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In this paper, we consider the problem of estimating a complex-valued signal having a sparse representation in an uncountable family of vectors. The available observations are corrupted with an additive noise and the elements of the dictionary are parameterized by a scalar real variable. By a linearization technique, the original model is recast as a constrained sparse perturbed model. An optimization approach is then proposed to estimate the parameters involved in this model. The cost function includes an arbitrary Lipschitz differentiable data fidelity term accounting for the noise statistics, and an ℓ 0 penalty. A forward-backward algorithm is employed to solve the resulting nonconvex and non-smooth minimization problem. This algorithm can be viewed as a generalization of an iterative hard thresholding method and its local convergence can be established. Simulation results illustrate the good practical performance of the proposed approach when applied to spectrum estimation.

1. Problem statement. We consider a family of vectors E = {e ν | ν ∈ R} of C Q which are parameterized by a scalar variable ν ∈ R. We assume that a signal x ∈ C Q admits a sparse representation on a finite subset {e νn , 1 ≤ n ≤ N } of distinct elements of E:

x = N n=1 c n e ν n (1.1)
where a large number of components of c = (c n ) 1≤n≤N ∈ C N are assumed to be equal to zero. (Overlined variables are used here to distinguish "true" vectors from generic variables). A classical problem in sparse estimation [START_REF] Candès | An introduction to compressive sampling[END_REF] is then to recover x from a vector of observations

y = x + w (1.2)
where w ∈ C Q is a realization of a random noise vector.

In this work, we will be interested in the case when the parameters (ν n ) 1≤n≤N are known in an imprecise manner, i.e. they are such that, for every n ∈ {1, . . . , N },

ν n = θ n + δ n (1.
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where θ n ∈ R is some given value and δ n ∈ R is an unknown error on the parameter to be estimated. If we assume that the perturbations (δ n ) 1≤n≤N are small and ν → e ν is a differentiable function, we can perform the following first-order Taylor expansion:

(∀n ∈ {1, . . . , N }) e νn ≃ e θn + δ n e ′ θn (1.4) where e ′ θn is the gradient of ν → e ν at θ n . With this approximation, Model (1.1) takes the following bilinear form

x = N n=1 c n e θn + c n δ n e ′ θn . (1.5) 
A similar sparse approach for decomposing a signal in terms of translated versions of some features in a finite dictionary is addressed in [START_REF] Ekanadham | Recovery of sparse translation-invariant signals with continuous basis pursuit[END_REF] where the proposed convex ℓ 1 formulation is only applicable to real-valued signals. Likewise, our work can be seen as having some similarities with the perturbed compressive sampling approach in [START_REF] Zhu | Sparsity-cognizant total least-squares for perturbed compressive sampling[END_REF] where a robust total least squares (TLS) approach based on an ℓ 1 regularization is developed. The difference is that, in our work, we adopt a different formulation where • an ℓ 0 cost is employed for the minimization process, instead of its ℓ 1 convex relaxation; • the errors (δ n ) 1≤n≤N are constrained to satisfy the following inequalities

(∀n ∈ {1, . . . , N }) |δ n | ≤ ∆ n , (1.6) 
the upper bounds (∆ n ) 1≤n≤N ∈ [0, +∞) N being set by the user. These constraints provide more flexibility than the TLS approach for controling the perturbations (δ n ) 1≤n≤N ; • a general Lipschitz differentiable data fidelity term can be considered.

Notation. In the following, χ S denotes the characteristic function of a set S, which is equal to 0 on S and 1 elsewhere, and ι S denotes the indicator function of a set S, wich is equal to 0 on S and +∞ elsewhere. The transconjugate operation for complex-valued matrices is denoted by (•) H .

Proposed optimization approach.

2.1. Variational formulation. We propose to estimate the parameters of the perturbed sparse model by solving the following optimization problem:

minimize c=(cn) 1≤n≤N ∈C N δ=(δn) 1≤n≤N ∈B Φ N n=1 c n e θn + c n δ n e ′ θn -y + λℓ 0 (c) (2.1)
where B is the 

N -dimensional box [-∆ 1 , ∆ 1 ] × • • • × [-∆ N , ∆ N ], Φ : C Q → R
(∀c = (c n ) 1≤n≤N ∈ C N )(∀d = (d n ) 1≤n≤N ∈ C N ) Ψ(c, d) = N n=1 ψ n (c n , d n ) (2.2)
where, for every n ∈ {1, . . . , N },

(∀(c n , d n ) ∈ C 2 ) ψ n (c n , d n ) = λ χ {0} (c n ) + ι Sn (c n , d n ), (2.3) 
and S n is the closed cone given by

S n = {(c n , d n ) ∈ C 2 | ∃δ n ∈ [-∆ n , ∆ n ], d n = δ n c n }. (2.4)
Then, Problem (2.1) is equivalent to minimizing function

(c, d) → Φ [E E ′ ] c d -y + Ψ(c, d).
(2.5)

We have now to see how this minimization can be performed numerically.

Proposed algorithm.

If we assume that Φ is a differentiable function, the previous split form of the objective function suggests the use of a forward-backward algorithm [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]:

(c (0) , d (0) ) ∈ (C N ) 2 (γ, γ) ∈ (0, +∞) 2 For k = 0, 1, . . .            γ (k) ∈ (γ, γ) D (k) = ∇Φ [E E ′ ] c (k ) d (k) -y ( c (k) n ) 1≤n≤N = c (k) -γ (k) E H D (k) ( d (k) n ) 1≤n≤N = d (k) -γ (k) (E ′ ) H D (k) (c (k+1) n , d (k+1) n ) 1≤n≤N = prox γ (k) ψn ( c (k) n , d (k) n ) 1≤n≤N . (2.6)
We recall that the proximity operator of a proper, lower bounded, lower semi-continuous function ϕ : H → (-∞, +∞] where H is a finite dimensional Hilbert space is defined as

(∀u ∈ H) prox ϕ (u) ∈ arg min v∈H 1 2 u -v 2 + ϕ(v). (2.7) 
Note that, although the uniqueness of prox ϕ (u) is guaranteed when ϕ is convex, this property is not necessarily satisfied in the nonconvex case.

We then have the following result the proof of which is skipped. Proposition 2.1. Let γ ∈ (0, +∞). For every n ∈ {1, . . . , N } and (c n , d n ) ∈ C 2 , the proximity operator of γψ n is

prox γψn (c n , d n ) =      (0, 0) if |c n | 2 + |d n | 2 < | δncn-dn| 2 1+ δ 2 n + 2γλ c n + δ n d n 1 + δ 2 n (1, δ n ) otherwise, (2.8) 
where

δ n =            min ηn+|dn| 2 -|cn| 2 2|Re(cnd * n )| , ∆ n sign Re(c n d * n ) if Re(c n d * n ) = 0 0 if Re(c n d * n ) = 0 and |c n | ≥ |d n | ∆ n otherwise, (2.9 
)

and η n = |d n | 2 -|c n | 2 2 + 4 Re(c n d * n ) 2 .
It can be noticed that, if ∆ n = 0 for every n ∈ {1, . . . , N }, then (2.8) simplifies into

prox γψn (c n , d n ) = (0, 0) if |c n | < √ 2γλ (c n , 0) otherwise. (2.10)
This shows that in the absence of perturbations, Algorithm (2.6) reduces to an iterative hard thresholding algorithm [START_REF] Blumensath | Iterative thresholding for sparse approximations[END_REF], when Φ is the squared Euclidean norm. Note however that a main difference between our algorithm and iterative hard thresholding is that, in the unthresholded case, the former one does not reduce to the Landweber algorithm. This makes the analysis of the proposed forward-backward algorithm more difficult.

Convergence result.

As Ψ is a nonconvex function, the convergence of the proposed algorithm requires special care. The following local convergence property can however be proved by using recent results in nonsmooth/nonconvex optimization [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward backward splitting, and regularized Gauss-Seidel methods[END_REF] concerning functions of real variables: Proposition 2.2. Assume that Φ is a semi-algebraic function having an L-Lispchitzian gradient with L ∈ (0, +∞) and the bounds γ and γ on the step-size are chosen such that

0 < γ ≤ γ < L -1 EE H + E ′ (E ′ ) H -1 .
(2.11)

Then, any bounded sequence (c (k) , d (k) ) k∈N generated by Algorithm (2.6) converges to a critical point of Function (2.5). We recall that a function is semi-algebraic if its graph can be expressed as a finite union of subsets defined by a finite number of polynomial inequalities (in the real and imaginary parts of its complex variables). This includes the standard least squares criterion as a special case.

3. Application to spectrum analysis. Much attention has been paid recently to sparse models in spectrum estimation [START_REF] Bourguignon | A sparsity-based method for the estimation of spectral lines from irregularly sampled data[END_REF][START_REF] Stoica | Sparse estimation of spectral lines: Grid selection problems and their solutions[END_REF] but, in many methods, an important problem remains the choice of an appropriate search frequency grid.

In this part, we consider an analog complex-valued signal which is expressed as

(∀t ∈ R) s(t) = N n=1 a n exp(ıν n t) (3.1)
where (ν n ) 1≤n≤N ∈ [0, 2π) N are distinct angular frequencies and (a n ) 1≤n≤N are unknown complex amplitude values which are assumed to be sparse. This signal is filtered by a known stable continuous-time filter with frequency response G, so yielding

(∀t ∈ R) z(t) = N n=1 G(ν n )a n exp(ıν n t) + v(t) (3.2)
where v is a realization of an additive random noise further corrupting the data. Discrete-time observations are obtained by sampling this signal at distinct times (τ q ) 1≤q≤Q in [0, Q] in a possibly irregular manner. This leads to Model (1.1)-(1.2) where y = z(τ q ) 1≤q≤Q , w = v(τ q ) 1≤q≤Q , and (c n ) = G(ν n )a n 1≤n≤N . In this example, the dictionary consists of cisoids:

(∀ν ∈ R) e ν = exp(ıντ q ) 1≤q≤Q (3.3) 
and we have

(∀ν ∈ R) e ′ ν = ıτ q exp(ıντ q ) 1≤q≤Q . (3.4) 
A standard choice in this context is to uniformly sample the frequency domain:

(∀n ∈ {1, . . . , N }) θ n = 2π n -1 N . (3.5) 
In order to account for frequencies which are not multiple of 2π/N , the proposed perturbed sparse estimation technique can be applied by choosing, for every n ∈ {1, . . . , N }, ∆ n = π/N . As an illustration of the good performance of the proposed approach, we consider Q = 50 observations of a complex-valued signal corresponding to the sum of 4 noisy cisoids which have been irregularly sampled in a random manner over [0, Q]. The discrete-time observations are corrupted with a white circular Gaussian noise with zero-mean and variance σ 2 . Various values of the signal-to-noise ratio have been tested. The employed dictionary consists of N = 500 cisoids. The frequencies of the sparse components are not on the search grid. The global normalized root mean square estimation errors for the signal estimated with Algorithm (2.6), when Φ is the squared Euclidean norm, is provided in Table 3.1. These values are the results of a Monte Carlo study performed on 100 realizations. For comparison, we also give the error values corresponding to the use of an ℓ 1 norm and an ℓ 0 cost. The ℓ 1 -based solution corresponds to the following convex optimization problem:

minimize c∈S ′ ℓ 1 (c) (3.6)
where S ′ = {c ∈ C N | Ec -y 2 ≤ Qσ 2 }. A primal-dual proximal algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] was implemented to efficiently solve this problem. The so-obtained result was chosen as an initial value for the iterative hard thresholding approach associated with the basic ℓ 0 penalized problem. The ℓ 1 -based solution was also used as a starting point of our algorithm. Note that a procedure was devised in order to automatically set the regularization parameter λ from the observed data. 
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 31 Fig. 3.1. Estimation results in the case of 4 cisoids (SNR = 19.82 dB): values of (|cn|) 1≤n≤N (left); values of frequency perturbations (δn) 1≤n≤N as a function of (θn) 1≤n≤N (right). The exact values are depicted with blue circles and the confidence intervals on the estimates in red (the mean is indicated by a cross).
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 32 Fig. 3.2. Estimation results in the case of 6 cisoids (SNR = 23.27 dB): values of (|cn|) 1≤n≤N (left); values of frequency perturbations (δn) 1≤n≤N as a function of (θn) 1≤n≤N (right). The exact values are depicted with blue circles and the confidence intervals on the estimates in red (the mean is indicated by a cross).

  The results shown in Figures 3.1 and 3.2 allow us to evaluate the good quality of the estimates typically obtained when identifying 4 or 6 cisoids.

	SNR (dB)	ℓ 1	ℓ 0	Proposed method
	14.82	0.452 0.224	0.043
	19.82	0.445 0.206	0.024
	24.82	0.443 0.198	0.013
	29.72	0.442 0.201	0.007

Table 3 . 1

 31 Average value of the normalized root mean square reconstruction error computed over 100 realizations.