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Feng Yan, Member, IEEE, Philippe Martins, Senior Member, IEEE, and Laurent Decreusefond Abstract-Homology theory has attracted great attention because it can provide novel and powerful solutions to address coverage problems in wireless sensor networks. They usually use an easily computable algebraic object, Rips complex, to detect coverage holes. But Rips complex may miss some coverage holes in some cases. In this paper, we investigate homology-based coverage hole detection for wireless sensor networks on sphere. The case when Rips complex may miss coverage holes is first identified. Then we choose the proportion of the area of coverage holes missed by Rips complex as a metric to evaluate the accuracy of homology-based coverage hole detection approaches. Closedform expressions for lower and upper bounds of the accuracy are derived. Asymptotic lower and upper bounds are also investigated when the radius of sphere tends to infinity. Simulation results are well consistent with the analytical lower and upper bounds, with maximum differences of 0.5% and 3% respectively. Furthermore, it is shown that the radius of sphere has little impact on the accuracy if it is much larger than communication and sensing radii of each sensor.

Index Terms-Wireless sensor networks, coverage hole, homology.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have attracted con- siderable research attention due to their large number of potential applications such as battlefield surveillance, environmental monitoring and intrusion detection. Many of these applications require a reliable detection of specified events. Such requirement can be guaranteed only if the target field monitored by a WSN contains no coverage holes, that is to say regions of the domain not monitored by any sensor. But coverage holes can be formed for many reasons, such as random deployment, energy depletion or destruction of sensors. Consequently, it is essential to detect and localize coverage holes in order to ensure the full operability of a WSN.

Most existing works on coverage hole issues mainly focus on two-dimensional (2D) plane or three-dimensional (3D) full space. There is few work on 3D surfaces. But in some real applications, such as volcano monitoring [START_REF] Werner-Allen | Deploying a wireless sensor network on an active volcano[END_REF] and forest monitoring [START_REF] Mo | Canopy closure estimates with greenorbs: sustainable sensing in the forest[END_REF], the target fields are complex surfaces. So it is also important to consider the coverage hole detection problem of WSNs on surfaces. On the other hand, from theoretical point of view, the coverage on 3D surfaces is quite a different problem from its counterpart in 2D plane or 3D full space. As sphere is the simplest case of 3D surfaces, we choose it as the first step for the analysis in this paper, like the authors did in [START_REF] Gupta | The capacity of wireless networks[END_REF] for throughput capacity analysis.

There are already extensive works on the coverage hole detection problem for WSNs in 2D plane and 3D space. Some of these works used either precise information about sensor locations [START_REF] Fang | Locating and bypassing routing holes in sensor networks[END_REF]- [START_REF] Huang | The coverage problem in three-dimensional wireless sensor networks[END_REF] or accurate relative distances between neighbouring sensors [START_REF] Bejerano | Simple and efficient k-coverage verification without location information[END_REF], [START_REF]Coverage verification without location information[END_REF] to detect coverage holes. The requirement of precise location or distance information substantially limits their applicability since acquiring such information is either expensive or impractical in many settings. Thus connectivity-based approaches are of great interest for us. In this category, homology-based schemes have received special attention because of its powerfulness for coverage hole problems in WSNs.

Homology theory was first adopted by Ghrist and his collaborators in [START_REF] Silva | Blind swarms for coverage in 2-d[END_REF]- [START_REF] Ghrist | Coverage and hole-detection in sensor networks via homology[END_REF] to address the coverage problems in WSNs. They introduced a combinatorial object, Čech complex, which uses sensing ranges of nodes to fully characterize coverage properties of a WSN (existence and locations of holes). Unfortunately, the construction of this object is of very high complexity [START_REF] Chazal | Towards persistence-based reconstruction in euclidean spaces[END_REF] even if the precise location information about sensors is provided. Thus, they introduced another more easily computable complex, Vietoris-Rips complex (we will abbreviate the term to Rips complex in this paper). This complex is constructed with the sole knowledge of the connectivity graph of the network and gives an approximate coverage by simple algebraic calculations. Considering the ease of Rips complex construction, some homology-based algorithms were proposed in [START_REF] Muhammad | Control using higher order laplacians in network topologies[END_REF]- [START_REF] Tahbaz-Salehi | Distributed coverage verification in sensor networks without location information[END_REF] to use Rips complex to detect coverage holes. But all these homology-based approaches do not consider the cases that Rips complex may miss some special coverage holes. If the proportion of the area of coverage holes missed by Rips complex is low enough, then it is acceptable to use these methods for coverage hole detection. If the proportion is too high to be unacceptable, then it may not be proper to use these methods. Therefore, in order to evaluate the accuracy of homology-based coverage hole detection approaches, it is of paramount importance to analyse the coverage holes missed by Rips complex.

The main contributions of our paper are as follows. First, the relationship between Čech complex and Rips complex in terms of coverage hole on sphere is analysed. Furthermore, the case that Rips complex may miss coverage holes is identified and it is found that a hole in a Čech complex missed by a Rips complex must be bounded by a spherical triangle. Based on that, a formal definition of spherical triangular hole is given.

Second, the proportion of the area of spherical triangular holes is chosen as a metric to evaluate the accuracy of homology-based coverage hole detection. Such proportion is analysed under a homogeneous setting and it is related to the communication and sensing radii of each sensor. Closed-form expressions for lower and upper bounds of the proportion are derived. Asymptotic lower and upper bounds are also investigated when the radius of sphere tends to infinity.

Third, extensive simulations are performed to evaluate impacts of communication and sensing radii, radius of sphere on proportion of the area of spherical triangular holes. It is shown that simulation results are well consistent with the analytical lower bound, with a maximum difference of 0.5%, and consistent with the analytical upper bound, with a maximum difference of 3%. Furthermore, simulation results show that the radius of sphere has little impact on the proportion when it is much larger than communication and sensing radii.

The rest of the paper is organised as follows. Section II presents the related work. In Section III, the network model and the formal definition of spherical triangular hole are given. Closed-form lower and upper bounds for proportion of the area of spherical triangular holes are derived in Section IV. Section V compares simulation results and analytical bounds. Finally, Section VI concludes the paper.

II. RELATED WORK

Since this paper aims to evaluate the ratio of the area of coverage holes missed by homology-based approaches, we present the related work in terms of two aspects: coverage hole detection approaches and analytical coverage ratio evaluation.

A. Coverage hole detection approaches

Many approaches have been proposed for coverage hole detection in WSNs. They can be generally classified into three categories: location-based, range-based and connectivitybased.

Location-based approaches are usually based on computational geometry with tools such as Voronoi diagram and Delaunay triangulations, to discover coverage holes [START_REF] Fang | Locating and bypassing routing holes in sensor networks[END_REF]- [START_REF] Zhang | Localized algorithms for coverage boundary detection in wireless sensor networks[END_REF]. Range-based approaches attempt to discover coverage holes by using only relative distances between neighbouring sensors [START_REF] Bejerano | Simple and efficient k-coverage verification without location information[END_REF], [START_REF]Coverage verification without location information[END_REF]. These two types of approaches need either precise location information or accurate distance information, which restricts their applications since such information is not easy to obtain in many settings.

In connectivity-based approaches, homology-based schemes attract particular attention due to its powerfulness for coverage hole detection. De Silva et al. first proposed a centralized algorithm that detects coverage hole via homology in [START_REF] Silva | Coverage in sensor networks via persistent homology[END_REF]. They constructed the Rips complex corresponding to the communication graph of the network and determined the coverage by verifying whether the first homology group of the Rips complex is trivial. Then the above ideas were first implemented in a distributed way in [START_REF] Muhammad | Control using higher order laplacians in network topologies[END_REF]. It is shown that combinatorial Laplacians are the right tools for distributed computation of homology groups and can be used for decentralized coverage verification. In [START_REF] Muhammad | Decentralized computation of homology groups in networks by gossip[END_REF], a gossip-like decentralized algorithm for computation of homology groups was proposed. In [START_REF] Tahbaz-Salehi | Distributed coverage verification in sensor networks without location information[END_REF], a decentralized scheme based on Laplacian flows was proposed to compute a generator of the first homology group. All these homology-based algorithms may be also used to detect coverage holes for WSNs on surfaces, but they do not consider the cases that Rips complex may miss some special coverage holes. One of our objectives in this paper is to identify such cases.

B. Analytical coverage ratio evaluation

Extensive research has been done to analyse coverage ratio of a WSN in 2D plane or on 3D surfaces. In [START_REF] Liu | A study of the coverage of large-scale sensor networks[END_REF], the authors studied the coverage properties of large-scale sensor networks and obtained the fraction of the area covered by sensors. The sensors are assumed to have the same sensing range and are distributed according to a homogeneous Poisson point process (PPP) in plane. In [START_REF] Wan | Coverage by randomly deployed wireless sensor networks[END_REF], the authors studied how the probability of k-coverage changes with the sensing radius or the number of sensors, given that sensors are deployed as either a PPP or a uniform point process. In addition, the distance distribution between two points in random networks was derived in [START_REF] Moltchanov | Distance distributions in random networks[END_REF]. Their results can be used to derive the fraction of areas covered by at least k-sensors. All the above studies only considered homogeneous cases. In [START_REF] Lazos | Stochastic coverage in heterogeneous sensor networks[END_REF], the coverage problem in planar heterogeneous sensor networks are investigated and analytical expressions of coverage are derived. Their formulation is more general in the sense that sensor can be deployed according to an arbitrary stochastic distribution, or can have different sensing capabilities or can have arbitrary sensing shapes. Based on their results, the authors in [START_REF] Zhao | Surface coverage in wireless sensor networks[END_REF] derived the expected coverage ratio of sensors under stochastic deployment on 3D surface. Similarly, the expected coverage ratio under stochastic deployment on 3D rolling terrains was derived in [START_REF] Liu | On coverage of wireless sensor networks for rolling terrains[END_REF]. In [START_REF] Li | Coverage properties of the target area in wireless sensor networks[END_REF], a point in a plane is defined to be tri-covered if it lies inside a triangle formed by three nodes, and the probability of tricoverage was analysed.

All the above research considered only coverage ratio problems, without considering coverage hole detection issues. Their analysis is thus not specific to any coverage hole detection approaches. We provided some initial results about the proportion of the area of triangular holes for WSNs in 2D plane in [START_REF] Yan | Accuracy of homology based approaches for coverage hole detection in wireless sensor networks[END_REF]. In this paper, we aim to analyse the proportion of the area of coverage holes missed by homology-based coverage hole detection approaches for WSNs on sphere and compare it with the case in 2D plane.

III. MODELS AND DEFINITIONS

Consider a collection of stationary sensors (also called nodes) on a sphere S 2 with radius R. The sensors are deployed according to a homogeneous PPP with intensity λ. For any two points p 1 and p 2 on S 2 , the distance between them d(p 1 , p 2 ) is defined to be the great circle distance, which is the shortest distance between them measured along a path on the surface of the sphere. As usual, isotropic radio propagation is assumed. All sensors have the same sensing radius R s and communication radius R c on S 2 . It means for any sensor located at v on S 2 , any point p on S 2 with d(v, p) ≤ R s is inside the sensing range of the sensor; and for any two sensors located at v i , v j on S 2 , they can communicate with each other if d(v i , v j ) ≤ R c . In addition, we assume R s ≪ R, R c ≪ R.

Before defining the two combinatorial objects, known as Čech complex and Rips complex, it is necessary to give a brief introduction to some tools used in the paper. For further readings, see [START_REF] Armstrong | Basic Topology[END_REF]- [START_REF] Hatcher | Algebraic Topology[END_REF]. Given a set of points V , a k-simplex is an unordered set [v 0 , v 1 , ..., v k ] ⊆ V where v i = v j for all i = j, k is the dimension of this simplex. The faces of this k-simplex consist of all (k-1)-simplex of the form [v 0 , ..., v i-1 , v i+1 , ..., v k ] for 0 ≤ i ≤ k. For example, on a sphere S 2 , a 0-simplex [v 0 ] is a vertex , a 1-simplex [v 0 , v 1 ] is the shorter arc of the great circle passing through v 0 and v 1 , a 2-simplex [v 0 , v 1 , v 2 ] is a spherical triangle v 0 v 1 v 2 with its interior included, see Figure 1. An abstract simplicial complex is a collection of simplices which is closed with respect to inclusion of faces. A k-dimensional abstract simplical complex K is an abstract simplicial complex where the largest dimension of any simplex in K is k. Let V denote the set of sensor locations in a WSN on S 2 with radius R and S = {s v , v ∈ V} denote the collection of sensing ranges of these sensors: for a location v, s v = {x ∈ S 2 : d(x, v) ≤ R s }. Then Čech complex and Rips complex can be defined as follows [START_REF] Silva | Blind swarms for coverage in 2-d[END_REF], [START_REF] Silva | Coverage in sensor networks via persistent homology[END_REF].

v 0 v 0 v 1 v 0 v 1 v 2 0-simplex 2-simplex 1-simplex
Definition 1 ( Čech complex). Given a finite collection of sensing ranges {s v , v ∈ V}, the Čech complex of the collection, Č(V), is the abstract simplicial complex whose ksimplices correspond to non-empty intersections of k + 1 distinct elements of {s v , v ∈ V}.

Definition 2 (Rips complex). Given a finite set of points V on S 2 and a fixed radius ǫ, the Rips complex of V, R ǫ (V), is the abstract simplicial complex whose k-simplices correspond to unordered (k +1)-tuples of points in V which are pairwise within distance ǫ of each other.

According to the definitions, the Čech complex and Rips complex of the WSN, respectively denoted by ČRs (V) and R Rc (V), can be constructed as follows: a k-simplex

[v 0 , v 1 , • • • , v k ] belongs to ČRs (V) whenever ∩ k l=0 s v l = ∅ and a k-simplex [v 0 , v 1 , • • • , v k ] belongs to R Rc (V) whenever d(v l , v m ) ≤ R c for all 0 ≤ l < m ≤ k.
In addition, since we consider only coverage holes on the sphere S 2 , it is sufficient to construct 2-dimensional Čech complex and 2-dimensional Rips complex of the WSN, denoted as Č( 2)

Rs (V) and R (2) 
Rc (V) respectively.

Figure 2 shows a WSN, its Čech complex and two Rips complexes for two different values of R c . Depending on the relation of R c and R s , the Rips complex and the Čech complex may be close or rather different. In this example, for R c = 2R s , the Rips complex sees the hole surrounded by 2, 3, 5, 6 as in the Čech complex whereas it is missed in the Rips complex for R c = 2.5R s . At the same time, the true coverage hole surrounded by 1, 2, 6 is missed in both Rips complexes. In fact, as proved in [START_REF] Bott | Differential Forms in Algebraic Topology[END_REF], any coverage hole can be found in Čech complex. Unfortunately, the construction of Čech complex is of very high complexity even if the precise location information of nodes is provided. So a more easily computable tool, Rips complex, is used. But Rips complex can not always capture all coverage holes. To be more specific, there exist following relations between Č(2) Rs (V) and R

Rc (V). Lemma 1. Let V denote the set of node locations in a WSN on S 2 with radius R, all nodes have the same sensing radius

R s and communication radius R c , R s ≪ R, R c ≪ R, then R (2) Rc (V) ⊂ Č(2) Rs (V) ⊂ R (2) 2Rs (V), whenever R c ≤ R arccos([3 cos 2 (R s /R) -1]/2) (1)
Proof: See the Appendix A. According to [START_REF] Werner-Allen | Deploying a wireless sensor network on an active volcano[END_REF], some relationships between Čech complex and Rips complex in terms of coverage hole can be derived as illustrated in the following corollaries.

Corollary 1. When R c ≤ R arccos([3 cos 2 (R s /R) -1]/2), if there is no hole in R (2) Rc (V), there must be no hole in Č(2) Rs (V). Corollary 2. When R c ≥ 2R s , if there is a hole in R (2) 
Rc (V), there must be a hole in

Č(2) Rs (V). Corollary 3. When R arccos([3 cos 2 (R s /R) -1]/2) < R c < 2R s , there is no guarantee relation between Č(2) Rs (V) and R (2) Rc (V).
From Corollary 1, a sufficient condition for coverage verification can be derived. From Corollary 2, we can find a necessary condition for the existence of a hole in Č( 2) Rs (V).

Corollary 3 indicates that when there is no hole in R

(2)

Rc (V), it is possible that there is a hole in Č(2) Rs (V). When there is a hole in R (2) Rc (V), it is also possible that Č(2)
Rs (V) contains no hole. From these corollaries, it can be seen that when

R c > R arccos([3 cos 2 (R s /R) -1]/2), R (2) Rc (V) may miss a hole in Č(2) Rs (V). Furthermore, a hole in a Č(2) Rs (V) not seen in a R (2)
Rc (V) must be bounded by a spherical triangle. Based on this observation, a formal definition of spherical triangular hole is given as follows.

Definition 3 (Spherical triangular hole). For a pair of complexes Č( 2)

Rs (V) and R (2) 
Rc (V) of a WSN, a spherical triangular hole is an uncovered region bounded by a spherical triangle formed by three nodes

v 0 , v 1 , v 2 , where v 0 , v 1 , v 2 can form a 2-simplex which appears in R (2) Rc (V) but not in Č(2)
Rs (V). According to Definition 3, it can be seen from Figure 2 that when R c = 2R s , there is one spherical triangular hole bounded by the spherical triangle formed by nodes 1, 2 and 6. And when R c = 2.5R s , there are two additional spherical triangular holes, bounded by spherical triangles formed by nodes 2, 3, 6 and 3, 5, 6 respectively.

A summary of the main notations is given in Table I. 

Rs (V) 2-dimensional Čech complex of the WSN denoted by V R (2) Rc (V) 2-dimensional Rips complex of the WSN denoted by V λ the intensity of Poisson point process p(λ)
the probability of any point on sphere being inside a spherical triangular hole

p l (λ) lower bound of p(λ) pu(λ) upper bound of p(λ) p ′ l (λ) asymptotic lower bound of p(λ) when R → ∞ p ′ u (λ) asymptotic upper bound of p(λ) when R → ∞

IV. BOUNDS ON PROPORTION OF SPHERICAL TRIANGULAR

HOLES

In this section, the conditions under which any point on S 2 with radius R is inside a spherical triangular hole are first given. The proportion of the area of spherical triangular holes is chosen as a metric for accuracy evaluation. Closed-form expressions for lower and upper bounds of the proportion are derived. Finally, the asymptotic lower and upper bounds are investigated when the radius of sphere tends to infinity. 

A. Preliminary

Rc (V) while σ / ∈ Č(2) Rs (V), so R (2) 
Rc (V) ⊂ Č(2) Rs (V). According to (1), we have R c > R arccos([3 cos 2 (R s /R) - 1]/2) ⇒ R s < R arccos [1 + 2 cos(R c /R)]/3. Lemma 4.
Let O be a point inside a spherical triangular hole and l denote the great circle distance between O and its closest neighbour, then

R s < l ≤ R arccos [1 + 2 cos(R c /R)]/3.
The proof is similar as that of Lemma 1. Since nodes are assumed to be distributed on S 2 according to a homogeneous Poisson point process with intensity λ, any point has the same probability to be inside a spherical triangular hole. This probability in a homogeneous setting is also equal to the proportion of the area of spherical triangular holes.

We use spherical coordinates (R, θ, ϕ) to denote points on S 2 with radius R, where θ is polar angle and ϕ is azimuth angle. Without loss of generality, we consider the probability of the point N with spherical coordinates (R, 0, 0) being inside a spherical triangular hole. Since the communication radius of each sensor is at most R c , only the nodes within R c from the point N can contribute to the spherical triangle which bounds a spherical triangular hole containing N . Therefore, we only need to consider the Poisson point process constrained on the spherical cap C(N, R c ) which is also a homogeneous Poisson process with intensity λ, where C(N, R c ) denotes the spherical cap centered at point N and the maximum great circle distance between N and points on the spherical cap is R c . We denote this process as Φ. In addition, T (x, y, z) denotes the property that the point N is inside the spherical triangular hole bounded by the spherical triangle with points x, y, z as vertices. When n 0 , n 1 , n 2 are points of the process Φ, T (n 0 , n 1 , n 2 ) is also used to denote the event that the spherical triangle formed by the nodes n 0 , n 1 , n 2 bounds a spherical triangular hole containing the point N . In addition, we use T ′ (n 0 , n 1 , n 2 ) to denote the event that the nodes n 0 , n 1 , n 2 can not form a spherical triangle which bounds a spherical triangular hole containing the point N .

Let τ 0 = τ 0 (Φ) be the node in the process Φ which is closest to the point N . There are two cases for the point N to be inside a spherical triangular hole. The first case is that the node τ 0 can contribute to a spherical triangle which bounds a spherical triangular hole containing the point N . The second case is that the node τ 0 can not contribute to any spherical triangle which bounds a spherical triangular hole containing the point N but other three nodes can form a spherical triangle which bounds a spherical triangular hole containing the point N . So the probability that the point N is inside a spherical triangular hole can be defined as p(λ) = P{N is inside a spherical triangular hole}

= P{ {n0,n1,n2}⊆Φ T (n 0 , n 1 , n 2 )} = P{ {n1,n2}⊆Φ\{τ0(Φ)} T (τ 0 , n 1 , n 2 )} + p sec (λ) (2) 
where

p sec (λ) = P{ {n 0 ,••• ,n 4 } ⊆Φ\{τ 0 (Φ)} T (n 0 , n 1 , n 2 ) | T ′ (τ 0 , n 3 , n 4 )}
denotes the probability of the second case. p sec (λ) is generally very small and is obtained by simulations.

B. Analytical lower and upper bounds

As conjectured from Corollary 1, there exist spherical triangular holes only in the case R c > R arccos([3 cos 2 (R s /R) -1]/2), so we only consider this case. The lower and upper bounds of p(λ) are given as follows.

Theorem 1. When R c > R arccos([3 cos 2 (R s /R) -1]/2), p l (λ) < p(λ) < p u (λ), where p l (λ) = 2πλ 2 R 4 θ0u Rs/R sin θ 0 dθ 0 2ϕm(θ0) 2π-ϕm(θ0) dϕ 1 θ1u(θ0,ϕ1) θ0 sin θ 1 × e -λ|C(N,Rθ0)| e -λ|S + (θ0,ϕ1)| (1 -e -λ|S -(θ0,θ1,ϕ1)| )dθ 1 (3) 
and

p u (λ) = 2πλ 2 R 4 θ0u Rs/R sin θ 0 dθ 0 2ϕm(θ0) 2π-ϕm(θ0) dϕ 1 θ1u(θ0,ϕ1) θ0 sin θ 1 × e -λ|C(N,Rθ0)| e -λ|S + (θ0,ϕ1)| (1 -e -λ|S -(θ0,θ0,ϕ1)| )dθ 1 + p sec (λ) (4) 
and

θ 0u = arccos [1 + 2 cos(R c /R)]/3 ϕ m (θ 0 ) = π if Rs R < θ 0 ≤ Rc 2R arccos cos Rc R -cos 2 θ0 sin 2 θ0 othewise (5) θ 1u (θ 0 , ϕ 1 ) = min{θ 1u1 (θ 0 , ϕ 1 ), θ 1u2 (θ 0 , ϕ 1 )} (6) 
θ 1u1 (θ 0 , ϕ 1 ) = arccos cos(R c /R) 1 -sin 2 θ 0 sin 2 ϕ 1 (7) 
+ arctan(cos ϕ 1 tan θ 0 )

θ 1u2 (θ 0 , ϕ 1 ) = arccos cos(R c /R) » 1 -sin 2 θ 0 sin 2 (ϕ 1 -ϕ m (θ 0 )) (8) 
+ arctan(cos(ϕ 1 -ϕ m (θ 0 )) tan θ 0 ) |C(N, Rθ 0 )| = 2πR 2 (1 -cos θ 0 ) (9) |S + (θ 0 , ϕ 1 )| = ϕ1 2π-ϕm(θ0) θ1u(θ0,ϕ) θ0 R 2 sin θdθdϕ (10) |S -(θ 0 , θ 1 , ϕ 1 )| = ϕm(θ0) ϕ 2l θ2u θ0 R 2 sin θ 2 dθ 2 dϕ 2 (11) 
ϕ 2l = ϕ 1 -arccos cos(R c /R) -cos θ 1 cos θ 0 sin θ 1 sin θ 0 θ 2u = min{θ 1u1 , θ 2u2 } θ 2u2 = arccos cos(R c /R)/ » 1 -sin 2 θ 0 sin 2 (ϕ 2 -ϕ 1 ) + arctan(cos(ϕ 2 -ϕ 1 ) tan θ 1 )
p sec (λ) is obtained by simulations 1 .

Since the proof is tedious, we only give the main steps of the proof. Please refer to Appendix B for detailed computation.

For the lower bound, we only consider the first case that the closest node τ 0 must contribute to a spherical triangle which bounds a spherical triangular hole containing the point N . The main idea is to first fix the closest node τ 0 , and then sequentially decide the regions where the other two nodes may lie in, and finally do a triple integral.

Using spherical coordinates, we assume the closest node τ 0 lies on (R, α 0 , 0). Once the node τ 0 is determined, the other two nodes must lie in the different half spaces: one in H + = R + × (0, π/2) × (π, 2π) and the other in

H -= R + × (0, π/2) × (0, π).
Assume n 1 lies in H + and n 2 lies in H -. Since the great circle distance to τ 0 is at most R c , n 1 and n 2 must also lie in the spherical cap C(τ 0 , R c ). Furthermore, the great circle distance to the point N is at most R c and larger than Rα 0 , they should also lie in the region C(N, R c )\C(N, Rα 0 ). Therefore, n 1 must lie in 

H + C(τ 0 , R c ) C(N, R c )\C(N, Rα 0 ) and n 2 must lie in H -C(τ 0 , R c ) C(N, R c )\C(N,
(R s /R) -1]/2) < R c ≤ 2R s or in the case R c > 2R s , R c /(2R) < α 0 ≤ arccos [1 + 2 cos(R c /R)]/3, A + = H + C(τ 0 , R c ) C(N, R c )\C(N, Rα 0 ) C(M 2 , R c ),
shown in Figure 3. M 1 and M 2 are two intersection points between bases of spherical caps C(N, Rα 0 ) and C(τ 0 , R c ). 4, where M is one intersection point between base of spherical caps C(N, Rα 0 ) and the plane xOz.

In the case R c > 2R s , R s /R < α 0 ≤ R c /(2R), A + = H + C(τ 0 , R c ) C(N, R c )\C(N, Rα 0 ) C(M, R c ), as in Figure
Ordering the nodes in A + by increasing azimuth angle so that τ 1 = (R, θ 1 , ϕ 1 ) has the smallest azimuth angle ϕ 1 . And assume the nodes τ 0 , τ 1 and another node τ 2 ∈ H -C(τ 0 , R c ) C(N, R c )\C(N, Rα 0 ) can form a spherical triangle which bounds a spherical triangular hole containing the point N , then τ 2 must lie to the right of the great circle passing through τ 1 and N , denoted by H + (ϕ 1 ) which contains all points with azimuth angle ϕ ∈ (ϕ 1π, ϕ 1 ). In addition, the great circle distance to τ 1 is no larger than R c , so the node τ 2 must lie in the region S -, as illustrated in Figures 4 and5. Assume only τ 0 , τ 1 and nodes in S -(τ 0 , τ 1 ) can contribute to the spherical triangle which bounds a spherical triangular hole containing the point N , we can get a lower bound of the probability that the point N is inside a spherical triangular hole. It is a lower bound because it is possible that τ 1 can not contribute to a spherical triangle which bounds a spherical triangular hole containing point N , but some other nodes with higher azimuth angles in the region A + can contribute to such a spherical triangle. For example, in Figure 6, if there is no node in S -but there are some nodes in S ′-, then τ 1 can not contribute to any spherical triangle which bounds a spherical triangular hole containing point N , but τ ′ 1 can form such a spherical triangle with τ 0 and another node in S ′-.

S -(τ 0 , τ 1 ) = S -(α 0 , θ 1 , ϕ 1 ) = H -C(τ 0 , R c ) C(N, R c )\C(N, Rθ 0 ) H + (ϕ 1 ) C(τ 1 , R c )
Next we will prove the upper bound. As discussed in Section IV-A, there are two cases for the point N being inside a spherical triangular hole. As for the second case that the Fig. 5.

Illustration of regions S + and S -in the case R arccos([3 cos 2 (Rs/R) -1]/2) < Rc ≤ 2Rs closest node τ 0 can not but some other nodes can contribute to a spherical triangle which bounds a spherical triangular hole containing the point N , it is not easy to obtain a closed-form expression for such probability, so we get it by simulations. Simulation results show that this probability is less than 0.16% whenever R c ≤ 3R s with any intensity λ. So we still focus on the probability of the first case.

Still consider the nodes in A + , each node (R, θ, ϕ) corresponds to an area |S -(α 0 , θ, ϕ)|. The higher is the area |S -(α 0 , θ, ϕ)|, the higher is the probability that there is at least one node in S -(α 0 , θ, ϕ), consequently the probability of the first case will be higher. It can be seen from Figures 4 and5 that the closer to α 0 is θ and the closer to ϕ 1 is ϕ, the higher is the area |S -(α 0 , θ, ϕ)|. So the largest area |S -(α 0 , θ, ϕ)| is |S -(α 0 , α 0 , ϕ 1 )|. Based on that, the upper bound can be derived.

As can be seen, the expression for lower bound is closedform, while the expression for upper bound is not exactly closed-form since it includes a non-analytical part p sec (λ). As for lower bound and the closed-form part for upper bound, we use numerical integration to approximate the triple integrals. As for p sec (λ), we get it by simulations since it is very small, it has little impact on the derived bound.

C. Asymptotic lower and upper bounds

Intuitively, when R → ∞, the case on sphere should be the same as that in plane, which is shown in the following theorem.

Theorem 2. When R → ∞ and R c > √ 3R s , lower and upper bounds in (3) and (4) become and

p ′ l (λ) = 2πλ 2 Rc/ √ 3 Rs r 0 dr 0 ϕu(r0) ϕ l (r0) dϕ ′ 1 R1(r0,ϕ ′ 1 ) r0 e -λπr 2 0 × e -λ|S + (r0,ϕ ′ 1 )| (1 -e -λ|S -(r0,r1,ϕ ′ 1 )| )r 1 dr 1 (12) 
p ′ u (λ) = 2πλ 2 Rc/ √ 3 Rs r 0 dr 0 ϕu(r0) ϕ l (r0) dϕ ′ 1 R1(r0,ϕ ′ 1 ) r0 e -λπr 2 0 × e -λ|S + (r0,ϕ ′ 1 )| (1 -e -λ|S -(r0,r0,ϕ ′ 1 )| )r 1 dr 1 + p sec (λ) (13)
where

ϕ l (r 0 ) = ® 0 if R s < r 0 ≤ R c /2 2 arccos(R c /(2r 0 )) othewise (14) ϕ u (r 0 ) = ® π if R s < r 0 ≤ R c /2 π -4 arccos Rc 2r0 othewise (15) R 1 (r 0 , ϕ ′ 1 ) = min( » R 2 c -r 2 0 sin 2 ϕ ′ 1 -r 0 cos ϕ ′ 1 , (16) 
» R 2 c -r 2 0 sin 2 (ϕ ′ 1 + ϕ l (r 0 )) + r 0 cos(ϕ ′ 1 + ϕ l (r 0 ))) |S + (r 0 , ϕ ′ 1 )| = ϕ ′ 1 ϕ l (r0) R1(r0,ϕ ′ ) r0 rdrdϕ ′ (17) |S -(r 0 , r 1 , ϕ ′ 1 )| = -ϕ l (r0) ϕ ′ 2l R2(r0,r1,ϕ ′ 1 ,ϕ ′ 2 ) r0 r 2 dr 2 dϕ ′ 2 (18) ϕ ′ 2l = ϕ ′ 1 -arccos(r 2 0 + r 2 1 -R 2 c )/(2r 0 r 1 ) R 2 (r 0 , r 1 , ϕ ′ 1 , ϕ ′ 2 ) = min( » R 2 c -r 2 0 sin 2 ϕ ′ 2 -r 0 cos ϕ ′ 2 , » R 2 c -r 2 1 sin 2 (ϕ ′ 2 -ϕ ′ 1 ) + r 1 cos(ϕ -ϕ ′ 1 
)) p sec (λ) is obtained by simulations.

Proof: Please refer to Appendix C. Comparing ( 12) and ( 13) to the results in the paper [START_REF] Yan | Accuracy of homology based approaches for coverage hole detection in wireless sensor networks[END_REF], we can find that they are the same, which is quite logical since when R → ∞ the local of each node can be considered to be planar.

V. SIMULATIONS AND PERFORMANCE EVALUATION

In this section, simulation settings are first given. Then simulation results are compared with analytical lower and upper bounds under different settings of R s , R c , R.

A. Simulation settings

A sphere centered at the origin with radius R is considered in the simulations. The probability of the point with spherical coordinate (R, 0, 0) being inside a spherical triangular hole is computed. Sensors are randomly distributed on the sphere according to a homogeneous Poisson point process with intensity λ. The sensing radius R s of each node is set to be 10 meters and communication radius R c is chosen from 20 to 30 meters with interval of 2 meters. Let γ = R c /R s , then γ ranges from 2 to 3 with interval of 0.2. In addition, λ is selected from 0.001 to 0.020 with interval of 0.001. For each pair of (λ, γ), 10 7 simulations are run to check whether the point with spherical coordinate (R, 0, 0) is inside a spherical triangular hole.

B. Impact of R s and R c

As illustrated in Section III, R s ≪ R and R c ≪ R, here we fix R = 10R s , choose R s to be 10 meters and R c to be 20 to 30 meters with interval of 2 meters, to analyse the impact of R s and R c on the probability of any point being inside a spherical triangular hole. Under this configuration, the probability p(λ) obtained by simulations is presented with the lower and upper bounds in Figure 7(a) and 7(b) respectively. Note that the upper bounds contain the simulation results for p sec (λ) which are shown in Figure 7(c).

It can be seen that for any value of γ, p(λ) has a maximum at a threshold value λ c of the intensity. As a matter of fact, for λ ≤ λ c , the number of nodes is small. Consequently the probability of any point being inside a spherical triangular hole is relatively small too. With the increase of λ, the connectivity between nodes becomes stronger. As a result, the probability of any point being inside a spherical triangular hole increases. However, when the intensity reaches the threshold value, the probability is up to its maximum. p(λ) decreases for λ ≥ λ c . The simulations also show that λ c decreases with the increase of γ.

On the other hand, it can be seen from Figure 7(a) and 7(b) that for a fixed intensity λ, p(λ) increases with the increases of γ. That is because when R s is fixed, the larger R c is, the higher is the probability of each spherical triangle containing a coverage hole.

Furthermore, the maximum probability increases quickly with γ ranging from 2.0 to 3.0. These results can also provide some insights for planning of WSNs, which will be discussed in Section V-D.

Finally, it can be found in Figure 7(a) that the probability obtained by simulation is very well consistent with the lower bound. The maximum difference between them is about 0.5%. Figure 7(b) shows that probability obtained by simulation is also consistent with the upper bound. The maximum difference between them is about 3%.

C. Impact of R

Although we assume R s ≪ R and R c ≪ R, to better understand the impact of R on the probability of any point being inside a spherical triangular hole, we choose R to be 5R s , 10R s and 100R s . In these cases, R s is still 10 meters and R c is from 20 to 30 meters with interval of 2 meters. In addition, we also want to know the difference of the probability under spherical and 2D planar cases. Therefore, simulation results, lower and upper bounds of the probability under spheres with radii 5R s , 10R s , 100R s and 2D plane are shown in Figure 8(a), 8(b) and 8(c) respectively. Simulation results for p sec (λ) under spheres with radii 5R s , 10R s , 100R s and 2D plane are shown in Figure 9. From Figure 9, we can find that p sec (λ) is less than 0.16% under any intensity in these cases.

It can be seen from Figure 8 that simulations results, lower and upper bounds under spheres with radii 5R s , 10R s , 100R s and 2D plane are very close with each other. More precisely, the maximum difference of simulations results under spheres with radii 5R s and 10R s is about 0.045%, which is about 0.06% under spheres with radii 5R s and 100R s and is about 0.03% under spheres with radii 10R s and 100R s . In addition, the maximum differences of simulation results between 2D planar case and spherical cases with radii 5R s , 10R s , 100R s are 0.05%, 0.03% and 0.02% respectively. It means the larger the radius of sphere is, the more closer are the simulation results under sphere and 2D plane, it is because the larger the radius of sphere is, the more likely of the local of each node on the sphere to be planar.

With respect to lower and upper bounds, it is found that under any two spheres with radii 5R s , 10R s , 100R s , the maximum difference of lower and upper bounds are 0.06% and 0.12% respectively. Furthermore, under spheres with radii 5R s , 10R s , 100R s and 2D plane, the maximum difference of lower bounds is also 0.06%, and that of upper bounds is also 0.12%. More importantly, under sphere with radius 100R s and 2D plane, the maximum difference of lower bounds is 5 × 10 -6 and that of upper bounds is 2.5 × 10 -5 . It means the probabilities under cases of sphere with radius 100R s and 2D plane are nearly the same, which is quite logical since when the radius of sphere is much more larger than the sensing radius of any node, the local of any node can be considered to be planar.

It can be further found that under above cases, the maximum differences of simulation results, lower and upper bounds are all so small that they can be neglected. Consequently, it also means that the radius of sphere has little impact on the probability of any point on the sphere to be inside a spherical triangular hole.

D. Discussions on applications

In this paper, we only consider spherical triangular holes, for non-spherical triangular holes, we assume they can be detected and covered by additional nodes. Under this assumption, our analytical results can be used for planning of WSNs. For example, a WSN is used to monitor a mountain and the ratio γ = 2, according to the analytical upper bounds, we can see that the maximum proportion of the area of spherical triangular holes under γ = 2 is about 0.06 %, which can be neglected. It means that as long as the surface of mountain can be spherically triangulated by nodes, we can say the mountain is covered. But if γ = 3 and at least 95% of the surface of the mountain should be covered, then it means that the proportion of the area of spherical triangular holes can be at most 5%. From the analytical upper bounds of γ = 3, it can be seen that when the intensity λ = 0.009, the upper bound is about 5%, so in order to cover at least 95% of the mountain, the intensity of nodes should be larger than 0.009.

VI. CONCLUSIONS

This paper studied the accuracy of homology-based coverage hole detection for wireless sensor networks on sphere. First, the case when Rips complex may miss coverage holes was identified. It was found that a hole missed by Rips complex must be bounded by a spherical triangle and a formal definition of spherical triangular hole was given. Then we chose the proportion of the area of spherical triangular holes as a metric to evaluate the accuracy. Closed-form expressions for lower and upper bounds were derived. Asymptotic lower and upper bounds are also investigated when the radius of sphere tends to infinity. Simulation results are well consistent with the derived lower and upper bounds, with maximum differences of 0.5% and 3% respectively. In addition, simulation results also show that the radius of sphere has little impact on the accuracy as long as it is much larger than communication and sensing radii of each sensor. This means that our results may be potentially applied to more general 3D surfaces although the results are derived on sphere. This problem will be investigated in our future work.

APPENDIX A PROOF OF LEMMA 1

Proof: The second inclusion is trivial because for any

k-simplex [v 0 , v 1 , • • • , v k ] ∈ Č(2)
Rs (V), it means the sensing ranges of these nodes have a common intersection, so the

pairwise distance d(v i , v j ) ≤ 2R s for all 0 ≤ i < j ≤ k, which means [v 0 , v 1 , • • • , v k ] ∈ R (2) 2Rs (V).
As for the first inclusion, it is clear that R [START_REF] Mo | Canopy closure estimates with greenorbs: sustainable sensing in the forest[END_REF] Rc (V) and Č [START_REF] Mo | Canopy closure estimates with greenorbs: sustainable sensing in the forest[END_REF] Rs (V) contain the same 0-simplices. It is also easy to see that all 1-simplices in R

(2) Rc (V) must also be in Č( 2)

Rs (V) since for any 1-simplex [v i , v j ] with distance d(v i , v j ) ≤ R c ≤ R arccos([3 cos 2 (R s /R) -1]/2) < R arccos(2 cos 2 (R s /R) - 1) = 2R s ,
it means that the sensing ranges of the two nodes have a common intersection. So we only need to prove that all 2-simplices in R

(2) Rc (V) must be in Č( 2) Rs (V). It is equivalent to say that for any three nodes with pairwise great circle distance no larger than R c , their sensing ranges must have a common intersection.

Assume a 2-simplex

[v 0 , v 1 , v 2 ] ∈ R (2) 
Rc (V), then the three nodes v 0 , v 1 and v 2 must determine a plane α. We consider the spherical cap on S2 cut off by the plane α. Since R c < R, the spherical cap must be on a hemisphere. It is easy to see that the intersection of the plane α and sphere S 2 is a circle c. Let O 1 be the center of circle c, O be the center of S 2 , P be the intersection of line OO 1 and S 2 .

Using spherical coordinates, we assume the point P has a spherical coordinate (R, 0, 0). P may be inside 2 or outside the spherical triangle v 0 v 1 v 2 , which is shown in Figure 10 It can be seen that P has the same great circle distance to v 0 , v 1 and v 2 , denoted by d p . If P is inside the spherical triangle v 0 v 1 v 2 , as shown in Figure 10(a), then we can prove d p ≤ R s . Since P lying inside the spherical triangle v 0 v 1 v 2 means β + γ + δ = 2π, there must be one angle no smaller than 2π/3. Without loss of generality, assume β ≥ 2π/3. According to the spherical law of consines, we have cos

(β) = cos(d01/R)-cos 2 (dp/R) sin 2 (dp/R) ≤ -1/2 ⇒ cos(d 01 /R) ≤ [3 cos 2 (d p /R) -1]/2. In addition, d 01 ≤ R c ≤ R arccos([3 cos 2 (R s /R) -1]/2) ⇒ cos(d 01 /R) ≥ [3 cos 2 (R s /R) -1]/2, and 0 < d 01 /R, d p /R < π/2, so we have [3 cos 2 (R s /R) -1]/2 ≤ [3 cos 2 (d p /R) -1]/2 ⇒ d p ≤ R s , which means the point P is a common intersection of sensing ranges of v 0 , v 1 and v 2 , so [v 0 , v 1 , v 2 ] ∈ Č(2) Rs (V).
If P is outside the spherical triangle v 0 v 1 v 2 , as shown in Figure 10(a), it indicates that the spherical triangle v 0 v 1 v 2 must be contained in half of the spherical cap. Assume v 0 , v 1 and v 2 have spherical coordinates (R, θ, ϕ 0 ), (R, θ, ϕ 1 ) and (R, θ, ϕ 2 ), where θ ∈ (0, π/2), ϕ 0 < ϕ 1 < ϕ 2 , then we have ϕ 1ϕ 0 , ϕ 2ϕ 1 , ϕ 2ϕ 0 ∈ (0, π). Using d 01 , d 12 , d 02 to denote the pairwise great circle distances between v 0 , v 1 , v 2 , then according to the spherical law of consines, we have

cos(d 01 /R) = cos 2 θ + sin 2 θ cos(ϕ 1 -ϕ 0 ) (19) cos(d 12 /R) = cos 2 θ + sin 2 θ cos(ϕ 2 -ϕ 1 ) (20) cos(d 02 /R) = cos 2 θ + sin 2 θ cos(ϕ 2 -ϕ 0 ) (21) 
In addition, we use σ to denote the angle between two arcs v0 v 1 and v0 v 2 , M to denote the middle point of the arc v0 v 

cos d 1M R = cos d 01 R cos d 0M 2R + sin d 01 R cos d 0M 2R cos σ (23)
From ( 22) and ( 23), we can obtain

cos d 1M R = cos(d 01 /R) + cos(d 12 /R) 2 cos(d 02 /(2R)) (24) 
Consequently

cos d 1M R -cos d 0M R = cos d01 R + cos d12 R -cos d02 R -1 2 cos(d 02 /(2R)) (25) 
From ( 19), ( 20), ( 21) and ( 25), we get 

cos d 1M R -cos d 0M R = sin 2 θ cos ϕ2-ϕ0
Rc (V) must be in Č( 2) Rs (V). Consequently the first inclusion is proved.

APPENDIX B PROOF OF THEOREM 1

Proof: We first prove the lower bound. It can be obtained from (2) that

p(λ) > P{ {n1,n2}⊆Φ\{τ0(Φ)} T (τ 0 , n 1 , n 2 )}
So for the lower bound, we only consider the first case that the closest node τ 0 must contribute to a spherical triangle which bounds a spherical triangular hole containing the point N .

Using spherical coordinates, we assume the closest node τ 0 lies on (R, α 0 , 0) and use |S| to denote the area of the set S, then we can get the distribution of α 0 as

F α0 (θ 0 ) = P (α 0 ≤ θ 0 ) = 1 -e -λ|C(N,Rθ0)| ( 27 
)
since the event α 0 > θ 0 means that the spherical cap C(N, Rθ 0 ) does not contain any nodes from the process, which is given by the void probability e -λ|C(N,Rθ0)| . Furthermore, |C(N, Rθ 0 )| can be given as

|C(N, Rθ 0 )| = θ0 0 2π 0 R 2 sin θdϕdθ = 2πR 2 (1 -cos θ 0 ) (28 
) From ( 27) and ( 28), we can get the density of τ 0 F α0 (dθ 0 ) = 2πλR 2 sin θ 0 e -λ|C(N,Rθ0)| dθ 0

The integration range for θ 0 can be easily obtained. According to Lemma 4, we have R

s < Rθ 0 ≤ R arccos [1 + 2 cos(R c /R)]/3, so R s /R < θ 0 ≤ θ 0u = arccos [1 + 2 cos(R c /R)]/3.
Therefore the probability of the first case can be given as

P{ {n1,n2}⊆Φ\{τ0(Φ)} T (τ 0 , n 1 , n 2 )} = θ0u Rs/R P{ {n1,n2}⊆Φ ′ θ 0 T ((R, θ 0 , 0), n 1 , n 2 )}F α0 (dθ 0 ) (30) 
where Φ ′ θ0 is the restriction of Φ in C(N, R c )\C(N, Rθ 0 ). Once the node τ 0 is determined, a second node τ 1 must lie in the shadow region A + shown in Figures 3 or 4, and a third node τ 2 must lie in the region S -shown in Figures 4 or 5, as illustrated in Section IV-B. The node τ 1 = (R, θ 1 , ϕ 1 ) is assumed to have the smallest azimuth angle in A + , which means that there should be no nodes with a azimuth angle less than ϕ 1 in A + , that is to say no nodes are in the region

S + (τ 0 , τ 1 ) = S + (α 0 , ϕ 1 ) = A + H + (ϕ 1 )
Since the intensity measure of the Poisson point process in spherical coordinates is λR 2 sin θdθdϕ, the density F τ1 of τ 1 can be given as

F τ1 (dθ 1 , dϕ 1 ) = λR 2 sin θ 1 e -λ|S + (α0,ϕ1)| dθ 1 dϕ 1 (31) 
Then we derive the integration domain D(α 0 ) with respect to parameters (θ 1 , ϕ 1 ). Consider the case shown in Figure 3, assume the point M 2 has the spherical coordinate (R, α 0 , ϕ m ), ϕ m ∈ (0, π). Since the great circle distance between τ 0 and M 2 is R c , then according to the spherical law of consines, we have cos

(R c /R) = cos 2 α 0 + sin 2 α 0 cos ϕ m ⇒ ϕ m (α 0 ) = arccos[(cos(R c /R) -cos 2 α 0 )/(sin 2 α 0 )].
It can be seen that points M 1 and Q have the spherical coordinates (R, α 0 , 2πϕ m (α 0 )) and (R, α 0 , 2ϕ m (α 0 )) respectively, where Q is one intersection point between bases of spherical caps C(N, Rα 0 ) and C(M 2 , R c ). Thus the integration range for ϕ 1 is [2πϕ m (α 0 ), 2ϕ m (α 0 )]. In addition, assume any point with great circle distance R c to τ 0 has the spherical coordinate (R, θ t , ϕ t ), still using the spherical law of consines, we have cos(R c /R) = cos α 0 cos θ t + sin α 0 sin θ t cos ϕ t ⇒ θ t (α 0 , ϕ t ) = arccos[cos(R c /R)/ 1sin 2 α 0 sin 2 ϕ t ] + arctan(cos ϕ t tan α 0 ). Similarly, assume any point with great circle distance R c to M 2 has the spherical coordinate

(R, θ ′ t , ϕ ′ t ), we can obtain θ ′ t (α 0 , ϕ ′ t ) = arccos[cos(R c /R)/ » 1 -sin 2 α 0 sin 2 (ϕ ′ t -ϕ m (α 0 ))] + arctan(cos(ϕ ′ t -ϕ m (α 0 )) tan α 0 ).
Then the integration range for θ 1 is [α 0 , θ 1u (α 0 , ϕ 1 )], where θ 1u (α 0 , ϕ 1 ) = min{θ 1u1 (α 0 , ϕ 1 ), θ 1u2 (α 0 , ϕ 1 )}, θ 1u1 (α 0 , ϕ 1 ) = θ t (α 0 , ϕ 1 ), θ 1u2 (α 0 , ϕ 1 ) = θ ′ t (α 0 , ϕ 1 ). Consider the case shown in Figure 4, the derivation of the integration domain D(α 0 ) is the same as the case shown in Figure 3. In this case, the point M has the spherical coordinate (R, α 0 , π), and the integration range for ϕ

1 is [π, 2π]. If we define ϕ m (α 0 ) = ® π if Rs R < α 0 ≤ Rc 2R arccos cos Rc R -cos 2 α0 sin 2 α0
othewise then the two cases can be regarded as the same in terms of the integration domain D(α 0 ). Furthermore, |S + (α 0 , ϕ 1 )| can be expressed as

|S + (α 0 , ϕ 1 )| = ϕ1 2π-ϕm(α0) θ1u(α0,ϕ) α0 R 2 sin θdθdϕ
As illustrated in Section IV-B, assume only τ 0 , τ 1 and nodes in S -(τ 0 , τ 1 ) can contribute to the spherical triangle which bounds a spherical triangular hole containing the point N , we can get a lower bound of the probability that the point N is inside a spherical triangular hole. Based on the assumption, we have

P{ {n1,n2}⊆Φ ′ θ 0 T ((R, θ 0 , 0), n 1 , n 2 )} > P{ n2⊆Φ ′ θ 0 S -(τ0,τ1) T ((R, θ 0 , 0), τ 1 , n 2 )} = D(θ0) P{ n 2 ⊆Φ ′ θ 0 S -(θ 0 ,θ 1 ,ϕ 1 ) T ((R, θ 0 , 0), (R, θ 1 , ϕ 1 ), n 2 )} F τ1 (dθ 1 , dϕ 1 ) = D(θ0) P{Φ ′ θ0 (S -(θ 0 , θ 1 , ϕ 1 )) > 0}F τ1 (dθ 1 , dϕ 1 ) = D(θ0) (1 -e -λ|S -(θ0,θ1,ϕ1)| )F τ1 (dθ 1 , dϕ 1 ) (32) 
where |S -(θ 0 , θ 1 , ϕ 1 )| can be expressed as 12), ( 4) to [START_REF] Ghrist | Coverage and hole-detection in sensor networks via homology[END_REF], we can find that they are very similar. If we can show that each item related with R in (3) and (4) tends to its counterpart in [START_REF] Silva | Coverage in sensor networks via persistent homology[END_REF] and ( 13) when R → ∞, then it is easy to prove Theorem 2. For convenience, let θ 0 = r 0 /R, θ 1 = r 1 /R, ϕ ′ 1 = π + ϕ 1 . Proof: First, we have According to (35), comparing (5) to ( 14) and ( 15), we can get

|S -(θ 0 , θ 1 , ϕ 1 )| = ϕm ϕ 2l θ2u 
ϕ l (r 0 ) = π -lim R→∞ ϕ m (θ 0 ) (36) ϕ u (r 0 ) = lim R→∞ 2ϕ m (θ 0 ) -π (37) 
Still using l'Hôpital's rule, we can get the following results. The detailed calculation is omitted due to space limitation. where θ 1u1 (θ 0 , ϕ 1 ) and θ 1u2 (θ 0 , ϕ 1 ) are shown in [START_REF] Huang | The coverage problem in a wireless sensor network[END_REF] and [START_REF] Huang | The coverage problem in three-dimensional wireless sensor networks[END_REF]. From (38) and (39), comparing (6) to ( 16), we have

lim R→∞ Rθ 1u (θ 0 , ϕ 1 ) = R 1 (r 0 , ϕ ′ 1 ) (40) 
From ( 36), (37) and (40), comparing [START_REF]Coverage verification without location information[END_REF] to [START_REF] Tahbaz-Salehi | Distributed coverage verification in sensor networks without location information[END_REF] and by some simple replacement, we can obtain 
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 2 and d 0M , d 1M to denote great circle distances between v 0 , v 1 and M . It can be seen d 0M = d 02 /2. Similarly, we have cos σ = cos(d 12 /R)cos(d 01 /R) cos(d 02 /R) sin(d 01 /R) sin(d 02 /R)(22)

  0 < ϕ 1ϕ 0 , ϕ 2ϕ 1 , ϕ 2ϕ 0 < π and 0 < d 1M /R, d 0M /R, d 02 /R < π/2, it can be obtained from (26) d 1M < d 0M ≤ R c /2 < R s , which means the point M is a common intersection of the sensing ranges of v 0 , v 1 and v 2 , so [v 0 , v 1 , v 2 ] ∈ Č(2) Rs (V).It means all 2-simplices in R

θ0 R 2 sin θ 2 dθ 2 dϕ 2 and ϕ 2l = ϕ 1 » 1 -

 211 arccos cos(R c /R)cos θ 1 cos θ 0 sin θ 1 sin θ 0 θ 2u = min{θ 1u1 , θ 2u2 } θ 2u2 = arccos cos(R c /R)/ sin 2 θ 0 sin 2 (ϕ 2ϕ 1 ) + arctan(cos(ϕ 2ϕ 1 ) tan θ 1 )Therefore, from (29), (30), (31) and (32), the lower bound shown in (3) can be derived.As for the upper bound, replace |S -(θ 0 , θ 1 , ϕ 1 )| by |S -(θ 0 , θ 0 , ϕ 1 )|, we can get the upper bound as illustrated in Section IV-B.APPENDIX C PROOF OF THEOREM 2Comparing (3) to (

= R s lim x→0 3 cos x sin x 1 -

 1 lim R→∞ R arccos([3 cos 2 (R s /R) -1]/2) =R s lim x→0 arccos([3 cos 2 (x) -1]/2) x (let x = R s /R) ([3 cos 2 (x) -1]/2) 2 =R s lim x→0 6 cos x sin x (3 -3 cos 2 x)(1 + 3 cos 2 x) = √ 3R s(33)where (a) follows from l'Hôpital's rule. From (33), we know that when R → ∞, the conditionR c > R arccos([3 cos 2 (R s /R) -1]/2) is equivalent to the condition R c > √ 3R s . Similarly, we can get lim R→∞ cos(R c /R)cos 2 θ 0 )/ sin 2 θ 0 ] = arccos( lim R→∞ cos(R c /R)cos 2 (r 0 /R) sin 2 (r 0 /R) ) 0 /R 2 sin(r 0 /R) cos(r 0 /R) ) = arccos(1 -R 2 c /(2r 2 0 )) (b) = π -2 arccos(R c /(2r 0 ))(35)where (a) uses l'Hôpital's rule and (b) follows from cos(π -2 arccos(R c /(2r 0 ))) = 1 -R 2 c /(2r 2 0 ) and 0 ≤ π -2 arccos(R c /(2r 0 )) ≤ π.

sin 2 ϕ ′ 1 -

 1 r 0 cos ϕ ′ 1 (38) lim R→∞ Rθ 1u2 (θ 0 , ϕ 1 ) = » R 2 cr 2 0 sin 2 (ϕ ′ 1 + ϕ l (r 0 )) (39) + r 0 cos(ϕ ′ 1 + ϕ l (r 0 ))

2 ( 1 -r 1 R×

 211 lim R→∞ |S + (θ 0 , ϕ 1 )| = |S + (r 0 , ϕ ′ 1 )| (41) Similarly, we get lim R→∞ |S -(θ 0 , θ 1 , ϕ 1 )| = |S -(r 0 , r 1 , ϕ ′ 1 )| (42) where |S -(θ 0 , θ 1 , ϕ 1 )| and |S -(r 0 , r 1 , ϕ ′ 1 )| are shown in (11) and[START_REF] Liu | A study of the coverage of large-scale sensor networks[END_REF].In addition, from (9), we havelim R→∞ |C(N, Rθ 0 )| = lim R→∞ 2πR cos(r 0 /R)) = πr 2 0(43) Finally, using (34), (36), (37), (40), (41), (42) and (43), we can obtain from (3× e -λπr 2 0 e -λ|S + (r0,ϕ ′1 )| × (1e -λ|S -(r0,r1,ϕ ′ 1 )| )dr 1 e -λ|S + (r0,ϕ ′ 1 )| (1e -λ|S -(r0,r1,ϕ ′ 1 )| )r 1 dr 1 = p ′ l (λ) Similarly, we can get lim R→∞ p u (λ) = p ′ u (λ).Tech. His main research interests lie in performance evaluation in wireless networks (RRM, scheduling, handover algorithms, radio metrology). His current investigations address mainly three issues: a) the design of distributed sensing algorithms for cognitive radio b) distributed coverage holes detection in wireless sensor networks c) the definition of analytical models for the planning and the dimensioning of cellular systems. He has published several papers on different international journals and conferences. He is also an IEEE senior member and he is co-author of several books on 3G and 4G systems. Laurent Decreusefond is a former student of Ecole Normale Supérieure de Cachan. He obtained his Ph.D. degree in Mathematics in 1994 from Telecom ParisTech and his Habilitation in 2001. He is currently a Professor in the Network and Computer Science Department, at Telecom ParisTech. His main fields of interest are the Malliavin calculus, the stochastic analysis of long range dependent processes, random geometry and topology and their applications. With P. Moyal, he co-authored a book about the stochastic modelling of telecommunication systems.

TABLE I MAIN

 I 

NOTATIONS symbols meaning Rs sensing radius of each sensor Rc communication radius of each sensor R the radius of sphere where sensors are deployed V the set of sensor locations sv the sensing range of the sensor located at v S collection of sensing ranges of sensors in V Č(2)

  Lemma 2. For any point on S 2 , it is inside a spherical triangular hole if and only if the following two conditions are satisfied: 1) the great circle distance between the point and its closest node is larger than R s . 2) the point is inside a spherical triangle: the convex hull of three nodes with pairwise great circle distance less than or equal to R c . Lemma 3. If there exists a point O which is inside a spherical triangular hole, then R s < R arccos [1 + 2 cos(R c /R)]/3.

	Proof: According to Definition 3, if there is a point O
	inside a spherical triangular hole, then there exists a 2-simplex
	σ ∈ R (2)

It is a non-trivial task to derive a closed-form expression for psec(λ). Furthermore, we find that it is much less than the closed-form part in upper bound pu(λ) and it has little impact on the derived bound. We thus get it by simulations.

It also includes the case that P is on one arc of the spherical triangle v 0 v 1 v 2 .