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Homology-based Distributed Coverage Hole

Detection in Wireless Sensor Networks
Feng Yan, Member, IEEE, Anaı̈s Vergne, Philippe Martins, Senior Member, IEEE, Laurent Decreusefond

Abstract—Homology theory provides new and powerful so-
lutions to address the coverage problems in wireless sensor
networks (WSNs). They are based on algebraic objects, such
as Čech complex and Rips complex. Čech complex gives accu-
rate information about coverage quality but requires a precise
knowledge of the relative locations of nodes. This assumption is
rather strong and hard to implement in practical deployments.
Rips complex provides an approximation of Čech complex. It is
easier to build and does not require any knowledge of nodes
location. This simplicity is at the expense of accuracy. Rips
complex can not always detect all coverage holes. It is then
necessary to evaluate its accuracy. This work proposes to use
the proportion of the area of undiscovered coverage holes as
performance criteria. Investigations show that it depends on
the ratio between communication and sensing radii of a sensor.
Closed-form expressions for lower and upper bounds of the
accuracy are also derived. For those coverage holes which can
be discovered by Rips complex, a homology-based distributed
algorithm is proposed to detect them. Simulation results are
consistent with the proposed analytical lower bound, with a
maximum difference of 0.5%. Upper bound performance depends
on the ratio of communication and sensing radii. Simulations also
show that the algorithm can localize about 99% coverage holes
in about 99% cases.

Index Terms—Wireless sensor networks, coverage hole, homol-
ogy.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have attracted a

great deal of research attention due to their wide poten-

tial applications such as battlefield surveillance, environmental

monitoring and intrusion detection. Many of these applications

require a reliable detection of specified events. Such require-

ment can be guaranteed only if the target field monitored by

a WSN contains no coverage holes, that is to say regions of

the domain not monitored by any sensor. Coverage holes can

be formed for many reasons, such as random deployment,

energy depletion or destruction of sensors. Consequently, it

is essential to detect and localize coverage holes in order to

ensure the full operability of a WSN.

There is already an extensive literature about the cover-

age problems in WSNs. Several approaches are based on

computational geometry with tools such as Voronoi diagram

F. Yan and A. Vergne were with the Network and Computer Science
Department, TELECOM ParisTech, Paris, France. F. Yan is currently with
the Networks, Security and Multimedia Department, TELECOM Bretagne,
Rennes, France (e-mail: feng.yan@telecom-bretagne.eu).

A. Vergne is currently with the Geometrica team, Inria Saclay - Ile de
France, Palaiseau, France (e-mail: anais.vergne@inria.fr)

P. Martins and L. Decreusefond are with the Network and Computer Science
Department, TELECOM ParisTech, Paris, France (e-mail: martins@telecom-
paristech.fr, decreuse@telecom-paristech.fr.)

A part of this paper has been published in IEEE ICC 2012.

and Delaunay triangulations, to discover coverage holes [1]–

[3]. These methods require precise information about sensor

locations. This substantially limits their applicability since

acquiring accurate location information is either expensive or

impractical in many settings. Some other approaches attempt

to discover coverage holes by using only relative distances

between neighbouring sensors [4]–[6]. Similarly, obtaining

precise range between neighbouring nodes is costly.

More recently, homology is utilized in [7]–[9] to address

the coverage problems in WSNs. Ghrist and his collaborators

introduced a combinatorial object, Čech complex, which fully

characterizes coverage properties of a WSN (existence and

locations of holes). Unfortunately, this object is very difficult

to construct even if the precise location information of sensors

is provided. Thus, they introduced a more easily computable

complex, Rips complex. This complex is constructed with

the sole knowledge of the connectivity graph of the net-

work and gives an approximate coverage by simple alge-

braic calculations. As regards implementation in real WSN,

these homology based methods are necessarily centralized,

which makes them impractical in large scale sensor networks.

Some algorithms have been proposed to implement the above

mentioned ideas in a distributed context, see [10], [11]. But

there are two disadvantages of these algorithms. On one

hand, these homology based algorithms are all dependent on

the assumption that the communication radius of a sensor

is smaller than
√
3 times the sensing radius of the sensor.

When such assumption is not satisfied, it is possible that Rips

complex may miss some special coverage holes (defined as

triangular holes in Section III). In order to assess the accuracy

of Rips complex based coverage hole detection, it is thus of

paramount importance to determine the proportion of the area

of missed coverage holes. To the best of our knowledge, we are

the first to investigate this problem. On the other hand, these

algorithms try to verify coverage or detect coverage holes by

homology computation, which is generally of high complexity

especially for large scale networks. So it is necessary to design

an efficient algorithm to detect coverage holes.

The main contributions of our paper are as follows. First,

we present the relationships between Čech complex and Rips

complex in terms of coverage hole under different ratios

between communication and sensing radii of a sensor. We

find that when the communication radius is at least two times

sensing radius, if there is a hole in Rips complex, there must

be a hole in Čech complex. A hole in a Čech complex missed

by a Rips complex must be bounded by a triangle. Based on

that, a formal definition of triangular and non-triangular hole

is presented.
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Second, for triangular holes, we derive the closed-form ex-

pressions for lower and upper bounds of the proportion of their

area under a homogeneous setting. Such proportion is related

to the ratio between communication and sensing radii of each

sensor and three different ratios between communication and

sensing radii are investigated.

Third, for non-triangular holes, an efficient homology based

distributed algorithm is proposed to detect them. In the al-

gorithm, the Rips complex is first constructed for a given

WSN. Then some vertices and edges are deleted without

changing the number of holes in the original Rips complex.

After that, the edges lying on the boundary of holes will

be detected. Then coarse boundary cycles can be discovered.

Finally all boundaries of the non-triangular holes are found by

minimizing the length of coarse boundary cycles.

The remainder of the paper is organized as follows. Section

II presents the related work. In Section III, the network model

and the formal definition of triangular and non-triangular hole

are given. Upper and lower bounds on the proportion of

the area of triangular holes under different ratios between

communication and sensing radii are computed in Section IV.

Section V describes the homology based distributed algorithm

for non-triangular holes detection. In Section VI, performance

evaluation of the bounds and the algorithm is given. Finally,

Section VII concludes the paper.

II. RELATED WORK

Since this paper aims to evaluate the ratio of the area

of coverage holes missed by homology based approaches

and to design coverage hole detection algorithms, we present

the related work in two aspects: analytical coverage ratio

evaluation and coverage hole detection approaches.

A. Analytical coverage ratio evaluation

Extensive research has been done to analyze coverage ratio

of a WSN. In [12], the authors studied the coverage properties

of large-scale sensor networks and obtained the fraction of the

area covered by sensors. The sensors are assumed to have

the same sensing range and are distributed according to a

homogeneous Poisson point process (PPP) in plane. In [13],

the authors studied how the probability of k-coverage changes

with the sensing radius or the number of sensors, given that

sensors are deployed as either a PPP or a uniform point

process. In [14], the coverage problem in planar heterogeneous

sensor networks are investigated and analytical expressions

of coverage are derived. Their formulation is more general

in the sense that sensor can be deployed according to an

arbitrary stochastic distribution, or can have different sensing

capabilities or can have arbitrary sensing shapes. In [15], a

point in a plane is defined to be tri-covered if it lies inside

a triangle formed by three nodes, and the probability of tri-

coverage is analyzed. None of them considered triangular

holes, we provided some initial results about the ratio of the

area of triangular holes in [16] and further improve them in

this paper.

B. Coverage hole detection approaches

Coverage hole detection approaches can be generally clas-

sified into three categories: location-based, range-based and

connectivity-based.

Location-based approaches are usually based on compu-

tational geometry with tools such as Voronoi diagram and

Delaunay triangulations, to discover coverage holes [1]–[3].

Range-based approaches attempt to discover coverage holes

by using only relative distances between neighbouring sensors

[5], [6]. These two types of approaches need either precise

location information or accurate distance information, which

restricts their applications since such information is not easy

to obtain in many settings.

In connectivity-based approaches, homology-based schemes

attract particular attention due to its powerfulness for coverage

hole detection. As a pioneer work, in [9], Ghrist and his

collaborators introduced homology to detect coverage holes.

They first introduced a combinatorial object, Čech complex,

which can capture all coverage holes. Unfortunately, this

object is very difficult to construct even if the precise location

information of sensors is provided. Thus, they introduced

another more easily computable complex, Rips complex. This

complex can be constructed with the sole knowledge of the

connectivity graph of the network and gives an approximate

coverage by simple algebraic calculations. Then their work is

followed by [7], [8], [17], [18], where a relative homological

criterion for coverage is presented. But these homology based

approaches are centralized. The first steps of implementing

the above ideas in a distributed way were taken in [10]. It

is shown that combinatorial Laplacians are the right tools for

distributed computation of homology groups, and thus can be

used for decentralized coverage verification. The combinatorial

Laplacians can be used to detect absence of holes or a single

hole. But when there are multiple holes close to each other in

WSNs, it is not clear how to distinguish them. To address such

limitations, a gossip like decentralized algorithm was proposed

in [19] to compute homology groups, but its convergence is

slow as stated in [19]. In [11], the authors first presented a

decentralized scheme based on combinatorial Laplacians to

verify whether there is a coverage hole or not in a WSN.

For the case when there are coverage holes, they further

formulated the problem of localizing coverage holes as an

optimization problem for computing a sparse generator of the

first homology group of the Rips complex corresponding to

the sensor network. But it is possible that some cycle found

by their algorithm contains multiple holes next to each other.

More recently, for the purpose of coverage verification, a

novel distributed algorithm for homology computation was

proposed in [20] based on reduction and co-reduction of

simplicial complex. For the case when there are more than

one holes, the authors proposed to first find the homology

generator of the reduced complex and then use their algorithm

to localize holes. The algorithm is quite original but with high

complexity since it requires to construct all the simplices.

All these homology based algorithms try to verify coverage

or detect coverage holes by computing homology either in

a centralized or distributed way, but computing homology is
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generally of high complexity especially for large scale sensor

networks. Our algorithm does not try to compute homology

to localize holes, it simplifies the Rips complex of a WSN by

deleting some vertices and edges without changing homology

and makes the Rips complex nearly planar. Then it can be

efficient to detect coverage holes.

III. MODELS AND DEFINITIONS

Consider a collection of stationary sensors (also called

nodes) deployed randomly in a planar target field. As usual,

isotropic radio propagation is assumed. Each sensor monitors

a region within a circle of radius Rs and may communicate

with other sensors within a circle of radius Rc. Note that

this assumption is mainly for analyzing the proportion of the

area of triangular holes, it is not necessary for the algorithm

proposed in Section V.

In addition, some other assumptions are as follows.

1) There are sensors located on the external boundary of

the target field. They are known as fence sensors and

other sensors are referred to as internal sensors. Each

fence sensor has two fence neighbours. This is also the

general assumption in many homology based algorithms

[7]–[9], [11].

2) Although sensors are not aware of their locations, every

sensor can know whether it is a fence or an internal

node by using the mechanisms presented in [5] or other

methods as in [21]. In fact, it is a conventional assump-

tion adopted by many existing range-based methods [5],

[22] or connectivity methods [11], [21].

3) Internal sensors are distributed in the planar target field

according to a homogeneous PPP with intensity λ.

4) Each sensor has a unique ID.

5) The network has only one connected component.

Before defining Čech complex and Rips complex, it is

necessary to give a brief introduction to the tools used in the

paper. For further readings, see [23]–[25]. Given a set of points

V , a k-simplex is an unordered set [v0, v1, ..., vk] ⊆ V where

vi 6= vj for all i 6= j. So a 0-simplex is a vertex, a 1-simplex is

an edge and a 2-simplex is a triangle with its interior included,

see Fig. 1. The faces of this k-simplex consist of all (k-1)-

simplex of the form [v0, ..., vi−1, vi+1, ..., vk] for 0 ≤ i ≤ k.

An abstract simplicial complex is a collection of simplices

which is closed with respect to inclusion of faces.

v0

v0 v1

v0

v1 v2
0-simplex 2-simplex1-simplex

Fig. 1. 0-, 1- and 2-simplex

Let V denote the set of sensor locations in a WSN and

S = {sv, v ∈ V} denote the collection of sensing ranges of

these sensors. For a location v, sv = {x ∈ R
2 : ‖x − v‖ ≤

Rs}. Then Čech complex and Rips complex can be defined

as follows [7], [8].

Definition 1 (Čech complex). Given a finite collection of

sensing ranges {sv, v ∈ V}, the Čech complex of the col-

lection, Č(V), is the abstract simplicial complex whose k-

simplices correspond to non-empty intersections of k + 1

distinct elements of {sv, v ∈ V}.

Definition 2 (Rips complex). Given a finite set of points V
in R

n and a fixed radius ǫ, the Rips complex of V , Rǫ(V), is

the abstract simplicial complex whose k-simplices correspond

to unordered (k + 1)-tuples of points in V which are pairwise

within Euclidean distance ǫ of each other.

According to the definition, the Čech complex and Rips

complex of the WSN, respectively denoted by ČRs
(V)

and RRc
(V), can be constructed as follows: a k-simplex

[v0, v1, · · · , vk] belongs to ČRs
(V) whenever ∩k

l=0svl 6= ∅
and a k-simplex [v0, v1, · · · , vk] belongs to RRc

(V) whenever

‖vl − vm‖ ≤ Rc for all 0 ≤ l < m ≤ k.

Fig. 2 shows a WSN, its Čech complex and two Rips

complexes for two different values of Rc. Depending on the

ratio Rc over Rs, the Rips complex and the Čech complex may

be close or rather different. In this example, for Rc = 2Rs,

the Rips complex sees the hole surrounded by 2, 3, 5, 6 as in

the Čech complex whereas it is missed in the Rips complex

for Rc = 2.5Rs. At the same time, the true coverage hole

surrounded by 1, 2, 6 is missed in both Rips complexes.

2

1
6

3

5

4
Rs

(a)

1

2

6

5

4

3

(b)

1

2

6

5

4

3

(c)

1

2

6

5

4

3

(d)

Fig. 2. (a) a WSN, (b) Čech complex, (c) Rips Complex under Rc = 2Rs,
(d) Rips Complex under Rc = 2.5Rs

In fact, as proved in [7], any coverage hole can be found

in Čech complex. Unfortunately, the construction of Čech

complex is of very high complexity even if the precise location

information of nodes is provided. So a more easily computable

tool, Rips complex, is used. But Rips complex can not always

capture all coverage holes. To be more specific, there exist

following relations between Čech complex and Rips complex:

RRc
(V) ⊂ ČRs

(V) ⊂ R2Rs
(V), if Rc ≤

√
3Rs. (1)

According to (1), some relationships between Čech complex

and Rips complex in terms of coverage hole can be derived as

illustrated in the following corollaries. For convenience, define

γ = Rc/Rs.

Corollary 1. When γ ≤
√
3, if there is no hole in Rips complex

RRc
(V), there must be no hole in Čech complex ČRs

(V).
Corollary 2. When γ ≥ 2, if there is a hole in Rips complex

RRc
(V), there must be a hole in Čech complex ČRs

(V).
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Corollary 3. When
√
3 < γ < 2, there is no guarantee

relation between Rips complex RRc
(V) and Čech complex

ČRs
(V) in terms of holes.

Please refer to [26] for the proof.

From the discussion above, a hole in a Čech complex not

seen in a Rips complex must be bounded by a triangle. Based

on this observation, a formal definition of ’triangular hole’ and

’non-triangular hole’ is given as follows.

Definition 3 (Triangular and non-triangular hole). For a pair

of complexes ČRs
(V) and RRc

(V), a triangular hole is an

uncovered region bounded by a triangle formed by three nodes

v0, v1, v2, where v0, v1, v2 can form a 2-simplex which appears

in RRc
(V) but not in ČRs

(V). Other holes are non-triangular.

For triangular holes, it is impossible to detect them with

only connectivity information, so we want to analyze the

proportion of the area of such holes in a target field. For non-

triangular holes, we aim to design a distributed algorithm to

discover the boundaries of these holes.

IV. BOUNDS ON PROPORTION OF THE AREA OF

TRIANGULAR HOLES

For triangular holes, we aim to derive the proportion of their

area. In this section, the conditions under which any point

in the target field is inside a triangular hole are first given.

In Section III, it is found that the proportion of the area of

triangular holes is related to the ratio γ. Three different cases

are considered for the proportion computation. For each case,

the upper and lower bounds of the proportion are derived.

A. Preliminary

Lemma 1. For any point in the target field, it is inside a

triangular hole if and only if the following two conditions are

satisfied:

1) the distance between the point and its closest node is

larger than Rs.

2) the point is inside a triangle: the convex hull of three

nodes with pairwise distance less than or equal to Rc.

Fig. 3 gives an example to show a triangular hole. The

blanket region inside the triangle is a triangular hole since

it is not covered by any node and is bounded by a triangle.

Rs

Fig. 3. An example of a triangular hole.

Lemma 2. If there exists a point O which is inside a triangular

hole, then Rs < Rc/
√
3.

Lemma 3. Let O be a point inside a triangular hole and l
denote the distance between O and its closest neighbour, then

Rs < l ≤ Rc/
√
3.

Please refer to [16] for the proof.

A PPP whose intensity is proportional to the Lebesgue

measure is stationary in the sense that any translation of

its atoms by a fixed vector does not change its law. Thus

without considering border effect [27], any point has the same

probability to be inside a triangular hole as the origin O.

This probability in a homogeneous setting is also equal to

the proportion of the area of triangular holes. We borrow part

of the line of proof from [15] where a similar problem is

analyzed.

We consider the probability that the origin O is inside a

triangular hole. Since the length of each edge in the Rips

complex must be at most Rc, only the nodes within Rc

from the origin can contribute to the triangle which bounds a

triangular hole containing the origin. Therefore, we only need

to consider the PPP constrained in the closed ball B(O,Rc)
which is also a homogeneous PPP with intensity λ. We denote

this process as Φ. In addition, T (x, y, z) denotes the property

that the origin O is inside the triangular hole bounded by the

triangle with points x, y, z as vertices. When n0, n1, n2 are

points of the process Φ, T (n0, n1, n2) is also used to denote

the event that the triangle formed by the nodes n0, n1, n2

bounds a triangular hole containing the origin. In addition,

we use T ′(n0, n1, n2) to denote the event that the nodes

n0, n1, n2 can not form a triangle which bounds a triangular

hole containing the origin.

Let τ0 = τ0(Φ) be the node in the process Φ which is

closest to the origin. There are two cases for the origin to

be inside a triangular hole. The first case is that the node τ0
can contribute to a triangle which bounds a triangular hole

containing the origin. The second case is that the node τ0
can not contribute to any triangle which bounds a triangular

hole containing the origin but other three nodes can form a

triangle which bounds a triangular hole containing the origin,

as illustrated in Fig. 4. So the probability that the origin is

inside a triangular hole can be defined as

p(λ, γ) = P{O is inside a triangular hole}
= P{

⋃

{n0,n1,n2}⊆Φ

T (n0, n1, n2)}

= P{
⋃

{n1,n2}⊆Φ\{τ0(Φ)}
T (τ0, n1, n2)}+ psec(λ, γ)

(2)

where

psec(λ, γ) = P{
⋃

{n0,··· ,n4}

⊆Φ\{τ0(Φ)}

T (n0, n1, n2) | T ′(τ0, n3, n4)}

denotes the probability of the second case. psec(λ, γ) is

generally very small and obtained by simulations.

In the following parts, we will analyze this probability in

three different cases.

B. Case 0 < γ ≤
√
3

Theorem 1. When 0 < γ ≤
√
3, p(λ, γ) = 0.

Proof: It is a direct corollary from Lemma 2.
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Fig. 4. An example showing that the node closest to the origin τ0 does
not contribute to a triangle which bounds a triangular hole containing the
origin because the distance to n0 is larger than Rc and the triangle formed
by τ0, n1, n2 does not contain O. In contrast, n0, n1, n2 can form a triangle
which bounds a triangular hole containing O. Here we assume the distance
between τ0 and O is larger than Rs.

C. Case
√
3 < γ ≤ 2

Theorem 2. When
√
3 < γ ≤ 2, pl(λ, γ) < p(λ, γ) <

pu(λ, γ), where

pl(λ, γ) = 2πλ2

∫ Rc/
√
3

Rs

r0dr0

∫ α1

α0

dθ1

∫ R1(r0,θ1)

r0

e−λπr20 × e−λ|S+(r0,θ1)|(1 − e−λ|S−(r0,r1,θ1)|)r1dr1

(3)

and

pu(λ, γ) = 2πλ2

∫ Rc/
√
3

Rs

r0dr0

∫ α1

α0

dθ1

∫ R1(r0,θ1)

r0

e−λπr20 × e−λ|S+(r0,θ1)|(1 − e−λ|S−(r0,r0,θ1)|)r1dr1

+ psec(λ, γ)

(4)

and

α0 = 2 arccos(Rc/(2r0))

α1 = 2 arcsin(Rc/(2r0))− 2 arccos(Rc/(2r0))

R1(r0, θ1) = min(

√

R2
c − r20 sin

2 θ1 − r0 cos θ1,
√

R2
c − r20 sin

2(θ1 + α0) + r0 cos(θ1 + α0))

|S+(r0, θ1)| =
∫ θ1

α0

∫ R1(r0,θ)

r0

rdrdθ

|S−(r0, r1, θ1)| =
∫ −α0

θ2l

∫ R2(r0,r1,θ1,θ2)

r0

rdrdθ2

θ2l = θ1 − arccos
cos(Rc/R)− cos θ1 cos θ0

sin θ1 sin θ0

R2(r0, r1, θ1, θ2) = min(

√

R2
c − r20 sin

2 θ2 − r0 cos θ2,
√

R2
c − r21 sin

2(θ2 − θ1) + r1 cos(θ2 − θ1))

psec(λ, γ) is obtained by simulations.

Since the proof is tedious, we only give the idea and main

steps here. See Appendix A for detailed computation.

For the lower bound, we only consider the first case that

the closest node τ0 can contribute to a triangle which bounds

a triangular hole containing the origin. The main idea is to

first fix the closest node τ0, and then sequentially decide the

regions where the other two nodes may lie in, and finally do

a triple integral.

Using polar coordinates, we assume the closest node τ0 lies

on (d0, π). Once the node τ0 is determined, the other two

nodes must lie in the different half spaces: one in H+ = R
+×

(0, π) and the other in H− = R
+×(−π, 0). Assume n1 lies in

H+ and n2 lies in H−. Since the distance to τ0 is at most Rc,

n1 and n2 must also lie in the ball B(τ0, Rc). Furthermore,

the distance to the origin is at most Rc and larger than d0, they

should also lie in the region B(O,Rc)\B(O, d0). Therefore,

n1 must lie in H+
⋂

B(τ0, Rc)
⋂

B(O,Rc)\B(O, d0) and

n2 must lie in H− ⋂

B(τ0, Rc)
⋂

B(O,Rc)\B(O, d0). In

addition, considering the distance between n1 and n2 should

be at most Rc and the origin should be inside the triangle

formed by τ0, n1 and n2, n1 must lie in the shadow region

A+ = H+
⋂

B(τ0, Rc)
⋂

B(O,Rc)\B(O, d0)
⋂

B(M2, Rc),
shown in Fig. 5. M2 is one intersection point between the

circle C(O, d0) and the circle C(τ0, Rc), such intersection

point must exist in this case since Rc = γRs ≤ 2Rs < 2d0.

Ot0

A
+

Rc

H
+

H
-

(d0, p)

M2

M1

q1

t1 (d1, q1)

S
+

S
-

Rc

Rc

Rc

a0

a1

Fig. 5. Illustration of regions A+, S+ and S− in the case
√
3 < γ ≤ 2

Ordering the nodes in A+ by increasing polar an-

gle so that τ1 = (d1, θ1) has the smallest angle θ1.

And assume the nodes τ0, τ1 and another node τ2 ∈
H−⋂

B(τ0, Rc)
⋂

B(0, Rc)\B(0, d0) can form a triangle

which bounds a triangular hole containing the origin, then τ2
must lie to the right of the line passing through τ1 and O,

denoted by H+(θ1) which contains all points with polar angle

θ ∈ (θ1 − π, θ1). In addition, the distance to τ1 is less than

Rc. So the node τ2 must lie in the region S−, as illustrated

in Fig. 5.

S−(τ0, τ1) = S−(d0, d1, θ1) = H−
⋂

B(τ0, Rc)
⋂

B(0, Rc)\B(0, d0)
⋂

H+(θ1)
⋂

B(τ1, Rc)

Assume only τ0, τ1 and nodes in S−(τ0, τ1) can contribute

to the triangle which bounds a triangular hole containing the

origin, we can get a lower bound of the probability that the

origin is inside a triangular hole. It is a lower bound because

it is possible that τ1 can not contribute to a triangle which

bounds a triangular hole containing the origin, but some other

nodes with higher polar angles in the region A+ can contribute

to such a triangle. E.g. in Fig. 6, if there is no node in S−

but there are some nodes in S′−, then τ1 can not contribute
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to any triangle which bounds a triangular hole containing the

origin, but τ ′1 can form such a triangle with τ0 and another

node in S′−.

Ot0

A
+

Rc

H
+

H
-

(d0, p)

M2

M1

q1

t1

S
+

S
-

t¢1Rc

Rc

S¢
-

S¢
+

Fig. 6. Illustration of regions S′+ and S′− in the case
√
3 < γ ≤ 2

Next we prove the upper bound. As discussed in Section

IV-A, there are two cases for the origin being inside a

triangular hole. As for the second case that the closest node

τ0 can not but some other nodes can contribute to a triangle

which bounds a triangular hole containing the origin, it is not

easy to obtain a closed-form expression for such probability,

we can get it by simulations. Simulation results show that this

probability is less than 0.16% at any γ ≤ 3 with any intensity

λ. So we still focus on the probability of the first case.

Still consider the nodes in A+, each node (d, θ) corresponds

to an area |S−(d0, d, θ)|. The higher is the area |S−(d0, d, θ)|,
the higher is the probability that there is at least one node in

S−(d0, d, θ), consequently the probability of the first case will

be higher. It can be seen from Fig. 5 that the closer to θ1 is θ
and the closer to d0 is d1, the higher is the area |S−(d0, d, θ)|,
so the largest area |S−(d0, d, θ)| is |S−(d0, d0, θ1)|. Based on

that, the upper bound can be derived.

As can be seen, the expression for lower bound is closed-

form, while the expression for upper bound is not exactly

closed-form since it includes a non-analytical part psec(λ, γ).
For lower bound and the closed-form part for upper bound, we

use numerical integration to approximate the triple integrals.

For psec(λ, γ), we get it by simulations since it is generally

very small, it has little impact on the derived upper bound.

D. Case γ > 2

Theorem 3. When γ > 2, pl(λ, γ) < p(λ, γ) < pu(λ, γ),
where

pl(λ, γ) = 2πλ2
{

∫ Rc/2

Rs

r0dr0

∫ π

0

dθ1

∫ R
′

1(r0,θ1)

r0

e−λπr20 × e−λ|S+(r0,θ1)|(1 − e−λ|S−(r0,r1,θ1)|)r1dr1

+

∫ Rc/
√
3

Rc/2

r0dr0

∫ α1

α0

dθ1

∫ R1(r0,θ1)

r0

e−λπr20

× e−λ|S+(r0,θ1)|(1 − e−λ|S−(r0,r1,θ1)|)r1dr1
}

(5)

and

pu(λ, γ) = 2πλ2
{

∫ Rc/2

Rs

r0dr0

∫ π

0

dθ1

∫ R
′

1(r0,θ1)

r0

e−λπr20 × e−λ|S+(r0,θ1)|(1− e−λ|S−(r0,r0,θ1)|)r1dr1

+

∫ Rc/
√
3

Rc/2

r0dr0

∫ α1

α0

dθ1

∫ R1(r0,θ1)

r0

e−λπr20

× e−λ|S+(r0,θ1)|(1− e−λ|S−(r0,r0,θ1)|)r1dr1
}

+ psec(λ, γ)

(6)

and

R
′

1(r0, θ1) = min(

√

R2
c − r20 sin

2 θ1 − r0 cos θ1,
√

R2
c − r20 sin

2 θ1 + r0 cos θ1)

psec(λ, γ) is obtained by simulations.

O

M

Rc

Rc

t0 (d0, p)

A
+

S
+

S
-

t1

q1

Rc

Rc

(a)

O

M

Rc

t0 (d0, p)

A
+

S
+

S
-

t1

q1

S¢
-

Rc

t¢1

S¢
+

(b)

Fig. 7. Illustrations of regions in case γ > 2. (a) the regions A+, S+ and
S− (b) the regions S′+ and S′−

In this case, we can use the same method as in Section

IV-C to get the lower and upper bounds, shown in (5) and

(6) respectively. But we need to consider two situations Rs <
d0 ≤ Rc/2 and Rc/2 < d0 ≤ Rc/

√
3. In the first situation,

d0 ≤ Rc/2 means that the ball B(O, d0) is included in the ball

B(τ0, Rc). The illustrations for the regions A+, S+, S−, S′+

and S′− are shown in Fig. 7. In addition, the lower limit of

integration for θ1 is 0 and the upper limit is π. The second

situation is the same as that in Section IV-C.
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V. DISTRIBUTED COVERAGE HOLE DETECTION

ALGORITHM

For non-triangular holes, we aim to design an efficient

distributed algorithm to detect their minimum boundary cycles.

The basic idea is that for the Rips complex of a WSN, we try to

delete some vertices and edges without changing the homology

while making the Rips complex more sparse and nearly planar.

Then it is easy to find boundary edges (1-simplices), each

of which has at most one neighbour. Finally such edges are

connected in some order to form boundary cycles.

More specifically, our algorithm includes five components:

weight computation, vertex and edge deletion, boundary edge

detection, coarse boundary cycles discovery and boundary

cycles minimization, as shown in Fig. 8. An example is used to

illustrate the procedures of this algorithm in Fig. 9. In weight

computation component, the Rips complex of the WSN is first

constructed, shown in Fig. 9(a), then each node computes its

weight independently. The definition of weight of a node will

be presented in the next part. After obtaining the weight, each

node continues to determine whether it is deletable or not

according to some rule defined hereafter. Fig. 9(b) shows the

result of vertex deletion. Furthermore, some special edges may

be deleted. Fig. 9(c) shows the process of such special edge

deletion. After the second component, many boundary edges

can be found, as the bold lines shown in Fig. 9(d). But it is

possible that some other boundary edges have not been found.

Then in the third component, all or nearly all boundary edges

will be found after deleting some edges, see Fig. 9(e∼j). Then

coarse boundary cycles can be easily discovered, as shown in

Fig. 9(k). The found boundary cycles may not be minimum.

In this case, coarse boundary cycles will be minimized in the

final component as shown in Fig. 9(l).

Start

Weight

computation

Vertex and edge

deletion

Boundary edge

detection

Coarse boundary

cycles discovery

Boundary cycles

minimization

End

Fig. 8. Flow chart of the algorithm

A. Definitions

We say that a i-simplex [vi0, vi1, ..., vii]is part of a j-simplex

[vj0, vj1, ..., vjj ] if [vi0, vi1, ..., vii] ⊂ [vj0, vj1, ..., vjj ]. So the

vertex [v0] and [v1] is part of the edge [v0, v1]. The edge

[v0, v1] is part of the triangle [v0, v1, v2]. In addition, we use

E(v) to denote all the edges that the node v is part of and

T (v) to denote all the 2-simplices that the node v is part of.

Definition 4 (Index of a 2-simplex). The index of a 2-simplex

△ is the highest dimension of the simplex that the 2-simplex

is part of, denoted by I△.

Definition 5 (Weight of a node). The weight of a fence node

is defined to be 0. For any internal node v, if there exists one

edge in E(v) which is not part of any 2-simplex, the weight wv

of node v is set to be 0; if not, the weight is the minimum index

of all the 2-simplices in T (v), that is wv = min△∈T (v) I△

The weight of an internal node is an indicator of the density

of surrounding nodes. If the weight of an internal node is 0,

the node must be on the boundary of a coverage hole. The

larger the weight is, the higher is the probability that the node

is not on the boundary of a coverage hole.

We also use the definition of simple-connectedness graph

as in [28]. Let G be a simple graph with vertex set V (G)
and edge set E(G). A cycle C is a sub-graph of G if it is

connected and each vertex in C has degree two. The length

of a cycle C is the number of its edges, denoted by |E(C)|.
The cycle space C(G) of a graph G contains all the cycles

in G. The addition of two cycles C1 and C2 is defined as

C1⊕C2 = (E(C1)∪E(C2))\ (E(C1)∩E(C2)). The triangle

cycle subspace CT (G) of G is the set of all 3-length cycles

in C(G).

Definition 6 (Simple-Connectedness Graph). A connected

graph G is of simple connectedness if its cycle space C(G)
is empty, or for any cycle C in C(G), there exists a set of

3-length cycles T0 ⊆ CT (G) such that C =
∑

T∈T0
T , which

means all cycles in C(G) can be triangulated.

Let X be a vertex (or edge) set in a graph G, we use G[X ] to

denote the vertex-induced (or edge-induced) sub-graph by X .

The neighbour set of a vertex v in G is denoted by NG(v). The

neighbouring graph ΓG(v) of vertex v is denoted as G[NG(v)].
The neighbouring graph ΓG(e) of an edge e = [u, v] is defined

as G[NG(u) ∩NG(v) ∪ {u, v}]− e. The neighbour set of k-

simplex [v0, v1, ..., vk] is defined as
⋂k

i=0 NG(vi).

Definition 7 (Deletion of a k-simplex in Rips complex R(V)).
A k-simplex [v0, v1, · · · , vk] is deleted in a Rips complex R(V)
means that the simplex and all simplices which the simplex is

part of are deleted from R(V).
Based on definitions above, we can give the definition of

HP (Homology Preserving) transformation.

Definition 8 (HP Transformation). A HP transformation is a

sequential combination of vertex (or edge) deletion as follows:

a vertex (or edge) x of G is deletable if neighbouring graph

ΓG(x) (1) has two or more vertices; (2) is connected and (3)

is a simple-connectedness graph.

Theorem 4. HP transformations do not change the number

of coverage holes in Rips complex of a WSN.

Proof: In order to prove HP transformations do not

change the number of coverage holes in Rips complex of a

WSN, we only need to prove that in the process of any HP

transformation, there is no new coverage holes created and no

two coverage holes merged. If a new coverage hole is created

when a vertex v (or edge e) is deleted, then the boundary

cycle of the new coverage hole must be a cycle in ΓG(v)
(or ΓG(e)), which means ΓG(v) (or ΓG(e)) is not a simple-

connectedness graph. It is contrary to the third condition in
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 9. Procedures of the boundary detection algorithm. (a) Rips complex of a WSN, (b) after vertex deletion, (c∼d) edge deletion, (e∼j) boundary edge
detection, (k) coarse boundary cycles discovery, (l) boundary cycles minimization

HP transformation, so there is no new coverage hole created.

Furthermore, if two coverage holes are merged when a vertex

v (or edge e) is deleted, then the neighbour graph ΓG(v)
(ΓG(e)) must not be connected, which is contrary to the second

condition in HP transformation. So no two coverage holes are

merged. The situations where two holes would merge after a

vertex v deletion are shown in Fig. 10(a) and (b). Fig. 10(b)

also shows the situation for edge e deletion. Consequently, the

number of coverage holes will not be changed in the process

of any HP transformation.

v

v
e

(a) (b)

Fig. 10. Illustration of merge of two holes when deleting a vertex or edge

B. Weight computation

In this component, each node first constructs its simplices

to form the Rips complex of the WSN and then computes its

weight. For any fence node, its weight is 0. For any internal

node, theoretically the node needs to construct all the simplices

which it is part of. As we consider WSNs in a planar target

field, each internal node only needs to construct all its 1-

simplices and 2-simplices and their neighbours. This can also

reduce the computation complexity. In order to do this, the

node needs to obtain all its 1- and 2-hop neighbours informa-

tion. This can be achieved by two broadcasts of hello message.

In the first one, each node broadcasts its id. When it gets

all the IDs of its 1-hop neighbours, it continues to broadcast

a hello message containing the IDs of its 1-hop neighbours.

After receiving the neighbour list of its neighbours, the node

can obtain its E(v), the set of edges and T (v), the set of 2-

simplices. It can also get the neighbours of each simplex. For

any e ∈ E(v), let n(e) denote the neighbour set of e. For any

t ∈ T (v), let n(t) denote the neighbour set of t. Then the

weight of node v can be computed as in Algorithm 1.

C. Vertex and edge deletion

In this component, we conduct maximal vertex deletion

without changing the number of coverage holes in the original

WSN and also delete some special edges if such edges exist.

For vertex deletion, we only consider internal nodes, fence

nodes will never be deleted.

1) Vertex deletion: As explained in Section V-A, the larger

the weight is, the higher is the probability that the node does
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Algorithm 1 Weight computation (for internal node v)

Begin

if ∃e ∈ E(v), n(e) is empty then

wv = 0
else if ∃t ∈ T (v), n(t) is empty then

wv = 2
else

wv = 3
end if

END

not lie on the boundary. Meanwhile, if the deletion of a vertex

may create a new coverage hole, it must not be deleted no

matter how high the weight is. So we have such a rule for

vertex deletion. If the weight of a vertex is smaller than 3,

it should never be deleted. Otherwise, the vertex continues

to check whether it is deletable or not according to HP

transformation. After the verification, the vertex broadcasts

a message indicating that it can be deleted or not. After

receiving the status of all its neighbours, each deletable vertex

continues to check whether it should be deleted. The weight

of any deletable vertex must be 3. We assume that the vertex

with a lower ID has the priority to be deleted first. So each

deletable vertex just needs to check whether its ID is the lowest

among all its deletable neighbours. If so, it should be deleted.

Otherwise, it should not be deleted. Algorithm 2 gives the

detailed process for vertex deletion. According to the rule,

two neighbouring vertices will not be deleted simultaneously,

so each vertex can make the decision independently. When

a vertex is deleted, it broadcasts a message to its neighbours.

All its neighbours will modify their simplices accordingly and

compute their weights again. The procedure of vertex deletion

terminates until no vertex can be deleted in the Rips complex.

Fig. 9(b) gives the final result after vertex deletion.

Algorithm 2 Vertex deletion (for internal node v)

Begin

if wv < 3 then

node v can not be deleted

else if node v is not deletable according to HP transforma-

tion then

node v can not be deleted

else if the ID of node v is the smallest among all its deletable

neighbours then

node v is deleted

end if

END

2) Edge deletion: After vertex deletion, it seems natural

to delete all edges which are deletable according to HP

transformation. We do not run in this way. On one hand, this

may not be useful since deleting edges which are far from

coverage holes does not help the detection of boundary cycles

of coverage holes. On the other hand, deleting all such edges

will increase the complexity of the algorithm.

Fortunately, it has been proven in [29] that it is possible to

make the Rips complex planar by deleting vertices and edges

if there is no hole in the Rips complex. For a planar Rips

complex, the edge which has at most one neighbour must be

on the boundary. This inspires us to check the edges which

have at most one neighbour even if it may not be easy to make

a Rips complex planar when the Rips complex has holes. It

is interesting to find that most edges which have at most one

neighbour lie on the boundary of a coverage hole, such as

the solid bold edges shown in Fig. 9(c). But there exist also

some special such edges not lying on the boundary, such as

the dashed bold edges shown in Fig. 9(c). We try to delete

such special edges.

We call edges having at most one neighbour as boundary

edges, and call boundary edges not lying on the boundary of

a coverage hole as special boundary edges. Considering that

special boundary edges do not lie on the boundary of a cover-

age hole, deleting them will not produce new boundary edges.

Then we design a rule for deleting special boundary edges.

For a boundary edge [u, v] which has only one neighbour w1,

if deleting [u, v] will not make [u,w] and [v, w] be boundary

edges, then the edge [u, v] can be deleted. We can check that

the rule is HP since the neighbouring graph of the edge [u, v]
is connected with three vertices u, v, w and without a cycle. It

means that deletion of such edges does not change the number

of coverage holes in Rips complex. Fig. 11 shows the result

of deleting such edges, which is an enlarged version of Fig.

9(c). Some edges lying on the boundary may also be deleted

according to the rule. This is not a big issue, because deletion

of such edges just enlarges the current coverage holes. It can

be solved in the boundary cycles minimization component.

After edge deletion, some vertices may be deleted again,

such as the vertex denoted by a bold square in Fig. 9(c). If

such a case happens, we can continue to do vertex deletion

until no more vertex or edge can be deleted. Fig. 9(d) shows

the result after edge deletion.

Fig. 11. Special boundary edge deletion

D. Boundary edge detection

As explained in last section, in a planar Rips complex, it is

easy to detect all boundary edges by checking whether they

have at most one neighbour or not. Then boundary edges are

connected sequentially to form boundary cycles. It is thus

important to detect boundary edges. In our case, after last

step, we can find that some edges lying on the boundary have

1The boundary edge having no neighbour must be on the boundary.
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not been found. This is due to that the Rips complex near

coverage holes is not planar. We try to make it planar.

We consider the nodes having one or more boundary edges

as boundary nodes and other nodes as non-boundary nodes.

First, we need to delete some edges connecting non-boundary

nodes and boundary nodes according to HP transformation,

such as the dashed bold edges shown in Fig. 9(e). After that,

some new boundary edges may be recognized as shown in Fig.

9(f). But it is possible that the new found boundary edges cross

with non-boundary edges, as the dashed bold edge in coverage

hole 5 in Fig. 9(h), or cross with each other, as the dashed

bold edges in coverage holes 1 and 2 in Fig. 9(h). As for the

case in coverage hole 5, we can design a similar rule as in

last step to delete them. Considering such edges are near the

boundary of a coverage hole, deletion of them can make new

boundary edges, we design the rule as follows: for a boundary

edge [u, v], it has one neighbour w, [u,w] and [v, w] are not

boundary edges, if the deletion of the edge [u, v] can make at

least one of the two edges [u,w] and [v, w] be boundary edge,

then [u, v] can be deleted. Such a rule is HP as explained in

last component. As for the crossing boundary edges case, it is

illustrated in the next paragraph.

Second, we need to delete some edges connecting boundary

nodes according to HP transformation, such as the dashed bold

edge in Fig. 9(g). Considering that crossing edges can only

exist in 3- or higher dimension simplices, and higer dimension

simplices can transfer to several 3-simplices by deleting some

edges. We thus only consider 3-simplices, an example is shown

in Fig. 12(a). Deleting one edge of a 3-simplex can produce

three possible crossing boundary edges cases2, as shown in the

top part of Fig. 12 (b) ∼ (d), where bold lines denote boundary

edges and other ones denote non-boundary edges. Then we can

design corresponding rules to delete some boundary edges.

The bottom parts of Fig. 12 (b) ∼ (d) give the results after

deletion. The rules are also HP as explained in last component.

v

v

vv

vv

(b) (c) (d)(a)

Fig. 12. Illustration of crossing boundary edges

According to such rules, some boundary edges can be

deleted, such as the dashed bold edges in Fig. 9(i). From Fig.

9(i), it can be found that certain boundary edge is deleted

incorrectly. It is not a big issue as explained in last component.

After deletion of such edges, new boundary edges can be found

as shown in Fig. 9(j).

In general, after the process above, all boundary edges can

be found. But there exists one special case as in Fig. 13(a),

where some boundary edges can not be detected. This is due

to that for a vertex v′, as in Fig. 13(b), its neighbouring graph

is not a simple-connected graph since the cycle formed by

2Here we do not consider the case without crossing boundary edges

v1, v2, v3, v4 can not be triangulated, but the cycle can be trian-

gulated in the graph induced by v1, v2, v3, v4, u′. In this case,

no vertex or edge is deletable according to HP transformation

and no boundary edges can be found since each edge has

two neighbours. Such case has no impact on boundary cycles

detection, as illustrated in the next component.

(a)

v

v4

v3v2

v1

u
(b)

Fig. 13. Special case when some boundary edges can not be detected

E. Coarse boundary cycles discovery

After boundary edges are detected in the former component,

it is easy to discover the coarse boundary cycles. We just need

to randomly choose one node which has two boundary edges

in any boundary cycle. The node initiates the process to find

the coarse boundary cycle by sending a message along one of

the boundary edges. Then the boundary neighbour continues

sending the message along its boundary edges. When the

initiating node receives the message coming back along the

other boundary edge, it discovers one coarse boundary cycle.

Similarly, all coarse boundary cycles can be found, as shown

in Fig. 9(k). If only part of boundary edges are detected after

former components, we can not transmit the message only

along boundary edges. The message will be also transmitted

along non-boundary edges and some non-boundary nodes

will also need to broadcast the message, which increases the

complexity of the algorithm.

As for the special case shown in Fig. 13(a), when the node

v receives a message from its boundary neighbour node u, it

broadcasts the message to all its neighbours except u. If its

neighbour node is a boundary node, then the message can be

sent along the boundary edges. If its neighbour node is not a

boundary node but it has boundary neighbour nodes, then it

can send the message to its boundary neighbour nodes. Else, it

will not transmit the message again. In this way, the message

goes along boundary edges most of the time and can return

to the original node initiating the message.

F. Boundary cycles minimization

It is possible that some coarse boundary cycles found are

not minimum, so we need to minimize such cycles. This can

be achieved by checking whether there exists a shorter path

between any two nodes in the cycle. Since each node has

its 1- and 2-hop neighbours information, it can locally check

the existence of a shorter path in the cycle in general cases.

If there exists, we shorten the cycle and continue to do the

same verification until no such case exists. After that, it is
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still possible some cycle has not been minimized, such as the

coverage hole 2 in Fig. 9(k). So we use the following 2-hop

shrinking process to shorten the cycle. For any four adjacent

nodes in the cycle, say a, b, c, d, if there exists one node x
which is one common neighbour of nodes a, b, c, d, then the

cycle can be shortened by using x to replace nodes b and c.
In this way, we can nearly obtain most minimum cycles

surrounding coverage holes. In some cases, we can not get

the minimum cycles since each node only has its 1- and 2-hop

neighbours information. Even so, the boundary cycles discov-

ered in the algorithm can still provide valuable information

about coverage holes.

VI. SIMULATIONS AND PERFORMANCE EVALUATION

Performance evaluation of the theoretical bounds obtained

in Section IV and the algorithm proposed in Section V is

presented in this section.

A. Simulation settings

For bounds evaluation, a disk centered at the origin with

radius Rc is considered in the simulations. The probability

that the origin is inside a triangular hole is computed. Sensors

are randomly distributed in the disk according to a Poisson

point process with intensity λ. The sensing radius Rs of each

node is set to be 10 meters and γ is chosen from 2 to 3

with interval of 0.2. So the communication radius Rc ranges

from 20 to 30 meters with interval of 2 meters. λ is selected

from 0.001 to 0.020 with interval of 0.001. For each γ, 107

simulations are run under each λ to check whether the origin

belongs to a triangular hole.

For performance evaluation of the algorithm, we choose a

100 × 100 m2 square area as the target field. The sensing

radius Rs of each node is 10 meters. The communication

radius Rc is set to be 20 meters and so γ = 2. There are

fence sensors locating along the edges of the square with 20

meters distance between neighbours. Other internal sensors are

randomly distributed in the area according to a Poisson point

process with intensity λ.

B. Proportion of the area of triangular holes

The probability p(λ, γ) obtained by simulations is presented

with the lower and upper bounds in Fig. 14(a) and 14(b)

respectively. The simulation results for psec(λ, γ) are shown

in Fig. 15, which indicate that psec(λ, γ) is always smaller

than 0.16% in the simulation settings.

It can be seen from Fig. 14 that for any value of γ, p(λ, γ)
has a maximum at a threshold value λc of the intensity.

As a matter of fact, for λ ≤ λc, the number of nodes is

small. Consequently the probability that the origin belongs to

a triangular hole is relatively small too. With the increase of λ,

the connectivity between nodes becomes stronger. As a result,

the probability that the origin belongs to a triangular hole

increases. However, when the intensity reaches the threshold

value, the origin is covered with maximum probability. p(λ, γ)
decreases for λ ≥ λc. The simulations also show that λc

decreases with the increase of γ.

On the other hand, it can be seen from Fig. 14(a) and 14(b)

that for a fixed intensity λ, p(λ, γ) increases with the increases

of γ. That is because when Rs is fixed, the larger Rc is, the

higher is the probability of each triangle containing a coverage

hole.

Furthermore, the maximum probability increases quickly

with γ ranging from 2.0 to 3.0. It is shown that when γ = 2,

the maximum probability from simulation is about 0.03% and

thus it is acceptable to use Rips complex based algorithms to

discover coverage holes. While the ratio γ is high to a certain

extent, it is unacceptable to use connectivity information only

to discover coverage holes.

Finally, it can be found in Fig. 14(a) that the probability

obtained by simulation is very well consistent with the lower

bound. The maximum difference between them is about 0.5%.

Fig. 14(b) shows that probability obtained by simulation is

also consistent with the upper bound. The maximum difference

between them is about 3%.

In addition, combined with the homology based algorithm,

the analytical results can be used for planning of WSNs. For

example, assume a WSN is used to monitor a planar target

field and the ratio γ = 2, according to the analytical upper

bounds, we can see that the maximum proportion of the area

of triangular holes under γ = 2 is about 0.06%, which can be

neglected. It means that as long as the non-triangular holes can

be detected by the homology based algorithm and covered by

additional nodes, we can say the target field is covered. But if

γ = 3, it can be seen from the analytical upper bounds that the

maximum proportion of the area of triangular holes is about

11%, which means that even if the non-triangular holes can

be detected and covered, it is still possible that about 11%

of the target field is uncovered. Under this situation, some

approaches like increasing the intensity of nodes need to be

used in order to make most of the target field covered.

C. Performance of the algorithm

1) Complexity: The computation complexity of each step

in the algorithm is shown in Table I. In weight computation,

each node needs to construct its 0-, 1- and 2-simplices. For

construction of 0- and 1-simplices, each node only needs to

know its 1-hop neighbour information, which can be done

by a broadcast as explained in Section V-B. For 2-simplices

construction, each node needs to obtain its neighbours’ 1-

hop neighbour information, which is achieved by another

broadcast. Then the node continues to determine whether it can

form a 2-simplex with any two of its neighbours by checking

whether they have a common neighbour. The node needs to

check n(n− 1)/2 times, where n is the number of its 1-hop

neighbours. Then the node computes its weight by checking all

its 2-simplices of which the maximum number is n(n− 1)/2.

The computation complexity of this component is thus O(n2).
In vertex deletion part, each node needs to check whether it

is deletable or not according to HP transformation. This can be

done by checking all its cycles in its neighbouring graph. It can

build a spanning tree in its neighbouring graph and check all

fundamental cycles in the spanning tree. There are E − n+1
fundamental cycles, where E is the number of edges in its
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Fig. 14. Proportion of the area of triangular holes (a) simulation results and
lower bounds ; (b) simulation results and upper bounds
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Fig. 15. Simulation results for psec(λ, γ).

neighbouring graph, so the worst case computation complexity

is O(n2). Since the node needs to recompute its weight and

recheck whether it is deletable when any one of its neighbour

is deleted, so the total worst case computation complexity is

O(n3). As for edge deletion, the node only needs to check all

its 1-simplices to see whether there exists the case illustrated

in Section V-C, so the complexity is O(n). The complexity of

this component is thus O(n3).

In the boundary edge detection component, nodes need to

check whether some of their edges can be deleted or not

according to HP transformation. For each edge, the worst

case computation complexity is O(n2) as explained in last

paragraph, the total worst case computation complexity is

thus O(n3) since there are maximum n edges. The actual

TABLE I
COMPLEXITY OF EACH STEP IN THE ALGORITHM

Step Complexity

Weight computation O(n2)
Vertex and edge deletion O(n3)
Boundary edge detection O(n3)

Coarse boundary cycles discovery O(1)
Boundary cycles minimization O(1)

complexity is much less than that since for one edge, there are

usually very few nodes in its neighbouring graph. In addition,

the boundary nodes need to check whether there exist special

cases as illustrated in Section V-D. The node needs to check

all its 2-simplices, which is of complexity O(n2) since there

are maximum n(n − 1)/2 2-simplices. So the complexity of

this component is O(n3).
As for the final two components, each node only needs to

broadcast some messages and do some local computations,

the complexity is O(1). So the total worst case computation

complexity for our algorithm is O(n3).
2) Comparison with other algorithms: In order to evaluate

the performance of our proposed homology based algorithm

(denoted as HBA), we compare it with the location based

algorithm (denoted as LBA) proposed in [30]. Since loca-

tion based algorithm can discover both triangular and non-

triangular coverage holes, but our algorithm can only detect

non-triangular coverage holes, we do not consider those tri-

angular coverage holes in the comparison. It is possible that

there exist shorter paths in boundary cycles found by LBA,

we first shrink them using 1-hop neighbour information of

boundary nodes. After that, we compare those boundary cycles

with what our algorithm finds. For some coverage holes, the

minimum boundary cycles may not be unique, two boundary

cycles are considered to surround the same coverage hole if

one cycle can be converted to another one by using only 1-

hop neighbours information. We emphasize that only 1-hop

neighbours information can be used in the comparison in order

to evaluate the accuracy of boundary cycles found by our

algorithm. For example, if one cycle c1 found by our algorithm

can not be converted to another cycle c2 found by LBA using

only 1-hop neighbours information but can be converted by

using 2-hop neighbours information, we consider the cycle c1
is not accurate and the corresponding coverage hole is not

found.

Based on the method presented above, we set λ to be

0.008, 0.010 and 0.012 to represent sparse, moderate and dense

WSNs respectively. For each intensity, 1000 simulations are

performed. Simulation results show that when λ is 0.008, there

are nine times among the 1000 times when our algorithm can

not find all non-triangular coverage holes. In each of the nine

times, only one coverage hole is missed. There are 7363 non-

triangular holes in total and 7354 ones found by our algorithm.

When λ is 0.010 and 0.012, only one time among the 1000

times when our algorithm can not find all coverage holes.

And in that time, only one coverage hole is missed. When λ
is 0.010, there are 6114 non-triangular holes in total and 6113

ones found by our algorithm. When λ is 0.012, there are 4613

non-triangular holes in total, of which 4612 ones are found.
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The results are shown in Fig. 16. All these results show that

our algorithm can find about 99% coverage holes in about

99% cases.
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Fig. 16. Performance evaluation of the algorithm

VII. CONCLUSIONS

In this paper, we adopt two types of simplicial complex

called Čech complex and Rips complex to capture coverage

holes of a WSN. The relationship between Čech complex

and Rips complex in terms of coverage hole is first analysed

under different ratios between communication radius and

sensing radius of a sensor. Based on that, we define two

types of coverage holes: triangular and non-triangular hole.

For triangular holes, both the lower and upper bounds on

the proportion of the area of triangular holes in a WSN

are derived. Such proportion is related to the ratio between

communication radius and sensing radius of each sensor. When

the ratio is no larger than
√
3, there is no triangular hole. When

the ratio is between
√
3 and 2, both the theoretical analysis

and simulation results show that the proportion is lower than

0.06% under any intensity. It means that the triangular holes

can nearly be neglected. When the ratio is larger than 2, the

proportion of the area of triangular holes increases with γ. It

becomes unacceptable for γ larger than a threshold. In that

case triangular holes can not be neglected any more. For non-

triangular holes, a homology-based algorithm is proposed to

detect them. Simulation results show that the algorithm can

detect 99% such holes.

APPENDIX A

PROOF OF THEOREM 2

Proof: : We first prove the lower bound. It can be obtained

from (2) that

p(λ, γ) > P{
⋃

{n1,n2}⊆Φ\{τ0(Φ)}
T (τ0, n1, n2)}

So for the lower bound, we only consider the case that the

closest node τ0 can contribute to a triangle which bounds a

triangular hole containing the origin.

Using polar coordinates, we assume the closest node τ0 lies

on (d0, π). It is well known that the distance d0 is a random

variable with distribution

Fd0(r0) = P{d0 ≤ r0} = 1− e−λπr20 (7)

Therefore the probability of the first case can be given as

P{
⋃

{n1,n2}⊆Φ\{τ0(Φ)}
T (τ0, n1, n2)}

=

∫

P{
⋃

{n1,n2}⊆Φ′
r0

T ((r0, π), n1, n2)}Fd0(dr0)
(8)

where Φ′
r0 is the restriction of Φ in B(O,Rc)\B(O, r0).

Once the node τ0 is determined, a second node τ1 must lie

in the shadow region A+ shown in Fig. 5 and a third node

τ2 must lie in the region S− shown in Fig. 5, as illustrated in

Section IV-C. The node τ1 = (d1, θ1) is assumed to have the

smallest polar angle in A+, which means that there should be

no nodes with a polar angle less than θ1 in A+, that is to say

no nodes are in the region

S+(τ0, τ1) = S+(d0, θ1) = A+
⋂

H+(θ1)

Since the intensity measure of the PPP in polar coordinates

is λrdrdθ, the density Fτ1 of τ1 can be given as

Fτ1(dr1, dθ1) = λr1e
−λ|S+(d0,θ1)|dr1dθ1 (9)

The integration domain D(d0) with respect to parameters

(d1, θ1) can be easily obtained. From the construction of the

region A+, we can get α0 = 2 arccos(Rc/(2d0)) and α1 =
2 arcsin(Rc/(2d0)) − 2 arccos(Rc/(2d0)). So α0 ≤ θ1 ≤ α1

and d0 < d1 ≤ R1(d0, θ1), where

R1(d0, θ1) =min(

√

R2
c − d20 sin

2 θ1 − d0 cos θ1,
√

R2
c − d20 sin

2(θ1 + α0) + d0 cos(θ1 + α0))

Furthermore, the area |S+(r0, θ1)| can be expressed as

|S+(r0, θ1)| =
∫ θ1

α0

∫ R1(r0,θ)

r0

rdrdθ

As illustrated in Section IV-C, assume only τ0, τ1 and nodes

in S−(τ0, τ1) can contribute to the triangle which bounds a

triangular hole containing the origin, we can get a lower bound

of the probability that the origin is inside a triangular hole.

Based on the assumption, we have

P{
⋃

{n1,n2}⊆Φ′
r0

T ((r0, π), n1, n2)}

> P{
⋃

n2⊆Φ′
r0

⋂
S−(τ0,τ1)

T ((r0, π), τ1, n2)}

=

∫∫

D(r0)

P{
⋃

n2⊆Φ′
r0

⋂

S−(r0,r1,θ1)

T ((r0, π), (r1, θ1), n2)}Fτ1(dr1, dθ1)

=

∫∫

D(r0)

P{Φ′
r0(S

−(r0, r1, θ1)) > 0}Fτ1(dr1, dθ1)

=

∫∫

D(r0)

(1 − e−λ|S−(r0,r1,θ1|)Fτ1(dr1, dθ1)

(10)

where |S−(r0, r1, θ1| can be expressed as

|S−(r0, r1, θ1)| =
∫ −α0

θ2l

∫ R2(r0,r1,θ1,θ2)

r0

rdrdθ2
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and

θ2l = θ1 − arccos
cos(Rc/R)− cos θ1 cos θ0

sin θ1 sin θ0

R2(r0, r1, θ1, θ2) = min(

√

R2
c − r20 sin

2 θ2 − r0 cos θ2,
√

R2
c − r21 sin

2(θ2 − θ1) + r1 cos(θ2 − θ1))

Therefore, from (7), (8), (9) and (10), the lower bound

shown in (3) can be derived.

As for the upper bound, replace |S−(r0, r1, θ1)| by

|S−(r0, r0, θ1)|, we can get the upper bound as illustrated in

Section IV-C.
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