
HAL Id: hal-00783292
https://hal.science/hal-00783292

Submitted on 31 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Running a Reproducible Research Journal, with Source
Code Inside
Nicolas Limare

To cite this version:
Nicolas Limare. Running a Reproducible Research Journal, with Source Code Inside. ICERM Work-
shop on Reproducibility in Computational and Experimental Mathematics, Dec 2012, Providence,
United States. �hal-00783292�

https://hal.science/hal-00783292
https://hal.archives-ouvertes.fr


Running a Reproducible Research Journal,
with Source Code Inside

Nicolas Limare

ICERM Workshop — December 10-14, 2012

My experience with reproducible research is based on Image Processing On Line
(IPOL), a journal I contributed to create in 2010 and still co-manage. IPOL is online at
http://www.ipol.im/ and defines itself as “[a] journal of image processing and image
analysis. Each article contains a text describing an algorithm and source code, with
an online demonstration facility and an archive of online experiments. The text and
source code are peer-reviewed and the demonstration is controlled.”

Two Years of a “Reproducible Research Journal”

In two years, IPOL published 40 articles by authors from a dozen of collaborating research labs.
Each article comes with the main PDF manuscript, an implementation of the algorithm in C/C++
and a web interface to test this implementation in real time on user-submitted data, everything
under free licenses and open access policies1.

This journal started as an experiment because we knew no place to publish, share and test research
software in a manner similar to the way research papers are handled in traditional journals. It grew
into a stable project involving multiple research labs in the collaboration. I summarize hereafter
the rationale behind the journal, some experience gathered while the concept was being refined
over these two years, and a few critical points which would help publishing research software.

No Computational Science Without Software

“Reproducibility” has different meanings and implications in different research communities, de-
pending on what is to be reproduced. I have the impression that the main message so far has been
that the results published in a research paper must be reproducible, ie that independent researcher
must be able to obtain the same results from identical data and computation.

But I am working in a field where we do not publish “results”. A substantial part of image
processing research is the elaboration of “methods”, or algorithms. These algorithms are exposed in
research articles and illustrated with some computational results as illustrations, trying to convince
the audience of the qualities of this algorithm. But the science here is not in the results, it is in the
algorithms. Signal processing might not be an exception here, I think econometrics also produce
methods, and probably other fields too.

Then, our algorithms are rarely, if ever, completely specified by the description given if articles.
Missing parameters is the first problem, pre- and post-processing also matter but are rarely detailed.

1For example, the latest article published as of December 8th, 2012, is online at http://www.ipol.im/pub/art/
2012/g-ace/ with PDF and source code, and the algorithm can be tested at http://demo.ipol.im/demo/g_ace/

1

http://www.ipol.im/
http://www.ipol.im/pub/art/2012/g-ace/
http://www.ipol.im/pub/art/2012/g-ace/
http://demo.ipol.im/demo/g_ace/


Articles chiefly focus on the mathematical objects making the algorithm, but not on their numerical
counterpart embodied in the implementation. Computational efficiency can also sometimes make
all the difference between two algorithms, and this efficiency is highly dependent on implementation
details. In short, the source code is the ultimate documentation on an algorithm, and as such we
consider no algorithm should be published and described in a classic text-formulas-and-figures
manuscript without providing a reference implementation.

Moreover, software serves two additional purposes. As a computational science linked to human
perception, image processing methods not only based on math but also evaluated on data, and
no one is convinced by a couple of test images. Providing an implementation of every published
algorithm allows readers/users to process their own data and verify the robustness of the method.
And, last not least, the source code is the natural medium to share our computational research,
just like demonstrations are provided and shared for every proven theorem.

By publishing implementations for every computational method exposed in papers, IPOL papers
should not only be reproducible, but also verifiable and reusable.

Publishing Software

Publishing software, in the sense that it is released by a research journal like other articles are, is
more than just making some program available as a supplementary material. Simply collecting
source code without a controlled and enforced editorial policy doesn’t define a research journal, only
a code repository, which are two complementary but different things. If the software is published
for the documentation and evaluation of algorithms, then it implies a few editorial rules.

The software must be provided in source form, otherwise it does not document internal details
of the algorithm. This implies that the code must be readable and sufficiently documented to
allow other researchers to follow the algorithm and verify that the implementation matches the
description in every detail. In other words, software should be prepared for readers just like articles
are edited from scribbled drafts to clean and detailed manuscripts following instructions from the
journal. Of course, most authors are not prepared to do the same with their code, they have never
been asked to. But it seems this is only a matter of training and culture, and can be gradually
solved over time with good instructions.

The software must also be usable in other researchers’ computing environment, otherwise it can not
be tested and compared. This implies at least Windows/UNIX portability, and the free availability
of every building block. It is achieved in IPOL with a requirement to be provided in C/C++ source
code, portable, using only a few external libraries, and under an open license2. This policy reflects
what we believe is possible in image processing and desirable for research software, but it needs to
be adapted to the needs and habits of every research community: cryptography, particle physics
and genetics, for example, will have different requirements.

Reviewing Software

The editorial rules covering software have to be controlled to guarantee the respect of the journal
policy, and this is done by reviewing the software just like any article manuscript. Reviewers
completely read the source code, or at least the algorithmic part of it, and verify it is clear and
match the description given in the manuscript, as well as the respect of journal guidelines. They
also run the software and use it on carefully chosen input data to check it performs as announced.
This validation is simplified by the web interface provided by IPOL for every algorithm and code;

2For example, the latest article published as of December 8th, 2012, is online at http://www.ipol.im/pub/art/
2012/g-ace/ with PDF and source code, and the algorithm can be tested at http://demo.ipol.im/demo/g_ace/

2

http://www.ipol.im/pub/art/2012/g-ace/
http://www.ipol.im/pub/art/2012/g-ace/
http://demo.ipol.im/demo/g_ace/


with this facility, reviewers and editors can run their tests and they can see tests run by others,
because every experiment conducted over the web is archived and browsable.

The software review is a manual process, not a formal software validation. It provides no guarantee
that the code is correct, only that informed researchers have examined and approved it. Bugs have
been found after the publication of some IPOL articles, and they were handled just like any error
found in an article, by publishing an erratum and an updated version approved by the editors.

This is not a problem because publishing the code in a research journal is not a software release.
The article should not be mistaken for the software project home page, and the journal must not be
confused with an attempt to compile a definitive software library. Codes will keep being developed
and improved out of the journal, like other research efforts don’t freeze when they are published.

We had no major problem finding reviewers willing to examine the source code, usually young
researchers proficient in programming. The quality and level of detail of the reviews varied a lot
according to the competence and interest of the reviewers. During the review process, changes and
improvements were always asked and obtained by the reviewers. In that sense, the peer-review
help improve the software quality, like some sort of pair-programming.

Strategy and Impact

The publishing record of IPOL shows that it is possible to require authors to provide software as a
journal policy. However, authors still need to be convinced to do the extra work since this task
is usually not required for publishing in other journals. Our solution to this problem is not to
replace traditional journals; IPOL articles are complementary to classic papers published without
code, and one can even publish in IPOL an implementation of a classic algorithm created by other
researchers. Our partnership with SIIMS3 is a good illustration: authors publish their work in a
well-known classic journal, and with a some extra effort they can have a complementary article in
IPOL with the source code. Both articles are interlinked, authors get two references, IPOL has
some endorsement from a recognized journal, and SIIMS gets some software verified and available
with the articles.

We observed that some of the codes published in IPOL have been reused in other projects. Some
other codes were mentioned in software development communities as examples and documentations
about an algorithm or technique, and sometimes the code published in IPOL becomes the reference
implementation which would have been missing otherwise. These are examples of the impact of
publishing software. This impact can also be measured by the number of source code download, or
by looking at the demo archive size. Popular algorithms have thousands of users, and the diversity
of input images reveals interest from diverse research fields and industries. But we can not go
further and measure an academic impact in term of citations; IPOL is probably still too small, too
young, too unusual, or all these together.

What’s Missing? What’s Next?

Publishing research software will require a constant effort to convince potential authors until this
principle is adopted by big players and journals, and researchers get used to it and anticipate the
life cycle of their code early in their software developments.

The academic publishing industry also needs to reform the assumption that and article is a PDF
file. This assumption is everywhere in the review, publishing and indexation tools and services. A
modern research article should be a set of files, including but not limited to PDF files emulating

3IPOL Software Guidelines are detailed at https://tools.ipol.im/wiki/ref/software_guidelines/.

3

https://tools.ipol.im/wiki/ref/software_guidelines/


paper articles in a digital form. A common standard could be established to pack together all the
files constituting an article.

Every time we publish a code using a software library, there is a risk of this library becoming
obsolete, unmaintained or unusable. We need standardized and stable APIs for every essential
family of libraries4, so that core functions can be provided by different libraries and new ones can
be developed to replace those hit by bit rot.

To protect research software against unwarranted obsolescence, we also need properly specified
programming languages. Languages only defined by their current implementation, and updated
twice a year5, put every code at risk of being unusable in the short term. A stable, complete and
formal definition of this language would permit alternative implementations or compatibility layers
to take the place of a failing provider.

Software should also be stored and identified by reliable, persistent, vendor-independent handlers.
The DOI system could be expanded with the collaboration of software hosting services to add a
notion of version, so that one can say “our software was built using the libfoo library version 42”
and provide a link that will always point a location where libfoo can be downloaded in version 42
and later developments can also be found.

Some work is needed, too, on research data storage solutions not restricted to an institution, a
country or a research topic. We would also like to see more software testing tools and services,
to help authors identify improvements needed in their code and relieve reviewers from all the
validation tasks that can be automated.

Finally, patent regulation is a constant source of annoyance, with international heterogeneity
and inconsistent legal opinions on whether publishing research implementations of an algorithm
described in a patent application is a patent infringement. If software patents are here to stay, we
would at least want a clear, complete and worldwide exemption of patent regulation for research
and experimentation purposes.

Nicolas Limare
nicolas.limare@cmla.ens-cachan.fr
http://limare.perso.math.cnrs.fr/
CMLA, CNRC UMR 8536, ENS Cachan, France

References
[1] Image Processing On Line (IPOL), ISSN 2105-1232, http://dx.doi.org/10.5201/ipol, http://www.

ipol.im/.

[2] Limare, Nicolas, and Jean-Michel Morel, "The IPOL Initiative: Publishing and Testing Algorithms on
Line for Reproducible Research in Image Processing," Procedia Computer Science (2011) Proceedings
of the International Conference on Computational Science (ICCS 2011), http://dx.doi.org/10.1016/
j.procs.2011.04.075.

[3] Limare, Nicolas, "Reproducible Research, Software Quality, Online Interfaces and Publishing for Image
Processing" (PhD diss., École Normale Supérieure de Cachan, 2012).

[4] Limare, Nicolas, Laurent Oudre, and Pascal Getreuer, "IPOL: Reviewed Publication and Public Testing
of Research Software," 8th IEEE International Conference on eScience, First Workshop on Maintainable
Software Practices in e-Science (2012).

4SIIMS is the SIAM Journal on Imaging Science, see http://www.siam.org/journals/siims.php.
5The BLAS example should inspire us to establish a vendor-agnostic interface for every basic building bloc, such

as (for image processing) Fourier transform, convolutions and blur, morphology operators, . . .

4

http://limare.perso.math.cnrs.fr/
http://dx.doi.org/10.5201/ipol
http://www.ipol.im/
http://www.ipol.im/
http://dx.doi.org/10.1016/j.procs.2011.04.075
http://dx.doi.org/10.1016/j.procs.2011.04.075
http://www.siam.org/journals/siims.php

	Two Years of a ``Reproducible Research Journal''
	No Computational Science Without Software
	Publishing Software
	Reviewing Software
	Strategy and Impact
	What's Missing? What's Next?

