
HAL Id: hal-00783290
https://hal.science/hal-00783290

Submitted on 31 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IPOL: Reviewed publication and public testing of
research software

Nicolas Limare, Laurent Oudre, Pascal Getreuer

To cite this version:
Nicolas Limare, Laurent Oudre, Pascal Getreuer. IPOL: Reviewed publication and public testing
of research software. 8th International Conference on E-Science, Oct 2012, Chicago, United States.
pp.1-8, �10.1109/eScience.2012.6404449�. �hal-00783290�

https://hal.science/hal-00783290
https://hal.archives-ouvertes.fr

IPOL: Reviewed Publication and Public Testing of
Research Software

Nicolas Limare, Laurent Oudre, Pascal Getreuer
CMLA, ENS Cachan

61 Av. du Pdt Wilson, 94235 Cachan Cedex, France

Abstract—With the journal Image Processing On Line (IPOL),
we propose to promote software to the status of regular research
material and subject it to the same treatment as research papers:
it must be reviewed, it must be reusable and verifiable by the
research community, it must follow style and quality guidelines.
In IPOL, algorithms are published with their implementation,
codes are peer-reviewed, and a web-based test interface is
attached to each of these articles. This results in more software
released by the researchers, a better software quality achieved
with the review process, and a large collection of test data
gathered for each article. IPOL has been active since 2010, and
has already published thirty articles.

I. INTRODUCTION

For computational sciences, detailed algorithms and im-
plementations are an integral part of the research results
and should therefore be published extensively. This has been
continuously pointed out in the literature about reproducible
research, since the seminal papers by Claerbout [3] and
Donoho [1]. Moreover, in research areas focused on the
study and elaboration of computational methods rather than
the results of these computations, like signal processing or
econometrics, we don’t produce, publish and exchange the
outcome of a numerical experiment (which would need to
be reproducible) but algorithms, methods and tools, which
must be reusable. This reusability of computational algorithms
supposes at least a completely detailed description, and can
include the availability of an implementation.

This goal is far from being attained in the image and signal
processing community, where in 2009 only 12% of published
articles included the implementation details and 9% provided a
source code [13]. Algorithm exchange in this community faces
serious obstacles: multiple software developing environments
have grown in each research group without interoperability.
Source code is subject to portability issues and depends on
local tools to process or exploit the result. Software main-
tenance is a costly issue. Additionally, many scientists have
limited software engineering skills. Software maintenance and
consolidation is therefore one of the main problems in this
field [2].

In this context, research groups are unable to communicate
efficiently by software and are therefore limited to paper jour-
nals and conferences. Software libraries and development envi-
ronments are not a sufficient response, because in the absence

of a common base, they reinforce the software fragmentation.1

Existing software journals, when they publish codes [15], [16],
lack the precise scientific evaluation and specification of the
implemented algorithms and a discussion about their proper-
ties, qualities and limits. When an implementation is provided
by the authors of a research article, it is usually available
as-is on their personal research web pages,2 with varying
quality and documentation. Out of the peer-reviewed scientific
publishing process, there is no control that the source code as
provided exactly implements the algorithm as described, there
is no guarantee on the correctness of this implementation, or
on its long-term availability. Studying recent image processing
algorithms and implementations provided by their authors, we
have systematically observed that the proposed code differs
from the paper publication, that the paper publication is not
enough to characterize an algorithm, and that conversely the
disclosed code contains parts that are not documented or
explained in the paper.

Multiple recent initiatives to address the problems of con-
servation, exchange and validation of computational science
software material (code, executable programs, data and results)
show an increasing concern about the reliability of the com-
putational science corpus.

Our initiative in this field was the creation in December
2010 of a research journal, Image Processing On Line (IPOL).
Unlike classic academic journals, where the only required
submission is the manuscript itself, an IPOL article has three
components:

Documentation.
Similar in its form to a classic research article but
focused on the implementation, the precise descrip-
tion of the algorithm must be detailed enough to
allow any specialist to implement it in their own
programming language and environment.3

Implementation.
The source code is published, after a validation by
reviewers, who verify that the algorithm description

1The recent IPOL 2012 Meeting on Image Processing Libraries illustrates
this fragmentation, with 13 different image processing libraries produced by
the research community without any compatibility layer (http://www.ipol.im/
news/20120627 image processing libraries/).

2See Xin Li’s Reproducible Research in Computational Science (http://csee.
wvu.edu/∼xinl/source.html) for examples.

3This level of detail is similar to the requirement for a disclosure, sufficiently
clear and complete for it to be carried out by a person skilled in the art, as
required in patent law (European Patent Convention, art. 83).

http://www.ipol.im/news/20120627_image_processing_libraries/
http://www.ipol.im/news/20120627_image_processing_libraries/
http://csee.wvu.edu/~xinl/source.html
http://csee.wvu.edu/~xinl/source.html

is complete and detailed, and the implementation
matches this description.

Demonstration.
A demonstration web service is attached to every
article, allowing users to test the algorithms on their
data with their choice of parameters. The full history
of the experiments performed with this service is also
publicly available.

These principles promote validation and comparison of
the algorithms, reuse of implementations, and progressive
compilation of a verifiable state-of-the-art based on trusted
software.

Since the first component of an IPOL article (algorithm
description) is somehow similar to a classic journal paper, we
shall only focus on the last two components (implementation
and demonstration) in this article. Section II describes the
software peer review process and guidelines used for eval-
uating correctness, readability and usability of the software.
Section III introduces the demonstration aspect of IPOL and
the conceptual and technical structures of online demos. In
Section IV, we shortly discuss legal and copyright issues
inherent to software publication. Finally, Section V presents a
preliminary study on results obtained since 2010, along with a
discussion on the future of IPOL and on its possible extension
to other domains.

II. SOFTWARE

A. Software Peer Review

If software is to be considered as a first-class product of
the research activity, we consider it should be submitted to
the same procedure to maintain standards, improve quality and
provide credibility as applied to regular research papers. This
is achieved in academic publishing via the peer review process,
so we also review the software before publication.

But contrary to classic academic journals, which only
review and publish manuscripts, our review process must
consider both the manuscript (which must contain precise
mathematical description of the algorithm) and the software
(which must match the description of the algorithm). Both
are important because the source code ultimately specifies
how the program works, and the higher-level description of
the algorithm tells what the program is supposed to do.4

The role of referees in IPOL is therefore different from (and
complementary to) their role in a classic journal.

Publishing software in a scholarly journal implies that jour-
nal readers can expect some level of quality for the software.
Such a software should be usable and have predictable effects
across a reasonable diversity of present and future computing
environments. The source code should be available, otherwise
no one can say what the software is really doing. It must be
readable and documented, analogous to how developments in
a mathematics paper should be readable and explained.

4These dual points are made by Douglas Crockford (“And anything less
than [the software] doesn’t really tell you anything about how it’s ultimately
going to behave.”) and Joe Armstrong (“The code shows me what [a program]
does. It doesn’t show me what it’s supposed to do.) in Coders at Work [11].

In IPOL, the software review applies the following princi-
ples:

• the program must implement the algorithm exactly as
described in the associated manuscript;

• the implementation must be understandable by other
researchers, it is intended to be read, studied and verified;

• the code must be usable on a reasonable variety of
computing environments, and reusable for future research
works.

The reviewers, selected from the same research field, are
asked to read the source code and to request explanations and
corrections until the software satisfies these three principles.
They do not necessarily need to be programming experts
since software quality, in this context, is not its computational
speed. It is the care taken to clearly convey its content to
its recipients, the readers of the software journal interested
in using and understanding it. As such, any researcher of
the domain who has already done some programming and
understands the software review principles should be able to
fulfill the conditions to be a reviewer, as the review is more
practical than purely technical. There are as many potential
reviewers for a research software as there are many potential
authors to publish such software.

The interactions we could observe in IPOL between authors
and reviewers make clear that the implementation is improved
by our reviews: software is tested outside of its development
environment, bugs are found and fixed, alternative implemen-
tation designs are proposed, and the implementation choices
are better documented since the reviewer approaches the code
from their external point of view.

B. Software Guidelines

Guidelines were developed for IPOL as an attempt to
guide the authors and reviewers. Their goal is to increase
the readability and usability of the programs published in the
journal with a set of requirements and recommendations for an
article to be accepted. These guidelines are our first tentative
to define how good research software should be distributed.
They establish a clear and shared understanding of what is
expected from the authors. Their application depends on how
they can be understood and verified. To help authors, editors
and reviewers, a set of simple algorithms implemented by
following these guidelines are provided. These examples are
completed by a tool5 authors and reviewers can use in order
to test the software against some of the guidelines and then
focus on high-level analysis of the code.

During the review process, reviewers are encouraged to use
these guidelines as a reference to ask for modifications to
the source code, but ultimately they are free to be more or
less flexible, and the editor in charge of a submission has
the final word on its acceptance. The software guidelines are
not exact rules enforced during the review, their aim is to
express clearly the editorial board understanding of a “good

5Software Guidelines Validation, https://tools.ipol.im/swg check/.

https://tools.ipol.im/swg_check/

implementation worth being published, reliable, and useful to
other researchers.”

Such software guidelines are a compromise between de-
sirable software engineering criteria and the effort one can
expect from authors. Coding style guides6 have been written
and are used to enforce a unified visual style and improve code
quality. Other reference books provide advice on coding style,
program structure, or the additional matter of security risks in
software [4], [5], [9]. But with the current guidelines, we only
focus on our priority: correct, readable and usable programs.7

These guidelines may seem obvious for a seasoned pro-
grammer. Compared to the stringent rules enforced in some
branches of the software industry, these requirements are
minimal. But these are not the profile and work environment
of computational science researchers, and even the simple
expectation of being able to use a research code is rarely
fulfilled [10]. Our goal with the software guidelines is to
establish a basic quality criterion for research software, and we
show by the experience of publishing IPOL that this quality
can be attained if required as a journal policy.

We believe that these guidelines are relevant for other com-
putational science research communities, after some adaptation
of the domain-specific items like data file formats, common
software libraries, or essential programming languages. The
full text is available online,8 and we only outline the essential
items hereafter.

1) Packaging and Content: The first set of guidelines de-
fines how a program is distributed and what it contains. Their
goal is to ensure that the program can be easily identified,
transmitted and evaluated, and that it can be manipulated by
everyone.

The software must be distributed as a ZIP or
TAR/GZIP compressed archive, named after the
name and version number of the software. This
archive must only contain files useful to build, use
or study the program: no by-products of the devel-
opment tools, no temporary versions of the code.

2) Implementation: The second group of guidelines address
portability of the software. No provision can guarantee that a
program will be usable on all present and future computing
systems, but known causes of incompatibilities can be avoided.

The complete implementation of the published al-
gorithm must be provided in source code. This
code must be written in one of the programming
languages allowed, and tested with strict compiler
options. It must not require a special hardware
platform or operating system. The implementation
can only depend on a list of allowed essential

6Style guides since the original Indian Hill Recommended C Style and
Coding Standards have been collected and archived by Chris Lott (http://
www.maultech.com/chrislott/resources/cstyle/).

7These priorities are close to the “six features of useful machine learning
software” as defined by the JMLR and MLOSS projects [16], [17], [12]:
[useful] software is usable, documented, robust, it has well-defined interfaces,
it uses existing interfaces and standards, it has testing routines.

8IPOL Software Guidelines, https://tools.ipol.im/wiki/ref/software
guidelines/.

libraries chosen by the editorial board for their
quality, portability and stability. This software must
be compiled by an automated build system, and
produce a program usable from the command-line
and with standard and well-known file formats.9

3) Copyright, License and Patents: The third category of
guidelines ensures that the rights of the authors, contribu-
tors, inventors, readers and users are clearly mentioned and
respected. These are the legal guidelines.

For every source code file, authors of every source
code file must be mentioned with the distribution
license. If a patent might be linked to this file, a
patent warning must be inserted after the copyright
attribution.

4) Documentation: The last set of guidelines covers the
documentation, and has provisions to guarantee that reviewers
and readers of published implementations will have all the
information they would need about the software. This includes
generic information such as references to the article and
usage instructions. But the source code itself is considered
a published material and is expected to be read, so some rules
are added to guarantee that the implementation is readable and
understandable.

All the essential information about the software must
be mentioned in a README file: name and brief
description, reference to the article, authors, version
and future releases, copyright, patent and license,
build and usage instructions. The code must be for-
matted consistently with limited file and line length,
and structured into separate files by abstraction
level. Every function and every non-trivial part of
the code must be explained in the comments, and
linked to its counterpart in the document detailing
the algorithm. Some example data is expected with
the code.

III. DEMONSTRATIONS

A. Principle

Despite the availability of a reliable source code, an algo-
rithm may not be immediately usable because its compilation,
installation and use are not straightforward. Some researchers
are reluctant to get into a compilation procedure to check
an algorithm. Most would prefer a quick evaluation before
they consider spending more time to study the article in
depth. Our proposed solution is to provide an experimental
environment directly accessible over the network for every
algorithm published with its code.

This test interface uses the reviewed and published code
to process, in real time, data freely submitted by the users.
Every experiment performed with original data on this system

9For IPOL, we chose to restrict the publications to languages clearly defined
in standards, and to maintain some level of compatibility between all the
codes published. This resulted in the restriction to the C89, C99 and C++98
programming languages. For other journals, this selection will depend on the
research area and habits of the community involved.

http://www.maultech.com/chrislott/resources/cstyle/
http://www.maultech.com/chrislott/resources/cstyle/
https://tools.ipol.im/wiki/ref/software_guidelines/
https://tools.ipol.im/wiki/ref/software_guidelines/

is stored and publicly available. This experiment archive is an
efficient mean to assess the performance of an algorithm over
a large collection of input images.

This results in a large-scale testing of every published
software, where the testers are the journal readers. They have
different backgrounds but a common interest in image process-
ing, they test the algorithms for unexpected yet interesting use,
and a majority of these tests are performed with pertinent data
and settings. On IPOL, this archive collects between 50 and
100 new tests per day as of July 2012, for a total of tens of
thousands of experiments stored and freely browsable, more
than any researcher would be able to perform. These tests are
available from the preprint stage of the articles; they revealed
software bugs, unexpected uses and limits of the algorithms,
and they contribute to the quality of the software published in
the journal.

Moreover, as noted by Li about image denoising, the gap be-
tween mentally reproducible and experimentally reproducible
research is often the biggest challenge [. . .] A good and solid
theory is mentally reproducible but does not always lead to
better experimental results [6]. This is true for every field
of image processing research, and probably for computational
science as an experimental science: no matter how strong and
innovative the theoretical background of an algorithm, one can
not be convinced of its performance and usefulness without
using the algorithm on real-world data.

B. Typical Demo

The base workflow of an IPOL demo is always the same:

1. Users select or upload input data. This data is converted to
the format expected by the research software.

2. Users can edit the input, select some algorithm parameters,
or both.

3. The input data is processed by the research software.
4. The result is shown.
5. If the input was submitted by the user, this experiment is

archived. The user can go back to step 1 or 2.

Variations between demos are essentially changes in steps
2 (algorithm parameters), 3 (how the data is processed) and 4
(how the result is displayed).

C. Development and Deployment

Our demo system is a web interface to the software re-
viewed and published. The web model has the advantage
of being accessible to almost any connected user. Despite
varying support for advanced techniques across browsers, web
base technologies are truly cross-platform. Our demos do not
require any setting or tools beyond those needed to access the
journal content: a network connection and a web browser.

In the IPOL journal, the image processing demo system was
built on these priorities:

Simplicity.
We avoid unnecessary technology layers and soft-
ware dependencies;

Fig. 1. Workflow and design of the web demo system.

Flexibility.
We do not know yet which interface feature will be
needed for future demos.

Openness.
Authors and editors can independently create and test
their own demos, which are integrated in the demo
system.

Accessibility.
No one should be barred for mere technical reasons
if this can be avoided.

The user interface is made of classic HTML documents (see
Figure 2). We use JavaScript to enrich some HTML forms, but
this is essentially sugar coating, and so far JavaScript is not
required to use IPOL. Flash and Java are not used either.

Adelson Crosses Dolphin Lena Noisy

Image Processing On Line
HOME · ABOUT · ARTICLES · PREPRINTS · NEWS · SEARCH ·

Retinex Poisson Equation: a Model for Color Perception
article demo archive

Please cite this article if you publish results obtained with this online demo.

Select Data
Click on an image to use it as the algorithm input.

image credits

Upload Data
Upload your own image files to use as the algorithm input.

input image No file selectedChoose File upload

Images larger than 490000 pixels will be resized. Upload size is limited to 10MB per image file .
TIFF, JPEG, PNG, GIF, PNM (and other standard formats) are supported. The uploaded files may be re-used for further analysis.
Only upload suitable images. See the copyright and legal conditions for details.

 © 2009-2012, IPOL Image Processing On Line & the authors • ISSN:2105-1232 • DOI:10.5201/ipol
 feeds • sitemap • contact • privacy policy • supported by CMLA, ENS Cachan

Image Processing On Line
HOME · ABOUT · ARTICLES · PREPRINTS · NEWS · SEARCH ·

Retinex Poisson Equation: a Model for Color Perception
article demo archive

Please cite this article if you publish results obtained with this online demo.

Algorithm Parameters
t(range: [0.0, 255.0])= 4.0

run

Input Image

 © 2009-2012, IPOL Image Processing On Line & the authors • ISSN:2105-1232 • DOI:10.5201/ipol
 feeds • sitemap • contact • privacy policy • supported by CMLA, ENS Cachan

Fig. 2. Input selection, parameter choice and computation result pages for
a typical IPOL demo.

The current version of the demo system is still a work in

progress; it is currently based on the CherryPy framework to
implement the demo system as a Python web application. Until
a stable state is reached and documented in future research
literature, the current code is available online.10

IV. OTHER ASPECTS OF PUBLISHING RESEARCH
SOFTWARE

Other questions were investigated during the development of
IPOL, such as the intellectual rights regulation (copyright and
patents) applied to computer programs and research articles or
the insertion of software material in the academic publishing
ecosystem.

A. Copyright and Patent Policy

Intellectual rights regulation is heterogeneous, based on
national jurisdictions, and software and manuscripts have
different legal status, even if we would like to combined
them as a single product of the research activity. In this
context, we propose a copyright and license policy to facilitate
dissemination and reuse of research works.11

Software reviewed and published by the journal must be
released under a Free Software license, because the implemen-
tation of an algorithm should be as accessible and reusable as
its description, and anyone can reuse the knowledge obtained
from a research journal.

Possible patent issues only need to be mentioned with the
software, but evaluation of their legal impact is left to the
users because it depends on their local jurisdiction. Moreover,
we believe software in a research journal is covered by the
exceptions for research and experiments found in most patent
regulations.

In addition, article manuscripts and datasets are distributed
under a permissive Creative Commons license, and every
material published by the journal is available freely, in Open
Access. Finally, no copyright transfer is claimed by the editor.
This policy was designed to maximize the exposition and
usefulness of published works; we expect that it will benefit
the authors and the research community as a whole.

B. Authorship Attribution

One aspect of software authorship attribution is already
covered by the Free Software licensing terms: they usually
require, based on copyright law, that any reuse or modification
of the code mentions the origin and authors of this code.12 A
similar mechanism can be used for the descriptions of research
programs by releasing them under a similar license, such as
a Creative Commons CC-BY license, which stipulate proper
attribution when these works are reused.

However, this copyright protection only covers situations
when the content of a software is reused. We have more
interest in obtaining citations for research software the same

10IPOL Demo Service, http://dev.ipol.im/git/?p=nil/ipol demo.git.
11IPOL Copyright and License Agreement, https://tools.ipol.im/wiki/ref/

copyright license agreement/.
12This has been enforced in courts for prominent cases. See for example

the gpl-violations.org project, http://gpl-violations.org/. Free Software licenses
usually add other conditions, not relevant in this article.

way research papers are referenced: credit given for important
ideas, building blocks, and major influences on research. This
cannot be obtained from a legal framework: ideas are free, no
one can be forced to acknowledge the origins of their works.
This is not different for software and manuscripts: proper
credit relies on the integrity of the authors and peer-review
control. It is a social norm with variations among research
communities, not a rule.

Our strategy to obtain proper credit for software is to format
and distribute this software as research articles: source code
is downloaded from a journal website, with a manuscript
formatted like any other research paper,13 and clearly identified
with full bibliographic metadata and digital identifier. So far,
we observed some references to these software articles in
regular research journals, but it is too early to conclude on
the efficiency of this approach.

Finally, one must acknowledge that research literature and
software usually have different ecosystems. Research papers
are published in journals, indexed in bibliographic databases,
and mentioned in the references section of other articles.
A similar process happens for software in the open source
community, but in different places: software is published
in online source code repositories and indexed by software
hosting facilities and directories.14 When a software is reused
in other projects, attribution to the initial authors is maintained
in the code and documentation. As an experiment, we intend to
complement the distribution of IPOL software via the journal
articles with an insertion into open source repositories and
directories, with references to the journal.

V. DISCUSSION

A. Usage and Feedback

1) Usage: In less than two years, IPOL published thirty
algorithms, precisely described, with a portable, usable and
commented implementation. This first result shows that it is
possible to require authors to provide an implementation for
their algorithms, and to publish it with a review process based
on quality guidelines. The authors currently come from a
dozen universities worldwide, usually linked to the journal
core team via current or previous research collaborations.
IPOL and the SIAM Journal on Imaging Sciences (SIIMS)
have an agreement to promote cross-publications: two articles
can be published about the same algorithm, one in SIIMS
focusing on the mathematical analysis and the other one in
IPOL expanding on implementation, and these complementary
articles include cross-references.

We do not have any impact indicator for the articles pub-
lished in IPOL in terms of reference numbers and impact factor
because the journal is too young to appear in bibliometric

13IPOL recently switched from articles formatted as web pages to PDF doc-
uments, because it seems that only PDF files are considered a credible format
for research articles, by other researchers and by bibliographic databases.

14SourceForge (http://sourceforge.net/), Google Code (http://code.google.
com/) and GitHub (https://github.com/) are some of the largest software
hosting services. Freecode (http://freecode.com/) and Ohloh (http://www.
ohloh.net/) are two open source software directories.

http://dev.ipol.im/git/?p=nil/ipol_demo.git
https://tools.ipol.im/wiki/ref/copyright_license_agreement/
https://tools.ipol.im/wiki/ref/copyright_license_agreement/
http://gpl-violations.org/
http://sourceforge.net/
http://code.google.com/
http://code.google.com/
https://github.com/
http://freecode.com/
http://www.ohloh.net/
http://www.ohloh.net/

studies. Meanwhile, our alternative is to observe the number
of visits, source code downloads, and demo tests.

The algorithms published in IPOL were submitted to more
than 100000 online tests as of August 2012. IPOL’s impact
on the image processing community is still difficult to assess
since authors are not used to citing implementations and online
articles as regular research articles, however, these numbers
provide a good hint to the popularity of the journal. During
the 2010–2011 academic year, we could observe visits com-
ing from more than 850 scientific, research and educational
institutions worldwide.15

As far as software is concerned, a study showed that on
the period December 2010 to November 2011, 6% of visitors
downloaded a source code or dataset attached to an article
(while the others only read the article or played with the
associated demo). This percentage corresponds to more than
5000 downloads in less than a year.

Interestingly, just like number of citations is an indicator of
the popularity of an article, we think that the number of tests
performed on a demo system can give a hint to the interest
for an algorithm. Despite a strong possible bias resulting from
variable exposure of these works, we can observe a ranking
of the articles based on the popularity of their demo. This
measure, together with the number of views of the article
and the number of downloads of the software, suggests an
estimation of usefulness of an algorithm for the general public,
complementary to the measure of its influence in the research
community as hinted (also with bias) by number of references
in other research papers.

Detailed statistics were compiled in November 2011 and
at this time, articles were viewed on average 300 times per
month, but with large variations: the most popular article
received more than 1500 visits, and the least exposed article
was viewed 50 times. Similar numbers were observed for
demos: the most popular demo was used 1150 times, and the
least used one processed only 15 images. Different factors can
explain these variations: some IPOL articles are very exposed
on the Web via blog reviews and references in technical
forums, and some other articles are more confidential and
only found when browsing the IPOL index. The popularity
of IPOL articles is also related to the trends of the discipline:
some algorithms are connected to an active research domain,
others are out of fashion. Finally, some algorithms are more
accessible or useful for the general public, such as color
correction and denoising for amateur photographers.

Around one third of the tests are done with original data
uploaded by visitors. This has allowed the creation of 50000
new archives as of August 2012. Archives of the experiments
conducted on the online web demonstration system also reveal
some information for every article. One can observe unex-
pected uses of some algorithms deduced from the input data:
building blueprints, microscope views of cells and satellite
photography reveal interest from the architecture, biology and

15IPOL usage report for 2010/09 to 2011/08 (http://www.ipol.im/news/
20110923 stats/).

geography professional fields.
The complete experiment archives occupy 100GB of stor-

age space as of August 2012. Given the decreasing cost of
computer storage and the development of distributed storage
solutions, archive size is not an issue. Despite being moderated
a posteriori, we faced very few cases of abuse by insertion
of offensive images in the archive, and these one or two
cases per month did not justify implementation of a systematic
validation of archive content.

Finally, with 200 demo executions per day, each taking less
than 30s, the demo server is always available and IPOL does
not face a pressure on computational power.

2) Feedback: Twenty-four authors of IPOL articles, pub-
lished or in process, answered a survey in November 2011.16

According to this study, the redaction of an IPOL article seems
to require as much work as writing an article for a classic
journal and adapting a software to the IPOL requirement seems
to double on average the time required for development, but
we can observe large deviations probably connected to the
individual author proficiency in software development and the
origin and characteristics of every software. All the authors
declared they would cite an IPOL article in a research paper
and suggest colleagues to read IPOL materials, and more than
90% of them would write another article in IPOL and suggest
colleagues to do the same. When asked to detail the reasons
for this satisfaction in a supplement survey, they cited the
use of IPOL as a complete archive of all materials related
to an algorithm. The web demonstration tools are said to be
useful to get a better understanding of the algorithms, both for
authors and for readers. Publication of the implementation is
appreciated as a motivation to produce a better program.

B. The Future of IPOL

IPOL has been developed as an experiment in evaluating,
sharing and publishing computational research materials. After
two years of activity, the definition and goals of the journal
have stabilized, new articles are continuously published, and
the number of readers is constantly increasing. The next steps
will be to handle the growth of the journal.

New authors must be convinced to contribute. We observe
that researchers are usually convinced in IPOL as readers, but
do not become authors spontaneously. The low profile of IPOL
is probably a reason, and the progressive indexation of the
journal in bibliographic databases may improve this aspect,
but the author experience probably needs to be simplified and
closer to the policies of other journals, and that is why the
journal is currently switching to a publication format based
on LATEX and PDF files. Code review can also be facilitated
by the adoption of automated testing procedures to pre-screen
the software submitted to the journal.

IPOL’s demo system is modular in the sense that it can
easily accept new demos based on existing ones or with a
largely different workflow. However, it is currently monolithic

16Author Survey 2011 (http://www.ipol.im/news/20111218 survey/)
and Author Satisfaction Feedback (http://www.ipol.im/news/20111219
satisfaction/).

http://www.ipol.im/news/20110923_stats/
http://www.ipol.im/news/20110923_stats/
http://www.ipol.im/news/20111218_survey/
http://www.ipol.im/news/20111219_satisfaction/
http://www.ipol.im/news/20111219_satisfaction/

with a single back-end application and server to build the
research programs, run them on user-submitted data, provide
user interface, feed the archives and display archive content;
everything is on a single server. The next step will probably be
separating these functions into different services which could
be managed by different machines and with the possibility
to grow and accept more traffic by replicating the servers.
This will be the opportunity to add functions missing in the
current system: a procedure to build the algorithm programs in
a controlled environment, monitoring the program execution
and error reports, isolation of the programs via virtualization
of the computing environment, and batch processing for large
input or heavy algorithms.

Another issue is the sustainability of the software. For now,
source codes present on IPOL are not maintained, but we
think that our software guidelines constitute a good way to
limit the dependencies only to the programming language.
The one guarantee that we provide for the readers is that
when the article was accepted and integrated to IPOL, the
software was correct, readable and usable. If some major
changes in the computing environment occur, the complete
algorithm description provided in the article is also a precious
tool which allows in itself to re-implement the algorithm.
Consolidation of all the published codes into a unified, refined
and maintained code base could be a continuation of the
effort, but so far we postpone this task and it may be better
handled outside of the journal. Restricting the authors to a
few programming languages and software libraries is a way
to tackle software obsolescence by reducing the dependencies.
Another strategy would be to promote standard and stable
programming interfaces, but unfortunately such APIs are still
missing in the field of image processing.

C. Extension to Other Domains

Our journal was designed and tuned for image processing,
and the complete system needs to be adapted for it to be usable
for other research fields. In particular, image processing is well
adapted to a web interface because images have always been
integrated as a native component of the web technology stack,
whose native interface is the flat visual computer display, a
natural interface for images. Moreover, most image-related
algorithms are faster than those of other computational science
fields, such as fluid mechanics simulation or financial analysis.
This is important because a web demo interface requires an
interactive user experience. With longer computations, we
would need a different interface, such as a batch processing
service where tasks would be submitted (over the Web) and
results received later, once their computation is completed.

The extension of IPOL to other domains is likely to be
feasible but not straightforward. For instance, we are currently
working on designing an equivalent journal for sound process-
ing, and despite the fact that the themes of image and sound
processing are rather close, computation time, data volume and
visualization of the results can become a serious issue for the
demos. The choice of programming language is also a tricky
question, which strongly depends on the community.

Finally, we must take into account that some algorithms
or some domains are not a good fit to the IPOL model as
it is. One of the main limitations is that full code review
is only feasible if it is possible to isolate an algorithm in a
relatively small code base. Also, IPOL and similar journals
are not the place for research about software programming
techniques and computer science as such, because in IPOL the
software is the support of the research, not its subject-matter:
IPOL publishes algorithms, not code. The codes included in
the articles provide a detailed description of the algorithms
and a mean to test and reuse these algorithms.

VI. CONCLUSION

In this article, we have described and discussed IPOL
(Image Processing On Line), a research journal which pub-
lishes algorithms with a complete software implementation.
Contrary to classic journals, an IPOL article combines not
only a thorough description of the algorithm, but also a
rigorous and certified implementation and an online demo. By
considering software a primary product of the research activity,
and systematically submitting it to review and publishing
process, we observe that more software is released by the
researchers, with its quality verified by external reviewers. Of
course, IPOL does not solve all the issues arising in research
software, but still provides a unified framework in which the
software is an integral part of any publication. Moreover, by
collecting the tests performed online on each of these codes,
we gather some testimony of its numerical performance and
robustness, which in turn can help researchers to improve their
algorithms.

ACKNOWLEDGMENTS

This work was partially supported by the Office of Naval
Research under grant N00014-97-1-0839, the European Re-
search Council, advanced grant ERC-2009-AdG “Twelve
Labours of Image Processing,” and the National Science Foun-
dation under Award No. DMS-1004694. The authors would
like to thank the anonymous reviewers for their encourage-
ments and suggestions.

REFERENCES

[1] J. Buckheit and D. Donoho, “WaveLab and Reproducible Research,”
Technical report 474, Department of Statistics, Stanford University,
1995. http://www-stat.stanford.edu/∼donoho/Reports/1995/wavelab.pdf

[2] C. Cannam et al., “Sound Software: Towards Software Reuse in Audio
and Music Research,” in Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), 2012.

[3] J. Claerbout and M. Karrenbach, “Electronic documents give repro-
ducible research a new meaning,” in Proceedings of the 62nd Annual
International Meeting of the Society of Exploration Geophysics, 1992.

[4] B. Kernighan and P. Plauger, The Elements of Programming Style,
McGraw-Hill, 2nd edition, 1978. ISBN:0070342075

[5] B. Kernighan and R. Pike, The Practice of Programming, Addison-
Wesley, 1999. ISBN:020161586X

[6] X. Li, “Image Denoising, Past, Present and Future,” in Image Restora-
tion: Fundamentals and Advances, B. Gunturk and X. Li, Eds., CRC
Press, 2012. ISBN:1439869553

[7] N. Limare and J.-M. Morel, “The IPOL Initiative: Publishing and Testing
Algorithms on Line for Reproducible Research in Image Processing,” in
Proceedings of the International Conference on Computational Science
(ICCS), 2011. doi:10.1016/j.procs.2011.04.075

http://www-stat.stanford.edu/~donoho/Reports/1995/wavelab.pdf
http://dx.doi.org/10.1016/j.procs.2011.04.075

[8] N. Limare, “Reproducible Research, Software Quality, Online Interfaces
and Publishing for Image Processing.” Ph.D. thesis, CMLA, ENS
Cachan, 2012.

[9] S. McConnell, Code Complete, Microsoft Press, 2nd edition, 2004.
ISBN:0735619670

[10] Z. Merali, “Computational science: . . . Error,” Nature, 2010.
doi:10.1038/467775a

[11] P. Seibel, Ed., Coders at Work: Reflections on the Craft of Programming,
Apress, 2009. ISBN:1430219483, http://www.codersatwork.com/

[12] S. Sonnenburg et al., “The Need for Open Source Software in Machine
Learning,” Journal of Machine Learning Research, 2007.

[13] P. Vandewalle et al., “Reproducible research in signal processing —
What, why and how?”, IEEE Signal Processing Magazine, 2009.
doi:10.1109/MSP.2009.932122

[14] Image Processing On Line (IPOL), ISSN:2105-1232, doi:10.5201/ipol
http://www.ipol.im/

[15] The Insight Journal, http://www.insight-journal.org/
[16] Journal of Machine Learning Research (JMLR), ISSN:1533-7928, http:

//jmlr.csail.mit.edu/
[17] Machine Learning Open Source Software (MLOSS), http://mloss.org/
[18] SIAM Journal on Imaging Sciences (SIIMS), ISSN:1936-4954, http://

www.siam.org/journals/siims.php

http://dx.doi.org/10.1038/467775a
http://www.codersatwork.com/
http://dx.doi.org/10.1109/MSP.2009.932122
http://dx.doi.org/10.5201/ipol
http://www.ipol.im/
http://www.insight-journal.org/
http://jmlr.csail.mit.edu/
http://jmlr.csail.mit.edu/
http://mloss.org/
http://www.siam.org/journals/siims.php
http://www.siam.org/journals/siims.php

