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Accuracy of Homology based Coverage Hole
Detection for Wireless Sensor Networks on Sphere

Feng Yan, Philippe Martins, Senior Member, IEEE, and Laurent Decreusefond

Abstract—Homology theory has attracted great attention be-
cause it can provide novel and powerful solutions to address
coverage problems in wireless sensor networks. They usually use
an easily computable algebraic object, Rips complex, to detect
coverage holes. But Rips complex may miss some coverage holes
in some cases. In this paper, we investigate homology-based
coverage hole detection for wireless sensor networks on sphere.
The situations when Rips complex may miss coverage holes are
first presented. Then we choose the proportion of the area of
coverage holes missed by Rips complex as a metric to evaluate the
accuracy of homology-based coverage hole detection approaches.
Three different cases are considered for the computation of
accuracy. For each case, closed-form expressions for lower and
upper bounds of the accuracy are derived. Simulation results are
well consistent with the analytical lower and upper bounds, with
maximum differences of 0.5% and 3% respectively. Furthermore,
it is shown that the radius of sphere has little impact on the
accuracy if it is much larger than communication and sensing
radii of each sensor.

Index Terms—Wireless sensor networks, coverage hole, homol-
ogy.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have attracted con-
siderable research attention due to their wide potential

applications such as battlefield surveillance, environmental
monitoring and intrusion detection. Many of these applications
require a reliable detection of specified events. Such require-
ment can be guaranteed only if the target field monitored by
a WSN contains no coverage holes, that is to say regions of
the domain not monitored by any sensor. Coverage holes can
be formed for many reasons, such as random deployment,
energy depletion or destruction of sensors. Consequently, it
is essential to detect and localize coverage holes in order to
ensure the full operability of a WSN.

There is already extensive work on the coverage hole
problem in WSNs on 2D plane and 3D space. Some of these
work used either precise information about sensor locations
[1]–[5] or accurate relative distances between neighbouring
sensors [6]–[8] to detect coverage holes. The requirement of
precise location or distance information substantially limits
their applicability since acquiring such information is either
expensive or impractical in many settings. Thus connectivity-
based approaches are of great interest for us. In this category,
homology-based schemes have received special attention be-
cause of its powerfulness for coverage problems in WSNs.
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Homology was first introduced by Ghrist and his collabo-
rators in [9]–[11] to address the coverage problems in WSNs.
They introduced a combinatorial object, Čech complex, which
fully characterizes coverage properties of a WSN (existence
and locations of holes). Unfortunately, this object is very
difficult to construct even if the precise information about
the relative locations of sensors is available. Thus, they in-
troduced another more easily computable complex, Vietoris-
Rips complex (we will abbreviate the term to Rips complex
in this paper). This complex is constructed with the sole
knowledge of the connectivity graph of the network and gives
an approximate coverage by simple algebraic calculations.
More precisely, Rips complex may miss some special coverage
holes. It is thus of paramount importance to analyse the
coverage holes missed by Rips complex in order to evaluate
the accuracy of homology-based coverage hole detection.

The main contributions of our paper are as follows. First,
the relationship between Čech complex and Rips complex in
terms of coverage hole on sphere is analysed. Furthermore,
it is found that a hole in a Čech complex missed by a Rips
complex must be surrounded by a spherical triangle. Based on
that, a formal definition of spherical triangular hole is given.

Second, we choose the proportion of the area of spherical
triangular holes as a metric to evaluate the accuracy of
homology-based coverage hole detection. Such proportion is
analysed under a homogeneous setting and it is related to the
communication and sensing radii of each sensor. Three cases
are considered for the computation of such proportion. For
each case, closed-form expressions for lower and upper bounds
of the proportion are derived.

Third, extensive simulations are performed to evaluate im-
pacts of communication and sensing radii, radius of sphere
on proportion of the area of spherical triangular holes. It is
shown that simulation results are well consistent with the ana-
lytical lower bound, with a maximum difference of 0.5%, and
consistent with the analytical upper bound, with a maximum
difference of 3%. Furthermore, simulation results show that
the radius of sphere has little impact on the proportion when
it is much larger than communication and sensing radii. It
further indicates that our analytical results can be applied to
more general 3D surfaces.

The rest of the paper is organised as follows. Section II
presents the related work. In Section III, the network model
and the formal definition of spherical triangular hole are given.
Closed-form lower and upper bounds for proportion of the area
of spherical triangular holes under three different cases are
derived in Section IV. Section V compares simulation results
and analytical bounds. Finally, Section VI concludes the paper.
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II. RELATED WORK

We present the related work in terms of two aspects:
coverage ratio analysis and homology-based coverage hole
detection.

First, extensive research has been done to analyse coverage
ratio in a WSN on 2D plane or 3D surface. In [12], [13],
the fraction of the area covered by sensors was analysed.
In [14], the authors studied how the probability of coverage
changes with the sensing radius or the number of sensors. In
[15], a point in a plane is defined to be tri-covered if it lies
inside a triangle formed by three nodes, and the probability of
tri-coverage was analysed. In [16], the authors proposed the
surface coverage model and derived the expected coverage
ratio under stochastic deployment on 3D surface. In [17],
the expected coverage ratio under stochastic deployment on
3D rolling terrains was derived. Nevertheless, none of these
research considered spherical triangular holes. We provided
some initial results about the proportion of the area of tri-
angular holes on 2D plane in [18]. In this paper, we aim to
extend results in [18] on sphere.

As for homology-based coverage hole detection, De Silva et
al first proposed a centralized algorithm that detects coverage
hole via homology in [10]. They constructed the Rips complex
corresponding to the communication graph of the network
and determined the coverage by verifying whether the first
homology group of the Rips complex is trivial. Then the above
ideas were first implemented in a distributed way in [19].
It is shown that combinatorial Laplacians are the right tools
for distributed computation of homology groups and can be
used for decentralized coverage verification. In [20], a gossip-
like decentralized algorithm for computation of homology
groups was proposed. In [21], a decentralized scheme based
on Laplacian flows was proposed to compute a generator
of the first homology group. But all these homology-based
algorithms do not consider the cases that Rips complex may
miss some special coverage holes. In this paper, we describe
such cases and analyse the proportion of the area of coverage
holes missed by Rips complex.

III. MODELS AND DEFINITIONS

Consider a collection of stationary sensors (also called
nodes) deployed randomly on a sphere S2 with radius R ac-
cording to a homogeneous Poisson point process with intensity
λ. For any two points p1 and p2 on S2, the distance between
them d(p1, p2) is defined to be the great circle distance, which
is the shortest distance between any two points on the surface
of a sphere measured along a path on the surface of the sphere.
As usual, isotropic radio propagation is assumed. All sensors
have the same sensing radius Rs and communication radius
Rc on S2. It means for any sensor located at v on S2, any
point p on S2 with d(v, p) ≤ Rs is within the sensing range
of the sensor; and for any two sensors located at vi, vj on S2,
they can communicate with each other if d(vi, vj) ≤ Rc. In
addition, we assume Rs � R, Rc � R.

Before defining the two combinatorial objects, known as
Čech complex and Rips complex, it is necessary to give
a brief introduction to some tools used in the paper. For

further readings, see [22]–[24]. Given a set of points V ,
a k-simplex is an unordered set [v0, v1, ..., vk] ⊆ V where
vi 6= vj for all i 6= j, k is the dimension of this simplex.
The faces of this k-simplex consist of all (k-1)-simplex of the
form [v0, ..., vi−1, vi+1, ..., vk] for 0 ≤ i ≤ k. For example,
on a sphere S2, a 0-simplex [v0] is a vertex , a 1-simplex
[v0, v1] is the shorter arc of the great circle passing through
v0 and v1, a 2-simplex [v0, v1, v2] is a spherical triangle
v0v1v2 with its interior included, see Figure 1. An abstract
simplicial complex is a collection of simplices which is closed
with respect to inclusion of faces. A k-dimensional abstract
simplical complex K is an abstract simplicial complex where
the largest dimension of any simplex in K is k.

v0
v0 v1

v0

v1
v2

0-simplex 2-simplex1-simplex

Fig. 1. 0-, 1- and 2-simplex

Let V denote the set of sensor locations in a WSN on S2

with radius R and S = {sv, v ∈ V} denote the collection of
sensing ranges of these sensors: for a location v, sv = {x ∈
S2 : d(x, v) ≤ Rs}. Then Čech complex and Rips complex
can be defined as follows.

Definition 1 (Čech complex). Given a finite collection of
sensing ranges {sv, v ∈ V}, the Čech complex of the col-
lection, Č(V), is the abstract simplicial complex whose k-
simplices correspond to non-empty intersections of k + 1
distinct elements of {sv, v ∈ V}.

Definition 2 (Rips complex). Given a metric space (S2, d),
a finite set of points V on S2 and a fixed radius ε, the Rips
complex of V , Rε(V), is the abstract simplicial complex whose
k-simplices correspond to unordered (k +1)-tuples of points in
V which are pairwise within distance ε of each other.

According to the definitions, the Čech complex and Rips
complex of the WSN, respectively denoted by ČRs(V)
and RRc(V), can be constructed as follows: a k-simplex
[v0, v1, · · · , vk] belongs to ČRs(V) whenever ∩kl=0svl 6= ∅
and a k-simplex [v0, v1, · · · , vk] belongs to RRc(V) whenever
d(vl, vm) ≤ Rc for all 0 ≤ l < m ≤ k. In addition, since we
consider only coverage holes on the sphere S2, it is sufficient
to construct 2-dimensional Čech complex and 2-dimensional
Rips complex of the WSN, denoted as Č

(2)

Rs (V) and R(2)
Rc

(V)
respectively.

Figure 2 shows a WSN, its Čech complex and two Rips
complexes for two different values of Rc. Depending on the
relation of Rc and Rs, the Rips complex and the Čech complex
may be close or rather different. In this example, for Rc =
2Rs, the Rips complex sees the hole surrounded by 2, 3, 5, 6 as
in the Čech complex whereas it is missed in the Rips complex
for Rc = 2.5Rs. At the same time, the true coverage hole
surrounded by 1, 2, 6 is missed in both Rips complexes.

In fact, as proved in [25], any coverage hole can be found
in Čech complex. Furthermore, there are following relations
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(a) (b)

(c) (d)

Fig. 2. (a) a WSN, (b) Čech complex, (c) Rips Complex under Rc = 2Rs,
(d) Rips Complex under Rc = 2.5Rs

between Č
(2)

Rs (V) and R(2)
Rc

(V).

Lemma 1. Let V denote the set of node locations in a WSN
on S2 with radius R, all nodes have the same sensing radius
Rs and communication radius Rc, Rs � R,Rc � R, then

R(2)
Rc

(V) ⊂ Č
(2)

Rs (V) ⊂ R(2)
2Rs

(V),

whenever Rc ≤ R arccos([3 cos2(Rs/R)− 1]/2)
(1)

Proof: See the Appendix.
According to (1), some relationships between Čech complex

and Rips complex in terms of coverage hole can be derived
as illustrated in the following corollaries.

Corollary 1. When Rc ≤ R arccos([3 cos2(Rs/R)− 1]/2), if
there is no hole in R(2)

Rc
(V), there must be no hole in Č

(2)

Rs (V).

Corollary 2. When Rc ≥ 2Rs, if there is a hole in R(2)
Rc

(V),

there must be a hole in Č
(2)

Rs (V).

Corollary 3. When R arccos([3 cos2(Rs/R)− 1]/2) < Rc <

2Rs, there is no guarantee relation between R(2)
Rc

(V) and

Č
(2)

Rs (V) in terms of holes.

From the discussions above, a hole in a Č
(2)

Rs (V) not seen
in a R(2)

Rc
(V) must be bounded by a spherical triangle. Based

on this observation, a formal definition of spherical triangular
hole is given as follows.

Definition 3 (Spherical triangular hole). For a pair of com-
plexes Č

(2)

Rs (V) and R(2)
Rc

(V), a spherical triangular hole is an
uncovered region bounded by a spherical triangle (2-simplex)
which appears in R(2)

Rc
(V) but not in Č

(2)

Rs (V).

IV. BOUNDS ON PROPORTION OF SPHERICAL TRIANGULAR
HOLES

In this section, the conditions under which any point on
S2 with radius R is inside a spherical triangular hole are first
given. From the discussions in Section III, it is found that the
proportion of the area of spherical triangular holes is related to
the relation of Rc and Rs. Three different cases are considered
for the proportion computation. For each case, closed-form
expressions for lower and upper bounds of the proportion are
derived.

A. Preliminary

Lemma 2. For any point on S2, it is inside a spherical
triangular hole if and only if the following two conditions
are satisfied:

1) the great circle distance between the point and its closest
node is larger than Rs.

2) the point is inside a spherical triangle: the convex hull
of three nodes with pairwise great circle distance less
than or equal to Rc.

Lemma 3. If there exists a point O which is inside a spherical
triangular hole, then Rs < R arccos

√
[1 + 2 cos(Rc/R)]/3.

Proof: According to Definition 3, if there is a point O
inside a spherical triangular hole, then there exists a 2-simplex
σ ∈ R(2)

Rc
(V) while σ /∈ Č

(2)

Rs (V), so R(2)
Rc

(V) 6⊂ Č
(2)

Rs (V).
According to (1), we have Rc > R arccos([3 cos2(Rs/R) −
1]/2)⇒ Rs < R arccos

√
[1 + 2 cos(Rc/R)]/3.

Lemma 4. Let O be a point inside a spherical triangular hole
and l denote the great circle distance between O and its closest
neighbour, then Rs < l ≤ R arccos

√
[1 + 2 cos(Rc/R)]/3.

The proof is similar as that of Lemma 1.
Since we assume nodes are distributed on S2 according to a

homogeneous Poisson point process with intensity λ, any point
has the same probability to be inside a spherical triangular
hole. This probability in a homogeneous setting is also equal
to the proportion of the area of spherical triangular holes.

We use spherical coordinates (R, θ, ϕ) to denote points
on S2 with radius R, where θ is polar angle and ϕ is
azimuth angle. We consider the probability of the point N
with spherical coordinates (R, 0, 0) being inside a spherical
triangular hole. Since the communication radius of each sensor
is at most Rc, only the nodes within Rc from the point N can
contribute to the spherical triangle which bounds a spherical
triangular hole containing N . Therefore, we only need to
consider the Poisson point process constrained on the spherical
cap C(N,Rc) which is also a homogeneous Poisson process
with intensity λ, where C(N,Rc) denotes the spherical cap
centered at point N and the maximum great circle distance
between N and points on the spherical cap is Rc. We denote
this process as Φ. In addition, T (x, y, z) denotes the property
that the point N is inside the spherical triangular hole bounded
by the spherical triangle with points x, y, z as vertices. When
n0, n1, n2 are points of the process Φ, T (n0, n1, n2) is also
used to denote the event that the spherical triangle formed
by the nodes n0, n1, n2 bounds a spherical triangular hole
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containing the point N . In addition, we use T ′(n0, n1, n2)
to denote the event that the nodes n0, n1, n2 can not form
a spherical triangle which bounds a spherical triangular hole
containing the point N .

Let τ0 = τ0(Φ) be the node in the process Φ which is
closest to the point N . There are two cases for the point N to
be inside a spherical triangular hole. The first case is that the
node τ0 can contribute to a spherical triangle which bounds a
spherical triangular hole containing the point N . The second
case is that the node τ0 can not contribute to any spherical
triangle which bounds a spherical triangular hole containing
the point N but other three nodes can form a spherical triangle
which bounds a spherical triangular hole containing the point
N . So the probability that the point N is inside a spherical
triangular hole can be defined as

p(λ) = P{N is inside a spherical triangular hole}
= P{

⋃
{n0,n1,n2}⊆Φ

T (n0, n1, n2)}

= P{
⋃

{n1,n2}⊆Φ\{τ0(Φ)}

T (τ0, n1, n2)}

+ P{
⋃

{n0,··· ,n4}
⊆Φ\{τ0(Φ)}

T (n0, n1, n2) | T ′(τ0, n3, n4)}

(2)

B. Case 0 < Rc ≤ R arccos([3 cos2(Rs/R)− 1]/2)

Theorem 1. When 0 < Rc ≤ R arccos([3 cos2(Rs/R) −
1]/2), p(λ) = 0.

Proof: According to (1), when 0 < Rc ≤
R arccos([3 cos2(Rs/R)−1]/2),R(2)

Rc
(V) ⊂ Č

(2)

Rs (V), it means
that there exists not a spherical triangle which appears in
R(2)
Rc

(V) but not in Č
(2)

Rs (V), so there is no spherical triangular
holes which means p(λ) = 0.

C. Case R arccos([3 cos2(Rs/R)− 1]/2) < Rc ≤ 2Rs

Theorem 2. When R arccos([3 cos2(Rs/R) − 1]/2) < Rc ≤
2Rs, pl(λ) < p(λ) < pu(λ), where

pl(λ) = 2πλ2R4

∫ θ0u

Rs/R

sin θ0dθ0

∫ 2ϕm

2π−ϕm
dϕ1

∫ θ1u

θ0

sin θ1

× e−λ|C(N,Rθ0)|e−λ|S
+(θ0,ϕ1)|(1− e−λ|S

−(θ0,θ1,ϕ1)|)dθ1

(3)

and

pu(λ) = 2πλ2R4

∫ θ0u

Rs/R

sin θ0dθ0

∫ 2ϕm

2π−ϕm
dϕ1

∫ θ1u

θ0

sin θ1

× e−λ|C(N,Rθ0)|e−λ|S
+(θ0,ϕ1)|(1− e−λ|S

−(θ0,θ0,ϕ1)|)dθ1

+ P{
⋃

{n0,··· ,n4}
⊆Φ\{τ0(Φ)}

T (n0, n1, n2) | T ′(τ0, n3, n4)}

(4)

and

θ0u = arccos
»

[1 + 2 cos(Rc/R)]/3

ϕm = arccos[(cos(Rc/R)− cos2 θ0)/(sin2 θ0)]

θ1u = min{θ1u1, θ1u2}

θ1u1 = arccos
cos(Rc/R)√

1− sin2 θ0 sin2 ϕ1

+ arctan(cosϕ1 tan θ0)

θ1u2 = arccos
[

cos(Rc/R)/
»

1− sin2 θ0 sin2(ϕ1 − ϕm)
]

+ arctan(cos(ϕ1 − ϕm) tan θ0)

Proof: We first prove the lower bound. It can be obtained
from (2) that

p(λ) > P{
⋃

{n1,n2}⊆Φ\{τ0(Φ)}

T (τ0, n1, n2)}

So for the lower bound, we only consider the first case
that the closest node τ0 must contribute to a spherical triangle
which bounds a spherical triangular hole containing the point
N .

Using spherical coordinates, we assume the closest node τ0
lies on (R,α0, 0) and use |S| to denote the area of the set S,
then we can get the distribution of α0 as

Fα0(θ0) = P (α0 ≤ θ0) = 1− e−λ|C(N,Rθ0)| (5)

since the event α0 > θ0 means that the spherical cap
C(N,Rθ0) does not contain any nodes from the process,
which is given by the Poisson probability e−λ|C(N,Rθ0)|.
Furthermore, |C(N,Rθ0)| can be given as

|C(N,Rθ0)| =
∫ θ0

0

∫ 2π

0

R2 sin θdϕdθ = 2πR2(1− cos θ0)

(6)
From (5) and (6), we can get the density of τ0

Fα0(dθ0) = 2πλR2 sin θ0e
−λ|C(N,Rθ0)|dθ0 (7)

The integration range for θ0 can be easily obtained.
According to Lemma 4, we have Rs < Rθ0 ≤
R arccos

√
[1 + 2 cos(Rc/R)]/3, so Rs/R < θ0 ≤ θ0u =

arccos
√

[1 + 2 cos(Rc/R)]/3.
Therefore the probability of the first case can be given as

P{
⋃

{n1,n2}⊆Φ\{τ0(Φ)}

T (τ0, n1, n2)}

=

∫ θ0u

Rs/R

P{
⋃

{n1,n2}⊆Φ′
θ0

T ((R, θ0, 0), n1, n2)}Fα0(dθ0)
(8)

where Φ′θ0 is the restriction of Φ in C(N,Rc)\C(N,Rθ0).
Once the node τ0 is determined, the other two

nodes must lie in the different half spaces: one in
H+ = R+ × (0, π/2) × (π, 2π) and the other in
H− = R+ × (0, π/2) × (0, π). Assume n1 lies in H+

and n2 lies in H−. Since the great circle distance to τ0
is at most Rc, n1 and n2 must also lie in the spherical
cap C(τ0, Rc). Furthermore, the great circle distance to the
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point N is at most Rc and larger than Rα0, they should
also lie in the area C(N,Rc)\C(N,Rα0). Therefore, n1

must lie in H+ ⋂
C(τ0, Rc)

⋂
C(N,Rc)\C(N,Rα0) and

n2 must lie in H−
⋂
C(τ0, Rc)

⋂
C(N,Rc)\C(N,Rα0). In

addition, considering the great circle distance between
n1 and n2 should be at most Rc and the point N
should be inside the spherical triangle formed by τ0,
n1 and n2, n1 must lie in the shadow area A+ =
H+ ⋂

C(τ0, Rc)
⋂
C(N,Rc)\C(N,Rα0)

⋂
C(M2, Rc),

shown in Figure 3. M1 and M2 are two intersection points
between bases of spherical caps C(N,Rα0) and C(τ0, Rc),
such intersection points must exist in this case since
Rc ≤ 2Rs < 2Rα0.

Fig. 3. Illustration of area A+ in the case R arccos([3 cos2(Rs/R) −
1]/2) < Rc ≤ 2Rs

Ordering the nodes in A+ by increasing azimuth angle
so that τ1 = (R, θ1, ϕ1) has the smallest azimuth an-
gle ϕ1. And assume the nodes τ0, τ1 and another node
τ2 ∈ H−

⋂
C(τ0, Rc)

⋂
C(N,Rc)\C(N,Rα0) can form a

spherical triangle which bounds a spherical triangular hole
containing the point N , then τ2 must lie to the right of the great
circle passing through τ1 and N , denoted by H+(ϕ1) which
contains all points with azimuth angle ϕ ∈ (ϕ1 − π, ϕ1). In
addition, the great circle distance to τ1 is no larger than Rc, so
the node τ2 must lie in the region S−, as illustrated in Figure
4.

S−(τ0, τ1) = S−(α0, θ1, ϕ1) = H−
⋂
C(τ0, Rc)⋂

C(N,Rc)\C(N,Rθ0)
⋂
H+(ϕ1)

⋂
C(τ1, Rc)

Here we need to obtain the density of node τ1. Considering
the way τ1 was defined, there should be no nodes with a
azimuth angle less than ϕ1 in A+, that is to say no nodes
are in the region

S+(τ0, τ1) = S+(α0, ϕ1) = A+
⋂
H+(ϕ1)

Since the intensity measure of the Poisson point process in
spherical coordinates is λR2 sin θdθdϕ, the density Fτ1 of τ1
can be given as

Fig. 4. Illustration of areas S+ and S− in the case
R arccos([3 cos2(Rs/R) − 1]/2) < Rc ≤ 2Rs

Fτ1(dθ1, dϕ1) = λR2 sin θ1e
−λ|S+(α0,ϕ1)|dθ1dϕ1 (9)

Then we derive the integration domain D(α0) with
respect to parameters (θ1, ϕ1). Assume the point M2

has the spherical coordinate (R, θ0, ϕm), ϕm ∈ (0, π).
Since the great circle distance between τ0 and M2 is
Rc, then according to the spherical law of consines, we
have cos(Rc/R) = cos2 θ0 + sin2 θ0 cosϕm ⇒ ϕm =
arccos[(cos(Rc/R) − cos2 θ0)/(sin2 θ0)]. It can be seen
that points M1 and Q have the spherical coordinates
(R, θ0, 2π − ϕm) and (R, θ0, 2ϕm) respectively, where Q
is one intersection point between bases of spherical caps
C(N,Rα0) and C(M2, Rc). Thus the integration range for
ϕ1 is [2π − ϕm, 2ϕm]. In addition, assume any point with
great circle distance Rc to τ0 has the spherical coordinate
(R, θt, ϕt), still using the spherical law of consines, we
have cos(Rc/R) = cos θ0 cos θt + sin θ0 sin θt cosϕt ⇒
θt(ϕt) = arccos[cos(Rc/R)/

√
1− sin2 θ0 sin2 ϕt] +

arctan(cosϕt tan θ0). Similarly, assume any point
with great circle distance Rc to M2 has the
spherical coordinate (R, θ′t, ϕ

′
t), we can obtain

θ′t(ϕ
′
t) = arccos[cos(Rc/R)/

»
1− sin2 θ0 sin2(ϕ′t − ϕm)] +

arctan(cos(ϕ′t − ϕm) tan θ0). Then the integration range
for θ1 is [θ0, θ1u], where θ1u = min{θ1u1, θ1u2}, θ1u1 =
θt(ϕ1), θ1u2 = θ′t(ϕ1). Furthermore, |S+(α0, ϕ1)| can be
expressed as

|S+(α0, ϕ1)| =
∫ ϕ1

2π−ϕm

∫ θ1u

α0

R2 sin θdθdϕ

Assume only τ0, τ1 and nodes in S−(τ0, τ1) can contribute
to the spherical triangle which bounds a spherical triangular
hole containing the point N , we can get a lower bound of the
probability that the point N is inside a spherical triangular
hole. It is a lower bound because it is possible that τ1 can
not contribute to a spherical triangle which bounds a spherical
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triangular hole containing point N , but some other nodes with
higher azimuth angles in the area A+ can contribute to such
a spherical triangle. For example, in Figure 5, if there is no
node in S− but there are some nodes in S′−, then τ1 can not
contribute to any spherical triangle which bounds a spherical
triangular hole containing point N , but τ ′1 can form such a
spherical triangle with τ0 and another node in S′−. Based on
the assumption, we have

Fig. 5. Illustration of areas S
′+ and S

′− in the case
R arccos([3 cos2(Rs/R) − 1]/2) < Rc ≤ 2Rs

P{
⋃

{n1,n2}⊆Φ′
θ0

T ((R, θ0, 0), n1, n2)}

> P{
⋃

n2⊆Φ′
θ0

⋂
S−(τ0,τ1)

T ((R, θ0, 0), τ1, n2)}

=

∫∫
D(θ0)

P{
⋃

n2⊆Φ′
θ0

⋂
S−(θ0,θ1,ϕ1)

T ((R, θ0, 0), (R, θ1, ϕ1), n2)}

Fτ1(dθ1, dϕ1)

=

∫∫
D(θ0)

P{Φ′θ0(S−(θ0, θ1, ϕ1)) > 0}Fτ1(dθ1, dϕ1)

=

∫∫
D(θ0)

(1− e−λ|S
−(θ0,θ1,ϕ1)|)Fτ1(dθ1, dϕ1)

(10)

where |S−(θ0, θ1, ϕ1)| can be expressed as

|S−(θ0, θ1, ϕ1)| =
∫ ϕm

ϕ2l

∫ θ2u

θ0

R2 sin θ2dθ2dϕ2 (11)

and

ϕ2l = ϕ1 − arccos
cos(Rc/R)− cos θ1 cos θ0

sin θ1 sin θ0

θ2u = min{θ1u1, θ2u2}

θ2u2 = arccos
[

cos(Rc/R)/
»

1− sin2 θ0 sin2(ϕ2 − ϕ1)
]

+ arctan(cos(ϕ2 − ϕ1) tan θ1)

Therefore, from (7), (8), (9) and (10), the lower bound
shown in (3) can be derived.

Next we will prove the upper bound. As discussed in Section
IV-A, there are two cases for the point N being inside a
spherical triangular hole. As for the second case that the
closest node τ0 can not but some other nodes can contribute to
a spherical triangle which bounds a spherical triangular hole
containing the point N , it is not easy to obtain a closed-
form expression for such probability, but we can get it by
simulations. Simulation results show that this probability is
less than 0.16% whenever Rc ≤ 3Rs with any intensity λ. So
we still focus on the probability of the first case.

For the lower bound, we only considered the case that τ1
contributes to a spherical triangle which bounds a spherical
triangular hole containing point N . For the upper bound, we
need to further consider the case that τ1 can not but some
other nodes in A+ can contribute to such a spherical triangle,
shown in Figure 5. Assume the node τ ′1 = (R, θ′1, ϕ

′
1) with

the second smallest azimuth angle in A+ can contribute to
such a spherical triangle, it means that there is no node in
S−(α0, θ1, ϕ1) but there is at least one node in the region
S′−(α0, θ1, ϕ1, θ

′
1, ϕ
′
1) = S−(α0, θ

′
1, ϕ
′
1)\S−(α0, θ1, ϕ1).

Then the density of the pair (τ1, τ
′
1) is given as

F τ1,τ ′1(dθ1, dϕ1, dθ
′
1, dϕ

′
1)

= λ2R4 sin θ1 sin θ′1e
−λ|S+(α0,ϕ

′
1)|dθ1dϕ1dθ

′
1dϕ

′
1

(12)

The probability that τ1 can not but τ ′1 can form a spherical
triangle which bounds a spherical triangular hole containing
point N with τ0 and another node in S′−(α0, θ1, ϕ1, θ

′
1, ϕ
′
1)

can be given as

P{
⋃

{n3,n4}⊆Φ′
θ0⋂

S−(τ0,τ
′
1
)

T ((R, θ0, 0), τ ′1, n4) | T ′((R, θ0, 0), τ1, n3)}

=

∫∫∫∫
P{Φ′θ0(S−(θ0, θ1, ϕ1)) = 0}

× P{Φ′θ0(S′−(θ0, θ1, ϕ1, θ
′
1, ϕ
′
1)) > 0}

Fτ1,τ ′1(dθ1, dϕ1, dθ
′
1, dϕ

′
1)

=

∫∫∫∫
e−λ|S

−(θ0,θ1,ϕ1)| × (1− e−λ|S
′−(θ0,θ1,ϕ1,θ

′
1,ϕ
′
1)|)

Fτ1,τ ′1(dθ1, dϕ1, dθ
′
1, dϕ

′
1)

(13)

As we can see from Figure 5, as long as τ ′1 has a
higher polar angle than τ1 has, the sum of |S−(α0, θ1, ϕ1)|
and |S′−(α0, θ1, ϕ1, θ

′
1, ϕ
′
1)| will be always smaller than

|S−(α0, α0, ϕ1)|.
Therefore we can get from (13)

P{
⋃

{n3,n4}⊆Φ′
θ0⋂

S−(τ0,τ
′
1
)

T ((R, θ0, 0), τ ′1, n4) | T ′((R, θ0, 0), τ1, n3)}

<

∫∫∫∫
(e−λ|S

−(θ0,θ1,ϕ1)| − e−λ|S
−(θ0,θ0,ϕ1)|)

Fτ1,τ ′1(dθ1, dϕ1, dθ
′
1, dϕ

′
1)

(14)
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Let S′+(θ0, ϕ1, ϕ
′
1) = S+(θ0, ϕ

′
1)\S+(θ0, ϕ1), then

∫∫
λR2 sin θ′1e

−λ|S′+(θ0,ϕ1,ϕ
′
1)|dθ′1dϕ

′
1

= 1− e−λ|A
+\S+(θ0,ϕ1)| < 1

(15)

It is the complement of the probability that no node is in
the area A+\S+(θ0, ϕ1).

From (10), (12), (14) and (15), we can obtain

P{
⋃

n2⊆Φ′
θ0

⋂
S−(τ0,τ1)

T ((R, θ0, 0), τ1, n2)}

+ P{
⋃

{n3,n4}⊆Φ′
θ0⋂

S−(τ0,τ
′
1
)

T ((R, θ0, 0), τ ′1, n4) | T ′((R, θ0, 0), τ1, n3)}

<

∫∫
D(θ0)

(1− e−λ|S
−(θ0,θ0,ϕ1)|)Fτ1(dθ1, dϕ1)

(16)

where |S−(θ0, θ0, ϕ1)| has the similar expression as (11).
Similarly, we can further consider the case that neither

of τ1 and τ ′1 can contribute to a spherical triangle which
bounds a spherical triangular hole containing point N , but
other nodes with even higher azimuth angle can contribute to
such a spherical triangle. In this way, we can get the same
result as (16).

Therefore, it can be derived that

P{
⋃

{n1,n2}⊆Φ′
θ0

T ((R, θ0, 0), n1, n2)}

<

∫∫
D(θ0)

(1− e−λ|S
−(θ0,θ0,ϕ1)|)Fτ1(dθ1, dϕ1)

(17)

From (2), (7), (8), (12) and (17), the upper bound shown in
(4) can be derived.

D. Case Rc > 2Rs

Theorem 3. When Rc > 2Rs, pl(λ) < p(λ) < pu(λ), where

pl(λ) = 2πλ2R4
{∫ Rc

2R

Rs
R

sin θ0dθ0

∫ 2π

π

dϕ1

∫ θ′1u

θ0

sin θ1

× e−λ|C(N,Rθ0)|e−λ|S
+(θ0,ϕ1)|(1− e−λ|S

−(θ0,θ1,ϕ1)|)dθ1

+

∫ θ0u

Rc/2R

sin θ0dθ0

∫ 2ϕm

2π−ϕm
dϕ1

∫ θ1u

θ0

sin θ1e
−λ|C(N,Rθ0)|

× e−λ|S
+(θ0,ϕ1)|(1− e−λ|S

−(θ0,θ1,ϕ1)|)dθ1

}
(18)

and

pu(λ) = 2πλ2R4
{∫ Rc

2R

Rs
R

sin θ0dθ0

∫ 2π

π

dϕ1

∫ θ′1u

θ0

sin θ1

× e−λ|C(N,Rθ0)|e−λ|S
+(θ0,ϕ1)|(1− e−λ|S

−(θ0,θ0,ϕ1)|)dθ1

+

∫ θ0u

Rc/2R

sin θ0dθ0

∫ 2ϕm

2π−ϕm
dϕ1

∫ θ1u

θ0

sin θ1e
−λ|C(N,Rθ0)|

× e−λ|S
+(θ0,ϕ1)|(1− e−λ|S

−(θ0,θ0,ϕ1)|)dθ1

}
+ P{

⋃
{n0,··· ,n4}
⊆Φ\{τ0(Φ)}

T (n0, n1, n2) | T ′(τ0, n3, n4)}

(19)

and

θ′1u = min{θ1u1, θ
′
1u2}

θ′1u2 = arccos
[

cos(Rc/R)/
»

1− sin2 θ0 sin2(ϕ1 − π)
]

+ arctan(cos(ϕ1 − π) tan θ0)

In this case, we can use the same method as in Section
IV-C to get the lower and upper bounds, shown in (18)
and (19) respectively. But we need to consider two situ-
ations Rs/R < θ0 ≤ Rc/(2R) and Rc/(2R) < θ0 ≤
θ0u = arccos

√
[1 + 2 cos(Rc/R)]/3. In the first situation,

θ0 ≤ Rc/(2R) means that the spherical cap C(N,Rθ0)
is completely included in the spherical cap C(τ0, Rc). The
illustrations for the areas A+, S+, S−, S′+ and S′− are shown
in Figure 6(a) and 6(b) respectively. In addition, the integration
range for ϕ1 is [π, 2π]. The second situation is the same as
that in Section IV-C.

V. SIMULATIONS AND PERFORMANCE EVALUATION

In this section, simulation settings are first given. Then
simulation results are compared with analytical lower and
upper bounds under different settings of Rs, Rc, R.

A. Simulation settings

A sphere centered at the origin with radius R is considered
in the simulations. The probability of the point with spherical
coordinate (R, 0, 0) being inside a spherical triangular hole
is computed. Sensors are randomly distributed on the sphere
according to a homogeneous Poisson point process with in-
tensity λ. The sensing radius Rs of each node is set to be
10 meters and communication radius Rc is chosen from 20
to 30 meters with interval of 2 meters. Let γ = Rc/Rs, then
γ ranges from 2 to 3 with interval of 0.2. In addition, λ is
selected from 0.001 to 0.020 with interval of 0.001. For each
pair of (λ, γ), 107 simulations are run to check whether the
point with spherical coordinate (R, 0, 0) belongs to a spherical
triangular hole.

B. Impact of Rs and Rc
As illustrated in Section III, Rs � R and Rc � R, here

we choose R = 10Rs to analyse the impact of Rs and Rc on
the probability of any point being inside a spherical triangular
hole. Under this configuration, the probability p(λ) obtained
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(a)

(b)

Fig. 6. Illustrations of areas in case Rc > 2Rs. (a) the areas A+, S+ and
S− (b) the areas S′+ and S′−

by simulations is presented with the lower and upper bounds
in Figure 7(a) and 7(b) respectively.

It can be seen that for any value of γ, p(λ) has a maximum
at a threshold value λc of the intensity. As a matter of fact,
for λ ≤ λc, the number of nodes is small. Consequently the
probability of any point being inside a spherical triangular hole
is relatively small too. With the increase of λ, the connectivity
between nodes becomes stronger. As a result, the probability
of any point being inside a spherical triangular hole increases.
However, when the intensity reaches the threshold value, the
probability is up to its maximum. p(λ) decreases for λ ≥ λc.
The simulations also show that λc decreases with the increase
of γ.

On the other hand, it can be seen from Figure 7(a) and 7(b)
that for a fixed intensity λ, p(λ) increases with the increases
of γ. That is because when Rs is fixed, the larger Rc is, the
higher is the probability of each spherical triangle containing
a coverage hole.
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Fig. 7. Proportion of the area of spherical triangular holes under R = 10Rs

(a) simulation results and lower bounds ; (b) simulation results and upper
bounds

Furthermore, the maximum probability increases quickly
with γ ranging from 2.0 to 3.0. These results can also provide
some insights for planning of WSNs, which will be discussed
in Section V-D.

Finally, it can be found in Figure 7(a) that the probability
obtained by simulation is very well consistent with the lower
bound. The maximum difference between them is about 0.5%.
Figure 7(b) shows that probability obtained by simulation is
also consistent with the upper bound. The maximum difference
between them is about 3%.

C. Impact of R

Although we assume Rs � R and Rc � R, to better
understand the impact of R on the probability of any point
being inside a spherical triangular hole, we choose R to be
5Rs, 10Rs and 100Rs. In addition, we also want to know the
difference of the probability under spherical and 2D planar
cases. Therefore, simulation results, lower and upper bounds of
the probability under spheres with radii 5Rs, 10Rs, 100Rs and
2D plane are shown in Figure 8(a), 8(b) and 8(c) respectively.

It can be seen from Figure 8 that simulations results, lower
and upper bounds under spheres with radii 5Rs, 10Rs, 100Rs
and 2D plane are very close with each other. More precisely,
the maximum difference of simulations results under spheres
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Fig. 8. Comparison of the proportion of the area of spherical triangular holes
(a) comparison of simulation results; (b) comparison of lower bounds; (c)
comparison of upper bounds

with radii 5Rs and 10Rs is about 0.045%, which is about
0.06% under spheres with radii 5Rs and 100Rs and is about
0.03% under spheres with radii 10Rs and 100Rs. In addition,
the maximum differences of simulation results between 2D
planar case and spherical cases with radii 5Rs, 10Rs, 100Rs
are 0.05%, 0.03% and 0.02% respectively. It means the larger
the radius of sphere is, the more closer are the simulation
results under sphere and 2D plane, it is because the larger the
radius of sphere is, the more likely of the local of each node

on the sphere to be planar.
With respect to lower and upper bounds, it is found that

under any two spheres with radii 5Rs, 10Rs, 100Rs, the
maximum difference of lower and upper bounds are 0.06%
and 0.12% respectively. Furthermore, under spheres with radii
5Rs, 10Rs, 100Rs and 2D plane, the maximum difference of
lower bounds is also 0.06%, and that of upper bounds is also
0.12%. More importantly, under sphere with radius 100Rs
and 2D plane, the maximum difference of lower bounds is
5×10−6 and that of upper bounds is 2.5×10−5. It means the
probabilities under cases of sphere with radius 100Rs and 2D
plane are nearly the same, which is quite logical since when
the radius of sphere is much more larger than the sensing
radius of any node, the local of any node can be considered
to be planar.

It can be further found that under above cases, the maximum
differences of simulation results, lower and upper bounds
are all so small that they can be neglected. Consequently, it
also means that the radius of sphere has little impact on the
probability of any point on the sphere to be inside a spherical
triangular hole. Our results can thus be extended to more
general 3D surfaces.

D. Discussions on applications

In this paper, we only consider spherical triangular holes, for
non-spherical triangular holes, we assume they can be detected
and covered by additional nodes. Under this assumption, our
analytical results can be used for planning of WSNs. For
example, a WSN is used to monitor a mountain and the
ratio γ = 2, according to the analytical upper bounds, we
can see that the maximum proportion of the area of spherical
triangular holes under γ = 2 is about 0.06 %, which can be
neglected. It means that as long as the surface of mountain can
be spherically triangulated by nodes, we can say the mountain
is covered. But if γ = 3 and at least 95% of the surface of the
mountain should be covered, then it means that the proportion
of the area of spherical triangular holes can be at most 5%.
From the analytical upper bounds of γ = 3, it can be seen
that when the intensity λ = 0.009, the upper bound is about
5%, so in order to cover at least 95% of the mountain, the
intensity of nodes should be larger than 0.009. Similarly, our
results can also be used in the scenarios when using satellite
to cover the whole earth.

VI. CONCLUSIONS

This paper studied the accuracy of homology-based cov-
erage hole detection for wireless sensor networks on sphere.
First, the situations when Rips complex may miss coverage
holes were identified. Then we chose the proportion of the
area of coverage holes missed by Rips complex as a metric to
evaluate the accuracy. Three different cases were considered to
compute the accuracy. For each case, closed-form expressions
for lower and upper bounds were derived. Simulation results
are well consistent with the derived lower and upper bounds,
with maximum differences of 0.5% and 3% respectively. In
addition, simulation results also show that the radius of sphere
has little impact on the accuracy as long as it is much larger
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than communication and sensing radii of each sensor. This
means that our results can be applied to more general 3D
surfaces although the results are derived on sphere. This
problem will be investigated in our future work.

APPENDIX
PROOF OF LEMMA 1

Proof: The second inclusion is trivial because for any
k-simplex [v0, v1, · · · , vk] ∈ Č

(2)

Rs (V), it means the sensing
ranges of these nodes have a common intersection, so the
pairwise distance d(vi, vj) ≤ 2Rs for all 0 ≤ i < j ≤ k,
which means [v0, v1, · · · , vk] ∈ R(2)

2Rs
(V).

As for the first inclusion, it is clear that R(2)
Rc

(V) and

Č
(2)

Rs (V) contain the same 0-simplices. It is also easy to see
that all 1-simplices in R(2)

Rc
(V) must also be in Č

(2)

Rs (V) since
for any 1-simplex [vi, vj ] with distance d(vi, vj) ≤ Rc ≤
R arccos([3 cos2(Rs/R)− 1]/2) < R arccos(2 cos2(Rs/R)−
1) = 2Rs, it means that the sensing ranges of the two nodes
have a common intersection. So we only need to prove that all
2-simplices in R(2)

Rc
(V) must be in Č

(2)

Rs (V). It is equivalent to
say that for any three nodes with pairwise great circle distance
no larger than Rc, their sensing ranges must have a common
intersection.

Assume a 2-simplex [v0, v1, v2] ∈ R(2)
Rc

(V), then the three
nodes v0, v1 and v2 must determine a plane α. We consider
the spherical cap on S2 cut off by the plane α. Since Rc < R,
the spherical cap must be on a hemisphere. It is easy to see
that the intersection of the plane α and sphere S2 is a circle
c. Let O1 be the center of circle c, O be the center of S2, P
be the intersection of line OO1 and S2.

Using spherical coordinates, we assume the point P has a
spherical coordinate (R, 0, 0). P may be inside1 or outside the
spherical triangle v0v1v2, which is shown in Figure 9(a) and
9(b) respectively.

(a) (b)

Fig. 9. Illustrations of P and spherical triangle v0v1v2: (a) P is inside the
spherical triangle v0v1v2; (b) P is outside the spherical triangle v0v1v2.

It can be seen that P has the same great circle dis-
tance to v0, v1 and v2, denoted by dp. If P is inside the
spherical triangle v0v1v2, as shown in Figure 9(a), then we
can prove dp ≤ Rs. Since P lying inside the spherical
triangle v0v1v2 means β + γ + δ = 2π, there must be

1It also includes the case that P is on one arc of the spherical triangle
v0v1v2.

one angle no smaller than 2π/3. Without loss of generality,
assume β ≥ 2π/3. According to the spherical law of con-
sines, we have cos(β) =

cos(d01/R)−cos2(dp/R)
sin2(dp/R)

≤ −1/2 ⇒
cos(d01/R) ≤ [3 cos2(dp/R) − 1]/2. In addition, d01 ≤
Rc ≤ R arccos([3 cos2(Rs/R) − 1]/2) ⇒ cos(d01/R) ≥
[3 cos2(Rs/R) − 1]/2, and 0 < d01/R, dp/R < π/2, so we
have [3 cos2(Rs/R) − 1]/2 ≤ [3 cos2(dp/R) − 1]/2 ⇒ dp ≤
Rs, which means the point P is a common intersection of
sensing ranges of v0, v1 and v2, so [v0, v1, v2] ∈ Č

(2)

Rs (V).
If P is outside the spherical triangle v0v1v2, as shown

in Figure 9(a), it indicates that the spherical triangle v0v1v2

must be contained in half of the spherical cap. Assume v0, v1

and v2 have spherical coordinates (R, θ, ϕ0), (R, θ, ϕ1) and
(R, θ, ϕ2), where θ ∈ (0, π/2), ϕ0 < ϕ1 < ϕ2, then we have
ϕ1 − ϕ0, ϕ2 − ϕ1, ϕ2 − ϕ0 ∈ (0, π). Using d01, d12, d02 to
denote the pairwise great circle distances between v0, v1, v2,
then according to the spherical law of consines, we have

cos(d01/R) = cos2 θ + sin2 θ cos(ϕ1 − ϕ0) (20)
cos(d12/R) = cos2 θ + sin2 θ cos(ϕ2 − ϕ1) (21)
cos(d02/R) = cos2 θ + sin2 θ cos(ϕ2 − ϕ0) (22)

In addition, we use σ to denote the angle between two arcs
v̄0v1 and v̄0v2, M to denote the middle point of the arc v̄0v2

and d0M , d1M to denote great circle distances between v0, v1

and M . It can be seen d0M = d02/2. Similarly, we have

cosσ =
cos(d12/R)− cos(d01/R) cos(d02/R)

sin(d01/R) sin(d02/R)
(23)

cos
d1M

R
= cos

d01

R
cos

d0M

2R
+ sin

d01

R
cos

d0M

2R
cosσ (24)

From (23) and (24), we can obtain

cos
d1M

R
=

cos(d01/R) + cos(d12/R)

2 cos(d02/(2R))
(25)

Consequently

cos
d1M

R
−cos

d0M

R
=

cos d01

R + cos d12

R − cos d02

R − 1

2 cos(d02/(2R))
(26)

From (20), (21), (22) and (26), we get

cos
d1M

R
− cos

d0M

R
=

sin2 θ cos ϕ2−ϕ0

2 sin ϕ1−ϕ0

2 sin ϕ2−ϕ1

2

cos d02

2R
(27)

Since 0 < ϕ1 − ϕ0, ϕ2 − ϕ1, ϕ2 − ϕ0 < π and 0 <
d1M/R, d0M/R, d02/R < π/2, it can be obtained from (27)
d1M < d0M ≤ Rc/2 < Rs, which means the point M is a
common intersection of the sensing ranges of v0, v1 and v2,
so [v0, v1, v2] ∈ Č

(2)

Rs (V). It means all 2-simplices in R(2)
Rc

(V)

must be in Č
(2)

Rs (V). Consequently the first inclusion is proved.
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