
HAL Id: hal-00783298
https://hal.science/hal-00783298v5

Preprint submitted on 25 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A constrained optimization approach for complex sparse
perturbed models

Anisia Florescu, Emilie Chouzenoux, Jean-Christophe Pesquet, Silviu
Ciochina

To cite this version:
Anisia Florescu, Emilie Chouzenoux, Jean-Christophe Pesquet, Silviu Ciochina. A constrained opti-
mization approach for complex sparse perturbed models. 2013. �hal-00783298v5�

https://hal.science/hal-00783298v5
https://hal.archives-ouvertes.fr


A CONSTRAINED OPTIMIZATION APPROACH FOR COMPLEX

SPARSE PERTURBED MODELS∗

ANISIA FLORESCU† , EMILIE CHOUZENOUX‡, JEAN-CHRISTOPHE PESQUET§ , AND

SILVIU CIOCHINA¶

Abstract. In this paper, we consider the problem of estimating a complex-valued signal having
a sparse representation in an uncountable family of vectors. The available observations are corrupted
with an additive noise and the elements of the dictionary are parameterized by a scalar real variable.
By a linearization technique, the original model is recast as a constrained sparse perturbed model.
An optimization approach is then proposed to estimate the parameters involved in this model. The
cost function includes an arbitrary Lipschitz differentiable data fidelity term accounting for the noise
statistics, and an ℓ0 penalty. A forward-backward algorithm is employed to solve the resulting non-
convex and non-smooth minimization problem. This algorithm can be viewed as a generalization
of an iterative hard thresholding method and its local convergence can be established. Simulation
results illustrate the good practical performance of the proposed approach when applied to spectrum
estimation.

Key words. complex-valued data, hard thresholding, nonconvex optimization, nonsmooth anal-
ysis, linear modelling, perturbations, proximal methods, sparse approximation, signal processing,
spectral estimation.

AMS subject classifications. 65K10, 90C26, 94A12, 62M15, 65F22

1. Problem statement. We consider a family of vectors E = {eν | ν ∈ R} of
CQ which are parameterized by a scalar variable ν ∈ R. We assume that a signal
x ∈ CQ admits a sparse representation on a finite subset {eνn

, 1 ≤ n ≤ N} of distinct
elements of E :

x =

N∑

n=1

cneνn
(1.1)

where a large number of components of c = (cn)1≤n≤N ∈ CN are assumed to be equal
to zero. (Overlined variables are used here to distinguish “true” vectors from generic
variables). A classical problem in sparse estimation [4] is then to recover x from a
vector of observations

y = x+ w (1.2)

where w ∈ CQ is a realization of a random noise vector.
In this work, we will be interested in the case when the parameters (νn)1≤n≤N

are known in an imprecise manner, i.e. they are such that, for every n ∈ {1, . . . , N},

νn = θn + δn (1.3)
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2 A CONSTRAINED OPTIMIZATION APPROACH, Florescu et al.

where θn ∈ R is some given value and δn ∈ R is an unknown error on the parameter to
be estimated. If we assume that the perturbations (δn)1≤n≤N are small and ν 7→ eν
is a differentiable function, we can perform the following first-order Taylor expansion:

(∀n ∈ {1, . . . , N}) eνn
≃ eθn + δne

′
θn

(1.4)

where e′θn is the gradient of ν 7→ eν at θn. With this approximation, Model (1.1)
takes the following bilinear form

x =

N∑

n=1

(
cneθn + cnδne

′
θn

)
. (1.5)

A similar sparse approach for decomposing a signal in terms of translated versions of
some features in a finite dictionary is addressed in [7] where the proposed convex ℓ1
formulation is only applicable to real-valued signals. Likewise, our work can be seen
as having some similarities with the perturbed compressive sampling approach in [9]
where a robust total least squares (TLS) approach based on an ℓ1 regularization is
developed. The difference is that, in our work, we adopt a different formulation where

• an ℓ0 cost is employed for the minimization process, instead of its ℓ1 convex
relaxation;

• the errors (δn)1≤n≤N are constrained to satisfy the following inequalities

(∀n ∈ {1, . . . , N}) |δn| ≤ ∆n, (1.6)

the upper bounds (∆n)1≤n≤N ∈ [0,+∞)N being set by the user. These
constraints provide more flexibility than the TLS approach for controling the
perturbations (δn)1≤n≤N ;

• a general Lipschitz differentiable data fidelity term can be considered.

Notation. In the following, χS denotes the characteristic function of a set S,
which is equal to 0 on S and 1 elsewhere, and ιS denotes the indicator function of a
set S, wich is equal to 0 on S and +∞ elsewhere. The transconjugate operation for
complex-valued matrices is denoted by (·)H .

2. Proposed optimization approach.

2.1. Variational formulation. We propose to estimate the parameters of the
perturbed sparse model by solving the following optimization problem:

minimize
c=(cn)1≤n≤N∈C

N

δ=(δn)1≤n≤N∈B

Φ
( N∑

n=1

(
cneθn + cnδne

′
θn

)
− y

)
+ λℓ0(c) (2.1)

where B is the N -dimensional box [−∆1,∆1]× · · · × [−∆N ,∆N ], Φ: CQ → R is the
data-fidelity term which is often chosen equal to the neg-log-likelihood of the noise
corrupting the observations, and λ ∈ (0,+∞) is a regularization constant.

Let us now define the matrices E = [eθ1 . . . eθN ] ∈ CQ×N , E′ = [e′θ1 . . . e
′
θN

] ∈
CQ×N , and let us introduce the variable d = (cnδn)1≤n≤N ∈ CN . In addition, let the
function Ψ be defined as

(∀c = (cn)1≤n≤N ∈ C
N )(∀d = (dn)1≤n≤N ∈ C

N ) Ψ(c, d) =

N∑

n=1

ψn(cn, dn) (2.2)
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where, for every n ∈ {1, . . . , N},

(∀(cn, dn) ∈ C
2) ψn(cn, dn) = λχ{0}(cn) + ιSn

(cn, dn), (2.3)

and Sn is the closed cone given by

Sn = {(cn, dn) ∈ C
2 | ∃δn ∈ [−∆n,∆n], dn = δncn}. (2.4)

Then, Problem (2.1) is equivalent to minimizing function

(c, d) 7→ Φ
(
[E E′]

[
c
d

]
− y

)
+Ψ(c, d). (2.5)

We have now to see how this minimization can be performed numerically.

2.2. Proposed algorithm. If we assume that Φ is a differentiable function, the
previous split form of the objective function suggests the use of a forward-backward
algorithm [6]:

(c(0), d(0)) ∈ (CN )2

(γ, γ) ∈ (0,+∞)2

For k = 0, 1, . . .

γ(k) ∈ (γ, γ)

D(k) = ∇Φ
(
[E E′]

[
c(k)

d(k)

]
− y

)

(c̃
(k)
n )1≤n≤N = c(k) − γ(k)EHD(k)

(d̃
(k)
n )1≤n≤N = d(k) − γ(k)(E′)HD(k)

(c
(k+1)
n , d

(k+1)
n )1≤n≤N =

(
proxγ(k)ψn

(c̃
(k)
n , d̃

(k)
n )

)
1≤n≤N

.

(2.6)

We recall that the proximity operator of a proper, lower bounded, lower semi-continuous
function ϕ : H → (−∞,+∞] where H is a finite dimensional Hilbert space is defined
as

(∀u ∈ H) proxϕ(u) ∈ argmin
v∈H

1

2
‖u− v‖2 + ϕ(v). (2.7)

Note that, although the uniqueness of proxϕ(u) is guaranteed when ϕ is convex, this
property is not necessarily satisfied in the nonconvex case.
We then have the following result the proof of which is skipped.

Proposition 2.1. Let γ ∈ (0,+∞). For every n ∈ {1, . . . , N} and (cn, dn) ∈ C2,

the proximity operator of γψn is

proxγψn
(cn, dn) =





(0, 0) if |cn|2 + |dn|2 < |δ̂ncn−dn|
2

1+δ̂2
n

+ 2γλ

cn + δ̂ndn

1 + δ̂2n
(1, δ̂n) otherwise,

(2.8)

where

δ̂n =





min
{ ηn+|dn|

2−|cn|
2

2|Re(cnd∗n)|
,∆n

}
sign

(
Re(cnd

∗
n)
)

if Re(cnd
∗
n) 6= 0

0 if Re(cnd
∗
n) = 0

and |cn| ≥ |dn|
∆n otherwise,

(2.9)
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and ηn =

√(
|dn|2 − |cn|2

)2
+ 4

(
Re(cnd∗n)

)2
.

It can be noticed that, if ∆n = 0 for every n ∈ {1, . . . , N}, then (2.8) simplifies
into

proxγψn
(cn, dn) =

{
(0, 0) if |cn| <

√
2γλ

(cn, 0) otherwise.
(2.10)

This shows that in the absence of perturbations, Algorithm (2.6) reduces to an iter-
ative hard thresholding algorithm [2], when Φ is the squared Euclidean norm. Note
however that a main difference between our algorithm and iterative hard thresholding
is that, in the unthresholded case, the former one does not reduce to the Landweber
algorithm. This makes the analysis of the proposed forward-backward algorithm more
difficult.

2.3. Convergence result. As Ψ is a nonconvex function, the convergence of the
proposed algorithm requires special care. The following local convergence property
can however be proved by using recent results in nonsmooth/nonconvex optimization
[1] concerning functions of real variables:

Proposition 2.2. Assume that Φ is a semi-algebraic function having an L-
Lispchitzian gradient with L ∈ (0,+∞) and the bounds γ and γ on the step-size are

chosen such that

0 < γ ≤ γ < L−1‖EEH + E′(E′)H‖−1. (2.11)

Then, any bounded sequence (c(k), d(k))k∈N generated by Algorithm (2.6) converges to

a critical point of Function (2.5).
We recall that a function is semi-algebraic if its graph can be expressed as a finite

union of subsets defined by a finite number of polynomial inequalities (in the real and
imaginary parts of its complex variables). This includes the standard least squares
criterion as a special case.

3. Application to spectrum analysis. Much attention has been paid recently
to sparse models in spectrum estimation [3, 8] but, in many methods, an important
problem remains the choice of an appropriate search frequency grid.

In this part, we consider an analog complex-valued signal which is expressed as

(∀t ∈ R) s(t) =

N∑

n=1

an exp(ıνnt) (3.1)

where (νn)1≤n≤N ∈ [0, 2π)N are distinct angular frequencies and (an)1≤n≤N are un-
known complex amplitude values which are assumed to be sparse. This signal is
filtered by a known stable continuous-time filter with frequency response G, so yield-
ing

(∀t ∈ R) z(t) =

N∑

n=1

G(νn)an exp(ıνnt) + v(t) (3.2)

where v is a realization of an additive random noise further corrupting the data.
Discrete-time observations are obtained by sampling this signal at distinct times
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(τq)1≤q≤Q in [0, Q] in a possibly irregular manner. This leads to Model (1.1)-(1.2)
where y =

(
z(τq)

)
1≤q≤Q

, w =
(
v(τq)

)
1≤q≤Q

, and (cn) =
(
G(νn)an

)
1≤n≤N

. In this

example, the dictionary consists of cisoids:

(∀ν ∈ R) eν =
(
exp(ıντq)

)
1≤q≤Q

(3.3)

and we have

(∀ν ∈ R) e′ν =
(
ıτq exp(ıντq)

)
1≤q≤Q

. (3.4)

A standard choice in this context is to uniformly sample the frequency domain:

(∀n ∈ {1, . . . , N}) θn = 2π
n− 1

N
. (3.5)

In order to account for frequencies which are not multiple of 2π/N , the proposed
perturbed sparse estimation technique can be applied by choosing, for every n ∈
{1, . . . , N}, ∆n = π/N .

As an illustration of the good performance of the proposed approach, we consider
Q = 50 observations of a complex-valued signal corresponding to the sum of 4 noisy
cisoids which have been irregularly sampled in a random manner over [0, Q]. The
discrete-time observations are corrupted with a white circular Gaussian noise with
zero-mean and variance σ2. Various values of the signal-to-noise ratio have been
tested. The employed dictionary consists of N = 500 cisoids. The frequencies of
the sparse components are not on the search grid. The global normalized root mean
square estimation errors for the signal estimated with Algorithm (2.6), when Φ is the
squared Euclidean norm, is provided in Table 3.1. These values are the results of a
Monte Carlo study performed on 100 realizations. For comparison, we also give the
error values corresponding to the use of an ℓ1 norm and an ℓ0 cost. The ℓ1-based
solution corresponds to the following convex optimization problem:

minimize
c∈S′

ℓ1(c) (3.6)

where S′ = {c ∈ CN | ‖Ec − y‖2 ≤ Qσ2}. A primal-dual proximal algorithm [5]
was implemented to efficiently solve this problem. The so-obtained result was chosen
as an initial value for the iterative hard thresholding approach associated with the
basic ℓ0 penalized problem. The ℓ1-based solution was also used as a starting point of
our algorithm. Note that a procedure was devised in order to automatically set the
regularization parameter λ from the observed data.

The results shown in Figures 3.1 and 3.2 allow us to evaluate the good quality of
the estimates typically obtained when identifying 4 or 6 cisoids.

SNR (dB) ℓ1 ℓ0 Proposed method

14.82 0.452 0.224 0.043
19.82 0.445 0.206 0.024
24.82 0.443 0.198 0.013
29.72 0.442 0.201 0.007

Table 3.1

Average value of the normalized root mean square reconstruction error computed over 100
realizations.
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Fig. 3.1. Estimation results in the case of 4 cisoids (SNR = 19.82 dB): values of (|cn|)1≤n≤N

(left); values of frequency perturbations (δn)1≤n≤N as a function of (θn)1≤n≤N (right). The exact
values are depicted with blue circles and the confidence intervals on the estimates in red (the mean
is indicated by a cross).
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Fig. 3.2. Estimation results in the case of 6 cisoids (SNR = 23.27 dB): values of (|cn|)1≤n≤N

(left); values of frequency perturbations (δn)1≤n≤N as a function of (θn)1≤n≤N (right). The exact
values are depicted with blue circles and the confidence intervals on the estimates in red (the mean
is indicated by a cross).
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