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Abstract

The paper addresses the real-time �xed-priority scheduling problem

for battery-powered embedded systems whose energy storage unit is re-

plenished by an environmental energy source. In this context, a task may

meet its deadline only if its cost of energy can be satis�ed early enough.

Hence, a scheduling policy for such a system should account for properties

of the source of energy, capacity of the energy storage unit and tasks cost

of energy. Classical �xed-priority schedulers are no more suitable for this

model. Based on these motivations, we propose PFPASAP an optimal

scheduling algorithm that handles both energy and timing constraints.

Furthermore, we state the worst case scenario for non concrete tasksets

scheduled with this algorithm and build a necessary and su�cient feasi-

bility condition for non concrete tasksets. Moreover, a minimal bound of

the storage unit capacity that keeps a taskset schedulable with PFPASAP

is also proposed. Finally, we validate the proposed theory with large scale

simulations and compare our algorithm with other existing ones.

1 Introduction

Due to the growing demand for smaller devices with longer battery life, energy
management has become one of the major goals in embedded systems research.
Indeed, a naive use of the energy available on board can lead to a short runtime
for these devices. However, the targeted embedded applications can be required
to operate over long periods after they are deployed, for example, in the case
of sensor nodes. The extended life of these electronic devices is of particular
importance when they have limited accessibility. Thus, collecting energy from
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the ambient environment can be a very interesting solution, which is known
as Energy Harvesting. In this process, energy is drawn from the environment
and then converted and stored for use in electronic applications. Compared to
classical energy storage devices, the environment proves to be an in�nite source
of available energy. Furthermore, using this kind of energy eliminates the need
to replace batteries periodically that constitute a major part of service and
maintenance.

Many environmental sources can be exploited, including thermal, optical,
mechanical, �uid, etc. Energy sources must be considered according to the
characteristics of the application. Self powered sensors for medical implants and
remote condition monitoring embedded sensors in structures such as bridges or
buildings are typical examples of targeted applications.

In addition, the applications running on power-limited systems can be sub-
ject to timing constraints. Consequently, real-time and energy-aware features
are both highly desirable and sometimes crucial for such systems. An energy
harvesting system is composed of three parts:

The harvester is the part that converts the energy from ambient surroundings
into usable electrical power.

The storage unit is a device used to store the electrical energy produced by
the harvester (e.g. a rechargeable battery or a capacitor).

The computing system is a real-time system that uses the energy stored in
the battery to run the softwares.

In this paper we are interested in the problem of real-time scheduling for
Energy-Harvesting systems. The challenge is to schedule real-time tasks and
to make the best use of the available energy which is highly dependent on the
environment. The energy consumption of the system should be adjusted to
maximize its performance instead of minimizing its overall energy consumption
as in classical battery-powered systems. A new role of the operating system
is to properly manage the activity of the processing unit so that, at any time,
there is su�cient energy in the storage unit to satisfy all the constraints.

This work focuses on optimal �xed-priority solution of this problem. The
remaining part of the paper is organized as follow: �rst, we present the related
work in Section 2. The model is described in Section 3. In Section 4 we introduce
PFPASAP , a �xed-priority scheduling algorithm, and then we study some of its
properties, namely the worst case scenario and its optimality for non concrete
tra�c. A feasibility condition based on PFPASAP is also proposed. In Section
5, we evaluate the performance of PFPASAP and we compare it with other
algorithms by performing large scale simulations. Finally, we discuss the themes
of future work, then, we conclude in Section 6.

2 Related Work

Researchers started to address the issues of power and scheduling only in the
past decade with the objective of either minimizing power usage under timing
constraints or maximizing the system performance under energy constraints.
Nevertheless, most of them have not considered the limited capacity of the
battery and the need to manage its continuous replenishment.

Until recently, the most of this research has focused on saving energy using
the DVFS technique (Dynamic Voltage and Frequency Scaling) [1, 2]. The idea
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here is to save energy by slowing down the processor just enough to meet tasks
deadlines.

These techniques have limitations in energy harvesting systems because they
increase the probability of transient faults [1, 2] and cannot be used alone in
case where there is not enough energy to execute. An energy aware scheduling
strategy for harvesting systems must dynamically manage tasks according to
the pro�les of both available energy and the workload of the processor.

The �rst work which addressed the scheduling problem of energy harvesting
systems was presented by Mossé in [3]. The problem was solved under a very
restrictive task model: the frame-based model where all the tasks have exactly
the same period and the same implicit deadline. Later in [4], Moser et al.
proposed an optimal algorithm called LSA (Lazy Scheduling algorithm) for
periodic or aperiodic tasks. However, in their hypotheses, the CPU frequency
can be changed to adjust the Worst Case Execution Time (WCET) of the tasks
depending on their energy consumption. Thus, the results of this work rely on
the assumption that task energy consumption is directly linked to their WCET.
Recent work shows that this hypothesis is not suitable for embedded systems
[5].

Later, a clairvoyant algorithm called EDeg and several heuristics have been
proposed in [6, 7]. In this context, an algorithm is said to be clairvoyant if
it takes scheduling decisions according to the processor and the energy load,
the amount of incoming energy and the energy level in the storage unit. The
algorithm EDeg relies on a generalizable meta policy: as long as the system
can perform without energy failure, a standard policy such as EDF is used.
Then, as soon as future energy failure is detected, the system is suspended as
long as possible depending on timing constraints or until the energy storage
unit is full. To detect such future energy failure, the notion of slack time [8]
was extended to the notion of slack energy. This algorithm was evaluated with
non clairvoyant heuristics that schedule jobs as soon as possible until energy
runs out, then suspend the system a while without looking for the future state
of energy. For example they suspend the system for a �xed period of time or
consume all available slack-time to replenish the battery.

Most work about scheduling energy-harvesting systems focus on dynamic
priority scheduling by proposing algorithms mainly based on EDF because of
its optimality for classical scheduling problems. However, most of embedded
systems usually operate with �xed-priority scheduling policies because of their
simplicity and their low overhead.

3 Problem Statement

3.1 Taskset Model

We consider a non concrete real-time taskset in a renewable energy environment
de�ned by a set of n periodic and independent tasks {τ1, τ2, . . . , τn}. Each task
τi is characterized by its priority Pi, its worst case execution time Ci, its period
Ti, its deadline Di and its worst case energy consumption Ei. The execution
time Ci and the energy consumption Ei of a task are fully independent. A task
τi releases an in�nite number of jobs separated by Ti time units and each job
must execute during Ci time units and consume Ei energy units. All the tasks
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Figure 1: Energy Harvesting Embedded System Model
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consume energy linearly, i.e. a constant amount of energy for each execution
time unit. Deadlines are constrained or implicit. The taskset is priority-ordered,
task τn being the task with the lowest priority. Since the considered taskset is
a non concrete one, the o�sets denoted as Oi are known only at runtime.

3.2 Target Application Description

We consider an embedded system connected to an energy harvesting device.
An energy harvesting device is a system collecting energy from its environment
(e.g. with a solar panel). The collected energy is stored in an energy storage
unit with �xed capacity (e.g. chemical battery or capacitor). We suppose that
the quantity of energy that arrives in the storage unit is a function of time
which is either known or bounded. As mentioned in Section 3.1, task energy
and processor cost are fully independent. Indeed, in practice, a task can use
some devices that are independent from the processor (e.g. sensors, engines).
Even if we consider only the processor consumption, the later relies heavily on
the kind of circuitry that is used by the code, rather than on the duration of its
execution [5].

The replenishment of the storage unit is performed continuously even during
the execution of tasks, and the energy level of the battery �uctuates between two
thresholds Emin and Emax where Emax is the maximum capacity of the storage
unit and Emin is the minimum energy level that keeps the system running.
The di�erence between these two thresholds is the part of the battery capacity
dedicated to tasks execution, denoted as C. We suppose that C is su�cient to
execute at least one time unit of each task. This means that C must be greater
or equal to the maximum instantaneous consumption, i.e. C ≥ max∀i(Ei/Ci),
otherwise the taskset cannot be executed. For the sake of clarity, we can consider
without loss of generality that Emin = 0 and that C = Emax. The battery level
at time t is denoted as E(t). As the tasks o�sets, the initial level of the battery
E(0) is unknown before runtime. We note Pr(t) the replenishment function of
the battery, then, the energy replenished during any time interval [t1, t2] denoted
as g(t1, t2) is given by Formula 1.

g(t1, t2) =

∫ t2

t1

Pr(t)dt (1)

To simplify the problem, we assume Pr(t) to be a linear function, i.e. Pr(t) =
Pr× t. Then, the energy replenished during any time interval [t1, t2] is given by
Formula 2.

g(t1, t2) = (t2 − t1)× Pr (2)

Below, we use Pr instead of Pr(t) to denote the replenishment function and
we suppose that Pr ≤ C to avoid energy loss. The replenishment process in
energy harvesting systems is usually slower than the dissipation, for this reason
we suppose that tasks consume more energy than the one which is replenished
during executions, i.e. ∀i, Ei ≥ Ci × Pr.

We de�ne the processor utilization of τi as up
i = Ci/Ti and its energy uti-

lization as ue
i = Ei/(Ti × Pr). The total utilization of the system is the sum of

all the tasks utilization, i.e. Up =
∑n

i=1 u
p
i and Ue =

∑n

i=1 u
e
i .
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(b) PFPASAP time chart for taskset Γ1

Figure 2: A PFPASAP schedule

In the considered model, the system has to respect all deadlines and energy
constraints, namely tasks energy cost and battery capacity. The system executes
and consumes energy when it is available and only replenishes it when it is not.
The battery energy level should never exceed its threshold Emax nor fall below
Emin. Thus, a taskset is feasible if and only if there is a schedule where all the
deadlines are met and the battery level never fall below Emin.

Figure 1 recapitulates these descriptions.

4 Theoretical Study of PFPASAP

4.1 As Soon As Possible Preemptive Fixed-Priority Algo-

rithm

Algorithm 1 PFPASAP Algorithm

1: t← 0
2: loop

3: A← set of active tasks at time t
4: if A 6= ∅ then
5: τk ← the highest priority task of A
6: if E(t) + Pr − Emin ≥ Ek/Ck then

7: execute τk for one time unit
8: end if

9: end if

10: t← t+ 1
11: end loop
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In [7], a scheduling algorithm for energy harvesting systems was introduced.
This algorithm is a �xed-priority one which takes into account the tasks energy
cost and the battery capacity during scheduling operations. Tasks are executed
according to their priority, furthermore, whenever there is not enough energy to
execute, jobs execution can be suspended to replenish energy for a �xed amount
of time x. The authors performed tests by varying the x parameter from x = 4
to x = 100 and the best value for their tasksets sample was 6. However, they
did not evaluate the algorithm for x = 1.

In this section we study a special case of this algorithm, one where x = 1 that
we call As Soon As Possible Preemptive Fixed-Priority Algorithm (PFPASAP ).
Algorithm 1 shows how PFPASAP takes decisions at time t. It schedules jobs as
soon as possible when there is enough energy to execute one time unit, otherwise,
it suspends tasks executions to replenish the battery. The replenishment periods
are as long as needed for the execution of one time unit.

Figure 2(b) illustrates an PFPASAP schedule of the taskset Γ1 described in
Table 2(a) in the time interval [0, 72]. In this example we have Emax = 100,
Emin = 0 and Pr = 15. At time t = 0 the battery is empty, therefore, task τ1
cannot be executed. The battery is replenished until time t = 3, i.e. until there
is enough energy to execute one time unit of τ1. Then, the algorithm follows
the same scheduling rules for the rest of the schedule.

Below, we will �rst address the PFPASAP worst case scenario, then we
will discuss its optimality and �nally, we will build a necessary and su�cient
feasibility condition for the scheduling problem.

4.2 Worst Case Scenario

The aim of this section is to characterize the worst case scenario that a taskset
can encounter during its execution. First, let us recall the notion of processor
demand, then we will extend it to include task energy consumption.

De�nition 1. The processor demand of the ith priority level at time t denoted
as wpi(t), is the amount of time necessary to execute jobs of priority levels
1, . . . , i−1, i requested in the interval of time [0, t]. It can be obtained by formula
3.

wpi(t) =
∑

j≤i

⌈

t−Oj

Tj

⌉

× Cj (3)

Now we introduce the notion of replenishment demand.

De�nition 2. The replenishment demand of the ith priority level at instant
t denoted wei(t), is the amount of energy to be replenished to execute jobs of
priority levels 1, . . . , i − 1, i requested in the interval of time [0, t]. It can be
calculated by formula 4.

wei(t) =
∑

j≤i

⌈

t−Oj

Tj

⌉

× Ej − E(0) (4)

The intuition of formula 4 is derived from the notion of processor demand.
It represents the sum of the cost of energy of all the jobs of priority equal or
higher than i requested during the time interval [0, t]. Then, we remove the
initial battery level E(0) to �t the exact amount of energy to be replenished.
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De�nition 3. The time demand of the ith priority level at instant t denoted as
wi(t), is the minimum amount of time necessary to satisfy both of the replen-
ishment and processor demand in the time interval [0, t]. This can be calculated
by formula 5.

wi(t) = max

(⌈

wei(t)

Pr

⌉

, wpi(t)

)

(5)

De�nition 4. The response time of the �rst job of τi according to PFPASAP

denoted as Ri is the execution termination date of ith priority level minus Oi.
The termination date of the �rst job of τi denoted as tf is the smallest solution
of the system of equations 6.











wi(tf ) = max
(⌈

wei(tf )
Pr

⌉

, wpi(tf )
)

wi(tf ) = tf
wi(tf ) > Oi

(6)

Now, we can use these de�nitions to characterize the worst case scenario
which is expected to be the synchronous activation of all the tasks when the
battery is at its minimum level. This intuition is justi�ed by the comparison of
all possible activation scenarios as shown in Figure 3.

Figure 3(a) illustrates the case where all the tasks are requested simultane-
ously. If at least one higher priority task is requested later, the response time
of lower priority tasks decreases as illustrated in Figure 3(b). Then, if higher
priority tasks are requested earlier, the response time of lower priority tasks
cannot be longer than the one in the synchronous scenario as shown in Figures
3(c) and 3(d).

Thus, we propose Theorem 1.

Theorem 1. Let Γ denote a non concrete taskset composed of n priority-ordered
tasks with constraint or implicit deadlines. The PFPASAP worst case scenario
for any task of Γ occurs whenever this task is requested simultaneously with
requests of all higher priority tasks and the battery is at the minimum level
Emin.

Proof. We will compare the jobs response times in the scenario of the theorem
with all other possible ones. As mentioned earlier, the response time of a job is
equal to its termination date minus its o�set. The main key of the proof is to
argue with termination dates and o�sets by comparing their possible values in
di�erent cases of activation scenario.

Let {τ1, τ2, . . . , τn} be a set of n priority-ordered tasks where τn is the task
with the lowest priority. Let Ss

i denote the scenario where task τi and all higher
priority tasks are requested simultaneously at the lower battery level Emin. The
worst case scenario for a task τi is the one which maximizes its response time,
i.e. the scenario which maximizes the termination date of the �rst job of the ith

priority level.
If Ss

i is not the worst scenario, there must be an other one leading to a
greater response time for the ith priority level.

Firstly, we consider the scenario where E(0) > Emin. In this case there is
some amount of energy available at time t = 0. Therefore, the system needs less
replenishment demand than the scenario where E(0) = Emin, and PFPASAP
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Figure 3: Response time in di�erent activation scenarios
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introduces shorter or equal replenishment periods and leads to shorter response
time for all the tasks. This is in contradictory with our hypothesis, thus, such
a scenario cannot lead to longer response times.

Secondly, we consider the scenario with di�erent o�sets. Let us denote Sa
i as

the scenario where E(0) = Emin = 0 and all tasks have di�erent o�sets. Let ts
denote the termination date of the �rst job of task τi in the synchronous scenario
Ss
i and let ta denote the termination date of the same job in the asynchronous

scenario Sa
i . Scenario Sa

i is worse than scenario Ss
i implies that ta > ts.

We know that

ts = ws
i (ts) = max

(⌈

wei(ts)

Pr

⌉

, wpi(ts)

)

(7)

and
⌈

wei(ts)
Pr

⌉

≥ wpi(ts) because in our model E(0) = 0 and ∀i, Ei ≥ Ci × Pr.

This reveals the fact that in the considered model, we must have replenishment
periods which increase job response time. Then,

ts = ws
i (ts) =

















∑

j≤i

⌈

ts
Tj

⌉

× Ej

Pr

















(8)

Similarly,

ta = wa
i (ta) =

















∑

j≤i

⌈

ta −Oj

Tj

⌉

× Ej

Pr

















(9)

Knowing that wa
i (t) strictly increases in the interval [0, ta[, we obtain

ts < ta ⇒ ts < wa
i (ts) (10)

By replacing ts with ws
i (ts) we obtain

















∑

j≤i

⌈

ts
Tj

⌉

× Ej

Pr

















<

















∑

j≤i

⌈

ts −Oj

Tj

⌉

× Ej

Pr

















(11)

Finally, we have

∑

j≤i

⌈

ts
Tj

⌉

× Ej <
∑

j≤i

⌈

ts −Oj

Tj

⌉

× Ej (12)

We know that ts ≥ ts −Oj because Oj ≥ 0. Therefore

∑

j≤i

⌈

ts
Pr

⌉

× Ej ≥
∑

j≤i

⌈

ts −Oj

Pr

⌉

× Ej (13)

Inequality 12 is in contradiction with inequality 13. Thus, we prove that
ts ≥ ta.

Knowing that Ri = tf −Oi, we also have Rs
i ≥ Ra

i because ts− 0 ≥ ta−Oi.
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4.3 Optimality

Theorem 2. PFPASAP is optimal for the scheduling problem of non concrete
tasksets with constrained or implicit deadlines.

Proof. Let Γ denote a non concrete taskset. We suppose that Γ is time feasible
using a �xed-priority assignment without energy constraints, but not schedu-
lable with PFPASAP using the same priority assignment. This means that at
least one task denoted as τk misses its deadline during the �rst instance of the
worst case scenario (see Theorem 1). Indeed, it is su�cient to consider only the
�rst job because deadlines are constrained or implicit. According to PFPASAP

rules, a deadline miss occurs in the worst case scenario for the kth priority level
only if the energy needed to execute priority levels higher or equal to k is greater
than the energy that can be replenished from t = 0 to the �rst deadline of τk,
Inequality 14 summarizes that.

Dk × Pr <
∑

j≤k

⌈

Dk

Tj

⌉

× Ej (14)

If PFPASAP is not optimal, there must be an other �xed-priority schedule for
Γ that makes it feasible. Let us suppose that such a schedule exists. This
implies that there exists at least one task which is executed even if the energy
is not su�cient. This is impossible because the system cannot execute without
energy, therefore such a schedule cannot exist. Then we prove that PFPASAP

is optimal for non concrete �xed-priority tasksets with constrained or implicit
deadlines.

Discussion

The optimality of PFPASAP relies on the hypothesis �xed in Section 3, mainly
the ones about task consumption and replenishment functions. If we relax some
of them PFPASAP may lose its optimality.

Up to now, we have only dealt with linear consumption. If we model con-
sumption as a non linear function, PFPASAP may not be able to estimate the
energy to be replenished to execute exactly one time unit and can lose its opti-
mality.

Tasks consuming less energy than the replenished one are not considered in
our model. Including this kind of tasks makes the priority ordering relevant in
response time computation and makes the proof we provided insu�cient.

In a more realistic model, the replenishment function is not linear. Therefore
Equation 14 is no more valid. Thus, we cannot conclude about PFPASAP

optimality. Finally, we have counter examples that prove the non-optimality of
PFPASAP for concrete tasksets.

4.4 Feasibility Condition

A simple way to build a necessary and su�cient feasibility condition for non
concrete tasksets is to check if the given taskset is schedulable with PFPASAP

in the worst case scenario, i.e. check if the �rst job of each task meets its
deadline when it is requested simultaneously with the higher priority while the
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battery is at its minimum level. It consists in computing the worst response
time according to PFPASAP rules for each task and comparing it to its �rst
deadline. Algorithm 2 explains how to do this.

Algorithm 2 Feasibility Test

1: for i = 1→ n do

2: m← 0
3: w′ ← ǫ
4: repeat

5: m← m+ 1
6: w ← w′

7: w′ ←

















∑

j≤i

⌈

w

Tj

⌉

× Ej

Pr

















8: if w′ > Di then

9: return False
10: end if

11: until w = w′

12: end for

13: return True

The complexity of Algorithm 2 is O(m × n) where m is the number of
iterations and n is the number of tasks. We note that the number of iterations
m depends on the periods and deadlines of the tasks (see line 8) and is bounded
by max∀i(Di). Thus, the complexity of Algorithm 2 is pseudo-polynomial. We
can reduce this complexity by computing estimations for response times rather
than the exact values. However, the feasibility test we propose will not be longer
necessary but will remain su�cient.

4.5 Battery Capacity

The design of a system with an arbitrary battery capacity may lead to an
overestimated C, which can be very costly (space, weight, money). Finding the
lowest battery capacity value is a very important issue.

Given a feasible taskset with C = ∞, the minimum battery capacity issue
in harvesting systems is to �nd the smallest value of C denoted as Cmin that
keeps the taskset feasible when we launch the system at the minimum battery
level.

The exact value of Cmin is di�cult to estimate because it depends on the
environmental characteristics and the used scheduling algorithm. We can solve
the problem by bounding the Cmin value, however, in the case of PFPASAP

algorithm, we can compute the exact value.
Algorithm PFPASAP replenishes the minimum amount of energy needed for

only one execution time unit, in this case the minimum battery capacity needed
to keep the taskset feasible is the maximum amount of energy that can be
consumed during one time unit, i.e. the maximum instantaneous consumption.
In our model all the tasks consume energy linearly. Therefore, the minimum
battery capacity that keeps the taskset feasible is Cmin = max∀i(Ei/Ci) in the
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Figure 4: PFPALAP schedule for taskset Γ1

general case, and Cmin = max∀i(Ei/Ci) − Pr with the linear replenishment
function hypothesis.

If we relax the hypothesis related to the consumption model, a task can at
worst consume all its energy cost Ei during the �rst execution time unit. In
this case the minimum battery capacity needed to execute one time unit is the
maximum of tasks cost, i.e. Cmin = max∀i(Ei).

In both cases, the battery capacity cannot be lower because if we deal smaller
battery capacity, the system will never be able to execute one time unit and will
never have enough energy to execute. Therefore, no other algorithm can run
with smaller battery capacity.

5 Performance Evaluation

We proved that PFPASAP is optimal for non concrete tasksets. In this section
we study the behavior of PFPASAP and we compare it to other algorithms by
simulations and analyze its performance.

Some scheduling algorithms and heuristics were proposed in [7, 9]. We se-
lected PFPST which is not optimal but has the lowest failure rate according
to the experiment performed in [7]. We also selected the PFPALAP algorithm
because it can be used to implement a su�cient feasibility condition [9]. In
this section, we compare these two algorithms with PFPASAP , then we analyze
their performance.

5.1 Competitors

• PFPALAP : is a �xed-priority scheduling algorithm that postpones all jobs
execution as late as possible, i.e. it introduces idle-periods that consume
all available slack-time to charge energy before each job execution. The
PFPALAP algorithm may lose energy if Emax is reached before the end of
an idle period. Figure 4 illustrates an PFPALAP schedule at time interval
[40, 80] of the taskset Γ1 described in Table 2(a),
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• PFPST : is a �xed-priority scheduling heuristic that executes tasks as soon
as possible when there is energy available in the battery, and replenishes
it when it is not. The replenishment periods are as long as available slack-
time. Tasks execution is resumed whenever Emax is reached.

5.2 Simulation

In this section, we describe the con�guration of the experiments, namely the
simulation tool, the input data, the parameters and the set assumptions.

5.2.1 Simulation Tool

To perform such an experiment, we need a simulation tool able to run large scale
simulations on various data and algorithms. We used YARTISS, a simulation
tool presented in [10]. It provides a simulation framework able to run the
simulation of a large set of tasksets on di�erent energy parameters and according
to di�erent scheduling algorithms simultaneously. It can also provide statistics
about the performed simulations like the failure rate, the preemption rate or
the average battery level during the simulations and many other metrics. The
tool is available on line in [11].

5.2.2 Input Data

For these simulations we used an adapted version of the UUniFast-Discard algo-
rithm [12] coupled with a limitation of hyper-period technique [13] to generate
tasksets. The generated tasksets respect the following hypotheses:

• all tasksets are time feasible,

• time and energy are discretized, this means that they are integers and all
scheduling operations are performed before or after one time unit,

• the charging function Pr is linear, i.e. a constant amount of energy is
added to the battery level in every time unit,

• tasks consume energy linearly, i.e. a task consumes Ei/Ci energy units
for each execution time unit.

In order to represent most of the possible tasksets, we generate them accord-
ing to their processor and energy utilizations, i.e. Up and Ue. We vary Up and
Ue in the interval [0.2, 1] to obtain a couple of (Up, Ue) for each 0.05 unit of Up

and Ue. Then, we obtain 350 distinct tasksets for each couple (Up, Ue).
In this paper we restricted the study to non concrete tasksets. Therefore,

all tasksets are simulated in the worst case scenario. The data used for our
simulations are available online in [11].

5.2.3 Simulation Description

In order to evaluate the behavior of the compared algorithms, we vary some
parameters, namely the battery capacity C and the number of tasks per taskset.
Firstly, we vary C in six energy scenarios to analyze its e�ect on the failure rate.
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Secondly, we vary the number of tasks per taskset in several distinct simulations
to observe the evolution of the scheduling overhead of each algorithm.

We set the remaining parameters to the same values that we used for tasksets
generation in order to �t the considered assumptions. For these experiments,
we set these parameters as follows, Pr = 15, Emin = 0. The simulations are ex-
ecuted for 3000 discretized time units. Furthermore, tasksets are run for more
time than one hyper-period that is bounded by 2500 time units. Thus, if a
taskset does not miss any deadline during the simulation time, the taskset is
said to be feasible. We use Deadline Monotonic policy (DM) to assign prior-
ities because of its optimality for the classical scheduling problem. However,
DM policy loses its optimality when we integrate energy constraints (tasks con-
sumption, battery capacity) but according to preliminary experiments, it is still
dominating Rate Monotonic.

Several statistical metrics are computed during simulations. These metrics
give information about algorithms behavior. For our experiments we selected
the following metrics: failure rate, Preemption count, Average overhead, Average
idle-period, Average busy-period and Average energy level.

5.2.4 Metrics De�nition

Failure Rate is the percentage of non feasible taksets among all the tested
ones.

Preemption Count for one simulation, it represents the number of preemp-
tion events. A preemption event occurs when a job is stopped while it is still
not �nished. All of the events that occur at the same instant are considered
once. Therefore, the number of possible events is bounded by the number of
time units composing the simulation, i.e. the simulation duration. For several
simulations, this metric is computed only for feasible tasksets and represents
the ratio of the average number of preemptions relative to all possible events.

Average Overhead it is the amount of time spent while handling a scheduling
event. For one simulation, this metric represents the average overhead of all
of the scheduling events. Its exact value is di�cult to compute. We simply
calculate an estimate by distributing the real simulation time (in milliseconds)
upon the number of scheduling events. The simulation tool that we use is event-
based. Therefore, only the events handling consume processor time. Thus, it
gives us an acceptable estimation of the average overhead.

Average Idle-Period represents the average duration of periods when the
processor is idle. It includes battery replenishment and slack-time periods. For
several simulations, we compute the ratio of the average idle-period duration
relative to the simulation duration.

Average Busy-Period is the average duration of continuous processor activ-
ity. For several simulations, we compute the ratio of the average busy-period
duration relative to the simulation duration.
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Average Energy Level represents the average energy level of the battery or
capacitor at any instant during the simulation. It is the average of the energy
level of all scheduling events.

5.2.5 Metrics Relevance

Failure Rate the greater the failure rate, the lower the algorithm perfor-
mance.

Preemption Count the greater the number of preemptions, the greater the
context switch. This increases the overhead cost and decreases performance,
which makes the algorithm unusable in practice.

Average Overhead the greater the average overhead, the greater the timing
constraints violation risk. This makes the algorithms unusable in practice.

Average Idle-period and Average Busy-Period the relevance of these
two metrics is closely linked to the number of preemptions. The longer the
idle/busy periods, the lesser the number of preemptions and the higher the
algorithm performance. Therefore, the longer the idle-periods, the higher the
average energy level and the lesser energy-constrained the system.

Average Energy Level the best algorithm relative to this criterion is one
which maximizes the average energy level. This means that the algorithm makes
the system less energy constrained.

5.3 Results Analysis

5.3.1 The Variation of Emax

Figure 5 presents the results of comparing the algorithms. In the following part,
we analyze the e�ect of Emax varying on the performance of each algorithm for
each metric:

Failure Rate The increase of Emax reduces the failure rate of all the evalu-
ated algorithms. This result was expected because the more Emax is increased
the less the system is energy-constrained. We also observe that PFPALAP

has the highest failure rate for all values of Emax. Both of PFPASAP and
PFPST have a lower failure while PFPASAP demonstrates the lowest one. To
explain why PFPST fails to schedule some tasksets which are schedulable with
PFPASAP we have to examine its behavior closely. When the battery is down,
PFPST suspends the system as long as possible before the next execution while
PFPASAP suspends the system for only one time unit. In this case PFPST

may uselessly postpone executions and may accumulate an unbearable energy
load for a future time. This can lead the system to replenish more time than the
slack-time available and may lead to missing deadlines. PFPALAP su�ers from
the same problem as PFPST because it postpones execution as long as possible
regardless of the battery level. When all jobs are postponed to a maximum and
the system incurs a long execution period, it is impossible to introduce more
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Figure 5: Comparison between PFPALAP , PFPST and PFPASAP
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replenishment periods. Therefore, deadline misses may occur. Figure 4 illus-
trates a deadline miss caused by delay similar to the one explained for PFPST .
At time 63 a long busy period begins and the system has already consumed all
the slack-time. The energy replenished during the former idle periods is not
su�cient and the system runs out of energy. The PFPASAP algorithm allows
to avoid this situation by starting jobs immediately.

As shown in Section 4, PFPASAP is optimal for non concrete tasksets, the
simulations con�rm that. All of the tasksets that are feasible with PFPALAP

and PFPST are still feasible with PFPASAP but not the reverse. However, the
di�erence in the failure rate between PFPST and PFPASAP is still negligible,
the study of the rest of metrics may be crucial.

Preemption Rate The simulations show that increasing Emax helps to stabi-
lize the number of preemptions. However PFPASAP demonstrates a very high
number of preemptions regardless Emax values. By construction, PFPASAP

executes for one time unit then preempts tasks to check again if there is enough
energy, while PFPST consumes all the slack-time available to replenish energy
and avoid preemptions due to a lack of energy. PFPALAP does the same for
each job activation.

Average Overhead We observe that for every value of Emax, PFPALAP and
PFPST have much higher average overhead than PFPASAP . This is due to
the pseudo-polynomial complexity of the slack-time algorithm [14]. PFPALAP

computes slack-time whenever a job is requested and PFPST does the same only
if there is not enough energy while PFPASAP only needs to order the activated
jobs.

Average Idle-Period and Busy-Period These two metrics are closely linked
to the number of preemptions, the longer the idle or busy periods, the lower
the number of preemptions. PFPASAP maximizes the number of preemptions,
therefore, it has shorter idle and busy periods. PFPST consumes all available
slack-time to replenish energy, then, executes tasks while the battery level is
su�cient. This maximizes the duration of both of the idle and the busy peri-
ods.

Average Energy Level regardless Emax values, PFPST has the highest av-
erage energy level and PFPASAP has the lowest one. We expected this result
because the PFPST replenishes energy during long periods (idle periods) which
increase the average battery level.

5.3.2 Varying Taskset Cardinal

The aim of this experiment is to study the e�ect of the taskset cardinal on
the average overhead. We performed the simulations and the results con�rmed
our previous observations. Both of PFPALAP and PFPASAP have a very large
overhead relative to PFPASAP . This is explained by the complexity of the
slack-time computation algorithm.

Table 1 summarizes the performance of the evaluated algorithms.
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- PFPALAP PFPST PFPASAP

Worst case scenario - - synchronous activations

Optimality bad bad good

Failure rate bad good good

Average overhead bad bad good

preemptions neutral good bad

Average idle-period neutral good bad

Average busy-period neutral good bad

Average energy level neutral good bad

Table 1: PFPALAP vs PFPST vs PFPASAP

PFPASAP is optimal for non concrete tasksets and has the lowest failure
rate compared to the other algorithms and need less battery capacity to op-
erate. However, it increases the number of preemptions and context switches
which can be considered to be a great disadvantage. PFPST is not optimal but
simulations show that its failure rate is very close to that of PFPASAP . Fur-
thermore, it maximizes the average energy level and reduces preemptions. The
pseudo-polynomial complexity of stack-time calculation is the main drawback of
PFPST , then, it cannot be used for systems with a large number of tasks. Con-
cerning PFPALAP , in addition to its non-optimality, simulations demonstrate
very bad performance for all metrics.

Finally, we can conclude that PFPASAP is optimal but not applicable in
practice because of its preemption rate. However, despite the great complex-
ity of PFPST and its non optimality, it is still the only algorithm that shows
many advantages. It may be very interesting to study the possibility of signif-
icantly reducing the complexity of the slack-time computation by dealing with
approximated values.

6 Conclusion and Future Work

This paper addresses the problem of �xed-priority scheduling for energy harvest-
ing real-time systems. We proposed PFPASAP , an optimal algorithm for non
concrete tasksets, then we built a necessary and su�cient feasibility condition
based on PFPASAP algorithm. We also proved that the worst case scenario
for PFPASAP occurs whenever all tasks are requested simultaneously while the
battery is at its minimum level Emin. We performed large scale simulations to
evaluate PFPASAP performance and compared it to other algorithms. The ex-
periment showed that the main drawback of PFPASAP is its very large number
of preemptions.
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Moreover, the PFPASAP algorithm is only optimal for non concrete tasksets.
As future work, we will explore other scheduling policies and look for more gen-
eral feasibility condition. Firstly, we plan to study the possibility of �nding a
clairvoyant algorithm based on PFPASAP that can be optimal for both concrete
and non concrete tasksets. Then, we will try to optimize the number of preemp-
tions to make it usable in practice. Secondly, we will study the possibility of
using our feasibility test to build an optimal priority assignment (OPA) based
on Audsley's algorithm [15] and Davis' criteria [16]. Finally, we will be inter-
ested in measuring the e�ect of the assumptions we set on both replenishment
and task consumption functions, indeed, we will try to �nd the worst case of
both consumption and replenishment models.
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