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CODING MULTITYPE FORESTS: APPLICATIONS TO THE LAW OF

THE TOTAL PROGENY OF BRANCHING FORESTS

AND TO ENUMERATIONS

LOÏC CHAUMONT AND RONGLI LIU

Abstract. By extending the breadth �rst search algorithm to any d-type critical or sub-
critical irreducible branching forest, we show that such forests may be encoded through d
independent, integer valued, d-dimensional random walks. An application of this coding
together with a multivariate extension of the Ballot Theorem which is proved here, allow
us to give an explicit form of the law of the total progeny, jointly with the number of
subtrees of each type, in terms of the o�spring distribution of the branching process. We
then apply these results to some enumeration formulas of multitype forests with given
degrees and to a new proof of the Lagrange-Good inversion Theorem.

1. Introduction

Let u1, u2 . . . be the labeling in the breadth �rst search order of the vertices of a
critical or subcritical branching forest with progeny distribution ν. Call p(ui), the size of
the progeny of the i-th vertex, then the stochastic process (Xn)n≥0 de�ned by,

X0 = 0 and Xn+1 −Xn = p(un+1)− 1 , n ≥ 0

is a downward skip free random walk with step distribution P(X1 = n) = ν(n+ 1), from
which the entire structure of the original branching forest can be recovered. We will refer
to this random walk as the Lukasiewicz-Harris coding path of the branching forest, see
Section 6 of [13], Section 1.1 of [7] or Section 6.2 of [20]. A nice example of application
of this coding is that the total progeny of the k �rst trees t1, t2, . . . , tk of the forest, see
Figure 1, may be expressed as the �rst passage time of (Xn)n≥0 at level −k, that is,

Tk = inf{i : Xi = −k} .
This result combined with the following Kemperman's identity (also known as the Ballot
Theorem, see Lemma 5 in [4] or Section 6.2 in [20]):

P (Tk = n) =
k

n
P (Xn = −k) ,

allows us to compute the law of the total progeny of t1, t2, . . . , tk in terms of the progeny
distribution ν. Note that the total progeny is actually a functional of the associated
branching process, (Zn, n ≥ 0), since the random variable Zn represents the number of
individuals at the n-th generation in the forest. The expression of this law was �rst
obtained by Otter [19] and Dwass [8].
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Theorem 1.1 (Otter (49) and Dwass (69)). Let Z = (Zn) be a critical or subcritical
branching process. Let Pk be its law when it starts from Z0 = k ≥ 1 and denote by ν its
progeny law. Let O be the total progeny of Z, that is O =

∑
n≥0 Zn. Then for any n ≥ k,

(1.1) Pk(O = n) =
k

n
ν∗n(n− k) ,

where ν∗n is the n-th iteration of the convolution product of the probability ν by itself.
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Figure 1. A forest labeled according to the breath �rst search order and
the associated Lukasiewicz-Harris coding path.

More generally, whenever a functional of the branching forest admits a 'nice' expression
in terms of the Lukasiewicz-Harris coding path, we may expect to obtain an explicit form
of its law. For instance, the law of the number of individuals with a given degree in the
k �rst trees can be obtained in this way. We refer to Proposition 1.6 in [14] where the
law of the number of leaves, �rst obtained in [16], is derived from the Lukasiewicz-Harris
coding.

As observed in [21], Otter-Dwass and Kemperman's formulas are probabilistic expres-
sions of the Lagrange inversion formula saying that if g is analytic in a neighbourhood of
0, with g(0) ̸= 0, then the equation h(z) = zg(h(z)) has a unique analytic solution in a
neighbourhood of 0 such that

(1.2) [zn]h(z)k =
k

n
[zn−k]g(z)n ,

where [zi]f(z) is the coe�cient of zi in the series expansion of f(z). This identity is indeed
easily derived from Theorem 1.1 for generating functions of probability distributions with
�nite support. The general result is then obtained by polynomial continuation.

Then it is well known since a famous paper by Cayley [6] that the Lagrange inversion
formula is the analytic counterpart to various enumerations of forests. The link between
these enumerations and the Lagrange inversion formula is done through some Lukasiewicz-
Harris type coding paths of forests. We refer to [21], [22], Chapter 6 in [20] and the
references therein, for an account on the subject. As an example, we may give the number
of labeled forests by degree sequence. Let N(c1, . . . , cn) be the number of forests with
vertices in the set {1, . . . , n} such that vertex i ∈ {1, . . . , n} has ci children. The number
of trees in this forest is clearly k := n −

∑n
i=1 ci. Then the following formula will be
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extended in Proposition 5.3 to the multitype case,

(1.3) N(c1, . . . , cn) =
k

n

 n

k

 n− k

c1, . . . , cn

 ,

where

 n− k

c1, . . . , cn

 =
(n− k)!

c1! . . . cn!
is the usual multinomial coe�cient. A complete ac-

count on enumerations of single type forests will be found in [21].

The goal of this paper is to extend the program which is mentioned above to the multi-
type case. The Lukasiewicz-Harris coding will �rst be extended to multitype forests and
will lead to the bijection stated in Theorem 2.7 between forests and some set of coding
sequences. Then in order to obtain the multitype Otter-Dwass identity which is stated
in Theorem 1.2, we �rst need the equivalent of the Ballot Theorem, stated in Theorem
3.4. This theorem together with its equivalent deterministic form, the multivariate Cyclic
Lemma 3.3, are actually amongst the most important results of this paper. Then, as a
consequence, we will recover some recent results about enumeration of multitype forests
and we will present a new proof of the multivariate Lagrange-Good inversion formula.
In this section we only mention the extension of Otter-Dwass formula. Ballot Theorem,
Cyclic Lemma, enumeration of forests and multivariate Lagrange-Good inversion formula
requiring more preliminary results will be stated further in the text.

Let us �rst set some de�nitions and notation in multitype branching processes. We
set Z+ = {0, 1, 2, . . . } and N = {1, 2, . . . }, and for any integer n ≥ 1, the set {1, . . . , n}
will be denoted by [n]. In all the sequel of this paper, d will be an integer such that
d ≥ 2. On a probability space (Ω,G, P ), we de�ne a d-type branching process Z :=

{(Z(1)
n , . . . , Z

(d)
n ), n ≥ 0}, as a Zd

+ valued Markov chain with transition probabilities:

P (Zn+1 = (k1, . . . , kd) |Zn = (r1, . . . , rd)) = ν∗r1
1 ∗ · · · ∗ ν∗rd

d (k1, . . . , kd) ,

where νi are distributions on Zd
+ and ν∗r

i is the r-th iteration of the convolution product of
νi by itself, with ν∗0

i = δ0. For r = (r1, . . . , rd) ∈ Zd
+, we will denote by Pr the probability

law P ( · |Z0 = r). The vector ν = (ν1, . . . , νd) will be called the progeny distribution of
Z. According to this process, each individual of type i gives birth to a random number of
children with law νi, independently of the other individuals of its generation. The integer

valued random variable Z
(i)
n is the total number of individuals of type i, at generation n.

For i, j ∈ [d], let us de�ne the rate

mij =
∑
z∈Zd

+

zjνi(z) ,

that corresponds to the mean number of children of type j, given by an individual of type
i and let

M := (mij)i,j∈[d]

be the mean matrix of Z. Suppose that the extinction time T is a.s. �nite, that is

(1.4) T = inf{n : Zn = 0} < ∞ , a.s.
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Then let Oi, be the total number of o�spring of type i, i.e. the total number of individuals
of type i which are born up to time T :

Oi =
T∑

n=0

Z(i)
n =

∑
n≥0

Z(i)
n .

The vector (O1, . . . , Od) will be called the total progeny of the multitype branching process.

Up to now, most of the results on the exact law of the total progeny of multitype
branching processes concern non irreducible, 2-type branching processes. Let us now recall
them. In the case where d = 2 and when m12 > 0 and 0 < m11 ≤ 1 but m22 = m21 = 0,
it may be derived from Theorem 1 (ii) in [4], that the distribution of the total progeny
of Z is given by

(1.5) P(r1,0)(O1 = n1, O2 = n2) =
r1
n1

ν∗n1
1 (n1 − r1, n2) , 1 ≤ r1 ≤ n1 .

When m12 > 0 and 0 < m11,m22 ≤ 1 but m21 = 0, after some elementary computation,
combining the identities in (1.1) and (1.5), we obtain that for n2 ≥ 1,

(1.6) P(r1,0)(O1 = n1, O2 = n2) =
r1

n1n2

n2∑
j=0

jν∗n1
1 (n1 − r1, j)ν

∗n2
2 (0, n2 − j).

Note that (1.5) and (1.6) concern only the reducible case, when d = 2 and T < ∞, a.s.
As far as we know, those are the only situations where the law of the total progeny of
multitype branching processes is known explicitly.

Recall that if M is irreducible, then according to Perron-Frobenius Theorem, it admits
a unique eigenvalue ρ which is simple, positive and with maximal modulus. In this case,
we will also say that Z is irreducible. If moreover, Z is non-degenerated, that is, if indi-
viduals have exactly one o�spring with probability di�erent from 1, then extinction, that
is (1.4), holds if and only if ρ ≤ 1, see [12], [17] and Chapter V of [1]. If ρ = 1, we say
that Z is critical and if ρ < 1, we say that Z is subcritical. The results of this paper will
be concerned by the case where Z is irreducible, non-degenerated, and critical or subcrit-
ical so that (1.4) holds, that is the multitype branching process Z becomes extinct with
probability 1.

The next result gives the joint law of the total progeny together with the total number
of individuals of type j, whose parent is of type i, i ̸= j, up to time T . Let us denote
by Aij this random variable. We emphasize that the latter Aij is not a functional of the
multitype branching process Z. So, its formal de�nition and the computation of their
law require a more complete information provided by the forest. Then Theorem 1.1 and
identity (1.6) are extended as follows:
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Theorem 1.2. Assume that the d-type branching process Z is irreducible, non-degenerated
and critical or subcritical. For i, j ∈ [d], let Oi be the total o�spring of type i, up to the
extinction time T and for i ̸= j, let Aij be the total number of individuals of type j, whose
parent is of type i, up to time T .
Then for all integers ri, ni, kij, i, j ∈ [d], such that ri ≥ 0, r1 + · · · + rd ≥ 1, kij ≥ 0,

for i ̸= j, −kjj = rj +
∑

i ̸=j kij, and ni ≥ −kii,

Pr

(
O1 = n1, . . . , Od = nd, Aij = kij, i, j ∈ [d], i ̸= j

)
=

det(K)

n̄1n̄2 . . . n̄d

d∏
i=1

ν∗ni
i (ki1, . . . , ki(i−1), ni + kii, ki(i+1), . . . , kid) ,

where r = (r1, . . . , rd), ν
∗0
i = δ0, n̄i = ni ∨ 1 and K is the matrix (−kij)i,j∈[d] to which we

removed the line i and the column i, for all i such that ni = 0.

Our proof of Theorem 1.2 uses a bijection, displayed in Theorem 2.7, between multitype
forests and a particular set of multidimensional, integer valued sequences. A consequence
of this result is that any critical or subcritical irreducible multitype branching forest is
encoded by d independent, d-dimensional random walks, see Theorem 3.1. Then, in a
similar way to the single type case, the total progeny, jointly with the number of subtrees
of each type in the forest, is expressed as the �rst passage time of this multivariate process
in some domain. An extension of the Ballot Theorem, see Theorem 3.4, allows us to con-
clude as in the single type case. Then we will show in Subsection 5.2 that the multitype
Lagrange inversion formula of the generating function of the random vector (O1, . . . , Od),
obtained by Good [10] is a consequence of Theorem 1.2. Let us also emphasize that our
proof of Theorem 1.2 can be adapted in order to deal with the supercritical case and also
to drop the assumption of irreducibility. It is only for the sake of simplifying the notation
that we have chosen to restrict ourselves to the irreducible critical or subcritical case.

This paper is organized as follows. Section 2 is devoted to deterministic multitype
forests. In Subsection 2.1, we present the space of these forests and in Subsection 2.2,
we de�ne the space of the coding sequences and we obtain the bijection between this
space and the space of multitype forests. This result is stated in Theorem 2.7. Then
in Section 3, we de�ne the probability space of multitype branching forests, we display
their multitype Lukasiewicz-Harris coding in Theorem 3.1 and we prove its application
to the total progeny that is stated in Theorem 1.2. This result requires a multivariate
extension of the Ballot Theorem, see Theorem 3.4, whose proof bears on the crucial
combinatorial Lemma 3.3. The latter is proved in Section 4. Finally, in Section 5, we
recover some existing combinatorial formulas, as applications of our results. In Subsection
5.1, we obtain two formulas for the number of multitype forests with given degrees, as
applications of our coding and the combinatorial cyclic Lemma 3.3. Then in Subsection
5.2, we obtain Lagrange-Good inversion formula as a consequence of Theorem 1.2.

2. Multitype forests

2.1. The space of multitype forests. A plane forest, is a directed planar graph with
no loops f ⊂ v × v, with a �nite or in�nite set of vertices v = v(f), such that the outer
degree of each vertex is equal to 0 or 1 and whose connected components, which are called
the trees, are �nite. A forest consisting of a single connected component is also called a
tree. In a tree t, the only vertex with outer degree equal to 0 is called the root of t. It
will be denoted by r(t). The roots of the connected components of a forest f are called
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the roots of f . For two vertices u and v of a forest f , if (u, v) is a directed edge of f , then
we say that u is a child of v, or that v is the parent of u. The set of plane forests will be
denoted by F . The elements of F will simply be called forests.

We will sometimes have to label the forests, which will be done in the following way. We
�rst give an order to the trees of the forest f and denote them by t1(f), t2(f), . . . , tk(f), . . .
(we will usually write t1, t2, . . . , tk, . . . if no confusion is possible). Then each tree is la-
beled according to the breadth �rst search algorithm: we read the tree from its root to its
last generation by running along each generation from the left to the right. This de�nition
should be obvious from the example of Figure 1. If a forest f contains at least i vertices,
then the i-th vertex of f is denoted by ui(f). When no confusion is possible, we will simply
denote the i-th vertex by ui.

Recall that d is an integer such that d ≥ 2. To each forest f ∈ F , we associate an
application cf : v(f) → [d] such that in the labeling de�ned above, if ui, ui+1, . . . , ui+j ∈
v(f) have the same parent, then cf (ui) ≤ cf (ui+1) ≤ · · · ≤ cf (ui+j). For v ∈ v(f), the
integer cf (v) is called the type (or the color) of v. The couple (f , cf ) is called a d-type
forest. When no confusion is possible, we will simple write f . The set of d-type forests will
be denoted by Fd. We emphasize that although there is an underlying labeling for each
forest, F and Fd are sets of unlabeled forests. A 2-type forest is represented on Figure 2
below.
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6 7

11 12

t2

14

15 16

18 19

20 21

17

t3

22

Figure 2. A two type forest labeled according to the breath �rst search
order. Vertices of type 1 (resp. 2) are represented in white (resp. black).

A subtree of type i ∈ [d] of a d-type forest (f , cf ) ∈ Fd is a maximal connected subgraph
of (f , cf ) whose all vertices are of type i. Formally, t is a subtree of type i of (f , cf ),
if it is a connected subgraph whose all vertices are of type i and such that either r(t)
has no parent or the type of its parent is di�erent from i. Moreover, if the parent of a
vertex v ∈ v(t)c belongs to v(t), then cf (v) ̸= i. Subtrees of type i of (f , cf ) are ranked

according to the order of their roots in f and are denoted by t
(i)
1 , t

(i)
2 , . . . , t

(i)
k , . . . . The

forest f (i) := {t(i)1 , t
(i)
2 , . . . , t

(i)
k , . . . } is called the subforest of type i of (f , cf ). It may be

considered as an element of F . We denote by u
(i)
1 , u

(i)
2 , . . . the elements of v(f (i)), ranked

in the breadth �rst search order of f (i). The subforests of type 1 and 2 of a 2-type forest
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are represented in Figure 3.
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Figure 3. Labeled subforests f (1) and f (2) associated with Figure 2. Beside
each vertex, the �rst number corresponds to its rank in f (i), i = 1, 2 and
the second one is its rank in the original forest f .

To any forest (f , cf ) ∈ Fd, we associate the reduced forest, denoted by (fr, cfr) ∈ Fd,
which is the forest of Fd obtained by aggregating all the vertices of each subtree of (f , cf )
with a given type, in a single vertex with the same type, and preserving an edge between
each pair of connected subtrees. An example is given in Figure 4.
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t2

14

15 16

19

t3

22

Figure 4. Reduced forest associated with the example of Figure 2. Beside
each vertex is the rank of the root of the corresponding subtree in the
original forest f .

2.2. Coding multitype forests. For a forest (f , cf ) ∈ Fd and u ∈ v(f), when no confu-
sion is possible, we denote by pi(u) the number of children of type i of u. For each i ∈ [d],
let ni ≥ 0 be the number of vertices in the subforest f (i) of (f , cf ). Then let us de�ne the
d-dimensional chain x(i) = (xi,1, . . . , xi,d), with length ni and whose values belong to the

set Zd, by x
(i)
0 = 0 and if ni ≥ 1,

(2.7) xi,j
n+1−xi,j

n = pj(u
(i)
n+1) , if i ̸= j and xi,i

n+1−xi,i
n = pi(u

(i)
n+1)−1 , 0 ≤ n ≤ ni−1 ,
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where we recall that (u
(i)
n )n≥1 is the labeling of the subforest f (i) in its own breadth �rst

search order. Note that the chains (xi,j
n ), for i ̸= j are nondecreasing whereas (xi,i

n ) is a
downward skip free chain, i.e. xi,i

n+1 − xi,i
n ≥ −1, for 0 ≤ n ≤ ni − 1. The chain (xi,i

n )

corresponds to the Lukasiewicz-Harris coding walk of the subforest f (i), as de�ned in the
introduction, see also Section 6.2 in [20] for a proper de�nition. In particular, if ni is
�nite, then ni = min{n : xi,i

n = min0≤k≤ni
xi,i
k }. These properties of the chains x(i) lead us

to the following de�nition.

De�nition 2.1. Let Sd be the set of
[
Zd
]d
-valued sequences, x = (x(1), x(2), . . . , x(d)), such

that for all i ∈ [d], x(i) = (xi,1, . . . , xi,d), is a Zd-valued sequence de�ned on some interval

of integers, {0, 1, 2, . . . , ni}, 0 ≤ ni ≤ ∞, which satis�es x
(i)
0 = 0 and if ni ≥ 1 then

(i) for i ̸= j, the sequence (xi,j
n )0≤n≤ni

is nondecreasing,

(ii) for all i, xi,i
n+1 − xi,i

n ≥ −1, 0 ≤ n ≤ ni − 1.

We will also denote sequences in Sd by (xi,j
k , 0 ≤ k ≤ ni, i, j ∈ [d]). The vector n =

(n1, . . . , nd) ∈ Zd

+, where Z+ = Z+ ∪ {+∞} will be called the length of x.

Relation (2.7) de�nes an application from the set Fd to the set Sd. Let us denote by Ψ
this application, that is

Ψ : Fd → Sd(2.8)

(f , cf ) 7→ Ψ((f , cf )) = x .

For x ∈ Sd, set ki = − inf0≤n≤ni
xi,i
n and de�ne the �rst passage time process of the chain

(xi,i
n ) as follows:

(2.9) τ
(i)
k = min{n ≥ 0 : xi,i

n = −k} , 0 ≤ k ≤ ki ,

where τ
(i)
ki

= ∞, if ki = ∞. If x is the image byΨ of a forest (f , cf ) ∈ Fd, i.e. x = Ψ((f , cf )),

then ki is the (�nite or in�nite) number of trees in the subforest f (i) and for k < ∞, the

time τ
(i)
k is the total number of vertices which are contained in the k �rst trees of f (i), i.e.

t
(i)
1 , t

(i)
2 , . . . , t

(i)
k . This fact is well known and easily follows from the Lukasiewicz-Harris

coding of the single type forest f (i), see the introduction and Lemma 6.3 in [20]. Then for
i, j ∈ [d], de�ne the integer valued sequence

(2.10) x̄i,j
k = xi,j(τ

(i)
k ) , 0 ≤ k ≤ ki .

If x = Ψ((f , cf )), then we may check that when i ̸= j, x̄i,j
k is the number of subtrees of

type j whose root is the child of a vertex in t
(i)
1 , t

(i)
2 , . . . , t

(i)
k . Or equivalently, it is the

number of vertices of type j whose parent is a vertex of t
(i)
1 , t

(i)
2 , . . . , t

(i)
k . For each i ∈ [d],

we set

x̄(i) = (x̄i,1, . . . , x̄i,d) and x̄ = (x̄(1), x̄(2), . . . , x̄(d)) .

Clearly for i ̸= j, the sequence (x̄i,j
k )0≤k≤ki is increasing and x̄i,i

k = −k, for all i ∈ [d] and
0 ≤ k ≤ ki, so that x̄ ∈ Sd and recalling the de�nition of the reduced forest, (fr, cfr), see
the end of Section 2.1, we may check that:

(2.11) Ψ((fr, cfr)) = x̄ .

For a forest (f , cf ) ∈ Fd with trees t1, t2, . . . , we will denote by c(f ,cf ) the sequence of types
of the roots of t1, t2, . . . , i.e.

c(f ,cf ) := (cf (r(t1)), cf (r(t2)), . . . ) .
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Note that c(f ,cf ) ∈ ∪1≤r≤∞[d]r and that c(f ,cf ) = c(fr,cfr ). When no confusion is possible,
c(f ,cf ) will simply be denoted by c = (c1, c2, . . . ) and we will call it the root type sequence
of the forest.

Then before we state the general result on the coding of multitype forests in Theorem
2.7, we �rst need to show that the sequences (x̄i,j)i ̸=j together with c = (c1, c2, . . . ) allow
us to encode the reduced forest (fr, cfr), i.e. this forest can be reconstructed from (x̄, c).
This claim is stated in Lemma 2.5 below. In order to prove it, we �rst need to describe
the set of sequences which encode reduced forests and to state the preliminary Lemma
2.2 regarding these sequences.

Recall that Z+ = Z+ ∪ {+∞} and let us de�ne the following (non total) order in Zd

+:

for two elements q = (q1, . . . , qd) and q′ = (q′1, . . . , q
′
d) of Z

d

+ we write q ≤ q′ if qi ≤ q′i for
all i ∈ [d]. Moreover we write q < q′ if q ≤ q′ and if there is i ∈ [d] such that qi < q′i.
For an element x = (xi,j

k , 0 ≤ k ≤ qi, i, j ∈ [d]) of Sd with length q = (q1, . . . , qd), and
r = (r1, . . . , rd) ∈ Zd

+, we say that the system of equations (r, x) admits a solution if there
exists s = (s1, . . . , sd) ∈ Zd

+, such that s ≤ q and

(2.12) rj +
d∑

i=1

xi,j(si) = 0 , j = 1, 2, . . . , d .

Lemma 2.2. Let x ∈ Sd and r = (r1, . . . , rd) ∈ Zd
+. Assume that the system (r, x) admits

a solution, then

(i) there exists a unique solution n = (n1, . . . , nd) of the system (r, x) such that if
n′ is any solution of (r, x), then n ≤ n′. Moreover we have ni = min{n : xi,i

n =
min0≤k≤ni

xi,i
k }, for all i ∈ [d]. A solution such as n will be called the smallest

solution of the system (r, x).
(ii) Let r′ ∈ Zd

+ be such that r′ ≤ r. Then the system (r′, x) admits a solution. Let
us denote its smallest solution by n′. Then the system (r − r′, x̃), where x̃i,j(k) =
xi,j(n′

i+ k)−xi,j(n′
i), 0 ≤ k ≤ ni−n′

i, admits a solution, and its smallest solution
is n− n′.

A proof of this lemma is given in Section 4. For r = (r1, . . . , rd) ∈ Zd
+, with r = r1+ · · ·+

rd ≥ 1, that is r > 0, we de�ne,

Cr
d =

{
c ∈ [d]r : Card {j ∈ [r] : cj = i} = ri, i ∈ [d]

}
.

We emphasize that the root type sequence of a forest (f , cf ) ∈ Fd with r = r1 + · · · + rd
trees amongst which exactly ri trees have a root of type i is an element c ∈ Cr

d. Now we
de�ne the subsets of forests and reduced forests whose root type sequence is in Cr

d and
that contain at least one vertex of each type.

De�nition 2.3. Let r = (r1, . . . , rd) ∈ Zd
+, such that r > 0.

(i) We denote by F r
d, the subset of Fd of forests (f , cf ) with r1 + · · ·+ rd trees, which

contain at least one vertex of each type, and such that c(f ,cf ) ∈ Cr
d.

(ii) We denote by F̄ r
d the subset of F r

d, of reduced forests, more speci�cally, (f , cf ) ∈ F̄ r
d

if (f , cf ) ∈ F r
d and if for each i, vertices of type i ∈ [d] in v(f) have no child of

type i.

Then we de�ne the sets of coding sequences related to F r
d and F̄ r

d.
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De�nition 2.4. Let r = (r1, . . . , rd) ∈ Zd
+, such that r > 0.

(i) We denote by Sr
d the subset of Sd of sequences x whose length belongs to Nd and

corresponds to the smallest solution of the system (r, x) de�ned in (2.12).
(i) We denote by S̄r

d the subset of Sr
d consisting in sequences, such that xi,i

k = −k, for
all k and i.

Then we �rst establish a bijection between the sets F̄ r
d and S̄r

d ×Cr
d. Recall the de�nition

of Ψ in (2.8).

Lemma 2.5. Let r = (r1, . . . , rd) ∈ Zd
+, be such that r > 0, then the mapping

Φ : F̄ r
d → S̄r

d × Cr
d

(f , cf ) 7→
(
Ψ((f , cf )), c(f ,cf )

)
is a bijection.

Proof. Let (f , cf ) ∈ F̄ r
d and let ki be the total number of subtrees of type i which are

contained in (f , cf ). (Note that since (f , cf ) is a reduced forest, its subtrees are actually
single vertices.) By de�nition, ki ≥ 1, for each i. The fact that, c(f ,cf ) ∈ Cr

d follows
from De�nition 2.3 (ii). Then let us show that x = Ψ((f , cf )) ∈ S̄r

d. Since (f , cf ) is a
reduced forest, then x = x̄. Besides, from (2.10), x has length k = (k1, . . . , kd) and for
j ̸= i, xi,j(ki) is the number of subtrees of type j whose root is the child of a vertex of{
t
(i)
1 , t

(i)
2 , . . . , t

(i)
ki

}
, i.e. of any subtree of type i in (f , cf ). Hence for j ∈ [d],

∑
i̸=j x

i,j(ki)

is the total number of subtrees of type j in (f , cf ), whose root is the child of a vertex
of type i ∈ [d], i ̸= j. Then we obtain kj by adding to

∑
i ̸=j x

i,j(ki), the rj subtrees
of type j whose root is one of the roots of t1, . . . , tr, where r = r1 + · · · + rd. That is
kj = rj +

∑
i̸=j x

i,j(ki). Since moreover from (2.10), xi,i
k = −k, for all 0 ≤ k ≤ ki, we have

proved that k is a solution of the system (r, x). It remains to prove that it is the smallest
solution.
Let us �rst assume that r = (1, 0, . . . , 0), so that (f , cf ) consists in a single tree t1 whose

root has color cf (r(t1)) = 1. Then we can reconstruct, this tree from the d sequences

(x
(i)
k , 0 ≤ k ≤ ki), i ∈ [d] by inverting the procedure de�ned in (2.7) and this recon-

struction procedure gives a unique tree. Indeed, by de�nition of the application Ψ, each

sequence (x
(i)
k , 0 ≤ k ≤ ki), is associated to a unique 'marked subforest', say f̃ (i), of type i

whose vertices kept the memory of their progeny. More speci�cally, for k ∈ [ki], the incre-

ment x
(i)
k −x

(i)
k−1 gives the progeny of the k-th vertex of the subforest f (i). This connection

between marked subforests f̃ (i) and sequences (x
(i)
k , 0 ≤ k ≤ ki) is illustrated on Figure 5.

Now let k′ ≤ k be the smallest solution of the system (r, x). Let q = (q1, . . . , qd) < k′ and
suppose that we have been able to perform the reconstruction procedure until q, that is

from the sequences (x
(i)
k , 0 ≤ k ≤ qi), i ∈ [d]. Then since q is not a solution of (r, x), we

see from what has been proved just above that the tree that is obtained is 'not complete'.
That is, at least one of its leaves (say of type j) is marked, so that this leaf should still get

children whose types and numbers are given by the next jump x
(j)
qj+1 − x

(j)
qj , for qj < k′

j,
according to the reconstruction procedure. Thus, doing so, we necessarily end up with a

tree from the sequences (x
(i)
k , 0 ≤ k ≤ k′

i), i ∈ [d], and this tree is complete, that is none
of its leaves is marked. Then since the reconstruction procedure obtained by inverting
(2.7), gives a unique tree, we necessarily have k′ = k.
Then let r = (r1, . . . , rd) ∈ Zd

+. Assume with no loss of generality that the root of
the �rst tree t1 of (f , cf ) has color 1. Let k1

i be the number of subtrees of type i in t1.



CODING MULTITYPE FORESTS: PROGENY LAW AND ENUMERATIONS 11

(f , cf ): 1

1

2

2 1
⊗

3

4

2
⊗

3

3
⊗

4 5

t1 t2

f̃
(1)

: 1

type 2 type 2 type 3

2 3 4

x
(1)

: △x
(1)
1 = (−1, 2, 1), △x

(1)
2 = (−1, 0, 0), △x

(1)
3 = (−1, 0, 0),

△x
(1)
4 = (−1, 0, 0).

f̃
(2)

: 1

type 1

2 3 4

type 3 type 3

5

x
(2)

: △x
(2)
1 = (1,−1, 0), △x

(2)
2 = (0,−1, 0), △x

(2)
3 = (0,−1, 0),

△x
(2)
4 = (0,−1, 2), △x

(2)
5 = (0,−1, 0).

f̃
(3)

: 1
⊗

type 2

2
⊗

type 1

3
⊗

type 1 type 2

x
(3)

: △x
(3)
1 = (0, 1,−1), △x

(3)
2 = (1, 0,−1), △x

(3)
3 = (1, 1,−1).

(
f
′
, cf ′

)
: 1

4

1
⊗

2

2
⊗

3

5 3
⊗

2 1

4

3

t
′
1 t

′
2

f̃ ′
(1)

: 1

type 2 type 2 type 3

2 3 4

x
′(1)

: △x
′(1)
1 = (−1, 2, 1), △x

′(1)
2 = (−1, 0, 0), △x

′(1)
3 = (−1, 0, 0),

△x
′(1)
4 = (−1, 0, 0).

f̃ ′
(2)

: 4

type 3 type 3

5 1

type 1

2 3

x
′(2)

: △x
′(2)
1 = (0,−1, 2), △x

′(2)
2 = (0,−1, 0), △x

′(2)
3 = (1,−1, 0),

△x
′(2)
4 = (0,−1, 0), △x

′(2)
5 = (0,−1, 0).

f̃ ′
(3)

: 3
⊗

type 1 type 2

1
⊗

type 2

2
⊗

type 1

x
′(3)

: △x
′(3)
1 = (1, 1,−1), △x

′(3)
2 = (0, 1,−1), △x

′(3)
3 = (1, 0,−1).

Figure 5. On the left, a three types reduced forest (f , cf ) (the labelling is
related to each subforest, see Subsection 2.1), the three marked subforests

f̃ (1), f̃ (2), f̃ (3) of (f , cf ) and the coding sequences x(1), x(2), x(3). Here we

have set ∆x
(i)
k = x

(i)
k − x

(i)
k−1. On the right, a three types reduced forest

(f ′, cf ′) obtained after cyclical permutations of f̃ (1), f̃ (2), f̃ (3).

From Lemma 2.2, the system (r1, x), where r1 := (1, 0, . . . , 0), admits a smallest solution.
Moreover from the reconstruction procedure which is described above, this solution is
k1 = (k1

1, . . . , k
1
d). Suppose now with no loss of generality that the second tree, t2 in

(f , cf ) has color 2. Let k2
i be the number of subtrees of type i in t2. Then from the

same arguments as for the reconstruction of the �rst tree, t2 may be reconstructed from
the system (r2, y), where r2 := (0, 1, 0, . . . , 0) and yi,j(k) = xi,j(k1

i + k) − xi,j(k1
i ), k ≥ 0.

Moreover (r2, y) admits k2 = (k2
1, . . . , k

2
d) as a smallest solution. Then from part (ii) of

Lemma 2.2, k1+k2 is the smallest solution of the system (r1+r2, x). So we have proved the
result for the forest consisting in the trees t1 and t2. Then by iterating these arguments
for each tree of (f , cf ), we obtain that x ∈ S̄r

d.

Conversely, let c = (c1, . . . , cr) ∈ Cr
d, x ∈ S̄r

d and let k = (k1, . . . , kd) be the smallest
solution of the system (r, x). Then let us show that there is a forest (f , cf ) ∈ F̄ r

d such
that Ψ((f , cf )) = x and c(f ,cf ) = c. Assume, without loss of generality that c1 = 1. From
Lemma 2.2 (ii), there is a smallest solution, say k1 = (k1

1, . . . , k
1
d), to the system (r1, x),

where r1 := (1, 0, . . . , 0). Then we may reconstruct a unique forest (t1, ct1) ∈ F̄1
d (consist-

ing in a single tree) such that Ψ((t1, ct1)) = (xi,j
k , 0 ≤ k ≤ k1

i , i, j ∈ [d]) and c(t1,ct1 ) = 1
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by inverting the procedure that is described in (2.7). Assume for instance that c2 = 2
and set r2 := (1, 1, 0, . . . , 0) ≤ r, then from Lemma 2.2 (ii), there is a smallest solution,
say k2, to the system (r2, x). Moreover, k3 = k2 − k1 is the smallest solution of the
system (r2 − r1, y), where yi,j(k) = xi,j(k1

i + k) − xi,j(k1
i ), k ≥ 0. Then as before, we

can reconstruct a unique tree (t2, ct2) such that Ψ((t2, ct2)) = y and such that the forest

f̂ = {t1, t2} satis�es Ψ((f̂ , cf̂ )) = (xi,j
k , 0 ≤ k ≤ k2

i , i, j ∈ [d]) and c(f̂ ,cf̂ )
= (1, 1, 0, . . . , 0).

Then iterating these arguments, we may reconstruct a unique forest (f , cf ) ∈ F r
d such that

Ψ((f , cf )) = x and c(f ,cf ) = c. 2

Let x ∈ Sd with length n = (n1, . . . , nd) and recall from (2.10), the de�nition of the
associated sequence x̄, with length k = (k1, . . . , kd), such that ki = −min0≤n≤ni

xi,i
n .

Lemma 2.6. Let r ∈ Zd
+, such that r > 0 and x ∈ Sd, with length n ∈ Nd and set

ki = −min0≤n≤ni
xi,i
n , i ∈ [d]. If n is the smallest solution of the system (r, x) (i.e.

x ∈ Sr
d), then k = (k1, . . . , kd) is the smallest solution of the system (r, x̄). Conversely, if

ni = τ
(i)
ki
, for all i ∈ [d] and if k is the smallest solution of (r, x̄), (i.e. x̄ ∈ S̄r

d), then n is
the smallest solution of (r, x).

Proof. Assume that n is the smallest solution of the system (r, x). Then from part (i)

of Lemma 2.2, ni = τ
(i)
ki
, hence k is a solution of (r, x̄). Let k′ ≤ k be such that

rj +
d∑

i=1

x̄i,j(k′
i) = 0 , j = 1, 2, . . . d .

Then by de�nition of x̄ there is n′ ≤ n such that n′
i = τ

(i)

k′i
and

rj +
d∑

i=1

xi,j(n′
i) = 0 , j = 1, 2, . . . d .

So n′ = n and hence k′ = k.
The converse is proved in the same way. Suppose that ni = τ

(i)
ki
, i ∈ [d], and that k is

the smallest solution of (r, x̄). Then clearly, n is a solution of (r, x). Let n′ be the smallest

solution of (r, x). Then from Lemma 2.2, there is k′ such that n′
i = τ

(i)

k′i
, hence k′ is a

solution of (r, x̄). This implies that k ≤ k′, so that n ≤ n′, hence n = n′. 2

Now we extend the application Φ de�ned in Lemma 2.5 to the set F r
d. Here is the main

result of this section, that can be considered as an extension of Proposition 1.1 in [7].

Theorem 2.7. Let r = (r1, . . . , rd) ∈ Zd
+, be such that r > 0, then the mapping

Φ : F r
d → Sr

d × Cr
d

(f , cf ) 7→
(
Ψ((f , cf )), c(f ,cf )

)
is a bijection.

Proof. Let us �rst check that for any (f , cf ) ∈ F r
d, we have Φ((f , cf )) ∈ Sr

d × Cr
d. By

de�nition 2.3, (i), c(f ,cf ) ∈ Cr
d. Now set x = Ψ((f , cf )) and let (fr, cfr) ∈ F̄ r

d be the forest,
(f , cf ) once reduced. Then from (2.11) and Lemma 2.5, this reduced forest is encoded
by (x̄, cf ). Let k = (k1, . . . , kd) be the number of subtrees of type i in this forest (this is
actually the number of vertices of type i), then k is the length of x̄ and it is the smallest

solution of (r, x̄), i.e. x̄ ∈ S̄r
d. Moreover n = (n1, . . . , nd), where ni = τ

(i)
ki

is the length
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of x, and from Lemma 2.6, it is the smallest solution of (r, x). So, we have proved that
Ψ((f , cf )) ∈ Sr

d.
Conversely let (x, c) ∈ Sr

d ×Cr
d. From Lemma 2.5, to (x̄, c), we may associate a unique

forest (fr, cfr) ∈ F̄ r
d. Then let ki be the number of vertices of type i in this forest. For

k ∈ [ki], let u
(i)
k be the k-th vertex of type i in the breadth �rst search order of (fr, cfr).

Then in (fr, cfr), we replace the vertex u
(i)
k by the subtree of type i which is encoded by the

Lukasiewicz-Harris path (xi,i(τ
(i)
k−1 + l) + k − 1 , 0 ≤ l ≤ τ

(i)
k − τ

(i)
k−1). We know about the

progeny of each vertex of this subtree, thanks to the chains (xi,j(τ
(i)
k−1+ l)−xi,j(τ

(i)
k−1) , 0 ≤

l ≤ τ
(i)
k −τ

(i)
k−1), so that we can graft at the proper place, on this subtree, all the correspond-

ing subtrees of the other types which have been constructed from the same procedure.
Proceeding this way, we construct a unique forest (f , cf ) ∈ F r

d and we easily check that
Ψ((f , cf )) = x. 2

3. Multitype branching trees and forests

Let νi, i ∈ [d] be distributions on Zd
+, such that ν = (ν1, . . . , νd) is the progeny law

of an irreducible, critical or subcritical, non-degenerated branching process, as de�ned in
Section 1. Assume that we can de�ne on the reference probability space (Ω,G, P ) intro-
duced in Section 1, a family (Pc)c∈[d]∞ of probability measures and an in�nite sequence
F = (Tk)k≥1 of independent random trees, such that for each c = (c1, c2, . . . ) ∈ [d]∞

and k ≥ 1, under Pc, Tk is a branching tree, with progeny law ν, whose root has type
r(Tk) = ck. In particular, for any random time α : (Ω,G) → N ∪ {+∞}, the sequence
{T1, . . . ,Tα} is an element of Fd. The in�nite sequence F will be called a d-type branch-
ing forest with progeny law ν.

Let us denote by F(i) the subforest of type i of F, as it is de�ned in subsection 2.1.
From the properties of ν, it follows that for each i ∈ [d], the subforest F(i) is a.s. in�nite,
so that we may de�ne a Zd valued in�nite random sequence X(i) = (X i,1, . . . , X i,d), for

i ∈ [d], in the same way as in (2.7), that is X
(i)
0 = 0 and

(3.13) X i,j
n+1 −X i,j

n = pj(u
(i)
n+1) , if i ̸= j and X i,i

n+1 −X i,i
n = pi(u

(i)
n+1)− 1 , n ≥ 0 ,

where (u
(i)
n )n≥1 is the labeling of F(i) in its breadth �rst search order.

Theorem 3.1. Let F be a d-type branching forest with progeny law ν.

1. Then for any c = (c1, c2 . . . ) ∈ [d]∞, under Pc, the chains

(3.14) X(i) = (X i,1, . . . , X i,d) , i = 1, . . . , d

are independent random walks with step distribution

Pc

(
X

(i)
1 = (q1, . . . , qd)

)
= νi(q1, . . . , qi−1, qi + 1, qi+1, . . . , qd) .

In particular, their laws do not depend on c. For each i ∈ [d], X i,i is a downward
skip free random walk such that lim infn→+∞ X i,i

n = −∞, a.s. and for j ̸= i, X i,j

is a renewal process.
2. For all integer r ≥ 1, almost surely there is r ∈ Zd

+, with r = r1 + · · · + rd and
such that there is a smallest solution n to the system (r, X).

3. Conversely, let Y be a copy of X and c = (c1, c2 . . . ) ∈ [d]∞. Then to Y and c, we
may associate a unique d-type branching forest, with progeny law ν and root type
sequence c, whose coding random walk is Y .
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Proof. Part 1. just follows from the construction (3.13) of X. Since the order on
the subforests F(i) does not depend on the particular topology of F, from the branching
property, it is clear that the chains X(i), i ∈ [d] are independent random walks. Then
the expression of the law of X(i) is a direct consequence of (3.13). Recall that X i,i is
the Lukasiewicz-Harris path of the subforest F(i), see section 6.2 of [20]. Moreover, since
from the properties of ν, each subforest F(i) is a.s. in�nite, the random walk X i,i satis-
�es lim infn→∞ X i,i

n = −∞, a.s. The fact thatX i,j, for i ̸= j is a renewal process is obvious.

Then part 2 is a direct consequence of the construction of X and Theorem 2.7. Let
r ≥ 1 and �rst assume that the �nite forest {T1, . . . ,Tr} consisting in the r �rst trees of
F contains at least one vertex of each type. Let r be the unique element of Zd such that
{T1, . . . ,Tr} ∈ F r

d. Then, by coding the forest {T1, . . . ,Tr} and by applying Theorem
2.7, we obtain that there is n ∈ Nd which is the smallest solution of the system (r, X).
Now if for instance n ∈ [d − 1] types are missing in the r �rst trees of F, then we can
apply the same arguments by replacing d by d− n in Theorem 2.7.
Then part 3. is a consequence of part 2. For each r ≥ 1, we may associate a unique

forest to Y with r trees. Since r can be arbitrarily large, the result is proved. 2

In the same spirit as in [15], the Lukasiewicz-Harris type coding that is displayed in
Theorem 3.1 might be used to obtain invariance principles, for any functional that can
be encoded simply enough. Besides this result should provide a way to obtain a proper
de�nition of continuous multitype branching trees and forests. Actually, it is natural to
think that the latter objects are coded by d independent, d-dimensional Lévy processes,
with d− 1 increasing coordinates and a spectrally positive coordinate.

Now we are going to apply our coding of multitype branching forests to the law of their
total progeny and give a proof of Theorem 1.2. To that aim, we �rst need to establish
the crucial combinatorial Lemma 3.3. Let E be Z+ or a �nite integer interval of the type
{0, 1, . . . ,m}, with m ≥ 1 and let g : E → Zd, be any application such that g(0) = 0.
For n ∈ E such that n ≥ 1, the n-cyclical permutations of g are the n applications gq,n,
q = 0, . . . , n− 1 which are de�ned on E by:

(3.15) gq,n(h)
(def)
=


g(q + h)− g(q) if 0 ≤ h ≤ n− q ,

g(h− (n− q)) + g(n)− g(q) if n− q ≤ h ≤ n

g(h) if h ≥ n .

Note that g0,n ≡ g. The transformation g 7→ gq,n consists in inverting the parts {g(h), 0 ≤
h ≤ q} and {g(h), q ≤ h ≤ n} in such a way that the new application, gq,n, has the same
values as g at 0 and n, i.e. gq,n(0) = 0 and gq,n(n) = g(n).

Let x ∈ Sd, with �nite length n = (n1, . . . , nd) ∈ Nd and recall the notation x(i) =
(xi,1, . . . , xi,d) from De�nition 2.1. Then we de�ne the n-cyclical permutations of x by

(3.16) xq,n := (x(1)
q1,n1

, . . . , x(d)
qd,nd

) , for all q = (q1, . . . , qd) ≤ n− 1d,

where we have set 1d = (1, 1, . . . , 1). Each sequence xq,n will simply be called a cyclical
permutation of x. Note that there are n1n2 . . . nd, cyclical permutations of x. Let r =
(r1, . . . , rd) ∈ Zd

+ be such that r > 0 and assume that n is a solution of the system (r, x).
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Then note that n is also a solution of the system (r, xq,n), for all q ≤ n− 1d, that is,

rj +
d∑

i=1

xi,j
q,n(ni) = 0 , j = 1, . . . , d .

This remark raises the question of the number of cyclical permutations xq,n of x, such
that n is the smallest solution of the system (r, xq,n).

De�nition 3.2. Let x ∈ Sd, with �nite length n = (n1, . . . , nd) ∈ Nd. Let r = (r1, . . . , rd) ∈
Zd

+ be such that r > 0 and assume that n is a solution of the system (r, x). For q ≤ n−1d,
we say that xq,n is a good n-cyclical permutation of x with respect to r, if n is the smallest
solution of the system (r, xq,n), that is xq,n ∈ Sr

d. When no confusion is possible, we will
simply say that xq,n is a good cyclical permutation of x.

Here is our crucial combinatorial cyclic lemma.

Lemma 3.3 (Multivariate Cyclic Lemma). Let x ∈ Sd, with length n = (n1, . . . , nd) ∈ Nd

and let r = (r1, . . . , rd) ∈ Zd
+ be such that r > 0. Assume that n is a solution of the system

(r, x) such that xi,i(ni) ̸= 0, for all i ∈ [d]. Then the number of good cyclical permutations
of x is det((−xi,j(ni))i,j∈[d]).

This lemma will be proved in Section 4. It is the essential argument for the proof of the
following extension of the Ballot Theorem.

Theorem 3.4 (Multivariate Ballot Theorem). Let Y = (Y (1), . . . , Y (d)) be a stochastic
process de�ned on (Ω,G, P ), with Y (i) = (Y i,j(h), j ∈ [d], h ≥ 0), i ∈ [d] and Y0 = 0.
We assume that the coordinates Y i,j, for i ̸= j are Z+ valued, nondecreasing and that
the coordinates Y i,i are Z valued and downward skip free. Fix n = (n1, . . . , nd) ∈ Nd,
then we assume further that the process Y is n-cyclically exchangeable, that is for any
q = (q1, . . . , qd) ∈ Zd

+ such that q ≤ n− 1d,

Yq,n
(law)
= Y ,

where Yq,n is de�ned as in (3.16) for deterministic functions. Then for any r = (r1, . . . , rd) ∈
Zd

+ such that r > 0 and kij, i, j ∈ [d], such that kij ∈ Z+, for i ̸= j and −kjj =
rj +

∑
i ̸=j kij,

P
(
Y i,j
ni

= kij, i, j ∈ [d] and n is the smallest solution of (r, Y )
)

=
det(−kij)

n1n2 . . . nd

P
(
Y i,j
ni

= kij, i, j ∈ [d]
)
.

(3.17)

Proof. If P (Y i,j
ni

= kij, i ̸= j) = 0, then the result is clearly true. Suppose that it is not

the case and let y = (y(1), . . . , y(d)) be a deterministic function such that for all i, j ∈ [d],
yi,j is de�ned on Z+, y

i,j(0) = 0, yi,j(ni) = kij and

(3.18) P
(
(Y (i)(h), 0 ≤ h ≤ ni)) = (y(i)(h), 0 ≤ h ≤ ni)

)
> 0 .

For h = (h1, . . . , hd) ∈ Zd
+, we set Y (h) := (Y (1)(h1), . . . , Y

(d)(hd)) and for 0 ≤ q ≤ n−1d,

using the notation of (3.16), we set yq,n(h) := (y
(1)
q1,n1(h1), . . . , y

(d)
qd,nd(hd)). Let us consider

the set
Ey,n =

{
(yq,n(h), 0 ≤ h ≤ n) : 0 ≤ q ≤ n− 1

}
,

of n-cyclical permutations of y over the multidimensional interval [0, n]. Then Card(Ey,n) =
n1n2 . . . nd and since Y = (Y (1), . . . , Y (d)) is a cyclically exchangeable chain, the law of
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(Y (h), 0 ≤ h ≤ n), conditionally to the set {(Y (h), 0 ≤ h ≤ n) ∈ Ey,n} is the uniform law
in the set Ey,n. Moreover, assume that kii ̸= 0 for all i ∈ [d], then conditionally to the set
{(Y (h), 0 ≤ h ≤ n) ∈ Ey,n}, from Lemma 3.3, the number of good cyclical permutations
of (Y (h), 0 ≤ h ≤ n) is det(−kij). Therefore,

P
(
Y i,j
ni

= kij, i, j ∈ [d] and n is the

smallest solution of (r, Y ) | (Y (h), 0 ≤ h ≤ n) ∈ Ey,n

)
=

det(−kij)

n1n2 . . . nd

.

Then we obtain the result by summing the identity

P
(
Y i,j
ni

= kij, i, j ∈ [d] and

n is the smallest solution of (r, Y ), (Y (h), 0 ≤ h ≤ n) ∈ Ey,n

)
=

det(−kij)

n1n2 . . . nd

P ((Y (h), 0 ≤ h ≤ n) ∈ Ey,n) ,

over all functions y satisfying (3.18) and with di�erent sets Ey,n of cyclical permutations.
Finally, if kii = 0, for some i ∈ [d], then since ni ≥ 1, we can see that both members of
identity (3.17) are equal to 0. 2

Proof of Theorem 1.2: Let r, n and kij be as in the statement. Let F be a d-type
branching forest with progeny law ν, as de�ned at the beginning of this section and such
that the r �rst trees have root type sequence (c1, . . . , cr) ∈ Cr

d. Let X be the coding
random walk of F, as de�ned in (3.13). Recall the notation of Theorem 1.2, then from
the coding of Subsection 2.2 and Theorem 3.1, we may check that

Pr

(
O1 = n1, . . . , Od = nd, Aij = kij, i, j ∈ [d], i ̸= j

)
(3.19)

= Pc

(
X i,j

ni
= kij, i, j ∈ [d] and n is the smallest solution of (r, X)

)
.

Assume �rst that n ∈ Nd, then since X is clearly cyclically exchangeable in the sense of
Theorem 3.4, we obtain by applying this theorem,

Pc

(
X i,j

ni
= kij, i, j ∈ [d] and n is the smallest solution of (r, X)

)
=

det(−kij)

n1n2 . . . nd

P
(
X i,j

ni
= kij, i, j ∈ [d]

)
.

On the other hand, since from Theorem 3.1, the random walks X(i), i ∈ [d] are indepen-
dent, we have

Pc

(
X i,j

ni
= kij, i, j ∈ [d] and n is the smallest solution of (r, X)

)
=

det(−kij)

n1n2 . . . nd

d∏
i=1

P
(
X i,j

ni
= kij, j ∈ [d]

)
.

Then from the expression of the law of X given in Theorem 3.1, we obtain

Pc

(
X i,j

ni
= kij, i, j ∈ [d] and n is the smallest solution of (r, X)

)
=

det(−kij)

n1n2 . . . nd

d∏
i=1

ν∗ni
i (ki1, . . . , ki(i−1), ni + kii, ki(i+1), . . . , kid) ,

(3.20)
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and the result is proved in this case.
Now with no loss of generality, let us assume that for some 0 < d′ < d, we have

n1, . . . , nd′ ∈ N and nd′+1 = · · · = nd = 0. We point out that from the assumption
nj ≥ −kjj = rj +

∑
i̸=j kij, in this case we necessarily have rj = 0 and kij = 0, for all

i ∈ [d] and j = d′ + 1, . . . , d. Then provided we also have kij = 0, for all i = d′ + 1, . . . , d
and j ∈ [d], i ̸= j,

Pc

(
X i,j

ni
= kij, d

′ + 1 ≤ i ≤ d, j ∈ [d]
)

=
d∏

i=d′+1

ν∗ni
i (ki1, . . . , ki(i−1), ni + kii, ki(i+1), . . . , kid) = 1 .

De�ne the chainX restricted to Zd′ , byX ′ = (X
′(1), . . . , X

′(d′)), whereX
′(i) = (X i,1, . . . , X i,d′),

i ∈ [d′]. Set also n′ = (n1, . . . , nd′) and r′ = (r1, . . . , rd′). Then under our assumption on
the integers kij, the following identity is satis�ed,{

X i,j
ni

= kij, i, j ∈ [d] and n is the smallest solution of (r, X)
}

=
{
X ′i,j

ni
= kij, i, j ∈ [d′] and n′ is the smallest solution of (r′, X ′) and

X i,j
ni

= 0, 1 ≤ i ≤ d′, d′ + 1 ≤ j ≤ d
}
,

so that identity (3.19) can be rewritten as,

Pr

(
O1 = n1, . . . , Od = nd, Aij = kij, i, j ∈ [d], i ̸= j

)
= Pc

(
X ′i,j

ni
= kij, i, j ∈ [d′] and n′ is the smallest solution of (r′, X ′) and

X i,j
ni

= 0, 1 ≤ i ≤ d′, d′ + 1 ≤ j ≤ d
)
.

Moreover, conditionally on the set{
X ′i,j′

ni
= kij′ , X

i,j
ni

= 0, i, j′ ∈ [d′], d′ + 1 ≤ j ≤ d
}
,

the chain X ′ is cyclically exchangeable, so that we can conclude in the same way as above
that

Pr

(
O1 = n1, . . . , Od = nd, Aij = kij, i, j ∈ [d], i ̸= j

)
=

det((−kij)1≤i,j≤d′)

n1n2 . . . nd′

d′∏
i=1

ν∗ni
i (ki1, . . . , ki(i−1), ni + kii, ki(i+1), . . . , kid)

=
det((−kij)1≤i,j≤d′)

n1n2 . . . nd′

d∏
i=1

ν∗ni
i (ki1, . . . , ki(i−1), ni + kii, ki(i+1), . . . , kid) .

Finally, if kij ̸= 0, for some i = d′ + 1, . . . , d and j ∈ [d], then the �rst and the third
members of the above equality are equal to 0. So the proof is complete. 2

4. Proof of Lemmas 2.2 and 3.3

Proof of Lemma 2.2. Assume that there is a solution s = (s1, . . . , sd) to the system

(r, x), that is: rj +
∑d

i=1 x
i,j(si) = 0, j ∈ [d]. Let us write this equation in the following
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form:

rj +
∑
i̸=j

xi,j(si) + xj,j(sj) = 0 , j = 1, . . . , d .

Then recall that for �xed j, when the ki's increase, the term
∑

i̸=j x
i,j(ki) increases and

when kj increases, the term xj,j(kj) may decrease only by jumps of amplitude −1.

For k = (k1, . . . , kd) = 0, we have rj +
∑

i̸=j x
i,j(ki) + xj,j(kj) = rj, j ∈ [d]. So for the

left hand side of the later equation to reach 0, each ki has to be at least τ
(i)(ri), where τ

(i)

has been de�ned in (2.9). (In this proof, we found more convenient to use the notation

τ (i)(k) for τ
(i)
k .) Then either

rj +
∑
i̸=j

xi,j(τ (i)(ri)) + xj,j(τ (j)(rj)) = 0 , j = 1, . . . , d ,

or all of the terms rj +
∑

i̸=j x
i,j(τ (i)(ri)) + xj,j(τ (j)(rj)), j ∈ [d] are greater or equal than

0, at least one of them being strictly greater than 0.

Then in the latter case, for rj +
∑

i̸=j x
i,j(ki) + xj,j(kj) to attain 0, each of the kj's has

to be at least τ (j)(rj +
∑

i̸=j x
i,j(τ (i)(ri))). This argument can be repeated until all of the

terms rj +
∑

i̸=j x
i,j(ki) + xj,j(kj) attain 0. More speci�cally, set v

(j)
1 = rj and for n ≥ 1,

v
(j)
n+1 = rj +

∑
i ̸=j

xi,j(τ (i)(v(i)n )) ,

and set k
(n)
j = τ (j)(v

(j)
n ). For n ≥ 1, either

rj +
∑
i ̸=j

xi,j(k
(n)
i ) + xj,j(k

(n)
j ) = 0 , j = 1, . . . , d ,

or all of the terms rj +
∑

i̸=j x
i,j(k

(n)
i ) + xj,j(k

(n)
j ), j ∈ [d] are greater or equal than

0, at least one of them being strictly greater than 0. In the later case, for all of the
terms rj +

∑
i̸=j x

i,j(ki) + xj,j(kj), j ∈ [d] to vanish, the index k has to be at least

k(n+1) = (k
(n+1)
1 , . . . , k

(n+1)
d ). But since there is a solution s to the equation (r, x), there is

necessarily a �nite index n0 such that k(n0) ≤ s and

rj +
∑
i ̸=j

xi,j(k
(n0)
i ) + xj,j(k

(n0)
j ) = 0 .

That is, for all j ∈ [d], k
(n0)
j = τ (j)(rj +

∑
i ̸=j x

i,j(k
(n0)
i )). Hence k(n0) is the smallest solu-

tion of the system (r, x). Moreover by de�nition, k
(n0)
i = min{n : xi,i

n = min
0≤k≤k

(n0)
i

xi,i
k }.

This proves the �rst part of the lemma.

Let r′ = (r′1, . . . , r
′
d) ∈ Zd

+ be such that r′ ≤ r. Then we prove that there is a smallest
solution to the system (r′, x) similarly. More speci�cally, since there is a smallest solution
to the equation

r′j +
∑
i̸=j

xi,j(si) + xj,j(sj) = r′j − rj ≤ 0 , j = 1, . . . , d ,
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then by the same arguments as in the �rst part, we prove that there is a smallest solution
to the equation

r′j +
∑
i̸=j

xi,j(si) + xj,j(sj) = 0 , j = 1, . . . , d .

Let k and k′ be respectively the smallest solutions of (r, x) and (r′, x). Then we have,

rj − r′j + r′j +
d∑

i=1

xi,j(k′
i) +

d∑
i=1

x̃i,j(ki − k′
i) = 0 .

Since r′j +
∑d

i=1 x
i,j(k′

i) = 0, the above equation shows that k − k′ is a solution of the
system (r− r′, x̃). Moreover, if k′′ was a strictly smaller solution of (r− r′, x̃), than k− k′

(i.e. k′′ < k− k′) then we would have

rj − r′j + r′j +
d∑

i=1

xi,j(k′
i) +

d∑
i=1

x̃i,j(k′′
i ) = rj +

d∑
i=1

xi,j(k′
i + k′′

i )

= 0 ,

so that k′ + k′′ would be a solution of (r, x), strictly smaller than k, which is a contradic-
tion. 2

Proof of Lemma 3.3. Recall from Lemma 2.5 that to each forest (f , cf ) ∈ F̄ r
d, we can

associate a system (r, x), with smallest solution k, where x ∈ S̄r
d. We then de�ne the

Laplacian matrix of each forest (f , cf ) ∈ F̄ r
d by (kij) = (xi,j(ki)). We will also sometimes

say that (kij) is the Laplacian matrix of the associated coding sequence x. (Actually, in
the conventional terminology of graph theory, (kij) would rather be the Laplacian matrix
of a directed graph on the set of vertices [d], with incidence matrix U = (uij)i,j∈[d], where
uij = kij, if i ̸= j and uii = 0, i ∈ [d].) Recall that −kjj = rj +

∑
i ̸=j kij and that for

i ̸= j, kij is the total number of vertices in v(f) with type j, whose parent has type i and
that −kii is the total number of vertices of type i in v(f).
We say that integers a1, . . . , an are ranked in the increasing order, up to a cyclical

permutation, if there is a cyclical permutation σ of the set [n], such that aσ(1), . . . , aσ(n)
are ranked in the increasing order.

De�nition 4.1. Let r ∈ Zd
+ be such that r > 0.

1. An element (f , cf ) of F̄ r
d is said to be a simple forest if for each type i ∈ [d], at

most one vertex of type i in v(f) has children (the others are leaves). To each
vertex of type i, we associate an integer in [ni] which is called its label. Then for
each i, the sequence of appearance of labels of vertices of type i in the breadth �rst
search of (f , cf ) is ranked in the increasing order, up to a cyclical permutation, see
Figure 6.

2. For x ∈ S̄r
d, the system (r, x), with smallest solution k = (k1, . . . , kd) is called a

simple system if for all i ∈ [d], there is k′
i ≤ ki − 1, such that for all k = 0, . . . , k′

i

and i ̸= j, xi,j(k) = 0 and for all k = (k′
i + 1) ∨ ki, . . . , ki and i ̸= j, xi,j(k) =

xi,j(ki).

In other words, simple systems are elements x ∈ S̄r
d such that for all i ∈ [d], the sequences

xi,j, j ∈ [d] have at most one positive jump that occurs at the same point in {0, . . . , ki}.
Then we have the following straightforward result.
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Proposition 4.2. If a forest is simple, then its associated system (as de�ned in Lemma
2.5) is simple.

De�nition 4.3. An elementary forest is a forest of Fd that contains exactly one vertex of
each type. In particular, each elementary forest contains exactly d vertices and is coded by
the d couples (ji, i), i ∈ [d], where ji is the type of the parent of the vertex of type i. If the
vertex of type i is a root, then we set ji = 0. We de�ne the set D of vectors (j1, . . . , jd),
0 ≤ ji ≤ d such that (ji, i), i ∈ [d] codes an elementary forest.

Lemma 4.4. Let r = (r1, . . . , rd) ∈ Zd
+ such that r > 0 and let (r, x) be a simple system

with smallest solution k = (k1, . . . , kd) ∈ Nd, then the number of good cyclical permutations
of x is ∑

(j1,...,jd)∈D

d∏
i=1

kjii ,

where for i, j ∈ [d], kij = xi,j(ki) and where we have set k0i = ri.

Proof. The proof will be performed by reasoning on forests. Let (r, x) be as in the
statement. From Lemma 2.5 we can associate to (r, x) a forest (f , cf ) of F̄ r

d such that for
each type i ∈ [d], at most one vertex of type i in v(f) has children (the others are leaves).
Then by labeling all the vertices of this forest in the breadth for search order, we obtain
a simple forest, see De�nition 4.1. Note that for each good cyclical permutation xq,k of
x, the system (r, xq,k) is simple itself and to each one, we may associate a unique simple
forest which is obtain by cyclical permutations of the vertices of type i in (f , cf ), for each
i. Conversely, recall Proposition 4.2, then the simple system (r, y) which is associated to
each simple forest with Laplacian matrix (kij), through Lemma 2.5 is necessarily obtained
from a good cyclical permutation of x. Indeed the corresponding sequences yi,j, for i ̸= j,
have exactly one jump and are such that yi,j(ki) = kij. So y is nothing but a cyclical
permutation of x. These arguments prove that the number of good cyclical permutations
of x is equal to the number of simple forests with Laplacian matrix (kij).
Then let us prove that the number of simple forests with Laplacian matrix (kij) is∑
(j1,...,jd)∈D

∏d
i=1 kjii. We make the additional assumption that for each i, there is exactly

one vertex who has children. Then observe that to each simple forest, we can associate
a unique elementary forest in the following way: the vertex of type j in the elementary
forest is the parent of the vertex of type i if, in the simple forest the parent of the vertex
of type i who has children has type j (recall that j = 0 if the vertex of type i is a root).
An example of an elementary forest associated to a simple forest is given in Figure 6.
Then let (j1, . . . , jd) ∈ D. We easily see that the monomial

∏d
i=1 kjii is the number of

simple forests such that for each i, the parent of the vertex of type i who has children
has type ji. Indeed, there are kjii possibilities to choose the vertex of type i who has

children. In other words,
∏d

i=1 kjii is the number of all possible simple forests to which
we can associate the same elementary forest which is coded by (ji, i), i ∈ [d]. Then in
order to obtain the total number of simple forests with Laplacian matrix (kij), it remains
to perform the summation of these monomials over all the possible elementary forests. So
we obtained the formula of the statement, under our additional assumption.
Then we have proved the result for simple systems such that for all i ∈ [d], there is

j ̸= i with kij > 0. Now assume that for all i ∈ [d − 1], there is j ̸= i such that kij > 0
and that kdj = 0, for all j ∈ [d]. Then in such a system, we have x(d) ≡ 0. Let us
consider the system (r′, x′), where r′ = (r1, . . . , rd−1) and x′ = (x(1), . . . , x(d−1)). From
what has just been proved, the number of good cyclical permutation of (r′, x′) is hd−1 :=
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Figure 6. A simple forest and its associated elementary forest.∑
(j1,...,jd−1)∈D′

∏d−1
i=1 kjii where D

′ is the set that is de�ned in De�nition 4.3 and where we

replaced d by d − 1. Then in order to obtain all the good cyclical permutations of x it
remains to consider the kd cyclical permutations of the sequence x

(d). Since the latter are
all identical, we have actually kd×hd−1 good cyclical permutations of x. Then we conclude
by noticing that kd×hd−1 =

∑
(j1,...,jd)∈D

∏d
i=1 kjii, since kd = rd+

∑
i̸=d kid =

∑d
i=0, i ̸=d kid.

The general case where kij = 0, for all j ∈ [d], for other types i is obtained in the same
manner. 2

Lemma 4.5. For any r ∈ Zd
+ and any integer valued matrix (kij)i,j∈[d], such that kij is

nonnegative for i ̸= j and −kjj = rj +
∑

i̸=j kij, j ∈ [d],

det(−kij) =
∑

(j1,...,jd)∈D

d∏
i=1

kjii ,

where the set D is de�ned in De�nition 4.3 and k0i = ri.

Proof. The proof is a direct consequence of the matrix tree theorem for directed graphs,
due to Tutte [23], see Section 3.6, page 470 therein. However, Theorem 3.1 in [18] that
implies Tutte's theorem is actually easier to apply, since it uses a setting which is closer
to ours. Let us consider a set {v0, v1, . . . , vd} of d+1 vertices and in the notations of [18],
set W = L = {v0}. Then the family FW,L that is described in Theorem 3.1 of [18] is in
bijection with the set of elementary forests, or equivalently with the set D, and identity
(3.2) in this theorem is exactly det(−kij) =

∑
(j1,...,jd)∈D

∏d
i=1 kjii. 2

Lemma 4.6. Let x ∈ Sd, with length k = (k1, . . . , kd) ∈ Nd. Let r = (r1, . . . , rd) ∈ Zd
+ be

such that r > 0 and assume that k is a solution of the system (r, x). Assume moreover that
xi,i
k = −k, for all k = 0, . . . , ki and i ∈ [d]. Then the number of good cyclical permutations

of x is det((xi,j(ki))i,j∈[d]).

Proof. Let x be as in the statement. If for all i ∈ [d], the sequences xi,j, j ∈ [d] have at
most one positive jump that occurs at the same point in {0, . . . , ki}, then from De�nition
4.1, Lemma 4.4 and Lemma 4.5, there is a cyclical permutation x′ of x such that (r, x′)
is a simple system and the result follows in this case. In general, let us prove that there
is a simple system, with Laplacian matrix (xi,j(ki)), and whose number of good cyclical
permutations is the same as this of x.



22 LOÏC CHAUMONT AND RONGLI LIU

Fix any index m ∈ [d] and assume without loss of generality, that m ̸= 1, and

xm,1(km)− xm,1(km − 1) > 0.

From x, we de�ne a new sequence x̃ ∈ Sd with length k as follows:

(4.21)


x̃m,j(k) = xm,j(k) , j = 2, . . . , d, k = 1, . . . , km ,

x̃m,1(k) = xm,1(k) , k = 1, . . . , km − 2, km ,

x̃m,1(km − 1) = xm,1(km − 1) + 1.

All the other coordinates remain unchanged, that is,

x̃i,j(k) = xi,j(k) , i, j = 1, . . . , d , k = 1, . . . , ki , i ̸= m.

The sequence x̃ is obtained from x by decreasing by one unit, the last jump of the
coordinate xm,1, that is xm,1(km) − xm,1(km − 1). (Therefore the jump xm,1(km − 1) −
xm,1(km − 2) is increased by one unit.) Denote by Nr,x the number of good cyclical
permutations of x. We claim that

(4.22) Nr,x̃ ≥ Nr,x .

To achieve this aim, �rst observe that k is a solution of the system (r, x̃), that is

rj +
d∑

i=1

x̃i,j(ki) = 0 , j = 1, . . . , d ,

and note the straightforward inequality,

x̃i,j(k) ≥ xi,j(k) , i, j = 1, . . . , d , k = 1, . . . , ki .

Therefore, if k is the smallest solution of (r, x) then it is also the smallest solution of (r, x̃).
Moreover, for q = (q1, . . . , qd) ∈ Nd satisfying qm < km − 1, one easily checks that the
same inequality holds, that is

x̃i,j
q,k(k) ≥ xi,j

q,k(k) , i, j = 1, . . . , d , k = 1, . . . , ki ,

so that if k is the smallest solution of (r, xq,k) (i.e. xq,k is a good cyclical permutation of
x) then it is also the smallest solution of (r, x̃q,k).
Now it remains to study the case where qm = km − 1. Assume that xq,k is a good

cyclical permutation of x, but that x̃q,k is not a good cyclical permutation of x̃. Then in
order to obtain the inequality (4.22), we have to �nd a good cyclical permutation x̃l,k of x̃
such that xl,k is not a good cyclical permutation of x. Let us de�ne the sequence x̂ ∈ Sd

with length k, which is obtained by decreasing by one unit the �rst coordinate of x
(m)
q,k ,

that is  x̂(i) ≡ x
(i)
q,k , i ̸= m,

x̂(m)(k) = x
(m)
q,k (k)− e1, k ≥ 1 ,

where e1 = (1, 0, · · · , 0), is the d dimensional unit vector. Since k is the smallest solution
of (r, xq,k), then k is the smallest solution of (r + e1, x̂) by the de�nition of x̂. Moreover,
from Lemma 2.2 (ii), the system (e1, x̂) admits a smallest solution which is less than k.
Let us call p this solution. Then p > 0 and from Lemma 2.2 (ii), k − p is the smallest
solution of (r, x̂p,k).
Then let us consider the cyclical permutation of x̃q,k at p. It is a cyclical permutation

of x̃ that we shall denote by x̃l,k. Note that x̂ and x̃q,k only di�er from the last jump of
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x̂m,1 and x̃m,1
q,k , more speci�cally, x̃q,k(km)− x̃q,k(km − 1) = x̂(km)− x̂(km − 1) + 1. Then

from the above constructions, we can see that x̃l,k is obtained as follows:

x̃
(i)
l,k(k) =



x̂
(i)
p,k(k), k ≤ ki − pi, i ̸= m,

x̂
(m)
p,k (k), k < km − pm,

x̂
(i)
p,k(ki − pi) + x̂(i)(k − (ki − pi)), ki − pi ≤ k ≤ ki, i ̸= m,

x̂
(m)
p,k (km − pm) + x̂(m)(k − (km − pm)) + e1, km − pm ≤ k ≤ km .

Since k−p is the smallest solution of (r, x̂p,k) and since x̃l,k is strictly greater than x̂p,k at
point k− p, there is no solution to (r, x̃l,k), on the (multidimensional) interval [0, k− p].
Moreover, also from the construction of (r, x̃l,k), since p is the smallest solution of (e1, x̂),
the only solution of (r, x̃l,k) on the interval [k− p, k] is k. Therefore, the smallest solution
of (r, x̃l,k) is k.
On the other hand, note the following identity(

xi,j
l,k(k), i, j ∈ [d], k ∈ [ki − pi]

)
=
(
x̂i,j
p,k(k), i, j ∈ [d], k ∈ [ki − pi]

)
,

which can be seen directly from the de�nition of x̂. It follows that k − p is the smallest
solution of the system (r, xl,k). But since p > 0, the sequence xl,k is not a good permutation
of x, and the inequality (4.22) is proved.
Let q = (0, . . . , 0, km − 1, 0 . . . , 0), where km − 1 is the m-th coordinate of q and set

y := x̃q,k, then by applying the same arguments as above to the chain y, we obtain that

Nr,ỹ ≥ Nr,y = Nr,x̃ ≥ Nr,x ,

with obvious notations. But by reiterating km times this operation, we obtain again the
chain x. This shows that equality holds in (4.22), that is Nr,x̃ = Nr,x.
Finally, let z ∈ Sd be a chain with length k, such that zi,j(ki) = xi,j(ki), for all i, j ∈ [d],

and such that for all i ∈ [d], the sequences zi,j, j ∈ [d] have at most one positive jump
that occurs at the same point in {0, . . . , ki}. Then it is easy to see that the chain x can be
obtained after several cyclical permutations and iterations of the transformation (4.21)
applied to z, at any coordinate. Therefore Nr,z = Nr,x. Assume that there is a good
cyclical permutation z′ of z. Then (r, z′) is a simple system. Therefore, from Lemma 4.4
and Lemma 4.5, Nr,z′ = Nr,z = Nr,x = det(xi,j(ki)). 2

Lemma 4.7. Let x ∈ Sr
d with �nite length and let x̄ be the sequence of S̄r

d which is
associated to x, as in (2.10). Then x and x̄ have the same number of good cyclical
permutations.

Proof. Let k and n be the respective lengths of x̄ and x. In particular, we have

ni = τ
(i)
ki
, i ∈ [d]. Let q ≤ k − 1d be such that x̄q,k is a good cyclical permutation of x̄.

Then clearly, there is p = (p1, . . . , pd) ≤ n− 1d, such that pi = τ
(i)
qi . Set y = xp,n and let

us check that

(4.23) ȳ = x̄q,k .

De�ne θ(i)(m) = min{v : xi,i
pi,ni

(v) = −m} = min{v : yi,i(v) = −m} and let τ
(i)
qi,ki

be the

cyclical permutation of the sequence τ (i), as de�ned in (3.15). Then from the construction
of y, we can check that

θ(i)(m) = τ
(i)
qi,ki

(m) , m ≤ ki ,
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from which we derive (4.23). Moreover, since ȳ is a good cyclical permutation of x̄, we
deduce from Lemma 2.6 that y is a good cyclical permutation of x.
Conversely, let q < n−1d such that xq,n is a good cyclical permutation of x. Then from

part (i) of Lemma 2.2, we must have ni = min{n : xi,i
qi,ni

(n) = −ki}. Therefore, there

exists p < k, such that qi = τ
(i)
pi . Again, by setting y = xq,n, we check that ȳ = x̄p,k and

we deduce from Lemma 2.6 that ȳ is a good cyclical permutation of x̄. 2

Then we end the proof of Lemma 3.3. Let x ∈ Sd be as in this lemma, that is x has
�nite length n = (n1, . . . , nd) ∈ Nd and n is a solution of the system (r, x), where r =

(r1, . . . , rd) ∈ Zd
+ is such that r > 0. Let k′

i = −min0≤n≤ni
xi,i
n and set n′

i = τ
(i)

k′i
. Then

n′ ≤ n, so that we can de�ne the cyclical permutation y = xn′,n of x. By construction, the
sequence ȳ has length k, where ki = −xi,i(ni) and ȳi,j(ki) = xi,j(ni), i, j ∈ [d]. Note that
ki ≥ 1, from the assumption xi,i(ni) ̸= 0. Moreover, k is a solution of the system (r, ȳ).
So, thanks to Lemma 4.6, the number of good cyclical permutations of ȳ is det(xi,j(ni))
and from Lemmas 2.6 and 4.7 this is also the number of good cyclical permutations of y,
the latter being clearly the number of good cyclical permutations of x. 2

5. Applications to some combinatorial formulas

5.1. Enumeration of multitype forests. We may now derive from the previous re-
sults, some enumeration formulas for multitype forests. In all this subsection, ri, ni

and kij, i, j ∈ [d] will be integers satisfying conditions of Theorem 1.2, that is ri ≥ 0,
r1 + · · · + rd ≥ 1, kij ≥ 0, for i ̸= j, −kjj = rj +

∑
i̸=j kij and ni ≥ −kii. We assume

moreover that −kii > 0, for all i ∈ [d].

Our �rst result is an application of Theorem 1.2 which gives the number of plane forests
with ni vertices of type i, ri roots of type i and whose corresponding reduced forest has
(kij) as a Laplacian matrix. It extends the one dimensional case where, the number of

the unlabeled forests with r trees and n vertices is
r

n

(
2n− r − 1

n− r

)
.

Theorem 5.1. Let Fkij ,n
d be the subset of plane forests of Fd, with ni vertices of type i, ri

roots of type i and such that for i ̸= j, kij vertices of type j have a parent of type i, then∣∣∣Fkij ,n
d

∣∣∣ = det(−kij)

n1n2 . . . nd

d∏
i,j=1

(
ni + k′

ij − 1

k′
ij

)
,

where k′
ii = ni + kii and for i ̸= j, k′

ij = kij.

Proof. We use the same arguments as in Section 6 of Pitman [21] where the case d = 1
is treated. Let F be a d-type branching forest, as de�ned in Section 3, with progeny law
ν given by

νi(k1, · · · , kd) =
d∏

j=1

(1− pij)
kjpij, i = 1, 2, . . . d, (k1, · · · , kd) ∈ Z+,

where 0 < pij < 1, i, j ∈ [d] That is to say, each individual of type i gives birth to children
of di�erent types independently, respectively according to the geometric distribution µij(·)
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with parameter pij, j ∈ [d]. Then

νi(k1, · · · , kd) =
d∏

j=1

µij (kj) ,

where for any n ∈ N, µ∗n
ij (k) =

(
n+k−1

k

)
(1− pij)

kpnij, k = 0, 1, . . .
Let p(u) = (pi(u), i ∈ [d]) be the increment of the Lukasiewicz-Harris path related to

some vertex u of some forest f , as it is de�ned in (2.7). Recall also from Subsection 2.1

that c(u) = cf (u) ∈ [d] is the type of the vertex u. Then for any f ∈ Fkij ,n
d ,

(5.24) Pr (F = f) =
∏
u∈f

νc(u)(p(u)) =
∏
u∈f

d∏
j=1

(
1− pc(u)j

)pj(u) pc(u)j = d∏
i,j=1

(1− pij)
k′ij pni

ij .

Since this probability is the same for all the forests f ∈ Fkij ,n
d , the following conditional

distribution is the uniform distribution on Fkij ,n
d :

Pr

(
F ∈ ·

∣∣O(F ) = n, Aij(F ) = kij, i, j ∈ [d], i ̸= j
)
.

But Theorem 1.2 tells us that

Pr

(
O1 = n1, . . . , Od = nd, Aij = kij, i, j ∈ [d], i ̸= j

)
=

det(−kij)

n1n2 . . . nd

d∏
i=1

ν∗ni
i (ki1, . . . , ki(i−1), ni + kii, ki(i+1), . . . , kid)

=
det(−kij)

n1n2 . . . nd

d∏
i,j=1

µ∗ni
ij (k′

ij)

=
det(−kij)

n1n2 . . . nd

d∏
i,j=1

(
ni + k′

ij − 1

k′
ij

)
(1− pij)

k′ijpni
ij

=
det(−kij)

n1n2 . . . nd

d∏
i,j=1

(
ni + k′

ij − 1

k′
ij

)( d∏
i,j=1

(1− pij)
k′ijpni

ij

)
.

Comparing this probability with (5.24), we obtain our result. 2

Now we shall enumerated labeled forests according to the degree of their vertices. Some
of the next results have recently been obtained.

De�nition 5.2. To each forest f with ni vertices of type i and to each vertex of type i
in f , we associate an integer in [ni], which is called its label. Then f is called a labeled
plane forest. Let L be the set of labeled plane forests with ni vertices of type i, ri roots of
type i and whose corresponding reduced forest has (kij) as a Laplacian matrix.
Let c = (ci,j,k)i,j∈[d],k∈[ni] be a tuple of non-negative integers such that k′

ij =
∑ni

k=1 ci,j,k,
where k′

ij is de�ned in Theorem 5.1. We will denote by L (c) the subset of L, of forests in
which the vertex of type i with label k has ci,j,k o�spring of type j. Then c is called the
indegree tuple of the forest f ∈ L (c).

The following result has been obtained in [3], see Proposition 11.



26 LOÏC CHAUMONT AND RONGLI LIU

Proposition 5.3 (Enumeration of labeled plane forests by indegree tuple). For any in-
degree tuple c = (ci,j,k)i,j∈[d],k∈[ni], the number of forests with c as the indegree tuple in L
is

(5.25) |L (c)| =
∏d

j=1(nj − 1)!∏
i∈[d] ri!

∏
i,j∈[d],k∈[ni]

ci,j,k!
det(−kij) .

Proof. Let f ∈ L (c) and let x be its coding sequence, given by Theorem 2.7. According
to Lemmas 4.6 and 4.7, there are det(−kij) good cyclical permutations of x, each one
coding a di�erent forest in L (c). On the other hand, any two forests f and f ′ of L (c) are
coded through two sequences x and x′ such that for each i ∈ [d], the sequence of increments

(∆x
(i)
1 , . . . ,∆x

(i)
ni ) is a permutation of the sequence of increments (∆x′(i)

1 , . . . ,∆x′(i)
ni
). Then

there are
∏d

j=1(nj − 1)! det(−kij) good permutations of x, where by good permutation, we
mean a sequence x′ which codes a forest in L (c) and such that the sequence of increments

(∆x′(i)
1 , . . . ,∆x′(i)

ni
) is a permutation of the sequence of increments (∆x

(i)
1 , . . . ,∆x

(i)
ni ).

In the enumeration that we have just done, we counted forests f , f ′ ∈ L (c) such that
f ′ can be obtained by permuting in f the ci,j,k subtrees whose roots are the ci,j,k children
of type j of the kth vertex of type i, for some i, j ∈ [d] and k ∈ [ni] or by permuting
the trees with the same type roots in the whole forest. But in this case, f and f ′ are the
same forest. Therefore, we still have to divide the number

∏d
j=1(nj − 1)! det(−kij) by∏

i∈[d] ri!
∏

i,j∈[d],k∈[ni]
ci,j,k!, that is

|L (c)| =
∏d

j=1(nj − 1)!∏
i∈[d] ri!

∏
i,j∈[d],k∈[ni]

ci,j,k!
det(−kij) .

2

From Proposition 5.3, we can also derive the number of the forests in L which was obtained
in [5], see Proposition 2.

Proposition 5.4 (Enumeration of labeled plane forests by given numbers of di�erent
types of edges). Recall the de�nition of k′

ij, i, j ∈ [d] from Theorem 5.1. Then

(5.26) |L| =
d∏

i,j=1

(ni)
k′ij

∏d
j=1(nj − 1)!∏d

j=1 rj!
∏

i,j∈[d] k
′
ij!

det(−kij) .

Proof. A tuple c = (ci,j,k)i,j∈[d],k∈[ni] of non-negative integers is an indegree tuple
in L if and only if

∑ni

k=1 ci,j,k = k′
ij for i, j ∈ [d]. De�ne the set of indegree tuples

C = {c = (ci,j,k)i,j∈[d],k∈[ni]; ci,j,k ∈ Z+,
∑ni

k=1 ci,j,k = k′
ij}. Summing all the indegree

tuples c ∈ C, from Proposition 5.3, we obtain

|L| =
∑
c∈C

|L (c)| =
∑
c∈C

∏d
j=1(nj − 1)!∏d

j=1

(
rj!
∏

i∈[d],k∈[ni]
ci,j,k!

) det(−kij)

=

∏d
j=1(nj − 1)!∏d

j=1

(
rj!
∏

i∈[d] k
′
ij!
) det(−kij)

d∏
i,j=1

 ∑
(ci,j,·)∈Cij

k′
ij!∏ni

k=1 ci,j,k!


=

∏d
j=1(nj − 1)!∏d

j=1

(
rj!
∏

i∈[d] k
′
ij!
) det(−kij)

d∏
i,j=1

(ni)
k′ij ,



CODING MULTITYPE FORESTS: PROGENY LAW AND ENUMERATIONS 27

where Cij =
{
(ci,j,k)

ni
k=1; ci,j,k ∈ Z+,

∑ni

k=1 ci,j,k = k′
ij

}
for i, j ∈ [d]. (5.26) is obtained.2

A multitype labeled plane forest is said to be injective if every vertex has at most one
child of each type. Let Linj be the set consisting of injective forests in L. Now we count
the number of forests in Linj. The following result was obtained in [3], see Proposition 9.

Proposition 5.5 (Enumeration of injective forests).

(5.27) |Linj| =
d∏

i,j=1

(
ni

k′
ij

) ∏d
j=1(nj − 1)! det(−kij)∏d

j=1 rj!
.

Proof. If c = (ci,j,k)i,j∈[d],k∈[ni] is the indegree tuple for an injective forest f in Linj,
then ci,j,k = 0 or 1. Therefore, from Proposition 5.3,

|L (c)| =
∏d

j=1(nj − 1)! det(−kij)∏d
j=1

(
rj!
∏

i∈[d],k∈[ni]
ci,j,k!

) =

∏d
j=1(nj − 1)! det(−kij)∏d

j=1 rj!
.

This number is unrelated to the choice of indegree tuple c. Moreover, the forests in Linj

have
∏d

i=1

∏d
j=1

(
ni

k′ij

)
di�erent indegree tuples. Thus the cardinality of Linj is

|Linj| =
∏

i,j∈[d]

(
ni

k′
ij

) ∏d
j=1(nj − 1)! det(−kij)∏d

j=1 rj!
.

2

Now we count the number of forests in L by �xing the number of vertices of each
indegree type (but without �xing their labels). We say that a vertex has indegree type

u = (u1, u2, . . . , ud) if it has uj children of type j for j ∈ [d]. Let U =
∏d

i=1{0, 1, . . . , ni},
and let N = (Ni,u)i∈[d],u∈U be a tuple of nonnegative integers satisfying ni =

∑
u∈UNi,u

and k′
ij =

∑
u∈U ujNi,u for i, j ∈ [d]. Denote by L (N) the subset of L in which the

forests have Ni,u vertices of type i with indegree type u for i ∈ [d], u ∈ U. Set N(k) =∑
i,j∈[d],uj=k Ni,u +

∑d
i=1 1{k}(ri), k = 0, 1, . . . The following result is Proposition 12 in [3].

Proposition 5.6 (Enumeration of labeled plane forests by given the number of vertices
of each indegree type). Given a tuple of nonnegative integers N = (Ni,u)i∈[d],u∈U, satisfying

the above assumptions, the number of forests in L (N) is

(5.28) |L (N)| =
∏d

j=1 (nj)!(nj − 1)!∏
i∈[d],u∈U (Ni,u)!

∏
k≥0 (k!)

N(k)
det(−kij) .

Proof. For any indegree tuple c such that L (c) ⊂ L (N), (5.25) can be rewritten as

|L (c)| =
∏d

j=1(nj − 1)!∏
k≥0 (k!)

N(k)
det(−kij) .

Since there are
∏

i∈[d] (ni)!/
∏

i∈[d],u∈U (Ni,u)! di�erent indegree tuples c for each given N,

the number of forests in L (N) is the product of the above two numbers, which gives
(5.28). 2

We end this subsection with an enumeration of unlabeled forests. De�ne the subset
Fkij ,n

d (N) of Fkij ,n
d consisting of unlabeled forests having Ni,u vertices of type i with

indegree type u for i ∈ [d], u ∈ U.
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Proposition 5.7 (Enumeration of plane forests by given the number of vertices of each
indegree type). ∣∣∣Fkij ,n

d (N)
∣∣∣ = ∏d

j=1(nj − 1)! det(−kij)∏
i∈[d],u∈U (Ni,u)!

.

Proof. Recall that N(k) =
∑

i,j∈[d],uj=k Ni,u +
∑d

i=1 1{k}(ri), k = 0, 1, . . . and de�ne

the canonical map Ψ : L (N) → Fkij ,n
d (N), where for f ∈ L (N), Ψ(f) is the plane for-

est obtained by removing the labels of vertices in f . Let f ′ ∈ Fkij ,n
d (N), and observe

that for any f1, f2 ∈ Ψ−1 (f ′) with respective indegree tuples c1 = (c1i,j,k)i,j∈[d],k∈[ni]
and

c2 = (c2i,j,k)i,j∈[d],k∈[ni]
, we have

∏
i,j∈[d],k∈[ni]

c1i,j,k! =
∏

i,j∈[d],k∈[ni]
c2i,j,k! Let us denote by∏

i,j∈[d],k∈[ni]
ci,j,k! this common value, then we readily check that∣∣Ψ−1 (f ′)

∣∣ = ∏d
j=1 nj!∏d

i=1 ri!
∏

i,j∈[d],k∈[ni]
ci,j,k!

=

∏d
j=1 nj!∏

k≥0(k!)
N(k)

.

Then we derive from (5.28) that∣∣∣Fkij ,n
d (N)

∣∣∣ = |L (N)|
|Ψ−1 (f ′)|

=

∏d
j=1(nj − 1)! det(−kij)∏

i∈[d],u∈U (Ni,u)!
.

2

5.2. The Lagrange-Good inversion formula. Since the original paper by Good [10],
the multivariate extension of Lagrange inversion formula has been widely studied by many
authors. We refer to [11, 9, 2, 5] for di�erent forms of Lagrange-Good inversion formula
and proofs. The arborescent form of this result is introduced in [9] and [11], and is based
on the notion of derivative with respect to a directed graph, see De�nition 5.8 below. It is
then is proved to be equivalent to the classical form. Here we will consider the arborescent
form of this formula, as it �ts properly to our setting. We will show that Theorem 1.2
implies the Lagrange-Good inversion formula. Although the latter is applicable for formal
power series, here we only set up this formula for generating functions of probability
distributions.

De�nition 5.8 (De�nition 1of [5]). Let G be a directed graph having V = {0, 1, 2, , · · · , d}
as set of vertices and E ⊂ V × V as set of arcs(= directed edges), with the property that
0 has outdegree d+(0) equals to 0. Let g(x) = (g0(x), g1(x), g2(x), · · · , gd(x)) be a vector of
formal power series in x = (x1, · · · , xd). We de�ne the derivative of g(x) according to G
by

∂g(x)

∂G
=
∏
j∈V


 ∏

(i,j)∈E

∂

∂xi

 gj(x)

 .

Recall that D is the set of vectors (j1, j2, · · · , jd), 0 ≤ ji ≤ d such that (ji, i), i ∈ [d] codes
an elementary forest as de�ned in De�nition 4.3.

De�nition 5.9. Denote by gi(x) a generating function of a probability distribution on
Zd

+, i = 0, 1, · · · , d. Set g(x) = (g0(x), g1(x), g2(x), · · · , gd(x)). Let j = (j1, j2, · · · , jd) be a
vector in D. De�ne the derivative of g(x) with respect to j by

∂g(x)

∂j
=

d∏
k=0

{(∏
ji=k

∂

∂xi

)
gk(x)

}
,



CODING MULTITYPE FORESTS: PROGENY LAW AND ENUMERATIONS 29

where

(∏
ji=k

∂

∂xi

)
is equal to the identical operator when {i; ji = k} = ∅.

According to the de�nition of D, there exist a unique directed tree corresponding to any
j ∈ D. As a consequence and from De�nitions 5.8 and 5.9, we see that the derivative of
g(x) with respect to j is equal to the derivative of g(x) with respect to the corresponding
tree of j.
For example, for d = 2, there are three elementary trees: j1 = (0, 0), j2 = (2, 0),

j3 = (0, 1). The derivatives of the vector function g(x) = (g0(x), g1(x), g2(x)) according to
the vectors or the trees are

∂g(x)

∂j1
=

∂2g0
∂x1∂x2

· g1 · g2,
∂g(x)

∂j2
=

∂g0
∂x2

· g1 ·
∂g2
∂x1

,
∂g(x)

∂j3
=

∂g0
∂x1

· ∂g1
∂x2

· g2.

Let fi(x) denote the generating function of νi, i ∈ [d] and let ν0 be the Dirac measure
on (r1, · · · , rd), that is ν0 = δ(r1,··· ,rd). And set f0(x) = xr1

1 · · · xrd
d , (x1, · · · , xd) ∈ Rd,

which is the generating function of ν0. For any d−dimensional nonnegative integer vector
m = (m1,m2, · · · ,md), set x

m = xm1
1 · · · xmd

d . Then for any formal power series h(x) with
respect to x, the coe�cient of xm is denoted by [xm]h(x). In the remaining, without lose
of generality, we assume that d−dimensional vector n is a positive integer valued vector.
In our special setting, Arborescent Good-Lagrange formula can be stated as following.

Theorem 5.10. Let f0(x), f1(x), · · · , fd(x) be given generating functions of o�spring dis-
tributions and let gi(x), i ∈ [d] be the generating functions of the total progeny distri-
butions starting with one ancestor of type i. So that gi(x) = xifi(g) for i ∈ [d], where
g = (g1, g2, · · · , gd). Then

[xn]f0(g) =

(
d∏

i=1

1

ni

)
[xn−1d ]

∑
j∈D

∂ (f0(x), f
n1
1 (x), . . . , fnd

d (x))

∂j
,

where n− 1d = (n1 − 1, . . . , nd − 1).

Proof. First note that the identity in Theorem 1.2 can be rewritten as

Pr

(
O1 = n1, . . . , Od = nd, Aij = kij, i, j ∈ [d], i ̸= j

)
=

∑
(j1,...,jd)∈D

∏d
i=1 kjii

n1n2 . . . nd

d∏
j=1

ν
∗nj

j (kj1, . . . , kj(j−1), nj + kjj, kj(j+1), . . . , kjd)

=

(
d∏

i=1

1

ni

) ∑
(j1,...,jd)∈D


 ∏

{i;ji=0}

ri

×

d∏
j=1

 ∏
{i;ji=j}

kji

 ν
∗nj

j (kj1, . . . , kj(j−1), nj + kjj, kj(j+1), . . . , kjd)

 ,

(5.29)

where
(∏

{i;ji=j} kji

)
= 1 when the product is taken over an empty set. Set the vectors

Ij = (kj1, . . . , kj(j−1), nj+kjj, kj(j+1), . . . , kjd), j ∈ [d], I0 = (r1, . . . , rd). Then
∏

{i;ji=0} ri =

[xI
′
0 ]

(∏
{i;ji=0}

∂

∂xi

)
f0(x), and for j ∈ [d],( ∏

{i;ji=j}

kji

)
ν
∗nj

j (kj1, . . . , kj(j−1), nj + kjj, kj(j+1), . . . , kjd) = [xI
′
j ]

( ∏
{i;ji=j}

∂

∂xi

)
f
nj

j (x),
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where I ′ji = Iji − 1 when i ∈ {i; ji = j}, and I ′ji = Iji when i /∈ {i; ji = j}, j = 0, 1, . . . , d.
Since for (j1, . . . , jd) ∈ D, each i ∈ [d] appears exactly once in the sets {i; ji = j},
j = 0, 1, . . . , d,

∑d
j=0 I

′
j = n− 1d. Note that {Ij; j ∈ [d]} depend on (kij)i,j∈[d]. Now �x n,

r and j = (j1, . . . , jd) ∈ D. And de�ne the set

K =

{
(kij)i,j∈[d]; kij ∈ Z+, i ̸= j,−kii =

∑
j ̸=i

kji + ri ≤ ni

}
.

Take a sum for the term in the brace in (5.29) and express it in terms of characteristic
functions:∑

(kij)∈K

( ∏
{i;ji=0}

ri

) d∏
j=1

( ∏
{i;ji=j}

kji

)
ν
∗nj

j (kj1, . . . , kj(j−1), nj + kjj, kj(j+1), . . . , kjd)

= [xI
′
0 ]

( ∏
{i;ji=0}

∂

∂xi

)
f0(x)

∑
(kij)∈K

d∏
j=1

[xI
′
j ]

( ∏
{i;ji=j}

∂

∂xi

)
f
nj

j (x)

= [xI
′
0 ]

( ∏
{i;ji=0}

∂

∂xi

)
f0(x)

∑
∑d

j=0 I
′
j=n−1d

d∏
j=1

[xI
′
j ]

( ∏
{i;ji=j}

∂

∂xi

)
f
nj

j (x)

= [xn−1d ]
∂ (f0(x), f

n1
1 (x), . . . , fnd

d (x))

∂j
.

Then we derive from this last computation that,

[xn]f0(g) = Pr

(
O1 = n1, . . . , Od = nd

)
=

∑
(kij)∈K

Pr

(
O1 = n1, . . . , Od = nd, Aij = kij, i, j ∈ [d], i ̸= j

)

=
∑

(kij)∈K

∑
j∈D

∏
{i;ji=0} ri∏d
i=1 ni

d∏
j=1

( ∏
{i;ji=j}

kji

)
ν
∗nj

j (kj1, . . . , kj(j−1), nj + kjj, kj(j+1), . . . , kjd)

=

(
d∏

i=1

1

ni

)∑
j∈D

[xn−1d ]
∂ (f0(x), f

n1
1 (x), . . . , fnd

d (x))

∂j
.

2
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