
HAL Id: hal-00783546
https://hal.science/hal-00783546v1

Submitted on 5 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending Enterprise Architecture Modeling Languages
for Domain Specificity and Collaboration: Application

to Telecommunications Service Design
Vanea Chiprianov, Yvon Kermarrec, Siegfried Rouvrais, Jacques Simonin

To cite this version:
Vanea Chiprianov, Yvon Kermarrec, Siegfried Rouvrais, Jacques Simonin. Extending Enterprise Ar-
chitecture Modeling Languages for Domain Specificity and Collaboration: Application to Telecommu-
nications Service Design. Software and Systems Modeling, 2014, 13 (3), pp.963 - 974. �10.1007/s10270-
012-0298-0�. �hal-00783546�

https://hal.science/hal-00783546v1
https://hal.archives-ouvertes.fr

SoSym manuscript No.
(will be inserted by the editor)

Extending Enterprise Architecture Modeling Languages for Domain

Specificity and Collaboration

Application to Telecommunications Service Design

Vanea CHIPRIANOV1,2, Yvon KERMARREC1,2, Siegfried ROUVRAIS1,3, Jacques SIMONIN1,2

1 Institut Mines-Telecom, Telecom Bretagne, Technopole Brest Iroise CS 83818 29238 Brest Cedex 3, Universite europeenne
de Bretagne, France

2 UMR CNRS 6285 Lab-STICC
3 IRISA

The date of receipt and acceptance will be inserted by the editor

Abstract The competitive market forces organiza-
tions to be agile and flexible so as to react robustly
to complex events. Modeling helps managing this com-
plexity. However, in order to model an enterprise, many
stakeholders, with different expertise, must work to-
gether and take decisions. These decisions and their ra-
tionale are not always captured explicitly, in a stan-
dard, formal manner. The main problem is to persuade
stakeholders to capture them. This article synthesizes an
approach for capturing and using the rationale behind
enterprise modeling decisions. The approach is imple-
mented through a Domain Specific Modeling Language,
defined as an extension of a standard Enterprise Archi-
tecture Modeling Language. It promotes coordination,
enables presenting different stakeholders’ points of view,
facilities participation and collaboration in modeling ac-
tivities - activities focused here on Enterprise Architec-
ture viewpoints. To present its benefits, such as rapid
prototyping, the approach is applied to large organiza-
tions in the context of Telecommunications service de-
sign. It is exemplified on modeling and capturing deci-
sions on a conference service.

Key words Enterprise Architecture Framework, En-
terprise Architecture Modeling Language, Domain Spe-
cific Modeling Language, Language Extension, Meta-
model, Design Rationale, Telecommunications Service.

1 Introduction

In order to manage an enterprise, a strategy is to be de-
fined, and an organization chart of its departments must
be set up. This organization needs collaboration between
departments to manage the complexity of enterprise evo-
lution (as driven by the strategy). The development of

large and complex organizations involves many people,
stakeholders, each with their own viewpoint. These view-
points make up the architecture of an enterprise. An ar-
chitecture will integrate business and functional aspects,
as well as technical ones.

The complexity can be faced by modeling techniques.
Viewpoints can be modeled through Enterprise Model-
ing approaches that address enterprise complexity. For
this, enterprise stakeholders must take decisions on dif-
ferent issues (e.g., how to align a model with an en-
terprise strategy), using specific criteria and justifying
them with shareable arguments (i.e. decision rationale).
These decisions and their rationale are not always cap-
tured explicitly, in a standard, formal manner. Hence,
many of them are never communicated to other stake-
holders. They are most often forgotten once the people
that took them leave the enterprise or project. This may
result in a loss of knowledge, high difficulty in main-
taining and evolving existing systems, encumbrance of
communication and common understanding, poor col-
laboration, lack of traceability, low quality.

This article synthesizes an approach for capturing
and using the rationale behind enterprise modeling de-
cisions (e.g., what concepts to include in a model) as
a Modeling Language, which is integrated with the sys-
tem Modeling Languages. This Rationale Modeling Lan-
guage is transversal to all system Modeling Languages
intended for viewpoints, is independent of them, and in
general, of the domain. It can be used for any domain
that implies decisions and requires their capture.

Addressing enterprise system complexity through
Enterprise Modeling, Enterprise Architecture frame-
works, is discussed in Sect. 2. To facilitate collaboration
between the many stakeholders involved in the develop-
ment, maintenance and evolvability of the Information
System of the enterprise and enable reuse of their knowl-
edge, Design Rationale is introduced, as a key approach,

2 Vanea CHIPRIANOV et al.

in Sect. 3. To persuade stakeholders to capture Design
Rationale, a Domain Specific Modeling Language is ad-
vanced. To define this language, a dedicated process and
a Model Driven Approach is presented in Sect. 4. To re-
duce implementation costs and increase integration with
recognized standards of Enterprise Architecture Frame-
works, the Design Rationale Domain Specific Modeling
Language is developed as an extension of an Enterprise
Architecture Modeling Language. Its definition and tools
are introduced in Sect. 5. To show its reliability, it is ap-
plied for an example of a Telecom conference service, in
Sect. 6. The article finishes with conclusions and per-
spectives, in Sect. 8, after related works in Sect. 7.

2 Enterprise Architecture Frameworks and

Modeling Languages

2.1 Architecture and Viewpoints

To document, understand and master the complexity of
an enterprise Information Systems, architectures are an
important means. For the term architecture, the IEEE
Standard 1471-2000 is adopted here, which defines it as
”the fundamental organization of a system embodied in
its components, their relationships to each other, and
to the environment, and the principle guiding its design
and evolution” [24].

Separation of concerns, specifications from multiple
viewpoints, are another important means. In [27], a view-
point is defined as a ”work product establishing the con-
ventions for the construction, interpretation and use of
architecture views to frame specific system concerns”. A
view is defined as a ”work product expressing the ar-
chitecture of a system from the perspective of specific
system concerns”. A concern is an ”interest in a system
relevant to one or more stakeholders”. A stakeholder is
an ”individual, team, organization, or classes thereof,
having an interest in a system”.

2.2 Enterprise Architecture Frameworks

To describe the architecture of an enterprise, Enterprise
Architecture is useful. There are several definitions of
Enterprise Architecture, e.g., [11], [31]. Related to the
variety and difference of definitions in the Enterprise Ar-
chitecture discipline, [44] considers that there is a lack
of theoretical foundation, definitions or a common un-
derstanding within the authors who publish in this con-
text. To avoid contributing to this problem, definitions
are adopted here for the main concepts. For Enterprise
Architecture (EA), [31] define it as ”a coherent whole
of principles, methods and models that are used in the
design and realization of the enterprise’s organizational
structure, business processes, information systems, and
infrastructure”. Enterprise Modeling (EM) describes the

EA from various viewpoints in detail to allow specify-
ing and implementing the systems [11]. Thus, EM com-
bines two means of mastering complexity, architecture
and separation of concerns.

According to ISO 15704 [25] there are two types of
enterprise architectures:

1. System architectures (also called ”Type 1”), that deal
with the design of a system. They represent a system
(e.g. a system of the Information System of an enter-
prise) in terms of its structure and behavior.

2. Enterprise-reference projects (also called ”Type 2”),
that deal with the organization of the development
and implementation of a project such as an enterprise
integration or other enterprise development program.
They are actually frameworks aiming at structur-
ing concepts and activities/tasks necessary to design
and build an enterprise system. The system design
(Type 1) must be coherent with that of other en-
terprise systems and especially be aligned with the
enterprise strategy (Type 2). According to a survey
of EAs [11], most of enterprise architectures are Type
2, frameworks.

An EA framework is a structure expressed in terms of
diagrams, text and formal rules that relates the compo-
nents of a conceptual entity to each other [26]. It defines
and organizes the generic concepts that are required to
enable the creation of enterprise models for industrial
businesses. Its main purpose is to provide an organizing
mechanism so that concepts, problems and knowledge
about enterprise interoperability (both inter and intra)
can be represented in a more structured way. EA frame-
works have been reviewed for example by [38], compared
for example by [50].

2.3 Enterprise Architecture Modeling Languages

Applying EA frameworks to create Type 1 architectures
(i.e. unambiguously specifying and describing system
components and their relations) requires coherent Enter-
prise Architecture Modeling Languages [29]. AModeling
Language (ML) is ”a graphical or textual language for
visualizing, specifying, constructing, and documenting
the artifacts of a software-intensive system” [7] [23]. An
Enterprise Architecture Modeling Language (EAML) is
a high level of abstraction language, aiming at represent-
ing enterprise architectural structure, characteristics and
properties at early stage of design [11]. Although general
purpose modeling languages like UML have been applied
to model EAs, e.g. [21], they are not specially adapted
for this task. The most notable example of an EAML is
ArchiMate [48].

EA benefits (e.g., [11] [31] [29]) have been reviewed
and categorized by [42] into hard (e.g. improved interop-
erability and integration of enterprise constituting sys-
tems), intangible (e.g. providing a holistic view of the

Extending Enterprise Architecture Modeling Languages for Domain Specificity and Collaboration 3

enterprise), indirect (e.g. understanding the wealth of in-
terconnections with an enterprise’s customers, and other
partners) and strategic (e.g. increasing the insight and
overview required to successfully align the business and
technology platforms). The evidence of the contribution
of EA to the achievement of organizational goals is re-
viewed by [8]. To achieve these goals, alignment between
viewpoints and enterprise strategy is needed [47].

EAMLs are used to model an enterprise and its prod-
ucts/services/systems from several viewpoints. To better
differentiate them from other MLs, they are called here
system MLs. Collaboration between stakeholders with
different viewpoints is one of the main issues introduced
by EAMLs.

3 Collaborative Methods for Designers

Collaboration is a process where two or more stakehold-
ers work jointly or together, at the same time or asyn-
chronously, to create or achieve the same goal, especially
in an intellectual endeavor, by sharing knowledge, learn-
ing and building consensus (according to the Merriam
Webster and Cambridge dictionaries).

Benefits of collaboration for an enterprise include:
improved access to information and people across the
enterprise, on-demand availability of data for accelerated
decision making, enterprise-wide sharing of knowledge
and resources, reduced error rates.

3.1 Design Rationale for Collaboration and Enterprise
Architecture

In spite of the variety of collaboration methods, an im-
portant and common issue of all is information seeking.
One of the most absent piece of information is about de-
sign decisions. Design Rationale (DR) is the justification
behind decisions, the reasoning that goes into determin-
ing the design of the artifact [19]. So, capturing DR and
enabling its retrieval would reduce significantly the in-
formation seeking time, increasing the performance of
collaboration.

DR also supports collaboration by [19]:
– promoting coordination in design teams,
– exposing differing points of view,
– facilitating participation and collaboration,
– building consensus.

Specifically for EA, DR is useful to select the best
design from a group of design alternatives, such as var-
ious architecture styles. These design choices are inter-
related, and maximizing certain attributes of the design
may minimize to an unacceptable level other attributes
[20] (e.g. performance vs. security). Therefore trade-offs
are to be managed, in this multi-criteria decision making
problem [9].

Another specific interest of DR in the context of
EA is related to two types of stakeholders. First are the

Fig. 1 The QOC schema, from [19].

EA designers, who work with Type 2 EA architectures.
They take certain decisions and recommendations which
should be followed by the second type of stakeholders,
the EA users. These work with Type 1 EA architectures.
One of their difficulties is to understand, appropriate and
use in their activity the decisions and recommendations
taken by EA conceivers [46]. As the DR DSML allows
capturing and retrieving decisions and their rationale, it
will help reduce this gap.

3.2 The Process of Using Design Rationale

The main activities involving DR are:
1. Capture: the process of eliciting rationale from de-

signers (e.g., directly from designers, or through an
automatic manner) and recording it. Designers may
be quite reluctant about capturing rationale [19].
One of the most important factors of this resistance
seems to be the intrusiveness of the capture pro-
cess (e.g., the disruption in designers’ thinking). To
solve the capture problem, one promising direction
explores reducing its intrusiveness by integrating ra-
tionale artifacts with the system models [52].

2. Formalization: the process of transforming ratio-
nale into the desired representation form. There are
many ways in which DR argumentation may be
structured. One school of thought uses a group of
DR schemas (e.g. Fig. 1, from [19]) having Issue-
Based Information System (IBIS), Questions Options
Criteria (QOC), and Decision Representation Lan-
guage (DRL) as its most prominent members.

3. Retrieval : the process of getting recorded rationale
to the people who need it, providing access to it.
Knowledge is thus capitalized upon and transmitted
between projects.

3.3 Towards a Design Rationale Domain Specific
Modeling Language

To address the DR capture issue, for EAs, this article
proposes formalizing the rationale as a ML which is in-
tegrated with the system MLs. This DR ML is transver-
sal to all system MLs intended for viewpoints, is inde-
pendent of them, and in general, of the domain. It can

4 Vanea CHIPRIANOV et al.

be used for any domain that implies decisions and re-
quires their capture. The DR ML is based on argumen-
tative formalization of DR, and contains concepts and
constructs from the representation schema. One, or a
combination of, schemas like IBIS, QOC, DRL can be
used. Designers use it during the modeling activities, at
the moment which is natural to them. This is expected to
reduce the DR capture intrusiveness. For DR retrieval,
existing navigation or query-based systems can be inte-
grated.

Such a DR ML, because it is transversal to EAMLs,
is well suited to share the knowledge coming from col-
laborative decisions and their rationale at the enter-
prise level. Being an ML, it is easy to use and under-
stand, encouraging the capture and allowing the capi-
talization upon of shared knowledge by several enter-
prise stakeholders.

4 Introduction to Domain Specific Modeling

Languages and Meta-modeling for Language

Definition and Extension

DR is a concern, a domain; the DRML can be considered
a Domain Specific Modeling Language.

4.1 Domain Specific Modeling Languages

Domain Specific Modeling Languages can be used in En-
terprise Modeling to make explicit each view [36]. A Do-
main Specific Modeling Language is an ML (concept
already defined) and a Domain Specific Language. A
Domain Specific Language (DSL) is ”a language that
offers, through appropriate notations and abstractions,
expressive power focused on, and usually restricted to,
a particular problem domain” [51]. A Domain Specific
Modeling Language (DSML) is therefore taken in this
article to be a graphical or textual language that offers,
through appropriate notations and abstractions, expres-
sive power focused on a particular problem domain, to
visualize, specify, construct and document the artifacts
of a software-intensive system.

DSMLs allow experts to express, validate, modify
tasks specific to their domain. Empirical studies, e.g.
questionnaires [35], confirm that DSMLs are superior to
more general purpose languages in all cognitive dimen-
sions. Thus quality, productivity, reliability, maintain-
ability, re-usability, flexibility can be enhanced [32].

The main disadvantage of DSLs is the additional
cost of designing, implementing and maintaining it.
DSL development is hard, requiring both domain and
language development expertise, which few people have
[41]. Meta-tools greatly reduce these additional costs.
Another way of reducing them is by designing DSLs by
re-using a base language.

4.2 The Meta-modeling Approach for Language
Definition and Extension

To reduce the main disadvantage of DSLs, develop-
ment costs, a model-driven approach has been chosen.
DSL development approaches, in general, propose pro-
cesses with several phases. For example [10] consists of 7
phases: Decision, Domain analysis, Design, Implemen-
tation, Testing, Deployment, Maintenance. This article
concentrates on the Design and Implementation phases,
as these are the essential phases for defining a DSL.

In the Meta-modeling for Language Definition ap-
proach [18], the abstract and concrete syntaxes are de-
scribed using Meta-Models (MM). One way of describ-
ing operational semantics is by generating code from the
new language to existing (programming) languages, and
so producing an executable form of the model. The map-
ping between abstract and concrete syntax, and respec-
tively between abstract syntax and semantics may be
described using Model Transformations (MT).

To further reduce DSL development costs, a language
re-use mechanism, namely extension, is used here. A
profile is a generic extension mechanism for customiz-
ing base languages with constructs that are specific to
particular domains, platforms. The Meta-modeling for
Language Extension approach consists in extending (in-
heritance) the initial MMs describing the abstract and
concrete syntaxes, and extending the semantics.

The DR DSML is designed and implemented as a
profile, an extension, to an EAML. Noteworthy is the
fact that the DR DSML definition and development ap-
proach, presented in the next section, is independent of
the chosen EAML. However, to exemplify it, the Archi-
Mate language is chosen.

5 Extending Enterprise Architecture Modeling

Languages with Collaborative Capabilities

Among EA frameworks, the focus here is The Open
Group Architecture Framework (TOGAF) [49]. TOGAF
provides methods for assisting in the acceptance, pro-
duction, use and maintenance of an EA. At the core of
TOGAF is the Architecture Development Method, con-
sisting of eight phases and providing one of the most
complete [45] guiding step-by-step processes for creat-
ing an EA. TOGAF is sometimes [50] considered one of
the strongest frameworks on the business and technical
layers, providing much detail for them.

One well recognized EAML is ArchiMate [48]. It
shares [4] important concepts with TOGAF, and thus
”the two are usable together”. It models three phases of
TOGAF Architecture Development Method into three
layers: Business, Application and Technology. The gen-
eral structure of models within the different layers is sim-
ilar. The same types of concepts and relations are used,
although their exact nature and granularity differ be-
tween layers. A viewpoint, according to ArchiMate [48],

Extending Enterprise Architecture Modeling Languages for Domain Specificity and Collaboration 5

is a means to focus on particular aspects of the architec-
ture. Some viewpoints have a scope that is limited to a
single layer; others link multiple layers. ArchiMate regu-
lates interoperability between layers by defining possible
dependencies. Due to its proximity with TOGAF, and
its maturity, ArchiMate is retained here as the EAML for
which the DR DSML is designed as an extension.

To define the DR DSML, the development approach
proposed by [10] is followed (cf. Sect. 4.2). To decide
whether the DR DSML should be defined, the need for
collaboration in modeling EAs should be considered (cf.
Sect. 3). As the domain to be analyzed is that of DR, the
information that characterizes it has already been cap-
tured for DR formalization, for example by schemas (e.g.
IBIS, QOC, DRL). The QOC [37] schema (cf. Fig. 1) is
chosen, due to previous successful use, e.g. [52]. Note-
worthy is that the remainder of the approach applies
the same, if any other DR schema were chosen.

5.1 The Design of the Design Rationale Domain
Specific Modeling Language

To design the DR DSML, the Meta-modeling for Lan-
guage Definition approach (cf. Sect. 4.2) is followed. Its
abstract syntax is defined as a Meta-Model (MM) in-
spired from the QOC schema. The MM, described in
MOF, is presented in Fig. 2. During decision making,
designers have to asses several proposals for solving an
issue, comparing them against several criteria and finally
choosing one resolution. The MM captures this by mod-
eling an Assessment as containing one Proposal to one
Issue (but, in general, one Proposal can be attached to
several Issues, and one Issue usually has several Propos-
als - cf. the association between them). This proposal
is assessed against one Criterion or more (which dif-
fer and depend on the type of Issue - the same Crite-
rion can be attached to several Issues, and one Issue
may have one Criterion or more - cf. the association
between them). The Proposal could be chosen as Res-
olution or not. To connect the DR concepts with the
EAML (ArchiMate) concepts, the Annotation is intro-
duced as inheriting from ArchimateElement. In this way,
the DR concepts, in turn inheriting from Annotation, are
extending the EAML definition (i.e. the DR DSML is de-
signed as an EAML profile), and can be processed by the
EAML associated tools. One or more Annotations can
be associated to one or more ArchimateElements (cf. the
association between them in the MM, Fig. 2). Archima-
teElement is a root concept in the ArchiMate MM (not
in the standard definition, but in the Archi [2] imple-
mentation used for editor building).

Still for its design, the concrete syntax is defined.
The graphical representations have been chosen follow-
ing for the most [52]. They are presented in Fig. 3, which
presents the palette of the graphical editor.

ArchimateElement Annotation
+subject: String
+description: String

Issue

Proposal

Criterion

Assessment
Resolution

1

1 0..1

*

**

**

**

Fig. 2 The abstract syntax of the DR DSML.

Fig. 3 The concrete syntax of the DR DSML.

5.2 The Implementation of the Design
Rationale Domain Specific Modeling Language

For implementation, the semantics of a DR DSML are
special, consisting in storing and retrieving the DR. Cur-
rently, the DR is stored in the model, and can be re-
trieved by direct visualization. Other retrieving systems
can be integrated as off-the-shelf components.

Still related to implementation are language-specific
tools. The most common one is the editor. Meta-tools
targeted to the generation of graphical editors used in
this project are the Eclipse Graphical Editing Frame-
work (GEF), the Eclipse Modeling Framework (EMF).
An existing open source ArchiMate graphical editor,
Archi, developed as an Eclipse plug-in, has been selected
and reused, expanded (more details about the plug-in
extension process in [15]) with the Java code needed to
describe the concrete syntax of the DR DSML extension.

The resulted editor presents the classical divisions
of an Eclipse-based editor. Archi has a model naviga-
tor and an outline of the graphical model. Its central
window presents views (defined as tabs) of the graphi-
cal model. The palette was extended with DR specific
concepts (cf. Fig. 3), from which the designer can select,

6 Vanea CHIPRIANOV et al.

drag and drop the desired concepts. The designer can as-
sociate any of these DR concepts to any of the ArchiMate
model elements (cf. the DR MM in Fig. 2). The editor
enforces the constraints defined in the DR MM on the
models. For example, an Assessment must have exactly
one Issue, and the editor does not allow the designer to
associate e.g. two issues to the same assessment. Also,
the editor allows that Proposals are associated only to
Issues, and not, e.g. with Criteria. In this way, model
validation is done in order to ensure the integrity and
lack of ambiguity of the DR concepts.

By integrating the DR DSML with the system ML,
the EAML, both in its language definition and associated
tools, the designers’ reluctance to capture raising issues
is to be decreased, thus reducing the DR capture issue.
To better show the integration and use of the DR DSML,
an example is presented in the next section.

6 Application to Telecom Service Design

The example presented here comes from Telecommunica-
tions, but the use of the DR DSML is independent of the
domain. It could have been an example from the auto-
motive industry or health-care. The example is modeled
using an EAML extension for Telecommunications. This
extension is briefly introduced before the example.

6.1 An Enterprise Architecture Modeling
Language Extension for Telecom Service Design

To define the Telecom DSML, the development approach
proposed by [10] is followed (cf. Sect. 4.2). The deci-
sion to define it is sustained by requirements of Service
Providers for Service Creation, including: domain speci-
ficity, rapid prototyping [22]. For domain analysis, in-
formal discussions, MMs from literature (e.g. [5]) and
modeling of service platforms (e.g. IMS [1]) were used to
build initial Telecom MMs.

6.1.1 The Design of the Telecom Enterprise Architec-
ture Modeling Language Extension
The initial Telecom MMs were used to extend the ab-

stract syntax of the three layers of ArchiMate, following
the approach introduced in [16]. This approach intro-
duces three principles for expert-based MM extension.
By applying these three principles, the initial ArchiMate
MMs were extended with Telecom-specific concepts.

The extensions for the Business, Application and
Technology layers of the ArchiMate abstract syntax were
presented in [16], [14] and respectively [17]. The 3 MMs
are grouped here for an overview. The entities specific
to Telecom are marked in all figures with a red T. The
Telecom-specific concepts of the Business (cf. Fig. 4(a))
and Application (cf. Fig. 4(b)) MMs are derived from
the MMs proposed by [5]. The Telecom-specific concepts

Fig. 6 Excerpt from the Telecom ArchiMate extension con-
crete syntax.

of the Technology (cf. Fig. 5) MM are modeled on the
IP Multimedia Subsystem (IMS) [1]. IMS was chosen
because it provides interfaces to traditional switch net-
works and to IP-based networks, the main technological
platforms for implementing telecom services.

Still in the design phase, the concrete syntax was
defined. For each concept and relation introduced in
the MMs, a graphical representation was defined. An
excerpt is presented in Fig. 6. For example, the three
Telecommunications-specific concepts introduced in the
Business MM: ServiceEntityState, ServiceEntity and
ServiceProcess (cf. Fig. 4(a)) have graphical representa-
tions in the Business group from Fig. 6. In their defini-
tion, closeness to concepts from ArchiMate was empha-
sized, so that concepts that inherited those from Archi-
Mate have inherited their representation as well, with a
mark of distinction (e.g. an orange border).

6.1.2 The Implementation of the Telecom Enterprise Ar-
chitecture Modeling Language Extension
To implement the semantics of the Telecom extension,

template-based code generation (model-to-text transfor-
mation) was chosen. This was due to the maturity of
this approach, and the availability of powerful, mature,
free tools. In this approach, the transformation of the
input language is captured in rules called templates.
The templates are defined using the Xpand template
description language, and its editor and compiler, the
free Eclipse plug-in OpenArchitectureWare. The static
semantics is implemented, resulting in Java classes, with
attributes, method signatures. For the behavioral seman-
tics, method call is implemented, resulting in the possi-
bility of translating sequence-like diagrams into code.

Related to implementation are language-specific
tools. These are usually the editor and the compiler de-

Extending Enterprise Architecture Modeling Languages for Domain Specificity and Collaboration 7

Value Meaning BusinessService BusinessInterface

Product

Contract

Representation

BusinessObject

ServiceEntityState

ServiceEntity

BusinessBehaviourElement

BusinessProcess

BusinessFunction

BusinessInteractionBusinessEvent

BusinessRole

BusinessCollaboration

ServiceProcess

BusinessActor

realizes

refers to
1

in relation with

0..*

realizes uses
accesses

triggers

assigned to

assigned to

assigned to

1

1

10..*

0..*0..*

1

accesses

1 0..*
uses

0..*

T

T

T

(a) ArchiMate business MM extended by a Telecom profile
(superscript T). More details in [16].

T T

T

(b) ArchiMate application MM extended by a Telecom profile
(superscript T). More details in [14].

Fig. 4 ArchiMate business and application MMs extended by a Telecom profile.

InfrastructureService InfrastructureInterface

NodeArtifact TechnologyFunction

accesses

assigned to

realizes

assigned to

StartSession PDF CompressMessage AuthenticateUser

Billing SIPReqCheck

P-CSCF

SendLocationInfoToS-CSCF QueryUserLocation

SelectCsNetworkSelectCsGate BGCF

Forward I-CSCF

InformHSSOfUserModifySIPMessage S-CSCFAnalyzeFilterCriteria

CheckPolicyAnalyzeSIPRequestExecuteMediaRequest MRFP

MRF

MRFC

Pstn/CsGateway

MGCF

SIPAS

ApplicationServer

OSASCS IMSSF

SLF

HSS

SGW

MGW

Protocol

SIP DiameterCAP

NodeInterface

CommunicationPathNetwork

realizes

associated with

assigned to

assigned to

assigned to

assigned to

assigned to

assigned to

T

T

T T T

T T T

T T T

T

T T T

T T

T T T T

T T T T

T T T T

T T T

T T

TT

TTT
T

Fig. 5 ArchiMate technology MM extended by a Telecom profile (superscript T). More details in [17].

scribing the operational semantics. As for the DR DSML,
Archi has been extended to include the concrete syntax
of the Telecom ArchiMate extension. For compiler imple-
mentation, a meta-tool, OpenArchitectureWare (OAW),
has been used. The templates for translating the Tele-
com extension of ArchiMate into Java, written in Xpand,
describe the configuration of a compiler. The generated
skeletons can be further detailed using Java libraries that
abstract Telecom protocols, like JAIN. As the Meta-
modeling for Language Definition approach has been
used, maintaining and evolving both DSML definitions
benefits from the high automation degree introduced by
MMs and meta-tools.

6.2 A Collaboration Example for Designing a Telecom
Conferencing Service

To exemplify the DR and Telecom EAML extensions
and their associated software tools, they are applied

to the description of a Telecom service, a conference
system. A conferencing service is a virtual meeting,
done with the help of a set of telecommunications tech-
nologies (e.g., telephone, video, web), which allows two
or more geographically remote locations to interact in
real-time via two-way video and/or audio and/or text
transmissions simultaneously. Notable examples include
WebExTM, SkypeTM for software solutions, Polycom R©,
TandbergTM for hardware or complete solutions.

Because of space considerations, the focus of this ex-
ample for the Application ArchiMate layer is limited to
the phase of entering the conference (for a more com-
plete version cf. [14]). This is the most difficult/impor-
tant phase, when the signaling is established (cf. Fig. 7).
The concepts of Application: ’ServiceFunctionalOper-
ation’, ’ServiceFunctionalComponent’, and relations of
’triggering’, ’assignment’ used in Fig. 7 are those de-
fined by ArchiMate and the Telecom MM extension (cf.
Fig. 4(b) and Fig. 6). The Client part of the conference

8 Vanea CHIPRIANOV et al.

Fig. 7 Example of Design Rationale ArchiMate extension use with a conference service example developed at the Application
layer of the Telecom ArchiMate extension.

system launches the console and tries to join a partici-
pant to the conference. If after three tries the connection
is refused by the Conference system, an error message is
displayed. If everything is alright, the participant is sub-
scribed and joined to the conference.

However, displaying an error is not straightforward
in a distributed system, and could constitute an issue (cf.
Should the error be displayed? in Fig. 7). Not only Us-
ability, but also system Performance and Programming
time criteria should be considered. The basic propos-
als of Displaying and Not displaying are each assessed
against all three criteria and the resolution is chosen to
Display the error. The arguments, the rationale for this
decision (no doubt related to giving much more impor-
tance, weight, to the Usability criterion than to the other
two), is captured in the two Assessments. Of course, the
same decision holds true for all errors, so the assessments
can be capitalized upon, retrieved, for similar cases.

To give an idea of what kind of code can be ob-
tained, an excerpt of the result of applying the template-
based code generation that describes the semantics (cf.
Sect. 6.1.2) of the Telecom ArchiMate extension is pre-
sented in Lst. 1. The excerpt shows part of the class
Clientpart1ofconferencesystem, line 1 from Lst. 1, corre-
sponding to the Client part i of conference system ’Ser-
viceFunctionalComponent’ from Fig. 4(b). Lines 16, 17,
18 from Lst. 1 are especially interesting because they
show the method joinconferencebysendingInvite calling
the checkresponse method of class Conferencesystem,
corresponding (cf. Fig. 4(b)) to the ’triggering’ between
the Conference joining by sending Invite ’ServiceFunc-
tionalOperation’ of the Client part i of conference system
’ServiceFunctionalComponent’ and the Response check-
ing ’ServiceFunctionalOperation’ of the Conference sys-
tem ’ServiceFunctionalComponent’.

1 public c lass Cl i en tpa r t1o f con f e r ence sy s t em {
private St r ing name = ”

Cl i en tpa r t1o f con f e r ence sy s t em ” ;
3 private St r ing id = ”78d717c8” ;

public Cl i en tpa r t1o f con f e r ence sy s t em () {}
5 public void setName (St r ing newName){

this . name = newName ;}
7 public St r ing getName () {

return name ;}
9 public void s e t I d (S t r ing newId){

this . id = newId ;}
11 public St r ing get Id () {

return id ;}
13 public void j o i n c on f e r e n c e () {}

public void l aunchcon f e r ence conso l e () {
15 this . j o i n c on f e r en c eby s end ing Inv i t e () ;}

public void j o i n c on f e r en c eby s end ing Inv i t e () {
17 Conferencesystem conferencesystem = new

Conferencesystem () ;
con fe rencesystem . checkresponse () ;}

19 public void d i s p l a y e r r o r () {}
public void s ub s c r i b e t o c on f e r en c e () {

21 this . j o i n c on f e r e n c e () ;}}

Listing 1 Excerpt of generated Java code for the conference
service at Application layer (cf. Fig. 4(b))

The example shows how the DR DSML can be used
with a system DSML to capture, store (together with
the system models) and retrieve (by direct visualization)
design decisions and their rationale.

6.3 Discussion

Using the DR EAML extension, the designer is capa-
ble, when taking a decision, to document it. Thus, the
integration of DR capture in the EAML helps captur-
ing rationale. The model becomes more comprehensible,
helping the knowledge transfer and collaboration.

Captured DR may be reused. Similar issues may re-
occur in different parts of the same project or in different

Extending Enterprise Architecture Modeling Languages for Domain Specificity and Collaboration 9

projects. A resolution taken at a business or application
layer will be applied consistently across the entire project
or even enterprise. Should other resolutions be taken lo-
cally, in particular situations, the assessments would be
visible and available at all layers. In this way, rationale,
constraints can be transferred across layers, contributing
to better decision-making in future models.

Although the integration of the DR DSML with the
system ML, the EAML, should decrease the designers’
reluctance to capture raising issues, another essential as-
pect for this is the usability of the tools. Without a user
interface that allows and encourages creative freedom,
the designers would not consistently use the graphical
editor either to capture or retrieve DR. However, a cer-
tain degree of formality, structure is necessary, to enable
verifications and assistance, thus reducing the number
of errors. A more detailed discussion on the trade offs
between a higher degree of formality and creative free-
dom, and achieving a compromise, blending both, has
been done for example in [13].

From the perspective of supporting the evolution of
a system, especially its technical architecture, this may
drive stakeholders to change already taken, major deci-
sions. For example, different architectural styles are eligi-
ble for the same kind of service (e.g. client-server or peer-
to-peer styles). Most often, non-functional properties are
the key elements to guide stakeholders in such a selec-
tion process [40]. Investigation if (and how) DR from an
earlier architectural style should/could remain available
in a newer one is still an open issue in our proposal.

7 Related Work

The related work is classified into four categories: collab-
orative methods used for Enterprise Modeling, DR and
Model Driven Engineering, DR MMs used for EA, and
EAML extensions.

Among collaborative methods used for Enterprise
Modeling, two are [3], and [12]. The first one uses
DEMO as an ML, which captures production and co-
ordination acts of stakeholders in an enterprise. It intro-
duces the possibility of simulating (to ensure validation
and verification) an enterprise model through Petri nets.
It concludes that a moderate number of elements, intu-
itive notations and a small set of elements to reduce the
cognitive load of the stakeholders are crucial to encour-
age collaboration among them. Proposing six concepts
and notations that have been, for the most part, previ-
ously used with success [52], the DR DSML answers ad-
equately these requirements, and in a much more light-
weight manner. The second method [12] uses UML and
proposes a distributed, complex system for the creation,
capture, storage, compilation and retrieval of engineer-
ing knowledge in the context of collaborative product
design. While offering less options, the DR DSML re-
quired much less effort to define. Moreover, neither of
these two collaborative methods focuses on DR.

DR has recently begun being a hot research topic
in MDE, and even in the larger community of Software
Engineering. For example, there have been proposals for
integrating DR tools and modeling tools, e.g. for UML
[33]. However, DR is not modeled as a DSL, not even as a
MM, nor integrated as a UML profile. Another direction
investigates linking design decisions to model elements
[34], so that consistency checks and reuse of decisions
are enabled. In the case of the EAML DR extension ad-
vanced in the present article, the linking is ensured by
association relations. Yet another direction investigates
DR evolution. As any other artifact, DR may evolve,
thus impacting other design decisions and their DR. A
MM to support design decision and DR evolution is pro-
posed by [39]. However, although there is a MM pro-
posed, DR is not modeled as a DSL. In none of these
cases, direct reference of applying DR for EA is made.

However, proposals of modeling DR with MMs and
using it for EA do exist. For example, [53] proposes
a graphical notation (and the implied MM) for using
DR to capture system architecture evolution. Although
not presented as such, it is practically a DR DSML. It is
used in a case study to model something very similar to a
business process. However, the DR DSML is not defined
as an EAML extension. Another approach introduces a
formal language, an extension of influence diagrams, to
support the analysis of EAs, of goals and decision alter-
natives [28]. However, this language is not integrated into
an EAML. Another MM for capturing DR [54] is inte-
grated in a conceptual framework for proactive decision
identification, enforcement and decision maker collabo-
ration. The approach is applied to the design of enter-
prise applications employing Service Oriented Architec-
ture as their primary architecture style. However, they
do not use the MM to develop a DSL.

There are several ArchiMate proposed extensions.
For example, one [43] introduces an extension for mod-
eling and managing motivation, principles and require-
ments in TOGAF. Another [30] argues for an extension
for modeling TOGAF’s implementation and migration
phases. However, none of them deals with DR.

In conclusion, even if collaborative methods for En-
terprise Modeling exist, they do not address DR. Even if
some preliminary work on modeling DR as MMs/DSMLs
and using them for EA exist, such DR MMs are not de-
fined as extensions of EAMLs, thus not addressing the
DR capture issue. Even if EAML extensions exist, they
do not address collaboration/DR. One essential contri-
bution of our approach consists therefore in synthesizing
coherently all these themes.

8 Conclusions and Perspectives

In Enterprise Modeling there are many stakeholders in-
volved, with very different backgrounds, but all of them
(should) take decisions that are backed up by arguments.

10 Vanea CHIPRIANOV et al.

This article presented a DSML (e.g. Meta-Model, con-
crete syntax, semantics, graphical editor) for capturing
these decisions and the argumentation, rationale, be-
hind them and an example of its usage with the de-
sign of a Telecom service. DR being an orthogonal,
transversal concern, the DSML is independent of the
domain in which the enterprise is active. On the other
hand, the DR DSML can be integrated, composed with
system DSMLs. The DR DSML was defined as an ex-
tension for an EAML, increasing the integration with
EA. The Meta-modeling for Language Definition ap-
proach (Model Driven Engineering) has been followed for
its development, thus reducing development and main-
tenance costs. The DR DSML promotes coordination
among stakeholders, facilitates participation and collab-
oration, enables building consensus. This results in the
enterprise’s increased reactivity so as to enhance perfor-
mance and reduce costs for the enterprise.

To further take advantage of the captured decisions
and rationale, DR engines for retrieval can be integrated
as a means to implement the DR DSML semantics. Of
course, DR covers only one aspect of collaboration, other
methods (e.g. multi-writer, real-time, distributed collab-
orative editors that also include VoIP, chat, white-board,
and screen sharing functionality), or dedicated hardware
(e.g. multi-touch table, interactive white-boards), or au-
tomatic extraction of collaboration information from
recordings can be envisioned as applicable to EA. An im-
portant development of the DR DSML is integration in
a larger Decision Support System. Such a system could
help balancing and taking multi-criteria decisions [9] [6].
The current DR DSML could be extended to include
concepts like decision-maker, preference, algorithm.

Although exemplified on an EAML Telecom exten-
sion, the DR EAML extension is independent of domain.
It can be applied to capture decisions and their argumen-
tation in any other field. Also, the DR DSML may be de-
signed as an extension of other Modeling Languages, be
they EAMLs or more general purpose ones (e.g. UML).

References

1. 3GPP. TS 23.228 V10.3.1 IP Multimedia Subsystem
(IMS) Stage 2 (Release 10), 2010.

2. Archi. http://archi.cetis.ac.uk/, accessed on
27.05.2012.

3. J. Barjis. Collaborative, Participative and Interactive En-
terprise Modeling, volume 24 of LNBIP, pages 651–662.
Springer, 2009.

4. G. Berrisford and M. Lankhorst. Using ArchiMate with
TOGAF–Part 1: Answers to nine general questions about
methods. Via Nova Architectura, 2009.

5. E. Bertin. Architecture of communication services in a
convergence context (in French). PhD thesis, National
Institut of Telecommunications and Pierre and Marie
Curie University - Paris 6, Paris, 2009.

6. S. Bigaret and P. Meyer. Diviz: an MCDA workflow de-
sign, execution and sharing tool. In 25th Mini-EURO

Conf. Uncertainty and Robustness in Planning and De-
cision Making (URPDM), Coimbra, 2010.

7. G. Booch, J. Rumbaugh, and I. Jacobson. Unified Model-
ing Language User Guide. Addison-Wesley Professional,
Reading, MA, USA, 2005.

8. V. Boucharas, M. van Steenbergen, S. Jansen, and
S. Brinkkemper. The Contribution of Enterprise Archi-
tecture to the Achievement of Organizational Goals: A
Review of the Evidence. In TEAR, pages 1–15, 2010.

9. D. Bouyssou, T. Marchant, M. Pirlot, A. Tsoukis, and
P. Vincke. Evaluation and decision models with multiple
criteria: Stepping stones for the analyst. International
Series in Operations Research and Management Science,
Volume 86. Boston, 1st edition, 2006.

10. I. Ceh, M. Crepinsek, T. Kosar, and M. Mernik. On-
tology driven development of domain-specific languages.
Comput. Sci. Inf. Syst., 8(2):317–342, 2011.

11. D. Chen, G. Doumeingts, and F. Vernadat. Architectures
for enterprise integration and interop: Past, present and
future. Comput. Ind., 59:647–659, 2008.

12. Y.-J. Chen, Y.-M. Chen, and H.-C. Chu. Enabling col-
laborative product design through distributed engineer-
ing knowledge management. Comput. Ind., 59:395–409,
2008.

13. V. Chiprianov, Y. Kermarrec, and S. Rouvrais. Meta-
tools for Software Language Engineering: A Flexible Col-
laborative Modeling Language for Efficient Telecommu-
nications Service Design. In FlexiTools2010 32nd Inter-
national Conference on Software Engineering Workshop
on Flexible Modeling Tools, Cape Town, SA, 2010.

14. V. Chiprianov, Y. Kermarrec, and S. Rouvrais. Extend-
ing Enterprise Architecture Modeling Languages: Appli-
cation to Telecommunications Service Creation. In 9th
Enterprise Engineering track at 27th ACM Symposium
on Applied Computing (SAC), volume 2, pages 1661–
1666, Trento, Italy, 2011. ISBN 978-1-4503-0857-1.

15. V. Chiprianov, Y. Kermarrec, and S. Rouvrais. On the
Extensibility of Plug-ins. In 6th International Conference
on Software Engineering Advances (ICSEA), pages 557–
562, Barcelona, Spain, 2011. ISBN 978-1-61208-165-6.

16. V. Chiprianov, Y. Kermarrec, and S. Rouvrais. Prac-
tical Model Extension for Modeling Language Profiles.
An Enterprise Architecture Modeling Language Exten-
sion for Telecommunications Service Creation. In French
Coloquim in MDE, IDM, pages 85–91, 2011. ISBN 978-
2-917490-15-0.

17. V. Chiprianov, Y. Kermarrec, and S. Rouvrais. Telecom-
munications Service Creation: Towards Extensions for
Enterprise Architecture Modeling Languages. In 6th
Intl. Conf. on Software and Data Technologies, volume 1,
pages 23–29, Seville, Spain, 2011.

18. T. Clark, A. Evans, S. Kent, and P. Sammut. The
MMF approach to engineering object-oriented design
languages. In Ws. on Language Descriptions, Tools and
Applications (LDTA), Genova, Italy, 2001.

19. A. Dutoit, R. McCall, I. Mistrk, and B. Paech. Rationale
management in software engineering: Concepts and tech-
niques. In A. Dutoit, R. McCall, I. Mistrk, and B. Paech,
editors, Rationale Management in Software Engineering,
pages 1–48. Springer, 2006.

20. D. Falessi, G. Cantone, R. Kazman, and P. Kruchten.
Decision-making techniques for software architecture de-

http://archi.cetis.ac.uk/

Extending Enterprise Architecture Modeling Languages for Domain Specificity and Collaboration 11

sign: A comparative survey. ACM Comput. Surv.,
43:33:1–33:28, October 2011.

21. A. Fatolahi and F. Shams. An investigation into applying
UML to the Zachman framework. Information Systems
Frontiers, 8:133–143, 2006.

22. J. H̊allstrand and D. Martin. Industrial requirements
on a service creation environment. In Proc. of the 2nd
Intl Conf. on Intelligence in Broadband Services and Net-
works: Towards a Pan-European Telecommunication Ser-
vice Infrastructure, pages 17–25, London, UK, 1994.

23. Xiao He, Zhiyi Ma, Weizhong Shao, and Ge Li. A
metamodel for the notation of graphical modeling lan-
guages. In Computer Software and Applications Confer-
ence, 2007. COMPSAC 2007. 31st Annual International,
volume 1, pages 219 –224, july 2007.

24. IEEE Computer Society. IEEE Recommended Practice
for Architectural Description of Software Intensive Sys-
tems. IEEE Standard 1471-2000, 2000.

25. ISO. ISO 15704:2000 Industrial automation systems -
Requirements for enterprise-reference architectures and
methodologies, 2000.

26. ISO. ISO 19439:2006 Enterprise integration - Framework
for enterprise modelling, 2006.

27. ISO/IEC. ISO/IEC FDIS 42010. Systems and software
engineering Architecture description, 2007.

28. P. Johnson, R. Lagerstrom, P. Narman, and M. Simon-
sson. Enterprise architecture analysis with extended in-
fluence diagrams. Information Systems Frontiers, 9:163–
180, 2007.

29. H. Jonkers, M. Lankhorst, R. van Buuren, M. Bon-
sangue, and L. van der Torre. Concepts for modeling
enterprise architectures. Intl. Journal of Cooperative In-
formation Systems, 13:257–287, 2004.

30. H. Jonkers, H. van den Berg, M. E. Iacob, and D. Quar-
tel. ArchiMate Extension for Modeling the TOGAF Im-
plementation and Migration Phases. Technical report,
The Open Group, Catalog number W111, 2010.

31. Henk Jonkers, Marc Lankhorst, Hugo ter Doest, Farhad
Arbab, Hans Bosma, and Roel Wieringa. Enterprise ar-
chitecture: Management tool and blueprint for the organ-
isation. Information Systems Frontiers, 8:63–66, 2006.

32. R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Ko-
tov, J. Lewis, D. P. Oliva, T. Sheard, I. Smith, and
L. Walton. A software engineering experiment in soft-
ware component generation. In Proc. of the 18th Intl.
Conf. on Software Engineering, pages 542–552, 1996.

33. P. Konemann. Integrating decision management with
UML modeling concepts and tools. In European Conf.
on Software Architecture. WICSA/ECSA. Joint Work-
ing IEEE/IFIP, pages 297 –300, 2009.

34. P. Konemann and O. Zimmermann. Linking design de-
cisions to design models in model-based software devel-
opment. In Proc. of the 4th European Conf. on Software
Architecture, ECSA, pages 246–262. Springer, 2010.

35. T. Kosar, N. Oliveira, M. Mernik, V.J.M. Pereira,
M. Črepinšek, C.D. Da, and R.P. Henriques. Comparing
general-purpose and domain-specific languages: An em-
pirical study. Computer Science and Information Sys-
tems, 7(2):247–264, 2010.

36. H. Lochmann and A. Hessellund. An integrated view
on modeling with multiple domain-specific languages. In
Software Engineering. ACTA Press, 2009.

37. A. MacLean, R. M. Young, V. M. E. Bellotti, and T. P.
Moran. Design rationale. chapter Questions, options, and
criteria: elements of design space analysis, pages 53–105.
L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1996.

38. Z Mahmood. Frameworks and tools for building en-
terprise information architectures. In Proc. of 6th Intl.
IBIMA Conf on managing Information In Digital Soci-
ety, pages 216–226, 2006.

39. I. Malavolta, H. Muccini, and Smrithi R. V. Supporting
Architectural Design Decisions Evolution through Model
Driven Engineering. In Elena Troubitsyna, editor, Soft-
ware Engineering for Resilient Systems, volume 6968 of
LNCS, pages 63–77. Springer, 2011.

40. Julien Mallet and Siegfried Rouvrais. Style-based model
transformation for early extrafunctional analysis of dis-
tributed systems. In QoSA, pages 55–70, 2008.

41. M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM Com-
put. Surv., 37:316–344, 2005.

42. E. Niemi. Enterprise architecture benefits: Perceptions
from literature and practice. Internet & Information Sys-
tems in the Digital Age: Challenges and Solutions, pages
161–168, 2006.

43. D. Quartel, W. Engelsman, H. Jonkers, and M. van Sin-
deren. A Goal-Oriented Requirements Modelling Lan-
guage for Enterprise Architecture. In IEEE Intl. En-
terprise Distributed Object Computing Conf. (EDOC),
pages 3 –13, Auckland, New Zealand, 2009.

44. M. Schoenherr. Towards a common terminology in the
discipline of enterprise architecture. In George Feuer-
licht and Winfried Lamersdorf, editors, Service-Oriented
Computing -ICSOC Ws., pages 400–413. Springer, 2009.

45. R. Sessions. Comparison of the Top Four Enterprise
Architecture Methodologies. Technical report, Object-
Watch, Inc., 2007.

46. J. Simonin, F. Alizon, J.-P. Deschrevel, Y. Le Traon,
J.-M. Jezequel, and B. Nicolas. EA4UP: An Enter-
prise Architecture-Assisted Telecom Service Develop-
ment Method. In 12th Intl IEEE Enterprise Distributed
Object Computing Conference, pages 279 –285, 2008.

47. J. Simonin, E. Bertin, Y. Le Traon, J.-M. Jezequel, and
N. Crespi. Analysis and improvement of the alignment
between business and information system for telecom ser-
vices. Intl J. On Advances in Sw, 4(1):117–128, 2011.

48. The Open Group. ArchiMate 1.0 Specification, 2009.
49. The Open Group. TOGAF Version 9, 2009.
50. L. Urbaczewski and S. Mrdalj. A comparison of en-

terprise architecture frameworks. Issues in Information
Systems, 7(2):18–23, 2006.

51. A. van Deursen, P. Klint, and J. Visser. Domain-specific
languages: an annotated bibliography. SIGPLAN Not.,
35(6):26–36, 2000.

52. T. Wolf. Rationale-based Unified Software Engineering
Model. VDM Verlag, Saarbrucken, Germany, 2008.

53. A. Zalewski, S. Kijas, and D. Sokolowska. Capturing
Architecture Evolution with Maps of Architectural De-
cisions 2.0. In I. Crnkovic, V. Gruhn, and M. Book, edi-
tors, Software Architecture, volume 6903 of LNCS, pages
83–96. Springer, 2011.

54. O. Zimmermann, T. Gschwind, J. Kuster, F. Leymann,
and N. Schuster. Reusable architectural decision models
for enterprise application development. Sw Architectures,
Components, and Applications, pages 15–32, 2007.

	Introduction
	Enterprise Architecture Frameworks and Modeling Languages
	Collaborative Methods for Designers
	Introduction to Domain Specific Modeling Languages and Meta-modeling for Language Definition and Extension
	Extending Enterprise Architecture Modeling Languages with Collaborative Capabilities
	Application to Telecom Service Design
	Related Work
	Conclusions and Perspectives

