
HAL Id: hal-00783406
https://hal.science/hal-00783406v1

Submitted on 12 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An analytical model for the intercell interference power
in the downlink of wireless cellular networks

B. Pijcke, Marie Zwingelstein, Marc G. Gazalet, M Gharbi, Patrick Corlay

To cite this version:
B. Pijcke, Marie Zwingelstein, Marc G. Gazalet, M Gharbi, Patrick Corlay. An analytical model
for the intercell interference power in the downlink of wireless cellular networks. EURASIP Journal
on Wireless Communications and Networking, 2011, 2011, pp.95. �10.1186/1687-1499-2011-95�. �hal-
00783406�

https://hal.science/hal-00783406v1
https://hal.archives-ouvertes.fr


1

An Analytical Model for the Intercell
Interference Power in the Downlink of Wireless

Cellular Networks
Benoit Pijcke, Marie Zwingelstein-Colin, Marc Gazalet,

Mohamed Gharbi, Patrick Corlay

Université Lille Nord de France, F-59000 Lille

UVHC, IEMN/DOAE, F-59313 Valenciennes

CNRS, UMR 8520, F-59650 Villeneuve d’Ascq, France

firstname.lastname@univ-valenciennes.fr

Abstract

In this paper, we propose a methodology for estimating the statistics of the intercell interference
power in the downlink of a multicellular network. We first establish an analytical expression for the
probability law of the interference power when only Rayleigh multipath fading is considered. Next,
focusing on a propagation environment where small-scale Rayleigh fading as well as large-scale effects,
including attenuation with distance and lognormal shadowing, are taken into consideration, we elaborate
a semi-analytical method to build up the histogram of the interference power distribution. From the
results obtained for this combined small- and large-scale fading context, we then develop a statistical
model for the interference power distribution. The interest of this model lies in the fact that it can be
applied to a large range of values of the shadowing parameter. The proposed methods can also be easily
extended to other types of networks.

Index Terms

Intercell interference power, statistical modeling, wireless networks, Rayleigh fading, lognormal
shadowing.

I. INTRODUCTION

In the emerging wireless communication standards LTE-Advanced and Mobile WiMAX, ag-
gressive spectrum reuse is mandatory in order to achieve the increased spectral efficiency required
by IMT-Advanced for the 4th generation of standard telephony. However, since spectrum reuse
comes at the expense of increased intercell interference, these standards explicitely require
interference management as a basic system functionality [1]–[3]. The research area related to
the development and analysis of interference management techniques, mostly in relation with
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the more general subject of radio ressource management, is very dynamic, as witnessed by the
high number of relevant recent contributions in this area [4]–[10]. All these new standards use
OFDMA as the modulation and the multiple access scheme. In an OFDMA system, there is no
intracell interference as the users remain orthogonal, even through multipath channels. However,
when users from different cells are present at the same time on the same subchannel, which is
the case under aggressive frequency reuse, signals superpose, leading to some form of intercell
interference.

Providing statistical models of the interference power is essential to allow for an accurate
evaluation of networks performances without the need for lenghtly and costly Monte Carlo
simulations. The statistical characterization of the interferences has been investigated for a long
time, under lots of different scenarios, and following several approaches. The distribution of
cumulated instantaneous interference power in a Rayleigh fading channel was investigated in
[11], where an infinite number of interfering stations was considered. In [12], the interference
power statistics is obtained analytically for the uplink and downlink of a cellular system, but
in the presence of large-scale fading only. Interference modeling when considering only large-
scale fading effects has also been investigated in [13]–[15], where the emphasis is on finding a
good approximation of the lognormal sum distribution. In [16], an analytical derivation of the
probability density function (pdf) of the adjacent channel interference is derived for the uplink.
More recently, in [17] the pdf of the downlink SINR was derived in the context of randomly
located femtocells via a semi-analytical method. Other contributions have focused directly on the
analysis of a particular performance measure that is influenced by intercell interference, like the
probability of outage and the radio spectrum efficiency [18]–[20]. The analysis of interference
in dense asynchronous networks, such as ad-hoc networks, is also an active research area, for
which a deep review of the recent developments can be found in [21], [22].

In this paper, we derive a semi-analytical methodology to estimate the statistics of the intercell
interference power in a wireless cellular network, when the combined effects of large-scale and
small-scale multipath fading are taken into consideration. Large-scale effects include attenuation
with distance (path-loss) as well as lognormal shadowing, and the small-scale fading is Rayleigh
distributed. We consider a distributed wireless multicellular network, in both cases where power
control and no power control is applied. The proposed methodology is semi-analytical, in that
the statistical estimate of the interference power resulting from N > 1 interferers is obtained
by numerical techniques from an analytically-derived interference model for one interferer. The
methodology is valid in a quite general framework; we have chosen to present it using a hexagonal
network layout, although it can handle any other topology. We validate the proposed methods
by comparing the moments of the estimates to the exact moments of the distribution which can
be derived analytically. Using this methodology, we are able to provide a very good estimate
of the pdf of the interference power, for different values of the shadowing standard deviation,
σdB. Based on these estimates, we then propose an analytical statistical model of the interference
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power, based on a modified Burr distribution, which includes 5 parameters. This analytical,
parameterized by σdB, model will hopefully serve as a practical tool for the assesment and
simulation of wireless cellular networks when the effect of shadowing is to be considered.

The main contributions of this paper are as follows.

• In the special situation where only path-loss and Rayleigh fading are considered (no shad-
owing), we derive a very accurate approximated analytical expression for the pdf and the
cumulative distribution function (cdf) of the intercell interference power;

• We propose a semi-analytical method for the estimation of the pdf of the intercell interference
power in a multicellular network when the combined propagation effects of path-loss,
Rayleigh fading and lognormal shadowing are considered;

• Based on this method, we derive an analytical model for the pdf of the intercell interference
power by slightly modifying a Burr probability distribution. This model is parameterized by
the lognormal standard deviation σdB and its interest resides in the fact that it is valid on
the whole [0, 12]-dB range of values.

The remainder of this paper is organized as follows. In Section II, we describe the multicell
downlink transmission environment, and we provide the expression of the interference power
for which we want to find a statistical model. In Section III, the original methodology for
estimating the statistics of the interference power is presented. For this purpose, we examine in
Section III-A the particular case where path loss and Rayleigh fast-fading are the only fading
phenomena considered. In Section III-B, we include the shadowing effect and we consider in the
first instance the contribution of one interfering cell. We then generalize to N > 1 interferers.
In Section IV, we apply the proposed method to estimate the pdf of the interference power in
a typical multicellular network, under two frequency reuse scenarios. Section V is dedicated to
the parametric analytical modeling of the interference power. Section VI concludes the paper by
summarizing the proposed methods and by presenting some perspectives.

We will use the following notation for the rest of the paper. Non-bold letters such as x are
used to denote scalar variables, and |x| is the magnitude of x. Bold letters like x denote vectors.
We use E {X} to denote the expectation of X . The pdf and cdf of the random variable (r.v.) X
will be denoted pX (x) and FX (x) respectively.

II. MULTICELL DOWNLINK TRANSMISSION MODEL

We consider the downlink of an OFDMA-based 19-cell cellular network having the 2D hexag-
onal layout depicted on Fig. 1. We assume a unit-gain omnidirectional SISO (single input, single
output) antenna pattern, both for the fixed access points (APs) and the mobile user terminals
(UTs) which are supposed to be uniformly distributed over the service area. As OFDM is used
for intracell communication, we assume an orthogonal transmission scheme within a cell. We
consider a synchronous discrete-time communication model in which active APs at any given
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time slot send information symbols to their respective UTs over a shared spectral resource, which
gives rise to an interference-limited environment. In this framework, we will focus on the statistics
of the so-called intercell interference power undergone by a typical UT. In this regard, we will
consider UT in cell 0 (denoted UT0, see Fig. 1), for it is surrounded by 18 potential interferers.
For UT0, the received signal on OFDMA subchannel ` at time slot m can be modeled as

y0(m, `) = h0(m, `)x0(m, `) +
N∑
n=1

hn(m, `)xn(m, `) + w(m, `).

Here x0 (m, `) represents the information symbol intended to UT0 and xn (m, `), n 6= 0, the
nth interfering symbol (this symbol is sent from AP n to its respective user). The coefficient
hn (m, `) denotes the instantaneous gain of the `th (interfering) subchannel from AP n to UT0.
Each subchannel ` is subject to additive white Gaussian noise w (m, `). In the following, we will
focus without loss of generality on a single OFDMA subchannel, thereby omitting subchannel
index ` in all subsequent notations.

Two frequency reuse scenarios will be considered (see Fig. 1):

• the full frequency reuse pattern, denoted FR1, where all APs in the network transmit at the
same time using the same frequency range (N = 18 intercell interferers);

• a partial frequency reuse pattern, denoted FR3, with reuse factor 3 (N = 6 interferers).

Each channel is assumed to be flat-fading, possibly experiencing small-scale multipath fading
and/or large-scale effects. For the rest of the paper, we concentrate on the instantaneous channel
power gain1 Gn (rn) , which is proportional to |hn (m)|2 and can be expressed as a three-factor
product:

Gn (rn) = Gpl,n (rn)Gf,nGs,n, n = 1, 2, . . . , N. (1)

In the above equation, rn denotes the distance between UT0 and AP n (distances rn are func-
tions of UT0’s position within its cell). Gpl,n (rn) = K (1/rn)

γ is the (deterministic) path loss
(normalized with distance, see Appendix A), where K is a constant and γ represents the path
loss exponent. The Rayleigh fading gain Gf,n is modeled by an exponential distribution with
rate parameter equal to 1, i.e., E {Gf,n} = 1; we denote the corresponding pdf by pGf,n (x). The
shadowing gain Gs,n is modeled by a lognormal distribution whose pdf can be written

pGs,n (x) =
ξ√

2πσdBx
exp

(
−(10 log10 (x)− µdB)

2

2σ2
dB

)
, x > 0,

where ξ = 10/ ln(10) [23]. Note that the importance of the shadowing phenomenon is directly
related to the standard deviation σdB. For a given σdB, the parameter µdB is determined to ensure
a unit mean shadowing gain: E {Gs,n} = 1, which leads to µdB = −σ2

dB/ (2ξ). As r.v.’s Gf,n

and Gs,n are independent from each other, and as E {Gf,n} = E {Gs,n} = 1, we have, from (1),

1As this paper will focus on power gains only, the term power will then be omitted in subsequent paragraphs.
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E {Gn (rn)} = Gpl,n (rn), which reflects the fact that the nth interfering channel’s Rayleigh
fading and shadowing components cause the actual gain Gn (rn) to fluctuate about its mean
value Gpl,n (rn).

The total interference power undergone by UT0 can then be written I =
∑N

n=1 PnGn(rn),
where Pn = E

{
|xn|2

}
is the power emitted by AP n. In what follows, we consider that all

APs transmit at the same power, i.e., Pn = P for all n. This corresponds to, e.g., a fast-fading
environment where no channel state information feeds back from mobile users to APs, which
results in a no power control scheme where all APs transmit at the maximum power; although
crude, this scheme can be seen as a lower bound on performance for real systems. Considering
that each AP transmits at the same power P also applies to a more practical scenario where APs
have access to channel state information and power control is associated with the opportunistic
scheduling policy proposed (and proved to be sum-rate optimal) in [10], when the number of
users per cell is high (since in this case, it can be expected that the channels between users
scheduled at the same time and their serving APs have about the same power gains). Thus, the
interference simplifies to I = P

∑N
n=1Gn (rn).

We now define the interference gain — which will be denoted G — as being the sum of the
channel power gains between the interested user and the N interferers, i.e.,

G =
N∑
n=1

Gn(rn) =
N∑
n=1

Gpl,n(rn)Gf,nGs,n. (2)

(Note that G is a function of UT0’s location through the distances rn.) So, as I = PG,
characterizing the interference power I is equivalent to studying the interference gain G. We
will concentrate on the latter in the subsequent sections.

III. METHODOLOGY

We are now interested in finding an estimate of the pdf of the random interference gain (2).
Since direct calculation of the pdf does not seem possible, we aim at producing an accurate
histogram for the interference gain G that will then be modeled using a specified statistical
distribution. Such a histogram is constructed from a set of samples called a typical set, i.e.,
a discrete ensemble of values that accurately represents a random phenomenon. Traditionally
(and especially in the telecommunications area), this typical set is issued from Monte Carlo
simulations, which might, at first sight, produce satisfying results. However, in a propagation
environment that is subject to intense shadowing (i.e., for large values of the [0, 12]-dB range
under consideration), the classical Monte Carlo method fails at producing a representative set
of sampled gains [24], [25]. This can be explained by examining the particular distribution
involved, for one single as well as for multiple interfering cells. A typical cdf of the interference
gain (single or multiple interferers) for a high value of σdB belongs to the class of heavy-tailed
distributions [26], for which the least-frequently occuring values — also called rare events — are
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the most important ones, as a proportion of the total population, in terms of moments. A finite-
time random drawing process performed on this cdf never produces these rare events because of
their very low probabilities, which causes the resulting set to be not typical. Hence the need for
a new approach.

As will be seen in Subsection III-B2, the pdf and the cdf of the interference gain for one single
interferer may be expressed in its integral form. From this expression, we propose the following
two-step approach:

1) Produce a typical set of gains for one interferer using the generalized inverse method.
This method consists in generating a typical set of samples corresponding to an arbitrary
continuous cdf F , and is based upon the following property: if U is a uniform [0, 1] r.v.,
then F−1 (U) has cdf F ;

2) Produce a typical set for multiple interferers by adequately combining typical sets from
single interferers and the Monte Carlo computational technique.

A. Special case: No shadowing

We start this section by considering a propagation environment in which the only fading
phenomenon is due to Rayleigh multipath fading. In this particular case, (1) simplifies to

Gn (rn) = Gpl,n (rn)Gf,n. (3)

We first note that, because of the symmetry of the network geometry, we need only study
the interference power distribution for UT0 located within one of the twelve triangular sectors
depicted on Fig. 2; in the following, we will consider the grey-shaded region for illustration
purposes.

We now introduce an original approximation that will help simplify further computations.
We can see that in (3), it is UT0’s random position that makes the path loss Gpl,n (rn) fluctuate,
when the randomness of Gf,n is due to Rayleigh fading. But it is worth noting that, although both
phenomena are random, path loss fluctuations differ from multipath fading in an important way
: the path loss takes values in a finite set (related to UT0’s location within its cell) whereas the
variations due to fading have an (theoretically) infinite dynamic range. Since pathloss fluctuations’
dynamics are very small compared to fading’s, we propose to approximate (3) by replacing each
gain Gpl,n (rn) by its average value, which leads to

Gn ≈ E
rn
{Gpl,n (rn)}Gf,n

= E
r0,θ
{Gpl,n (fn (r0, θ))}Gf,n, (4)

using the notation rn = fn (r0, θ), n = 1, 2, ..., N , where (r0, θ) are UT0’s polar coordinates, as
depicted in Fig. 2. By examining (4), we see that, under this approximation, Gn does not depend
on UT0’s varying position anymore.
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We further note that Gn, as expressed in (4), is an exponentially distributed r.v. with rate
parameter 1/λn [27], λn — which we call the average path loss — being defined as follows:

λn = E
r0,θ
{Gpl,n (fn (r0, θ))} . (5)

Using (5), (4) can also be written
Gn ≈ λnGf,n, (6)

and the intercell interference gain (2) can be reduced to a sum of independant (but not identically
distributed) exponential r.v.’s:

G ≈
N∑
n=1

λnGf,n. (7)

G, as expressed in (7), is a r.v. whose cdf, denoted FG (g), has a closed form expression available
in the literature [28]; it can be expressed as

FG (x) = 1−
N∑
n=1

An exp

(
− x

λn

)
, (8)

where

An =
λNn

N∏
j=1

j 6=n

λn − λj
, n = 1...N.

The pdf, denoted pG (g), can be easily calculated by deriving (8):

pG (x) =
N∑
n=1

An
λn

exp

(
− x

λn

)
. (9)

In Section IV-A, it is first shown that approximation (4) is valid in the case of one single
interfering cell. This consequently validates the proposed model (7) in the case of multiple
interfering cells, which we show for both frequency reuse patterns FR1 and FR3.

B. General case: Attenuation with distance, shadowing and multipath fading

Let us now focus on characterizing the distribution of the intercell interference gain G in a
propagation environment where Rayleigh fading as well as shadowing (due to obstacles between
the transmitter and receiver that attenuate signal power) are taken into account. To the best of
our knowledge, no closed form expression for the interference gain G exists in the literature.
But, as will be seen in Section III-B2, we determine an analytical formula (under integral form)
of the distribution of the interference gain for one interferer. Using this result, we are able to
obtain a histogram for G’s distribution in the presence of multiple interferers.

For this purpose, we proceed in two steps: first, we compute a typical set for the interference
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gain produced by one single interferer. As described in Section III-B2, this is done by numerical
computation (from the integral-form cdf), followed by non-uniform partitioning, and then inver-
sion, of the cdf. Then we generate a typical set for N interferers using an appropriate combination
of the (weighted by λn) typical sets of each single interferer (Section III-B3). The accuracy of
the proposed method will be evaluated in both single- and multiple-interferer cases by comparing
the actual moments computed from the typical sets with the exact moments of the interference
gain distribution (which can be formulated analytically, as will be seen in Section III-B1).

1) Preliminaries: We begin this section by examining two important points.
When taking into account multipath fading as well as shadowing as the fading effects in the

propagation environment, a question arises about the validity of the original approximation (6).
Fortunately, our approximation is being strengthened by this additional contribution due to
shadowing, since this phenomenon is just another source of infinite-dynamics randomness. Taking
shadowing into consideration amounts to introducing an additional term in (6) that can now be
written

Gn ≈ λnGf,nGs,n. (10)

A second point pertains to the moments of both statistical distributions of Gn (single interferer)
and G (multiple interferers). Using approximation (10), it is shown in Appendix B that the kth-
order moment of Gn’s distribution has the following expression:

E
{
(Gn)

k
}
= k! exp

(
k (k − 1)

σ2
dB

2

)
. (11)

Computation of the kth-order moment of G’s distribution is done in Appendix C and leads to
the following formula:

E
{
Gk
}
= k!

∑
a:|a|=k

λa exp

(
σ2

dB

2

(
−k +

N∑
n=1

α2
n

))
, (12)

where a = (α1, α2, . . . , αN), αn ∈ N, n = 1, 2, . . . , N , is an N -dimensional vector whose sum
of components is written |a| =

∑N
n=1 αn, and λα = λα1

1 λ
α2
2 . . . λαN

N . So the summation in Eq (12)
is taken over all sequences of non-negative integer indices α1 through αN such that the sum of
all αn is k. Note that the 1st-order moment,

E {G} =
N∑
n=1

λn, (13)

is a quantity of particular interest because it is proportional to the average power of the inter-
ference signal.

As closed form expressions of moments have been determined, they may be used in evaluating
the accuracy of typical sets for both single- and multiple-interferer statistical laws.
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2) Single interferer: We now turn on to computing a typical set for the interference gain
produced by one interferer. For convenience, the average path loss (5) for this single interferer
is normalized to 1, i.e., λn = 1, so (10) reduces to

Gn ≈ Gf,nGs,n. (14)

As Gn is the product of two independent r.v.’s, its cdf can be written

FGn (x) =

∫ ∞
0

pGf,n (u)

[∫ x
u

0

pGs,n (y) dy

]
du

=

∫ ∞
0

pGf,n (u)FGs,n

(x
u

)
du, (15)

where FGs,n (x/u) denotes the shadowing gain’s cdf. Recalling that Gs,n is modeled as a lognormal
r.v., we have, using the same notations as in Section II,

FGs,n (x/u) = Q
((
µdB − 10 log

(x
u

))
/σdB

)
,

where Q (z) = 1/
√
2π
∫∞
z

exp (−t2/2) dt is the complementary error function of Gaussian
statistics. Replacing pGf,n (u) and FGs,n (x/u) by their respective expression in (15), we obtain
an integral-form expression for the cdf of the intercell interference gain produced by one single
interfer:

FGn (x) =

∫ ∞
0

Q

(
10 log10

(
u
x

)
σdB

− σdB

2ξ

)
exp (−u) du. (16)

We are now interested in generating a typical set of the interference gain Gn; we denote this
typical set by S`n, where ` is the number of elements in the set. It was mentioned in Section III
that, though widely used in telecommunications, the Monte Carlo computational technique proves
inefficient for large values of σdB. An interesting alternative method is the generalized inverse
method, for which an `-element typical set for a given distribution is obtained by an `-level
uniform partitioning, followed by inversion, of the cdf. Now we know that, for large values
of σdB, the distribution of Gn exhibits the heavy-tailed property, which means, as described
before, that the least-frequently occuring values (i.e., the highest gains) are the most important
ones in terms of moments. Therefore, taking these highest amplitudes into consideration using
the ’classical’ generalized inverse method would require a finer partitioning of the cdf, which
would produce a typical set made up of a huge amount of elements.

In order to construct a typical set with a reasonable value for `, we propose to accomodate
the above-mentioned method by performing a non-uniform partitioning of Gn’s cdf, and, as high
amplitudes are important in terms of moments, we proceed with a finer partitioning of the [0, 1]

segment for values close to 1. The implementation details of the method are described on Fig. 3;
they result from a good compromise between accuracy and simplicity. We first divide the interval
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[0 1] of the cdf into J intervals, numbered j = 1, . . . , J , of different lengths: the jth interval
has a length dj = 9 × 10−j , j = 1, . . . , J − 1; the last interval has a length dJ = 10−J to
ensure

∑J
j=1 δj = 1. We next perform a P -level uniform partitioning on each interval, i.e., each

interval is now partitioned by P equally-spaced points. Finally, we invert the partitioned cdf to
obtain a typical set S`n of cardinality ` = J × P . Also, as the proposed partitioning is non-
uniform, S`n needs to be associated a probability set: the probability of an element computed
from the jth interval is δj = dj/P . It can be shown (see Section IV-B) that using J = 25

intervals containing P = 900 points each — which results in a typical set that contains only
` = 25 × 900 = 22, 500 elements 2 — guarantees that up to third-order moments derived from
the typical set are within 1% of the exact values for all σdB.

3) Multiple interferers: We now focus on finding an L-element typical set — denoted SL —
for the interference gain G that must be computed from N typical sets S`n, n = 1, 2, . . . , N .

We first note that interferer n’s typical set can be directly obtained by weighting each element
of S`n by its average path loss λn; we will denote interferer n’s typical set by λnS`n. Let us now
find a way to produce the ensemble SL from the typical sets λnS`n.

Ideally, SL should be constructed by considering all combinations of the elements of the
typical sets λnS`n, but the cardinality of the resulting set, L = `N = (JP )N , would rapidly
become prohibitive as the number N of interferers increases.

To get rid of this complexity, we point out that the above-mentioned ideal (exhaustive) solution
can also be viewed as an exhaustive combination of intervals (JN combinations) associated with
an exhaustive combination of elements within each interval combination (PN combinations). And
we observe that the most important part of this exhaustive solution pertains to the combination
of intervals, i.e., the combination of elements belonging to interval j of typical set λnS`n with
elements belonging to interval k, k 6= j, of typical set λmS`m, m 6= n. So a way to construct
a (near optimal) typical set for G could be to perform exhaustive combinations of the intervals
(as in the exhaustive solution), and to approximate the exhaustive combination of the elements
within each interval combination by the following procedure: for each of the JN combinations
of N P -point intervals,

• Perform a random permutation of the P elements within each of the N P -point intervals3;
• Add up these N permuted P -point intervals to obtain one resulting P-element interval.

This last P -element interval approximates the PN -element interval that would have resulted
from an exhaustive combination of elements within the considered interval combination. Now, as
there are JN interval combinations, the resulting typical set would contain JNP elements, which
can still be prohibitive, so this second solution — which we will refer to as the near-optimal

2To produce moments of the same accuracy, the traditional uniform partitioning approach would require about ` = 900×1025

points.
3Two interval combinations of the same rank j are supposed to be orthogonal because of the high number of points in each

interval (P = 900), which guarantees the independance of permutations.
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solution — can not be applied as such.
We eventually propose a novel approach which makes use of this near-optimal solution and is

based on the following two-step algorithm:

Step 1 Apply exhaustive combinations of intervals to a subset of M interfering links;
Step 2 Perform Monte Carlo simulations for the N −M remaining links.

We now detail the principle of the proposed method. In Step 1, we apply the near-optimal solution
described above, but to a subset of M < N interfering links which we will call compelled links.
The compelled links are chosen to have the highest average path losses (λ1 ≥ · · ·λM ≥ · · ·λN )
so as to minimize errors in other (non-compelled) interfering links. The exhaustive combination
of the J intervals for M compelled links obtained from the near-optimal solution thus results in
one set of JMP elements. In Step 2, we build up a JMP -element set for each of the N −M
remaining, non-compelled, links by performing JM random drawings of intervals according to
the probability set {δj}, j = 1, 2, . . . , J . As in the near-optimal solution, a random permutation of
the elements is applied at each drawing. The ensemble of amplitudes of the intercell interference
gain G — the so-called typical set SL —is then constructed by adding up these N −M +1 sets;
it is of cardinality L = JMP . Associated to SL is a probability set determined as follows: to
each interval is associated a weight which is the product of probabilities δk of intervals issued
from compelled links (for non-compelled links, probabilities are accounted for by means of the
random selection process); these weights are then normalized to obtain probabilities. Finally,
the histogram of the interference gain G can be constructed from these resulting amplitude and
probabiliy sets. It is important to note, however, that, as a random drawing process is involved, a
number of iterations might be needed in order for this process to converge (elements of SL and
associated probabilities are averaged at each iteration). We will call this semi-analytical technique
the Monte Carlo-panel method (MCP, in short)4.

The MCP method is illustrated on Fig. 4 for N = 4 interfering cells, M = 2 compelled links,
and J = 2 intervals per typical set (these intervals — denoted A and B — have probabilities
δ1 = 0.9 and δ2 = 0.1 respectively, and each one of them contains P elements). Step 1 of the
alogrithm is summarized in the light-grey shaded box: intervals from typical sets S`1 and S`2
(corresponding to compelled interfering links 1 and 2, and weighted by their respective average
path losses λ1 and λ2) are combined together, as described in the near-optimal solution, to obtain
a set of amplitudes of cardinality 4P representative of the two compelled links; associated to
this set of amplitudes is a set of weights {0.81, 0.09, 0.09, 0.01}. The dark-grey shaded box
summarizes Step 2: for each non-compelled interfering link, a 4P -element set of amplitudes is
made up by 4 intervals (A or B) drawn according to the probability set {0.9, 0.1} and applied
random permutations. The typical set SL (with L = 4P in our example) is then obtained by
summing up together all these sets. The histogram of the interference gain G is constructed

4The term ’panel’ refers to survey panels used by polling organizations.
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from S4P and the associated probability set5. Note that one random permutation of the interval
(permuted intervals have been assigned the prime symbol) is performed at each (compelled or
random) manipulation of an interval.

Implementing the MCP method however requires cautiousness. In non-compelled links, random
drawings of intervals are performed based on the probability set {δj}, j = 1, 2, . . . , J . In this
process, lowest-probability intervals, which contain the highest interference gains, are totally
ignored for two reasons. The first reason pertains to the fact that obtaining a significant frequency
of appearance of such rare events would require a prohibitive number of simulation runs. The
second reason is due to limitations inherent to software simulation tools which use pseudo-random
number generators to generate sequences of ’random’ numbers belonging to a fixed set of values.
In order to take into account the ignorance of the contribution of the highest interference gains of
the N −M non-compelled interfering links in the probability set {δj}, we suggest the following
workaround: in these links, we intentionally make exclusive use of the J , 1 ≤ J < J , first
intervals, and we associate them a loaded probability set

{
δ′j
}

defined as follows:

δ′j =

αδj for 1 ≤ j ≤ J

0 for J + 1 ≤ j ≤ J
(17)

where
α =

1
J∑
j=1

δj

(18)

is a normalizing constant such that
∑J

j=1 δ
′
j = 1 (using the particular non-uniform partitioning

described previously, we have: α = 1/
(
1− 0.1J

)
& 1).

Now, as was mentioned before, high amplitudes play an important role in terms of moments.
Although the impact of neglecting them in non-compelled links is globally limited because these
links are weighted by smaller average path losses λn (n =M+1, . . . , N ), it has to be compensated
in order to satisfy the 1st-order moment constraint (i.e., the sampled mean has to converge to
the exact value6). For this purpose, small (resp. large) amplitudes need to be underweighted
(resp. overweighted). Thus, an underweighting multiplicative factor, denoted f−, is applied to
amplitudes of the J first intervals of compelled links; similarly, an overweighting multiplicative
factor f+ is applied to amplitudes of the last N − J intervals. (Computation details of factors
f− and f+ are given in Appendix D.)

Let us last notice that the choice for values of M and J is a trade-off between differents aspects:
cardinality of the resulting typical set (i.e., tractable number of points), number of simulation
runs and accuracy of the histogram. We have determined that M = 2 and J = 3 meet all these

5The probability set is obtained by normalizing the set of weigths.
6We recall that the mean E {G} is of particular importance because it is proportional to the average interference power.
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requirements.

IV. NUMERICAL RESULTS

In this section, we present numerical results related to the different methods introduced in the
preceding section. In Section IV-A, we first examine the validity of the original approximation
introduced in Section III, stating that the interference gain Gn (and, consequently, G) does not
depend on the user’s position within its cell. For this purpose, we compare the approximation of
G given by (6) with the ’exact’ formula (3). Then, in Section IV-B, we obtain the histogram of the
interference gain Gn (one single interferer) by applying the non-uniform partitioning generalized
inverse method described in III-B2. Finally, the MCP method (see III-B3) is used to build up
the histogram of the interference gain for multiple interferers in Section IV-C.

We use the following simulation parameters. We consider a system functioning at 1 GHz.
We fix the cell radius to R = 700 m, d0 = 10 m, and the pathloss exponent to 3.2, which
corresponds to a typical urban environment, as described in the COST-231 reference model [29].
The reference distance is chosen to be equal to 2R. Average path losses λn, n = 1, 2, . . . , N , are
determined numerically using (5) and are summarized in Table I.

A. No shadowing

In this section, we evaluate the proposed approximation (6) against Monte Carlo simulations
performed on (3). We first consider the contribution of one interfering cell and, in this regard, we
examine two opposite scenarios: one for which the investigated interferer (i.e., AP 1) produces
the largest dynamic range for the intercell interference power undergone by a user in the grey-
shaded triangular area of Fig. 2; the other one for which the investigated cell (i.e., AP 13) has the
smallest dynamics. Obviously, both dynamics differently impact the accuracy of our model. Note
that, in both cases, the sum of interference gains (7) reduces to one exponential r.v. Modeled and
simulated pdf’s for above-mentioned cases (a) and (b) are plotted in Fig. 5 and Fig. 6 respectively,
and the good match of the curves shows that the proposed method is a good approximation.

We then consider the whole set of interfering cells (N interferers) under frequency reuse
patterns FR1 and then FR3, for which results are shown in Fig. 7 and Fig. 8 respectively. We
see that simulated and modeled probability laws (2) and (7) respectively closely match for both
frequency reuse patterns. We also note that simulated and approximated curves are closer to one
another for FR3 than they are for FR1. As explained before for the single-interferer scenario,
fluctuations of actual pathlosses Gpl,n (rn), n = 7, ..., 18, can be assumed to have about the same
dynamic range, but these dynamics are smaller than those of gains Gpl,n (rn), n = 1, ..., 6.

B. Shadowing, one interferer

In this section, we make use of the non-uniform partitioning generalized inversion method
introduced in Section III-B2 to obtain a typical set for the interference gain of one interferer.
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Table II presents the three first moments computed from typical set S`n, as compared with the
exact moments of the distribution of the interference gain Gn. We see that moments issued
from the typical set are far beyond the 1% accuracy requirement. The proposed method also
outperforms the Monte Carlo simulation technique, which cannot be guaranteed to converge for
such a small number of points.

Histograms of the interference gain Gn computed from typical set S`n is illustrated on Fig. 9
for different values of σdB.

C. Shadowing, multiple interferers

We now evaluate the MCP method developed in Section III-B3. We have determined that
20, 000 iterations of the base MCP algorithm guarantee that the 1st-order moment computed from
any typical set (whatever σdB value is considered) converges to its exact value (13). Table II
presents the values of the 1st-order moment of G, both exact (analytical) and approximated
(computed from the typical set). We can see that the proposed method performs very well for
the whole range of σdB values.

Histograms of the interference gain G computed from typical sets obtained by the MCP method
are illustrated on Fig. 10 (FR1 scenario) and Fig. 11 (FR3 scenario) for different values of σdB.

V. STATISTICAL MODEL

In Section III, we developed analytical and numerical methods to build up a good approx-
imation of the histogram of the interference gain G. In this section, we aim at using this
result to elaborate a statistical model for G, i.e., a closed form expression of the probability
law, characterized by the shadowing parameter σdB. This task is challenging in that one single
parametric law is required, that is valid for propagation environments which considerably vary
depending upon the shadowing phenomenon (parameter σdB), and that is applicable to various
frequency reuse scenarios (FR1 and FR3).

We initialize the modeling process by extracting usefull information from a carefull analysis
of the histograms of the interference gain G (see Fig.’s 10 and 11). We first note that G is a
positive continuous r.v. We then observe that all curves are asymmetric, and this property is even
more pronounced for large values of σdB. In this case, G’s pdf’s also have a sharper peak and
a longer, fatter tail, the last of which being a characteristic of heavy-tailed distributions (a.k.a.
power distributions), as already mentioned.

Due to the strongly skewed nature of the interference gain distribution for large σdB’s, a
power-type statistical model turns out to be suitable here. In this regard, a Pareto-like distribution
seems to be a good candidate, so we focus, in first approximation, on a 3-parameter Burr-type
XII distribution [27]. The Burr distribution has a flexible shape and controllable location and
scale, which makes it appealing to fit any given set of unimodal data that exhibits a heavy-tail
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behavior (e.g., it is an appropriate model for characterizing insurance claim sizes). However, as
3 parameters seem to not be sufficient to correctly characterize the interference gain distribution
under those particularly tight constraints, another law is required, which offers greater flexibility
to match the whole range of σdB values. Such a flexibility is provided by introducing an additional
shape parameter into the Burr distribution, based on the following property [30]: if F (x) is a
cdf, so is (F (x))η, ∀η > 0. Thus, we have established a new Burr-based probability law, whose
cdf — denoted FG (x) — is given by

FG (x) =

1− 1(
1 +

(
x

β

)α)k

η

,


x > 0

η > 1

α, k, β > 0

(19)

where η, α and k are the shape parameters, and β is the scale parameter of the distribution. G’s
pdf — denoted pG (x) — can be easily obtained by deriving (19):

pG (x) =
ηαk

β

(
x

β

)α−1
((

1 +

(
x

β

)α)k
− 1

)η−1

(
1 +

(
x

β

)α)kη+1
. (20)

We next establish a parametric family of functions (parameterized by σdB) for the interference
gain G by determining empirical formulas for parameters η, α, k, and β. For this purpose, we
propose that all parameters (whatever frequency scenario is considered) be modeled by the same
6-parameter function f that has the following expression:

f (σdB) = a1 + a2 ·
1− σdB

a3(
1 +

(
σdB

a3

)a4) 1
a4

· 1

1 +

(
σdB

a5

)a6 , (21)

where coefficients ai, i = 1, 2, . . . , 6 have been determined empirically and are summarized
in Table III. Corresponding empirical laws f , as functions of σdB, are plotted on Fig. 12 (FR1
scenario) and Fig. 13 (FR3 scenario). The pdf’s of the proposed statistical model are superimposed
on histograms obtained by the MCP method for different values of the shadowing parameter σdB

on Fig. 14 (resp. Fig. 15) for the FR1 (resp. FR3) scenario. We now come to the last step of
our modeling process. As seen earlier, MCP-obtained histograms and the proposed Burr-based
distributions closely match for the whole range of σdB. However, care must be taken in defining
the range of gains for which our model is valid. And indeed, the Burr-based statistical law needs
to be truncated at a maximum value — denoted xt — defined in such a way that the 1st-order
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moment constraint holds, which we can write∫ xt

0

xpG(x)dx = E {G} ,

where E {G} is the exact mean (13). As a consequence of this truncation process, a normalizing
factor,

A =
1

1− P (x > xt)
, (22)

has to be incorporated in both the cdf and pdf of the elaborated model, which are then written
AFG(x) and ApG(x) respectively. Regarding the empirical law xt as a function of σdB, we also
propose the same 5-parameter function for both FR1 and FR3 scenarios:

xt (σdB) = a1 · exp
((

σdB

a2

)a3)
· exp

(
exp

(
−
(
σdB − a4

a5

)2
))

, (23)

where coefficients ai, i = 1, 2, . . . , 6 have been determined empirically and are summarized in
Table IV. Empirical laws xt, as functions of σdB, are plotted on Fig. 16 (FR1 scenario) and
Fig. 17 (FR3 scenario). The normalizing factor may be easily computed by replacing xt by its
actual value in (22).

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a methodology to estimate the statistics of the intercell
interference power in the downlink of a multicellular network. In a propagation environment
subject only to path loss and multipath Rayleigh fading, we have established an accurate ap-
proximated analytical expression for the interference power distribution. Then, considering the
combined effects of path loss, lognormal shadowing and Rayleigh fading, we have proposed a
semi-analytical method for the estimation of the pdf of the interference power. Finally, we have
developed a statistical model parameterized by the shadowing parameter σdB and valid on a large
range of values ([0, 12] dB). It is our hope that the methods described in this paper are sufficiently
detailed to enable the reader to apply them to other types of environments.

A future work will pertain to improving the statistical interference power model by more closely
linking the proposed model developed for a combined Rayleigh fading–lognormal shadowing
environment to the ’exact’ analytical formula obtained in the case where only Rayleigh fading
was considered. Another perspective is to apply the proposed methods to other wireless network
topologies (e.g., ad hoc networks,...).

APPENDIX

A. Normalized channel power gain

In this paper, we concentrate on the channel power gain Hn (rn) = |hn (m)|2, where hn (m)

is the instantaneous gain of the channel between AP n and UT0. Hn (rn) can be expressed as a



17

three-factor product:
Hn (rn) = Hpl,n (rn)Gf,nGs,n, (24)

where rn represents the distance between UT0 and AP n (distances rn are functions of UT0’s
position within its cell), and Hpl,n (rn), Gf,n and Gs,n represent the path loss, multipath Rayleigh
fading and shadowing components respectively. We now further describe these last three com-
ponents.

The (deterministic) path loss Hpl,n (rn) diminishes as the distance rn between UT0 and AP n

increases, based on the common power law [23]

Hpl,n (rn) = K

(
d0
rn

)γ
, (25)

where K = (c/ (4πfd0))
2 is a dimensionless constant, with c being the speed of light, f , the

operating frequency, and d0, a reference distance for the antenna far-field; and γ represents the
path loss exponent. In order to make our study independent from the antenna characteristics and
the cell size, we rewrite (25) under the following form:

Hpl,n (rn) = K

(
d0
dref

)γ (
dref

rn

)γ
, (26)

where dref is a reference distance, and we introduce the normalized path loss Gpl,n (rn), defined
as follows:

Gpl,n (rn) =

(
dref

rn

)γ
. (27)

From (26) and (27), we establish the following relationship:

Gpl,n (rn) =
1

K
(
d0
dref

)γHpl,n (rn) . (28)

In a similar manner, we define the normalized instantaneous power gain Gn (rn) as follows:

Gn (rn) =
1

K
(
d0
dref

)γHn (rn)

= Gpl,n (rn)Gf,nGs,n, (29)

where (29) derives from (24) and (28).
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B. Computation of moments for one interferer

We find the closed form expression of the kth-order moment E
{
(Gn)

k
}

of the statistical
distribution of the interference gain Gn (one interfering cell). We have:

E
{
(Gn)

k
}
= E

{
(Gf,nGs,n)

k
}

= E
{
(Gf,n)

k
}
E
{
(Gs,n)

k
}
, (30)

where (30) follows from the independance property of the r.v.’s Gf,n and Gs,n. As Gf,n is
exponentially distributed with unit mean, its kth-order moment is given by:

E
{
(Gf,n)

k
}
= k! (31)

As for Gs,n, it has a lognormal distribution with parameters −σdB/2 and σdB; its raw moment
can be written:

E
{
(Gs,n)

k
}
= exp

(
k(k − 1)

σ2
dB

2

)
. (32)

Replacing (31) and (32) in (30) leads to (11).

C. Computation of moments for multiple interferers

We establish the analytical formula of the kth-order moment E
{
Gk
}

of the statistical dis-
tribution of the interference gain G (multiple interferers). Using approximation (10), we can
write:

E
{
Gk
}
= E


(

N∑
n=1

λnGf,nGs,n

)k


= E

 ∑
a:|a|=k

k!

a!
Za

 , (33)

where the following notation is used:

• a = (α1, α2, . . . , αN), αn ∈ N, n = 1, 2, . . . , N , is an N -dimensional vector whose sum of
components is

|a| =
N∑
n=1

αn;

• the multifactorial a! is such that

a! =
N∏
n=1

(αn!) ;

• the variable Za is defined as follows:

Za = (λ1Gf,1Gs,1)
α1 (λ2Gf,2Gs,2)

α2 · · · (λNGf,NGs,N)
αN .
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Using (30), we can further develop (33), which gives (12).

D. Computation of correction factors

We determine the correction factors used in the MCP method described in Section III-B3.
Recall that the technique consists, for non-compelled links, in randomly selecting intervals from
a subset containing only the J highest-probability (i.e., smallest-amplitude) intervals. But, as
high-amplitude intervals never appear in this random process, small amplitudes get overweighted
in non-compelled links, which must be compensated in compelled links, where small (resp. large)
amplitudes need to be underweighted (resp. overweighted), in such a way that the 1st-order
sampled moment converges to its exact value. Thus, in order to satisfy the mean constraint, an
underweighting multiplicative factor, denoted f−, is applied to amplitudes of the J first intervals
of compelled links; similarly, an overweighting multiplicative factor f+ is applied to amplitudes
of the last N − J intervals. We now compute these two correction factors.

Let us first see how each interfering link contributes to the 1st-order moment of the intercell
interference gain G. For each compelled link n, n = 1, . . . ,M , we can write7:

E {Gn} =
J∑
j=1

δjgj

=
J∑
j=1

δjgj︸ ︷︷ ︸
A

+
J∑

j=J+1

δjgj︸ ︷︷ ︸
B

= 1,

where Gn = Gf,nGs,n (approximation (14), with λn = 1), and, by construction of the typical
set S`n, A+B = 1, ∀σdB. For each non-compelled link n, n =M + 1, . . . , N , Gn’s mean is

E {Gn} =
J∑
j=1

δ′jgj

< 1,

where the probability set
{
δ′j
}

is given by (17). So, if no correction factors are introduced, the
contribution of all (compelled and non-compelled) links to the intercell interference gain G gives

7Note that, for the sake of simplification, each P -element interval is reduced to its center of mass — denoted gj .
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the following mean:

E {G} =
M∑
n=1

λnE {Gn}︸ ︷︷ ︸
=1

+
N∑

n=M+1

λnE {Gn}︸ ︷︷ ︸
<1

<

N∑
n=1

λn,

where
N∑
n=1

λn = A

N∑
n=1

λn +B

N∑
n=1

λn (34)

is the exact mean (13).
Let us now introduce the correction factors f− and f+ into compelled links, as described

previously. G’s 1st-order moment — denoted Ecor {G} — then becomes:

Ecor {G} =
M∑
n=1

λn

(
J∑
j=1

δjf
−gj +

J∑
j=J+1

δjf
+gj

)
+

N∑
n=M+1

λn

J∑
j=1

αδjgj

=
M∑
n=1

λn
(
Af− +Bf+

)
+

N∑
n=M+1

λnαA

= A

(
f−

M∑
n=1

λn + α
N∑

n=M+1

λn

)
+Bf+

M∑
n=1

λn. (35)

In order for both exact and actual means to be equivalent (i.e., (34)≡(35)), we need to solve the
following system: 

f−
M∑
n=1

λn + α
N∑

n=M+1

λn =
N∑
n=1

λn

f+

M∑
n=1

λn =
N∑
n=1

λn

which leads to

f− = 1− (α− 1)

N∑
n=M+1

λn

M∑
n=1

λn

(36)

f+ = 1 +

N∑
n=M+1

λn

M∑
n=1

λn

. (37)

Note that we have f+ > 1 and, as α & 1, f− . 1.
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TABLE II
EXACT AND APPROXIMATED MOMENTS FOR ONE SINGLE INTERFERER AND FOR MULTIPLE INTERFERERS.

no shadowing
(σdB = 0 dB)

intense shadowing
(σdB = 12 dB)

exact approximated exact approximated
E {(Gn)} 1 1 1 0.990

E
{
(Gn)

2} 2 2 4.138 · 103 1.119 · 103
E
{
(Gn)

3} 6 6 53.127 · 109 13.246 · 106
E {(G)} (FR1) 17.25 17.10 17.25 17.08
E {(G)} (FR3) 1.857 1.857 1.857 1.855

TABLE III
COEFFICIENTS ai , i = 1, 2, . . . , 6, OF THE EMPIRICAL LAWS OF PARAMETERS η, α, k, AND β (FR1 AND FR3 SCENARIOS).

FR1 FR3
a1 a2 a3 a4 a5 a6 a1 a2 a3 a4 a5 a6

η 4 0 1 1 1 1 0 1 1 1 1 1
α 0.93 0.87 65 1 7.2 3.2 0.38 0.94 39.90 2.00 8.30 3.00
k 0.65 2.18 3.3 0.39 4.75 2.06 0 12.70 2.35 2.07 11.00 6.47
β 0.04 16.44 13.45 9 6.35 2.56 1.81 24.35 3.60 2.77 1.77 1.31

TABLE IV
COEFFICIENTS ai , i = 1, 2, . . . , 6, OF THE EMPIRICAL LAWS OF PARAMETER xt (FR1 AND FR3 SCENARIOS).

a1 a2 a3 a4 a5
FR1 61.56 6.06 1.84 5.27 2.51
FR3 1.71 5.10 1.89 6.40 2.30
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186514
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R
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UT0

Interferers
in FR1

Interferers
in FR3

Fig. 1. Hexagonal model for a 19-cell cellular network. The largest distance from a user to its serving AP is denoted R. We
study the interference power undergone by the mobile receiver UT0 in the central cell (numbered 0).

UT0

rnr0
θ

AP n

R

Fig. 2. Because of the particular symmetry of the network geometry, we need only study the interference gain distribution for
a user located within one the twelve dashed triangular areas. For illustration purposes, we will consider the grey-shaded sector.
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Fig. 3. Illustration of the general inverse method with non-uniform partitioning (J = 3, P = 9): (a) non-uniform partitioning
of the [0, 1] segment; (b) uniform partitioning of interval I2.
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random drawings and permutations
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Fig. 4. Illustration of the MCP method for N = 4 interfering cells, M = 2 compelled links, and J = 2 intervals per link
(denoted A and B, with respective probabilities δ1 and δ2). Each A′ (resp. B′) represents one random permutation of A (resp. B).
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(g)

Fig. 5. Simulated vs. modeled pdf of the intercell interference power with no shadowing when AP 1 is the only interferer.
Since AP 1 produces the largest dynamics for the interference power undergone by a user in the grey-shaded sector of Fig. 2
with only one interfering cell, these curves correspond to the worst-case scenario for validating our approximation.
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Fig. 6. Simulated vs. modeled pdf of the intercell interference power with no shadowing when AP 13 is the only interferer.
AP 13 produces the smallest dynamics for the interference power undergone by a user in the grey-shaded sector of Fig. 2 with
only one interfering cell (best match for our model).
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Fig. 7. Simulated vs. modeled pdf of the intercell interference power G for frequency reuse pattern FR1.
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Fig. 8. Simulated vs. modeled pdf of the intercell interference power G for frequency reuse pattern FR3.
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Fig. 9. Histograms of the interference gain Gn (one interferer) for different values of σdB.



30

0 10

1

2
σdB = 12

σdB ↗

g

σdB = 0

pG (g)

E {G} = 17.25

Fig. 10. Histograms of the interference gain G obtained by the MCP method (FR1 scenario).
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Fig. 11. Histograms of the interference gain G obtained by the MCP method (FR3 scenario).
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Fig. 12. Empirical laws η, α, k, and β as functions of σdB (FR1 scenario).
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Fig. 13. Empirical laws η, α, k, and β as functions of σdB (FR3 scenario).
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Fig. 14. Comparison of MCP histograms and modeled cdf of the interference gain G for σdB = 0, 3, 6, 9, 12 (FR1 scenario).



35

0

4

3

2

1

1

σdB ↗

σdB = 12

σdB = 0

simulation

g

pG (g)

model

E {G} = 1.857

Fig. 15. Comparison of MCP histograms and modeled cdf of the interference gain G for σdB = 0, 3, 6, 9, 12 (FR3 scenario).
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Fig. 16. Truncation gain xt as a function of σdB (FR1 scenario).
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Fig. 17. Truncation gain xt as a function of σdB (FR3 scenario).
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