2. Using this notation we will consider the L2(L

2)-valued process Y ǫ,n
s ⊗ Y ǫ,n

s , s ∈ [t0, T ]
(recall that if K is a separable Hilbert space, L2(K) is the Hilbert space of all bounded linear
operators in X for which ||X||2

L2(K) = tr(X∗X) is finite naturally endowed with the product

〈X1,X2〉L2(K) = tr(X∗
1X2)).

By the Ito formula for Hilbert-space valued Ito processes we have

d(Y ǫ,n
s ⊗ Y ǫ,n

s ) = An (Y
ǫ,n
s ⊗ Y ǫ,n

s ) ds + (Y ǫ,n
s ⊗ Y ǫ,n

s )A∗
n ds

+Y ǫ,n
s ⊗ [JnB(s)Y ǫ

s + Jnδ
ǫb(s)] ds+ [JnB(s)Y ǫ

s + Jnδ
ǫb(s)]⊗ Y ǫ,n

s ds

+Y ǫ,n
s ⊗ [JnCj(s)Y

ǫ
s + Jnδ

ǫσj(s)] dW
j
s + [JnCj(s)Y

ǫ
s + Jnδ

ǫσj(s)]⊗ Y ǫ,n
s dW j

s

+[JnCj(s)Y
ǫ
s + Jnδ

ǫσj(s)]⊗ [JnCj(s)Y
ǫ
s + Jnδ

ǫσj(s)] ds
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and it follows that

Y ǫ,n
s ⊗ Y ǫ,n

s

=

∫ s

t0

e(s−r)An{Y ǫ,n
r ⊗ [JnB(r)Y ǫ

r + Jnδ
ǫb(r)] + [JnB(r)Y ǫ

r + Jnδ
ǫb(r)]⊗ Y ǫ,n

r }e(s−r)A∗

n dr

+

∫ s

t0

e(s−r)An{Y ǫ,n
r ⊗ [JnCj(r)Y

ǫ
r + Jnδ

ǫσj(r)] + [JnCj(r)Y
ǫ
r + Jnδ

ǫσj(r)]⊗ Y ǫ,n
r }e(s−r)A∗

n dW j
r

+

∫ s

t0

e(s−r)An{[JnCj(r)Y
ǫ
r + Jnδ

ǫσj(r)]⊗ [JnCj(r)Y
ǫ
r + Jnδ

ǫσj(r)]}e(s−r)A∗

n dr

The reason for introducing the process Y ǫ,n ⊗ Y ǫ,n is that we can now make the following
computation: denoting by tr the trace of operators in L2 we have

E〈PN
t0 Y

ǫ,n
t0+ǫ, Y

ǫ,n
t0+ǫ〉2 = E tr[PN

t0 (Y ǫ,n
t0+ǫ ⊗ Y ǫ,n

t0+ǫ)]

and we can replace (Y ǫ,n
t0+ǫ⊗Y

ǫ,n
t0+ǫ) by the previous formula. Taking conditional expectation with

respect to Ft0 the stochastic integral disappears and we obtain

E〈PN
t0 Y

ǫ,n
t0+ǫ, Y

ǫ,n
t0+ǫ〉2

=

∫ t0+ǫ

t0

E tr
[

PN
t0 e

(t0+ǫ−r)An{Y ǫ,n
r ⊗ [JnB(r)Y ǫ

r + Jnδ
ǫb(r)]

+[JnB(r)Y ǫ
r + Jnδ

ǫb(r)]⊗ Y ǫ,n
r }e(t0+ǫ−r)A∗

n

]

dr

+

∫ t0+ǫ

t0

E tr
[

PN
t0 e

(t0+ǫ−r)An{[JnCj(r)Y
ǫ
r + Jnδ

ǫσj(r)]⊗ [JnCj(r)Y
ǫ
r + Jnδ

ǫσj(r)]}e(t0+ǫ−r)A∗

n

]

dr

= 2E

∫ t0+ǫ

t0

〈PN
t0 e

(t0+ǫ−r)An [JnB(r)Y ǫ
r + Jnδ

ǫb(r)], e(t0+ǫ−r)AnY ǫ,n
r 〉2 dr

+E

∫ t0+ǫ

t0

〈PN
t0 e

(t0+ǫ−r)An [JnCj(r)Y
ǫ
r + Jnδ

ǫσj(r)], e
(t0+ǫ−r)An [JnCj(r)Y

ǫ
r + Jnδ

ǫσj(r)]〉2 dr.

Next we let n → ∞ and we use the fact that ‖etAnf − etAf‖2 → 0 and ‖Jnf − f‖2 → 0 for
f ∈ L2. It follows that

E〈PN
t0 Y

ǫ
t0+ǫ, Y

ǫ
t0+ǫ〉2 = 2E

∫ t0+ǫ

t0

〈PN
t0 e

(t0+ǫ−r)A[B(r)Y ǫ
r + δǫb(r)], e(t0+ǫ−r)AY ǫ

r 〉2 dr

+E

∫ t0+ǫ

t0

〈PN
t0 e

(t0+ǫ−r)A[Cj(r)Y
ǫ
r + δǫσj(r)], e

(t0+ǫ−r)A[Cj(r)Y
ǫ
r + δǫσj(r)]〉2 dr.

Recalling (5.22), this formula can be written

E〈Pt0Π
NY ǫ

t0+ǫ,Π
NY ǫ

t0+ǫ〉 = 2E

∫ t0+ǫ

t0

〈Pt0Π
Ne(t0+ǫ−r)A[B(r)Y ǫ

r + δǫb(r)],ΠNe(t0+ǫ−r)AY ǫ
r 〉 dr

+E

∫ t0+ǫ

t0

〈Pt0Π
Ne(t0+ǫ−r)A[Cj(r)Y

ǫ
r + δǫσj(r)],Π

N e(t0+ǫ−r)A[Cj(r)Y
ǫ
r + δǫσj(r)]〉 dr.

We let N → ∞ and we finally obtain

E〈Pt0 Y
ǫ
t0+ǫ, Y

ǫ
t0+ǫ〉 = 2E

∫ t0+ǫ

t0

〈Pt0 e
(t0+ǫ−r)A[B(r)Y ǫ

r + δǫb(r)], e(t0+ǫ−r)AY ǫ
r 〉 dr

+E

∫ t0+ǫ

t0

〈Pt0 e
(t0+ǫ−r)A[Cj(r)Y

ǫ
r + δǫσj(r)], e

(t0+ǫ−r)A[Cj(r)Y
ǫ
r + δǫσj(r)]〉 dr.
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Using the estimate in Proposition 4.1 it follows that

E〈Pt0 Y
ǫ
t0+ǫ, Y

ǫ
t0+ǫ〉 = E

∫ t0+ǫ

t0

〈Pt0 e
(t0+ǫ−r)Aδǫσj(r), e

(t0+ǫ−r)Aδǫσj(r)〉 dr + o(ǫ),

and since ‖etAf − f‖4 → 0 as t → 0 for every f ∈ L4 we also conclude that

E〈Pt0 Y
ǫ
t0+ǫ, Y

ǫ
t0+ǫ〉 = E

∫ t0+ǫ

t0

〈Pt0 δ
ǫσj(r), δ

ǫσj(r)〉 dr + o(ǫ).

Therefore, in order to finish the proof of (5.18), it remains to show that

E

∫ t0+ǫ

t0

〈(Pr − Pt0) δ
ǫσj(r), δ

ǫσj(r)〉 dr = o(ǫ). (5.23)

We fix η ∈ (0, 1/4). Since we have ‖δǫσj(s)‖4 ≤ C0, for some constant C0, it follows that

(−A)−ηδǫσj(s) ∈ K := {f ∈ L4 : f ∈ D(−A)η , ‖f‖D(−A)η ≤ C0}.

Since D(−A)η is compactly embedded in L4, the set K is a compact, hence bounded, subset of
L4. We have

|E〈(Pr − Pt0) δ
ǫσj(r), δ

ǫσj(r)〉| ≤ E sup
f∈K

|〈(Pr − Pt0) (−A)ηf, (−A)ηf〉|.

Since K is compact in L4, for every δ > 0 it can be covered by a finite number Nδ of open
balls with radius δ and centers denoted f δi , i = 1, . . . , Nδ . Since D(−A)η is dense in L4, we can
assume that f δi ∈ D(−A)η. Given f ∈ K, let i be such that ‖f − f δi ‖4 < δ; then writing

〈(Pr − Pt0)(−A)ηf, (−A)ηf〉 = 〈(Pr − Pt0)(−A)ηf δi , (−A)ηf δi 〉
−〈(Pr − Pt0)(−A)η(f − f δi ), (−A)η(f − f δi )〉+ 2〈(Pr − Pt0)(−A)ηf, (−A)η(f − f δi )〉

and recalling the notation introduced in (5.11) we obtain

|〈(Pr − Pt0)(−A)ηf, (−A)ηf〉| ≤ |〈(Pr − Pt0)(−A)ηf δi , (−A)ηf δi 〉|
+|||Pr − Pt0 ||| δ2 + 2|||Pr − Pt0 ||| ‖f‖4 δ.

Since K is bounded in L4, we conclude that

sup
f∈K

|〈(Pr − Pt0) (−A)ηf, (−A)ηf〉 ≤
Nδ
∑

i=1

|〈(Pr − Pt0)(−A)ηf δi , (−A)ηf δi 〉|

+2 sup
t∈[t0,r]

|||Pt||| δ2 + c sup
t∈[t0,r]

|||Pt||| δ,

for some constant c. Taking expectation, it follows from (5.12) that

|E〈(Pr − Pt0) δ
ǫσj(r), δ

ǫσj(r)〉| ≤
Nδ
∑

i=1

E|〈(Pr − Pt0)(−A)ηf δi , (−A)ηf δi 〉|+ c(T − r)−2η[δ2 + δ],

for some constant c independent of ǫ and δ. By (5.8) we conclude that

lim sup
r↓t0

|E〈(Pr − Pt0) δ
ǫσj(r), δ

ǫσj(r)〉| ≤ c(T − t0)
−2η [δ2 + δ].

Letting δ → 0 we conclude that the left-hand side is zero, and (5.23) follows immediately.
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A Stochastic integrals in L
p spaces

In this appendix we sketch the construction and some basic properties of stochastic integrals
with respect to a finite dimensional Wiener process, taking values in an Lp-space. The few facts
collected below are enough for the present paper.

Let (W 1
t , . . . ,W

d
t )t≥0 be a standard, d-dimensional Wiener process defined in some complete

probability space (Ω,F ,P). We denote by (Ft)t≥0 the corresponding natural filtration, aug-
mented in the usual way, and we denote by P the progressive σ-algebra on Ω × [0, T ], where
T > 0 is a given number. Let Lp := Lp(D,D,m) be the usual space, where m is a positive, σ-
finite measure and p ∈ [2,∞). The integrand processes will be functions H : Ω×[0, T ]×D → R

d,
which are assumed to be P ⊗D-measurable. When H is of special type, i.e. it has components
of the form

Hj(ω, t, x) =
N
∑

i=1

hji (ω, t)f
j
i (x)

for j = 1, . . . , d, hji bounded P-measurable, f ji bounded D-measurable, then the stochastic inte-

gral It(x) is defined for fixed x ∈ D by the formula It(x) =
∫ t
0 H

j
s(x) dW

j
s = f ji (x)

∫ t
0 h

j
i (s) dW

j
s .

Using the Burkholder-Davis-Gundy inequalities for real-valued stochastic integrals, we have for
some constant cp (depending only on p):

E|It(x)|p ≤ cpE

(
∫ t

0
|Hs(x)|2ds

)p/2

where |Hs(x)|2 =
∑d

j=1 |H
j
s (x)|2. Since p ≥ 2 we have, by en elementary inequality,

E|It(x)|p ≤ cp

(
∫ t

0
(E|Hs(x)|p)2/pds

)p/2

= cp

(
∫ t

0
‖Hs(x)‖2Lp(Ω;Rd)ds

)p/2

.

Integrating with respect to m we obtain, again by elementary arguments,

E‖It‖pLp(D) ≤ cp

∫

D

(
∫ t

0
(E|Hs(x)|p)2/pds

)p/2

m(dx) ≤ cp

(

∫ t

0

(
∫

D
E|Hs(x)|pm(dx)

)2/p

ds

)p/2

which can be written

E‖It‖pLp(D) ≤ cp

(
∫ t

0
(E‖Hs‖pLp(D;Rd)

)2/pds

)p/2

(A.1)

or equivalently

‖It‖Lp(Ω×D) ≤ c1/pp

(
∫ t

0
‖Hs‖2Lp(Ω×D;Rd)ds

)1/2

.

Finally, by standard arguments, the stochastic integral can be extended to the class of P ⊗ D-
measurable integrands H for which the right-hand side of (A.1) is finite, and the inequality (A.1)
remains true.

We finally note that from (A.1) and the Hölder inequality it follows that

E‖It‖pLp(D) ≤ cp

∫ t

0
E‖Hs‖pLp(D;Rd)

ds t(p−2)/2. (A.2)

Now suppose that there exist regular conditional probabilities P(·|Ft) given any Ft (this holds
for instance if the Wiener process is canonically realized on the space of Rd-valued continuous
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functions). Then a slight modification of the previous passages shows the validity of the following
conditional variant of (A.2): for 0 ≤ r ≤ t,

E
Fr‖

∫ t

r
Hj

s dW
j
s ‖pLp(D) ≤ cp

∫ t

r
E
Fr‖Hs‖pLp(D;Rd)

ds (t− r)(p−2)/2. (A.3)

This is used in the proof of Proposition 5.2.
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