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Accuracy of Homology based Coverage Hole

Detection for Wireless Sensor Networks on Sphere
Feng Yan, Member, IEEE, Philippe Martins, Senior Member, IEEE, and Laurent Decreusefond

Abstract—Homology theory has attracted great attention be-
cause it can provide novel and powerful solutions to address
coverage problems in wireless sensor networks. They usually use
an easily computable algebraic object, Rips complex, to detect
coverage holes. But Rips complex may miss some coverage holes
in some cases. In this paper, we investigate homology-based
coverage hole detection for wireless sensor networks on sphere.
The case when Rips complex may miss coverage holes is first
identified. Then we choose the proportion of the area of coverage
holes missed by Rips complex as a metric to evaluate the accuracy
of homology-based coverage hole detection approaches. Closed-
form expressions for lower and upper bounds of the accuracy are
derived. Asymptotic lower and upper bounds are also investigated
when the radius of sphere tends to infinity. Simulation results are
well consistent with the analytical lower and upper bounds, with
maximum differences of 0.5% and 3% respectively. Furthermore,
it is shown that the radius of sphere has little impact on the
accuracy if it is much larger than communication and sensing
radii of each sensor.

Index Terms—Wireless sensor networks, coverage hole, homol-
ogy.

I. INTRODUCTION

W
IRELESS sensor networks (WSNs) have attracted con-

siderable research attention due to their large number

of potential applications such as battlefield surveillance, envi-

ronmental monitoring and intrusion detection. Many of these

applications require a reliable detection of specified events.

Such requirement can be guaranteed only if the target field

monitored by a WSN contains no coverage holes, that is

to say regions of the domain not monitored by any sensor.

But coverage holes can be formed for many reasons, such

as random deployment, energy depletion or destruction of

sensors. Consequently, it is essential to detect and localize

coverage holes in order to ensure the full operability of a WSN.

Most existing works on coverage hole issues mainly focus

on two-dimensional (2D) plane or three-dimensional (3D)

full space. There is few work on 3D surfaces. But in some

real applications, such as volcano monitoring [1] and forest

monitoring [2], the target fields are complex surfaces. So it is

also important to consider the coverage hole detection problem

of WSNs on surfaces. On the other hand, from theoretical

point of view, the coverage on 3D surfaces is quite a different
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problem from its counterpart in 2D plane or 3D full space. As

sphere is the simplest case of 3D surfaces, we choose it as the

first step for the analysis in this paper, like the authors did in

[3] for throughput capacity analysis.

There are already extensive works on the coverage hole

detection problem for WSNs in 2D plane and 3D space.

Some of these works used either precise information about

sensor locations [4]–[8] or accurate relative distances be-

tween neighbouring sensors [9], [10] to detect coverage holes.

The requirement of precise location or distance information

substantially limits their applicability since acquiring such

information is either expensive or impractical in many settings.

Thus connectivity-based approaches are of great interest for

us. In this category, homology-based schemes have received

special attention because of its powerfulness for coverage hole

problems in WSNs.

Homology theory was first adopted by Ghrist and his

collaborators in [11]–[13] to address the coverage problems

in WSNs. They introduced a combinatorial object, Čech com-

plex, which uses sensing ranges of nodes to fully characterize

coverage properties of a WSN (existence and locations of

holes). Unfortunately, the construction of this object is of very

high complexity [14] even if the precise location information

about sensors is provided. Thus, they introduced another

more easily computable complex, Vietoris-Rips complex (we

will abbreviate the term to Rips complex in this paper).

This complex is constructed with the sole knowledge of the

connectivity graph of the network and gives an approximate

coverage by simple algebraic calculations. Considering the

ease of Rips complex construction, some homology-based

algorithms were proposed in [15]–[17] to use Rips complex

to detect coverage holes. But all these homology-based ap-

proaches do not consider the cases that Rips complex may

miss some special coverage holes. If the proportion of the

area of coverage holes missed by Rips complex is low enough,

then it is acceptable to use these methods for coverage hole

detection. If the proportion is too high to be unacceptable,

then it may not be proper to use these methods. Therefore,

in order to evaluate the accuracy of homology-based coverage

hole detection approaches, it is of paramount importance to

analyse the coverage holes missed by Rips complex.

The main contributions of our paper are as follows. First,

the relationship between Čech complex and Rips complex in

terms of coverage hole on sphere is analysed. Furthermore, the

case that Rips complex may miss coverage holes is identified

and it is found that a hole in a Čech complex missed by a Rips

complex must be bounded by a spherical triangle. Based on

that, a formal definition of spherical triangular hole is given.
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Second, the proportion of the area of spherical triangular

holes is chosen as a metric to evaluate the accuracy of

homology-based coverage hole detection. Such proportion is

analysed under a homogeneous setting and it is related to the

communication and sensing radii of each sensor. Closed-form

expressions for lower and upper bounds of the proportion

are derived. Asymptotic lower and upper bounds are also

investigated when the radius of sphere tends to infinity.

Third, extensive simulations are performed to evaluate im-

pacts of communication and sensing radii, radius of sphere

on proportion of the area of spherical triangular holes. It is

shown that simulation results are well consistent with the ana-

lytical lower bound, with a maximum difference of 0.5%, and

consistent with the analytical upper bound, with a maximum

difference of 3%. Furthermore, simulation results show that

the radius of sphere has little impact on the proportion when

it is much larger than communication and sensing radii.

The rest of the paper is organised as follows. Section II

presents the related work. In Section III, the network model

and the formal definition of spherical triangular hole are given.

Closed-form lower and upper bounds for proportion of the area

of spherical triangular holes are derived in Section IV. Section

V compares simulation results and analytical bounds. Finally,

Section VI concludes the paper.

II. RELATED WORK

Since this paper aims to evaluate the ratio of the area of

coverage holes missed by homology-based approaches, we

present the related work in terms of two aspects: coverage hole

detection approaches and analytical coverage ratio evaluation.

A. Coverage hole detection approaches

Many approaches have been proposed for coverage hole

detection in WSNs. They can be generally classified into

three categories: location-based, range-based and connectivity-

based.

Location-based approaches are usually based on compu-

tational geometry with tools such as Voronoi diagram and

Delaunay triangulations, to discover coverage holes [4]–[6].

Range-based approaches attempt to discover coverage holes

by using only relative distances between neighbouring sensors

[9], [10]. These two types of approaches need either precise

location information or accurate distance information, which

restricts their applications since such information is not easy

to obtain in many settings.

In connectivity-based approaches, homology-based schemes

attract particular attention due to its powerfulness for coverage

hole detection. De Silva et al. first proposed a centralized

algorithm that detects coverage hole via homology in [12].

They constructed the Rips complex corresponding to the com-

munication graph of the network and determined the coverage

by verifying whether the first homology group of the Rips

complex is trivial. Then the above ideas were first implemented

in a distributed way in [15]. It is shown that combinatorial

Laplacians are the right tools for distributed computation of

homology groups and can be used for decentralized coverage

verification. In [16], a gossip-like decentralized algorithm for

computation of homology groups was proposed. In [17], a

decentralized scheme based on Laplacian flows was proposed

to compute a generator of the first homology group. All

these homology-based algorithms may be also used to detect

coverage holes for WSNs on surfaces, but they do not consider

the cases that Rips complex may miss some special coverage

holes. One of our objectives in this paper is to identify such

cases.

B. Analytical coverage ratio evaluation

Extensive research has been done to analyse coverage ratio

of a WSN in 2D plane or on 3D surfaces. In [18], the authors

studied the coverage properties of large-scale sensor networks

and obtained the fraction of the area covered by sensors. The

sensors are assumed to have the same sensing range and are

distributed according to a homogeneous Poisson point process

(PPP) in plane. In [19], the authors studied how the probability

of k-coverage changes with the sensing radius or the number

of sensors, given that sensors are deployed as either a PPP or

a uniform point process. In addition, the distance distribution

between two points in random networks was derived in [20].

Their results can be used to derive the fraction of areas covered

by at least k-sensors. All the above studies only considered

homogeneous cases. In [21], the coverage problem in planar

heterogeneous sensor networks are investigated and analytical

expressions of coverage are derived. Their formulation is more

general in the sense that sensor can be deployed according

to an arbitrary stochastic distribution, or can have different

sensing capabilities or can have arbitrary sensing shapes.

Based on their results, the authors in [22] derived the expected

coverage ratio of sensors under stochastic deployment on 3D

surface. Similarly, the expected coverage ratio under stochastic

deployment on 3D rolling terrains was derived in [23]. In [24],

a point in a plane is defined to be tri-covered if it lies inside

a triangle formed by three nodes, and the probability of tri-

coverage was analysed.

All the above research considered only coverage ratio

problems, without considering coverage hole detection issues.

Their analysis is thus not specific to any coverage hole

detection approaches. We provided some initial results about

the proportion of the area of triangular holes for WSNs in 2D

plane in [25]. In this paper, we aim to analyse the proportion

of the area of coverage holes missed by homology-based

coverage hole detection approaches for WSNs on sphere and

compare it with the case in 2D plane.

III. MODELS AND DEFINITIONS

Consider a collection of stationary sensors (also called

nodes) on a sphere S2 with radius R. The sensors are deployed

according to a homogeneous PPP with intensity λ. For any

two points p1 and p2 on S
2, the distance between them

d(p1, p2) is defined to be the great circle distance, which is the

shortest distance between them measured along a path on the

surface of the sphere. As usual, isotropic radio propagation is

assumed. All sensors have the same sensing radius Rs and

communication radius Rc on S
2. It means for any sensor

located at v on S
2, any point p on S

2 with d(v, p) ≤ Rs is
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inside the sensing range of the sensor; and for any two sensors

located at vi, vj on S
2, they can communicate with each other

if d(vi, vj) ≤ Rc. In addition, we assume Rs ≪ R, Rc ≪ R.

Before defining the two combinatorial objects, known as

Čech complex and Rips complex, it is necessary to give

a brief introduction to some tools used in the paper. For

further readings, see [26]–[28]. Given a set of points V ,

a k-simplex is an unordered set [v0, v1, ..., vk] ⊆ V where

vi 6= vj for all i 6= j, k is the dimension of this simplex.

The faces of this k-simplex consist of all (k-1)-simplex of the

form [v0, ..., vi−1, vi+1, ..., vk] for 0 ≤ i ≤ k. For example,

on a sphere S
2, a 0-simplex [v0] is a vertex , a 1-simplex

[v0, v1] is the shorter arc of the great circle passing through

v0 and v1, a 2-simplex [v0, v1, v2] is a spherical triangle

v0v1v2 with its interior included, see Figure 1. An abstract

simplicial complex is a collection of simplices which is closed

with respect to inclusion of faces. A k-dimensional abstract

simplical complex K is an abstract simplicial complex where

the largest dimension of any simplex in K is k.

v0
v0 v1

v0

v1
v2

0-simplex 2-simplex1-simplex

Fig. 1. 0-, 1- and 2-simplex

Let V denote the set of sensor locations in a WSN on S
2

with radius R and S = {sv, v ∈ V} denote the collection of

sensing ranges of these sensors: for a location v, sv = {x ∈
S
2 : d(x, v) ≤ Rs}. Then Čech complex and Rips complex

can be defined as follows [11], [12].

Definition 1 (Čech complex). Given a finite collection of

sensing ranges {sv, v ∈ V}, the Čech complex of the col-

lection, Č(V), is the abstract simplicial complex whose k-

simplices correspond to non-empty intersections of k + 1

distinct elements of {sv, v ∈ V}.

Definition 2 (Rips complex). Given a finite set of points V
on S

2 and a fixed radius ǫ, the Rips complex of V , Rǫ(V), is

the abstract simplicial complex whose k-simplices correspond

to unordered (k +1)-tuples of points in V which are pairwise

within distance ǫ of each other.

According to the definitions, the Čech complex and Rips

complex of the WSN, respectively denoted by ČRs
(V)

and RRc
(V), can be constructed as follows: a k-simplex

[v0, v1, · · · , vk] belongs to ČRs
(V) whenever ∩k

l=0svl 6= ∅
and a k-simplex [v0, v1, · · · , vk] belongs to RRc

(V) whenever

d(vl, vm) ≤ Rc for all 0 ≤ l < m ≤ k. In addition, since we

consider only coverage holes on the sphere S
2, it is sufficient

to construct 2-dimensional Čech complex and 2-dimensional

Rips complex of the WSN, denoted as Č
(2)
Rs

(V) and R(2)
Rc

(V)
respectively.

Figure 2 shows a WSN, its Čech complex and two Rips

complexes for two different values of Rc. Depending on the

relation of Rc and Rs, the Rips complex and the Čech complex

may be close or rather different. In this example, for Rc =

2Rs, the Rips complex sees the hole surrounded by 2, 3, 5, 6 as

in the Čech complex whereas it is missed in the Rips complex

for Rc = 2.5Rs. At the same time, the true coverage hole

surrounded by 1, 2, 6 is missed in both Rips complexes.

(a) (b)

(c) (d)

Fig. 2. (a) a WSN, (b) Čech complex, (c) Rips Complex under Rc = 2Rs,
(d) Rips Complex under Rc = 2.5Rs

In fact, as proved in [29], any coverage hole can be found

in Čech complex. Unfortunately, the construction of Čech

complex is of very high complexity even if the precise location

information of nodes is provided. So a more easily computable

tool, Rips complex, is used. But Rips complex can not always

capture all coverage holes. To be more specific, there exist

following relations between Č
(2)

Rs
(V) and R(2)

Rc
(V).

Lemma 1. Let V denote the set of node locations in a WSN

on S
2 with radius R, all nodes have the same sensing radius

Rs and communication radius Rc, Rs ≪ R,Rc ≪ R, then

R(2)
Rc

(V) ⊂ Č
(2)

Rs
(V) ⊂ R(2)

2Rs
(V),

whenever Rc ≤ R arccos([3 cos2(Rs/R)− 1]/2)
(1)

Proof: See the Appendix A.

According to (1), some relationships between Čech complex

and Rips complex in terms of coverage hole can be derived

as illustrated in the following corollaries.

Corollary 1. When Rc ≤ R arccos([3 cos2(Rs/R)− 1]/2), if

there is no hole in R(2)
Rc

(V), there must be no hole in Č
(2)

Rs
(V).

Corollary 2. When Rc ≥ 2Rs, if there is a hole in R(2)
Rc

(V),
there must be a hole in Č

(2)

Rs
(V).

Corollary 3. When R arccos([3 cos2(Rs/R)− 1]/2) < Rc <

2Rs, there is no guarantee relation between Č
(2)

Rs
(V) and

R(2)
Rc

(V).
From Corollary 1, a sufficient condition for coverage ver-

ification can be derived. From Corollary 2, we can find a

necessary condition for the existence of a hole in Č
(2)

Rs
(V).
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Corollary 3 indicates that when there is no hole in R(2)
Rc

(V),
it is possible that there is a hole in Č

(2)
Rs

(V). When there is

a hole in R(2)
Rc

(V), it is also possible that Č
(2)

Rs
(V) contains

no hole. From these corollaries, it can be seen that when

Rc > R arccos([3 cos2(Rs/R) − 1]/2), R(2)
Rc

(V) may miss

a hole in Č
(2)

Rs
(V). Furthermore, a hole in a Č

(2)

Rs
(V) not seen

in a R(2)
Rc

(V) must be bounded by a spherical triangle. Based

on this observation, a formal definition of spherical triangular

hole is given as follows.

Definition 3 (Spherical triangular hole). For a pair of com-

plexes Č
(2)

Rs
(V) and R(2)

Rc
(V) of a WSN, a spherical triangular

hole is an uncovered region bounded by a spherical triangle

formed by three nodes v0, v1, v2, where v0, v1, v2 can form a

2-simplex which appears in R(2)
Rc

(V) but not in Č
(2)

Rs
(V).

According to Definition 3, it can be seen from Figure 2

that when Rc = 2Rs, there is one spherical triangular hole

bounded by the spherical triangle formed by nodes 1, 2 and 6.

And when Rc = 2.5Rs, there are two additional spherical

triangular holes, bounded by spherical triangles formed by

nodes 2, 3, 6 and 3, 5, 6 respectively.

A summary of the main notations is given in Table I.

TABLE I
MAIN NOTATIONS

symbols meaning

Rs sensing radius of each sensor

Rc communication radius of each sensor

R the radius of sphere where sensors are deployed

V the set of sensor locations

sv the sensing range of the sensor located at v
S collection of sensing ranges of sensors in V

Č
(2)
Rs

(V) 2-dimensional Čech complex of the WSN denoted
by V

R
(2)
Rc

(V) 2-dimensional Rips complex of the WSN denoted by
V

λ the intensity of Poisson point process

p(λ) the probability of any point on sphere being inside
a spherical triangular hole

pl(λ) lower bound of p(λ)
pu(λ) upper bound of p(λ)
p′
l
(λ) asymptotic lower bound of p(λ) when R → ∞

p′u(λ) asymptotic upper bound of p(λ) when R → ∞

IV. BOUNDS ON PROPORTION OF SPHERICAL TRIANGULAR

HOLES

In this section, the conditions under which any point on

S
2 with radius R is inside a spherical triangular hole are first

given. The proportion of the area of spherical triangular holes

is chosen as a metric for accuracy evaluation. Closed-form

expressions for lower and upper bounds of the proportion are

derived. Finally, the asymptotic lower and upper bounds are

investigated when the radius of sphere tends to infinity.

A. Preliminary

Lemma 2. For any point on S
2, it is inside a spherical

triangular hole if and only if the following two conditions

are satisfied:

1) the great circle distance between the point and its closest

node is larger than Rs.

2) the point is inside a spherical triangle: the convex hull

of three nodes with pairwise great circle distance less

than or equal to Rc.

Lemma 3. If there exists a point O which is inside a spherical

triangular hole, then Rs < R arccos
√

[1 + 2 cos(Rc/R)]/3.

Proof: According to Definition 3, if there is a point O
inside a spherical triangular hole, then there exists a 2-simplex

σ ∈ R(2)
Rc

(V) while σ /∈ Č
(2)

Rs
(V), so R(2)

Rc
(V) 6⊂ Č

(2)

Rs
(V).

According to (1), we have Rc > R arccos([3 cos2(Rs/R) −
1]/2) ⇒ Rs < R arccos

√

[1 + 2 cos(Rc/R)]/3.

Lemma 4. Let O be a point inside a spherical triangular hole

and l denote the great circle distance between O and its closest

neighbour, then Rs < l ≤ R arccos
√

[1 + 2 cos(Rc/R)]/3.

The proof is similar as that of Lemma 1.

Since nodes are assumed to be distributed on S
2 according

to a homogeneous Poisson point process with intensity λ,

any point has the same probability to be inside a spherical

triangular hole. This probability in a homogeneous setting is

also equal to the proportion of the area of spherical triangular

holes.

We use spherical coordinates (R, θ, ϕ) to denote points on

S
2 with radius R, where θ is polar angle and ϕ is azimuth

angle. Without loss of generality, we consider the probability

of the point N with spherical coordinates (R, 0, 0) being inside

a spherical triangular hole. Since the communication radius of

each sensor is at most Rc, only the nodes within Rc from

the point N can contribute to the spherical triangle which

bounds a spherical triangular hole containing N . Therefore,

we only need to consider the Poisson point process constrained

on the spherical cap C(N,Rc) which is also a homogeneous

Poisson process with intensity λ, where C(N,Rc) denotes the

spherical cap centered at point N and the maximum great

circle distance between N and points on the spherical cap

is Rc. We denote this process as Φ. In addition, T (x, y, z)
denotes the property that the point N is inside the spherical

triangular hole bounded by the spherical triangle with points

x, y, z as vertices. When n0, n1, n2 are points of the process Φ,

T (n0, n1, n2) is also used to denote the event that the spherical

triangle formed by the nodes n0, n1, n2 bounds a spherical

triangular hole containing the point N . In addition, we use

T ′(n0, n1, n2) to denote the event that the nodes n0, n1, n2

can not form a spherical triangle which bounds a spherical

triangular hole containing the point N .

Let τ0 = τ0(Φ) be the node in the process Φ which is

closest to the point N . There are two cases for the point N to

be inside a spherical triangular hole. The first case is that the

node τ0 can contribute to a spherical triangle which bounds a

spherical triangular hole containing the point N . The second

case is that the node τ0 can not contribute to any spherical

triangle which bounds a spherical triangular hole containing

the point N but other three nodes can form a spherical triangle

which bounds a spherical triangular hole containing the point

N . So the probability that the point N is inside a spherical
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triangular hole can be defined as

p(λ) = P{N is inside a spherical triangular hole}
= P{

⋃

{n0,n1,n2}⊆Φ

T (n0, n1, n2)}

= P{
⋃

{n1,n2}⊆Φ\{τ0(Φ)}
T (τ0, n1, n2)}+ psec(λ)

(2)

where

psec(λ) = P{
⋃

{n0,··· ,n4}

⊆Φ\{τ0(Φ)}

T (n0, n1, n2) | T ′(τ0, n3, n4)}

denotes the probability of the second case. psec(λ) is generally

very small and is obtained by simulations.

B. Analytical lower and upper bounds

As conjectured from Corollary 1, there exist spherical trian-

gular holes only in the case Rc > R arccos([3 cos2(Rs/R)−
1]/2), so we only consider this case. The lower and upper

bounds of p(λ) are given as follows.

Theorem 1. When Rc > R arccos([3 cos2(Rs/R) − 1]/2),
pl(λ) < p(λ) < pu(λ), where

pl(λ) = 2πλ2R4

∫ θ0u

Rs/R

sin θ0dθ0

∫ 2ϕm(θ0)

2π−ϕm(θ0)

dϕ1

∫ θ1u(θ0,ϕ1)

θ0

sin θ1 × e−λ|C(N,Rθ0)|e−λ|S+(θ0,ϕ1)|(1− e−λ|S−(θ0,θ1,ϕ1)|)dθ1
(3)

and

pu(λ) = 2πλ2R4

∫ θ0u

Rs/R

sin θ0dθ0

∫ 2ϕm(θ0)

2π−ϕm(θ0)

dϕ1

∫ θ1u(θ0,ϕ1)

θ0

sin θ1 × e−λ|C(N,Rθ0)|e−λ|S+(θ0,ϕ1)|(1− e−λ|S−(θ0,θ0,ϕ1)|)dθ1

+ psec(λ)
(4)

and θ0u = arccos
√

[1 + 2 cos(Rc/R)]/3

ϕm(θ0) =

{

π if Rs

R < θ0 ≤ Rc

2R

arccos
cos Rc

R
−cos2 θ0

sin2 θ0
othewise

(5)

θ1u(θ0, ϕ1) = min{θ1u1(θ0, ϕ1), θ1u2(θ0, ϕ1)} (6)

θ1u1(θ0, ϕ1) = arccos
cos(Rc/R)

√

1− sin2 θ0 sin
2 ϕ1

(7)

+ arctan(cosϕ1 tan θ0)

θ1u2(θ0, ϕ1) = arccos
cos(Rc/R)»

1− sin2 θ0 sin
2(ϕ1 − ϕm(θ0))

(8)

+ arctan(cos(ϕ1 − ϕm(θ0)) tan θ0)

|C(N,Rθ0)| = 2πR2(1− cos θ0) (9)

|S+(θ0, ϕ1)| =
∫ ϕ1

2π−ϕm(θ0)

∫ θ1u(θ0,ϕ)

θ0

R2 sin θdθdϕ (10)

|S−(θ0, θ1, ϕ1)| =
∫ ϕm(θ0)

ϕ2l

∫ θ2u

θ0

R2 sin θ2dθ2dϕ2 (11)

ϕ2l = ϕ1 − arccos
cos(Rc/R)− cos θ1 cos θ0

sin θ1 sin θ0
θ2u = min{θ1u1, θ2u2}

θ2u2 = arccos
[

cos(Rc/R)/
»
1− sin2 θ0 sin

2(ϕ2 − ϕ1)
]

+ arctan(cos(ϕ2 − ϕ1) tan θ1)

psec(λ) is obtained by simulations1.

Since the proof is tedious, we only give the main steps of the

proof. Please refer to Appendix B for detailed computation.

For the lower bound, we only consider the first case that the

closest node τ0 must contribute to a spherical triangle which

bounds a spherical triangular hole containing the point N .

The main idea is to first fix the closest node τ0, and then

sequentially decide the regions where the other two nodes may

lie in, and finally do a triple integral.

Using spherical coordinates, we assume the closest node

τ0 lies on (R,α0, 0). Once the node τ0 is determined,

the other two nodes must lie in the different half spaces:

one in H+ = R
+ × (0, π/2) × (π, 2π) and the other in

H− = R
+ × (0, π/2)× (0, π). Assume n1 lies in H+ and n2

lies in H−. Since the great circle distance to τ0 is at most

Rc, n1 and n2 must also lie in the spherical cap C(τ0, Rc).
Furthermore, the great circle distance to the point N is at

most Rc and larger than Rα0, they should also lie in the

region C(N,Rc)\C(N,Rα0). Therefore, n1 must lie in

H+⋂

C(τ0, Rc)
⋂

C(N,Rc)\C(N,Rα0) and n2 must lie

in H−⋂

C(τ0, Rc)
⋂

C(N,Rc)\C(N,Rα0). In addition,

considering the great circle distance between n1 and n2

should be at most Rc and the point N should be inside the

spherical triangle formed by τ0, n1 and n2, n1 must lie in the

shadow region A+ shown in Figures 3 or 4 under different

situations. In the case R arccos([3 cos2(Rs/R) − 1]/2) <
Rc ≤ 2Rs or in the case Rc > 2Rs, Rc/(2R) <
α0 ≤ arccos

√

[1 + 2 cos(Rc/R)]/3, A+ =
H+⋂

C(τ0, Rc)
⋂

C(N,Rc)\C(N,Rα0)
⋂

C(M2, Rc),
shown in Figure 3. M1 and M2 are two intersection points

between bases of spherical caps C(N,Rα0) and C(τ0, Rc).
In the case Rc > 2Rs, Rs/R < α0 ≤ Rc/(2R), A+ =
H+⋂

C(τ0, Rc)
⋂

C(N,Rc)\C(N,Rα0)
⋂

C(M,Rc), as in

Figure 4, where M is one intersection point between base of

spherical caps C(N,Rα0) and the plane xOz.

Ordering the nodes in A+ by increasing azimuth angle

so that τ1 = (R, θ1, ϕ1) has the smallest azimuth an-

gle ϕ1. And assume the nodes τ0, τ1 and another node

τ2 ∈ H− ⋂

C(τ0, Rc)
⋂

C(N,Rc)\C(N,Rα0) can form a

spherical triangle which bounds a spherical triangular hole

containing the point N , then τ2 must lie to the right of the great

circle passing through τ1 and N , denoted by H+(ϕ1) which

contains all points with azimuth angle ϕ ∈ (ϕ1 − π, ϕ1). In

addition, the great circle distance to τ1 is no larger than Rc, so

the node τ2 must lie in the region S−, as illustrated in Figures

4 and 5.

S−(τ0, τ1) = S−(α0, θ1, ϕ1) = H−
⋂

C(τ0, Rc)
⋂

C(N,Rc)\C(N,Rθ0)
⋂

H+(ϕ1)
⋂

C(τ1, Rc)

1It is a non-trivial task to derive a closed-form expression for psec(λ).
Furthermore, we find that it is much less than the closed-form part in upper
bound pu(λ) and it has little impact on the derived bound. We thus get it by
simulations.
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Fig. 3. Illustration of region A+ in the case R arccos([3 cos2(Rs/R) −
1]/2) < Rc ≤ 2Rs or in the case Rc > 2Rs, Rc/(2R) < α0 ≤

arccos
√

[1 + 2 cos(Rc/R)]/3

Fig. 4. Illustration of regions A+, S+ and S− in the case Rc >
2Rs, Rs/R < α0 ≤ Rc/(2R)

Assume only τ0, τ1 and nodes in S−(τ0, τ1) can contribute

to the spherical triangle which bounds a spherical triangular

hole containing the point N , we can get a lower bound of the

probability that the point N is inside a spherical triangular

hole. It is a lower bound because it is possible that τ1 can

not contribute to a spherical triangle which bounds a spherical

triangular hole containing point N , but some other nodes with

higher azimuth angles in the region A+ can contribute to such

a spherical triangle. For example, in Figure 6, if there is no

node in S− but there are some nodes in S′−, then τ1 can not

contribute to any spherical triangle which bounds a spherical

triangular hole containing point N , but τ ′1 can form such a

spherical triangle with τ0 and another node in S′−.

Next we will prove the upper bound. As discussed in Section

IV-A, there are two cases for the point N being inside a

spherical triangular hole. As for the second case that the

Fig. 5. Illustration of regions S+ and S− in the case
R arccos([3 cos2(Rs/R) − 1]/2) < Rc ≤ 2Rs

closest node τ0 can not but some other nodes can contribute to

a spherical triangle which bounds a spherical triangular hole

containing the point N , it is not easy to obtain a closed-form

expression for such probability, so we get it by simulations.

Simulation results show that this probability is less than 0.16%

whenever Rc ≤ 3Rs with any intensity λ. So we still focus

on the probability of the first case.

Still consider the nodes in A+, each node (R, θ, ϕ) cor-

responds to an area |S−(α0, θ, ϕ)|. The higher is the area

|S−(α0, θ, ϕ)|, the higher is the probability that there is at

least one node in S−(α0, θ, ϕ), consequently the probability

of the first case will be higher. It can be seen from Figures

4 and 5 that the closer to α0 is θ and the closer to ϕ1 is

ϕ, the higher is the area |S−(α0, θ, ϕ)|. So the largest area

|S−(α0, θ, ϕ)| is |S−(α0, α0, ϕ1)|. Based on that, the upper

bound can be derived.

As can be seen, the expression for lower bound is closed-

form, while the expression for upper bound is not exactly

closed-form since it includes a non-analytical part psec(λ). As

for lower bound and the closed-form part for upper bound, we

use numerical integration to approximate the triple integrals.

As for psec(λ), we get it by simulations since it is very small,

it has little impact on the derived bound.

C. Asymptotic lower and upper bounds

Intuitively, when R → ∞, the case on sphere should be

the same as that in plane, which is shown in the following

theorem.

Theorem 2. When R → ∞ and Rc >
√
3Rs, lower and

upper bounds in (3) and (4) become

p′l(λ) = 2πλ2

∫ Rc/
√
3

Rs

r0dr0

∫ ϕu(r0)

ϕl(r0)

dϕ′
1

∫ R1(r0,ϕ
′
1)

r0

e−λπr20 × e−λ|S+(r0,ϕ
′
1)|(1 − e−λ|S−(r0,r1,ϕ

′
1)|)r1dr1

(12)
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(a)

(b)

Fig. 6. Illustrations of regions S
′+ and S

′
− (a) in the case

R arccos([3 cos2(Rs/R) − 1]/2) < Rc ≤ 2Rs or in the case Rc >

2Rs, Rc/(2R) < α0 ≤ arccos
√

[1 + 2 cos(Rc/R)]/3; (b) in the case

Rc > 2Rs, Rs/R < α0 ≤ Rc/(2R)

and

p′u(λ) = 2πλ2

∫ Rc/
√
3

Rs

r0dr0

∫ ϕu(r0)

ϕl(r0)

dϕ′
1

∫ R1(r0,ϕ
′
1)

r0

e−λπr20 × e−λ|S+(r0,ϕ
′
1)|(1− e−λ|S−(r0,r0,ϕ

′
1)|)r1dr1

+ psec(λ)

(13)

where

ϕl(r0) =

®
0 if Rs < r0 ≤ Rc/2

2 arccos(Rc/(2r0)) othewise
(14)

ϕu(r0) =

®
π if Rs < r0 ≤ Rc/2

π − 4 arccos Rc

2r0
othewise

(15)

R1(r0, ϕ
′
1) = min(

»
R2

c − r20 sin
2 ϕ′

1 − r0 cosϕ
′
1, (16)»

R2
c − r20 sin

2(ϕ′
1 + ϕl(r0)) + r0 cos(ϕ

′
1 + ϕl(r0)))

|S+(r0, ϕ
′
1)| =

∫ ϕ′
1

ϕl(r0)

∫ R1(r0,ϕ
′)

r0

rdrdϕ′ (17)

|S−(r0, r1, ϕ
′
1)| =

∫ −ϕl(r0)

ϕ′
2l

∫ R2(r0,r1,ϕ
′
1,ϕ

′
2)

r0

r2dr2dϕ
′
2

(18)

ϕ′
2l = ϕ′

1 − arccos(r20 + r21 −R2
c)/(2r0r1)

R2(r0, r1, ϕ
′
1, ϕ

′
2) = min(

»
R2

c − r20 sin
2 ϕ′

2 − r0 cosϕ
′
2,»

R2
c − r21 sin

2(ϕ′
2 − ϕ′

1) + r1 cos(ϕ− ϕ′
1))

psec(λ) is obtained by simulations.

Proof: Please refer to Appendix C.

Comparing (12) and (13) to the results in the paper [25], we

can find that they are the same, which is quite logical since

when R → ∞ the local of each node can be considered to be

planar.

V. SIMULATIONS AND PERFORMANCE EVALUATION

In this section, simulation settings are first given. Then

simulation results are compared with analytical lower and

upper bounds under different settings of Rs, Rc, R.

A. Simulation settings

A sphere centered at the origin with radius R is considered

in the simulations. The probability of the point with spherical

coordinate (R, 0, 0) being inside a spherical triangular hole

is computed. Sensors are randomly distributed on the sphere

according to a homogeneous Poisson point process with in-

tensity λ. The sensing radius Rs of each node is set to be

10 meters and communication radius Rc is chosen from 20

to 30 meters with interval of 2 meters. Let γ = Rc/Rs, then

γ ranges from 2 to 3 with interval of 0.2. In addition, λ is

selected from 0.001 to 0.020 with interval of 0.001. For each

pair of (λ, γ), 107 simulations are run to check whether the

point with spherical coordinate (R, 0, 0) is inside a spherical

triangular hole.

B. Impact of Rs and Rc

As illustrated in Section III, Rs ≪ R and Rc ≪ R, here

we fix R = 10Rs, choose Rs to be 10 meters and Rc to

be 20 to 30 meters with interval of 2 meters, to analyse the

impact of Rs and Rc on the probability of any point being

inside a spherical triangular hole. Under this configuration, the

probability p(λ) obtained by simulations is presented with the

lower and upper bounds in Figure 7(a) and 7(b) respectively.

Note that the upper bounds contain the simulation results for

psec(λ) which are shown in Figure 7(c).

It can be seen that for any value of γ, p(λ) has a maximum

at a threshold value λc of the intensity. As a matter of fact,

for λ ≤ λc, the number of nodes is small. Consequently the

probability of any point being inside a spherical triangular hole

is relatively small too. With the increase of λ, the connectivity
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Fig. 7. Proportion of the area of spherical triangular holes under R = 10Rs.
(a) simulation results and lower bounds; (b) simulation results and upper
bounds; (c) simulation results for psec(λ)

between nodes becomes stronger. As a result, the probability

of any point being inside a spherical triangular hole increases.

However, when the intensity reaches the threshold value, the

probability is up to its maximum. p(λ) decreases for λ ≥ λc.

The simulations also show that λc decreases with the increase

of γ.

On the other hand, it can be seen from Figure 7(a) and 7(b)

that for a fixed intensity λ, p(λ) increases with the increases

of γ. That is because when Rs is fixed, the larger Rc is, the

higher is the probability of each spherical triangle containing

a coverage hole.

Furthermore, the maximum probability increases quickly

with γ ranging from 2.0 to 3.0. These results can also provide

some insights for planning of WSNs, which will be discussed

in Section V-D.

Finally, it can be found in Figure 7(a) that the probability

obtained by simulation is very well consistent with the lower

bound. The maximum difference between them is about 0.5%.

Figure 7(b) shows that probability obtained by simulation is

also consistent with the upper bound. The maximum difference

between them is about 3%.

C. Impact of R

Although we assume Rs ≪ R and Rc ≪ R, to better

understand the impact of R on the probability of any point

being inside a spherical triangular hole, we choose R to be

5Rs, 10Rs and 100Rs. In these cases, Rs is still 10 meters

and Rc is from 20 to 30 meters with interval of 2 meters.

In addition, we also want to know the difference of the

probability under spherical and 2D planar cases. Therefore,

simulation results, lower and upper bounds of the probability

under spheres with radii 5Rs, 10Rs, 100Rs and 2D plane are

shown in Figure 8(a), 8(b) and 8(c) respectively. Simulation

results for psec(λ) under spheres with radii 5Rs, 10Rs, 100Rs

and 2D plane are shown in Figure 9. From Figure 9, we can

find that psec(λ) is less than 0.16% under any intensity in

these cases.

It can be seen from Figure 8 that simulations results, lower

and upper bounds under spheres with radii 5Rs, 10Rs, 100Rs

and 2D plane are very close with each other. More precisely,

the maximum difference of simulations results under spheres

with radii 5Rs and 10Rs is about 0.045%, which is about

0.06% under spheres with radii 5Rs and 100Rs and is about

0.03% under spheres with radii 10Rs and 100Rs. In addition,

the maximum differences of simulation results between 2D

planar case and spherical cases with radii 5Rs, 10Rs, 100Rs

are 0.05%, 0.03% and 0.02% respectively. It means the larger

the radius of sphere is, the more closer are the simulation

results under sphere and 2D plane, it is because the larger the

radius of sphere is, the more likely of the local of each node

on the sphere to be planar.

With respect to lower and upper bounds, it is found that

under any two spheres with radii 5Rs, 10Rs, 100Rs, the

maximum difference of lower and upper bounds are 0.06%

and 0.12% respectively. Furthermore, under spheres with radii

5Rs, 10Rs, 100Rs and 2D plane, the maximum difference of

lower bounds is also 0.06%, and that of upper bounds is also

0.12%. More importantly, under sphere with radius 100Rs

and 2D plane, the maximum difference of lower bounds is

5×10−6 and that of upper bounds is 2.5×10−5. It means the

probabilities under cases of sphere with radius 100Rs and 2D

plane are nearly the same, which is quite logical since when

the radius of sphere is much more larger than the sensing

radius of any node, the local of any node can be considered

to be planar.

It can be further found that under above cases, the maximum

differences of simulation results, lower and upper bounds
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Fig. 8. Comparison of the proportion of the area of spherical triangular holes
(a) comparison of simulation results; (b) comparison of lower bounds; (c)
comparison of upper bounds

are all so small that they can be neglected. Consequently, it

also means that the radius of sphere has little impact on the

probability of any point on the sphere to be inside a spherical

triangular hole.

D. Discussions on applications

In this paper, we only consider spherical triangular holes, for

non-spherical triangular holes, we assume they can be detected

and covered by additional nodes. Under this assumption, our
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Fig. 9. Simulation results for psec(λ)

analytical results can be used for planning of WSNs. For

example, a WSN is used to monitor a mountain and the

ratio γ = 2, according to the analytical upper bounds, we

can see that the maximum proportion of the area of spherical

triangular holes under γ = 2 is about 0.06 %, which can be

neglected. It means that as long as the surface of mountain can

be spherically triangulated by nodes, we can say the mountain

is covered. But if γ = 3 and at least 95% of the surface of the

mountain should be covered, then it means that the proportion

of the area of spherical triangular holes can be at most 5%.

From the analytical upper bounds of γ = 3, it can be seen

that when the intensity λ = 0.009, the upper bound is about

5%, so in order to cover at least 95% of the mountain, the

intensity of nodes should be larger than 0.009.

VI. CONCLUSIONS

This paper studied the accuracy of homology-based cov-

erage hole detection for wireless sensor networks on sphere.

First, the case when Rips complex may miss coverage holes

was identified. It was found that a hole missed by Rips

complex must be bounded by a spherical triangle and a formal

definition of spherical triangular hole was given. Then we

chose the proportion of the area of spherical triangular holes as

a metric to evaluate the accuracy. Closed-form expressions for

lower and upper bounds were derived. Asymptotic lower and

upper bounds are also investigated when the radius of sphere

tends to infinity. Simulation results are well consistent with the

derived lower and upper bounds, with maximum differences of

0.5% and 3% respectively. In addition, simulation results also

show that the radius of sphere has little impact on the accuracy

as long as it is much larger than communication and sensing

radii of each sensor. This means that our results may be

potentially applied to more general 3D surfaces although the

results are derived on sphere. This problem will be investigated

in our future work.

APPENDIX A

PROOF OF LEMMA 1

Proof: The second inclusion is trivial because for any

k-simplex [v0, v1, · · · , vk] ∈ Č
(2)

Rs
(V), it means the sensing

ranges of these nodes have a common intersection, so the
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pairwise distance d(vi, vj) ≤ 2Rs for all 0 ≤ i < j ≤ k,

which means [v0, v1, · · · , vk] ∈ R(2)
2Rs

(V).
As for the first inclusion, it is clear that R(2)

Rc
(V) and

Č
(2)
Rs

(V) contain the same 0-simplices. It is also easy to see

that all 1-simplices in R(2)
Rc

(V) must also be in Č
(2)

Rs
(V) since

for any 1-simplex [vi, vj ] with distance d(vi, vj) ≤ Rc ≤
R arccos([3 cos2(Rs/R)− 1]/2) < R arccos(2 cos2(Rs/R)−
1) = 2Rs, it means that the sensing ranges of the two nodes

have a common intersection. So we only need to prove that all

2-simplices in R(2)
Rc

(V) must be in Č
(2)
Rs

(V). It is equivalent to

say that for any three nodes with pairwise great circle distance

no larger than Rc, their sensing ranges must have a common

intersection.

Assume a 2-simplex [v0, v1, v2] ∈ R(2)
Rc

(V), then the three

nodes v0, v1 and v2 must determine a plane α. We consider

the spherical cap on S
2 cut off by the plane α. Since Rc < R,

the spherical cap must be on a hemisphere. It is easy to see

that the intersection of the plane α and sphere S
2 is a circle

c. Let O1 be the center of circle c, O be the center of S2, P
be the intersection of line OO1 and S

2.

Using spherical coordinates, we assume the point P has a

spherical coordinate (R, 0, 0). P may be inside2 or outside the

spherical triangle v0v1v2, which is shown in Figure 10(a) and

10(b) respectively.

(a) (b)

Fig. 10. Illustrations of P and spherical triangle v0v1v2: (a) P is inside the
spherical triangle v0v1v2; (b) P is outside the spherical triangle v0v1v2.

It can be seen that P has the same great circle distance

to v0, v1 and v2, denoted by dp. If P is inside the spher-

ical triangle v0v1v2, as shown in Figure 10(a), then we

can prove dp ≤ Rs. Since P lying inside the spherical

triangle v0v1v2 means β + γ + δ = 2π, there must be

one angle no smaller than 2π/3. Without loss of generality,

assume β ≥ 2π/3. According to the spherical law of con-

sines, we have cos(β) =
cos(d01/R)−cos2(dp/R)

sin2(dp/R) ≤ −1/2 ⇒
cos(d01/R) ≤ [3 cos2(dp/R) − 1]/2. In addition, d01 ≤
Rc ≤ R arccos([3 cos2(Rs/R) − 1]/2) ⇒ cos(d01/R) ≥
[3 cos2(Rs/R) − 1]/2, and 0 < d01/R, dp/R < π/2, so we

have [3 cos2(Rs/R)− 1]/2 ≤ [3 cos2(dp/R)− 1]/2 ⇒ dp ≤
Rs, which means the point P is a common intersection of

sensing ranges of v0, v1 and v2, so [v0, v1, v2] ∈ Č
(2)

Rs
(V).

2It also includes the case that P is on one arc of the spherical triangle
v0v1v2.

If P is outside the spherical triangle v0v1v2, as shown in

Figure 10(a), it indicates that the spherical triangle v0v1v2
must be contained in half of the spherical cap. Assume v0, v1
and v2 have spherical coordinates (R, θ, ϕ0), (R, θ, ϕ1) and

(R, θ, ϕ2), where θ ∈ (0, π/2), ϕ0 < ϕ1 < ϕ2, then we have

ϕ1 − ϕ0, ϕ2 − ϕ1, ϕ2 − ϕ0 ∈ (0, π). Using d01, d12, d02 to

denote the pairwise great circle distances between v0, v1, v2,

then according to the spherical law of consines, we have

cos(d01/R) = cos2 θ + sin2 θ cos(ϕ1 − ϕ0) (19)

cos(d12/R) = cos2 θ + sin2 θ cos(ϕ2 − ϕ1) (20)

cos(d02/R) = cos2 θ + sin2 θ cos(ϕ2 − ϕ0) (21)

In addition, we use σ to denote the angle between two arcs

v̄0v1 and v̄0v2, M to denote the middle point of the arc v̄0v2
and d0M , d1M to denote great circle distances between v0, v1
and M . It can be seen d0M = d02/2. Similarly, we have

cosσ =
cos(d12/R)− cos(d01/R) cos(d02/R)

sin(d01/R) sin(d02/R)
(22)

cos
d1M
R

= cos
d01
R

cos
d0M
2R

+ sin
d01
R

cos
d0M
2R

cosσ (23)

From (22) and (23), we can obtain

cos
d1M
R

=
cos(d01/R) + cos(d12/R)

2 cos(d02/(2R))
(24)

Consequently

cos
d1M
R

−cos
d0M
R

=
cos d01

R + cos d12

R − cos d02

R − 1

2 cos(d02/(2R))
(25)

From (19), (20), (21) and (25), we get

cos
d1M
R

− cos
d0M
R

=
sin2 θ cos ϕ2−ϕ0

2 sin ϕ1−ϕ0

2 sin ϕ2−ϕ1

2

cos d02

2R
(26)

Since 0 < ϕ1 − ϕ0, ϕ2 − ϕ1, ϕ2 − ϕ0 < π and 0 <
d1M/R, d0M/R, d02/R < π/2, it can be obtained from (26)

d1M < d0M ≤ Rc/2 < Rs, which means the point M is a

common intersection of the sensing ranges of v0, v1 and v2,

so [v0, v1, v2] ∈ Č
(2)
Rs

(V). It means all 2-simplices in R(2)
Rc

(V)
must be in Č

(2)

Rs
(V). Consequently the first inclusion is proved.

APPENDIX B

PROOF OF THEOREM 1

Proof: We first prove the lower bound. It can be obtained

from (2) that

p(λ) > P{
⋃

{n1,n2}⊆Φ\{τ0(Φ)}
T (τ0, n1, n2)}

So for the lower bound, we only consider the first case

that the closest node τ0 must contribute to a spherical triangle

which bounds a spherical triangular hole containing the point

N .

Using spherical coordinates, we assume the closest node τ0
lies on (R,α0, 0) and use |S| to denote the area of the set S,

then we can get the distribution of α0 as

Fα0(θ0) = P (α0 ≤ θ0) = 1− e−λ|C(N,Rθ0)| (27)
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since the event α0 > θ0 means that the spherical cap

C(N,Rθ0) does not contain any nodes from the process,

which is given by the void probability e−λ|C(N,Rθ0)|. Further-

more, |C(N,Rθ0)| can be given as

|C(N,Rθ0)| =
∫ θ0

0

∫ 2π

0

R2 sin θdϕdθ = 2πR2(1− cos θ0)

(28)

From (27) and (28), we can get the density of τ0

Fα0(dθ0) = 2πλR2 sin θ0e
−λ|C(N,Rθ0)|dθ0 (29)

The integration range for θ0 can be easily obtained.

According to Lemma 4, we have Rs < Rθ0 ≤
R arccos

√

[1 + 2 cos(Rc/R)]/3, so Rs/R < θ0 ≤ θ0u =
arccos

√

[1 + 2 cos(Rc/R)]/3.

Therefore the probability of the first case can be given as

P{
⋃

{n1,n2}⊆Φ\{τ0(Φ)}
T (τ0, n1, n2)}

=

∫ θ0u

Rs/R

P{
⋃

{n1,n2}⊆Φ′
θ0

T ((R, θ0, 0), n1, n2)}Fα0(dθ0)
(30)

where Φ′
θ0

is the restriction of Φ in C(N,Rc)\C(N,Rθ0).
Once the node τ0 is determined, a second node τ1 must

lie in the shadow region A+ shown in Figures 3 or 4, and a

third node τ2 must lie in the region S− shown in Figures 4 or

5, as illustrated in Section IV-B. The node τ1 = (R, θ1, ϕ1)
is assumed to have the smallest azimuth angle in A+, which

means that there should be no nodes with a azimuth angle less

than ϕ1 in A+, that is to say no nodes are in the region

S+(τ0, τ1) = S+(α0, ϕ1) = A+
⋂

H+(ϕ1)

Since the intensity measure of the Poisson point process in

spherical coordinates is λR2 sin θdθdϕ, the density Fτ1 of τ1
can be given as

Fτ1(dθ1, dϕ1) = λR2 sin θ1e
−λ|S+(α0,ϕ1)|dθ1dϕ1 (31)

Then we derive the integration domain D(α0) with

respect to parameters (θ1, ϕ1). Consider the case

shown in Figure 3, assume the point M2 has the

spherical coordinate (R,α0, ϕm), ϕm ∈ (0, π). Since

the great circle distance between τ0 and M2 is Rc, then

according to the spherical law of consines, we have

cos(Rc/R) = cos2 α0 + sin2 α0 cosϕm ⇒ ϕm(α0) =
arccos[(cos(Rc/R) − cos2 α0)/(sin

2 α0)]. It can be seen

that points M1 and Q have the spherical coordinates

(R,α0, 2π − ϕm(α0)) and (R,α0, 2ϕm(α0)) respectively,

where Q is one intersection point between bases of spherical

caps C(N,Rα0) and C(M2, Rc). Thus the integration range

for ϕ1 is [2π − ϕm(α0), 2ϕm(α0)]. In addition, assume any

point with great circle distance Rc to τ0 has the spherical

coordinate (R, θt, ϕt), still using the spherical law of consines,

we have cos(Rc/R) = cosα0 cos θt + sinα0 sin θt cosϕt ⇒
θt(α0, ϕt) = arccos[cos(Rc/R)/

√

1− sin2 α0 sin
2 ϕt] +

arctan(cosϕt tanα0). Similarly, assume any point

with great circle distance Rc to M2 has the spherical

coordinate (R, θ′t, ϕ
′
t), we can obtain θ′t(α0, ϕ

′
t) =

arccos[cos(Rc/R)/
»
1− sin2 α0 sin

2(ϕ′
t − ϕm(α0))] +

arctan(cos(ϕ′
t − ϕm(α0)) tanα0). Then the integration

range for θ1 is [α0, θ1u(α0, ϕ1)], where θ1u(α0, ϕ1) =
min{θ1u1(α0, ϕ1), θ1u2(α0, ϕ1)}, θ1u1(α0, ϕ1) = θt(α0, ϕ1),
θ1u2(α0, ϕ1) = θ′t(α0, ϕ1).

Consider the case shown in Figure 4, the derivation of the

integration domain D(α0) is the same as the case shown in

Figure 3. In this case, the point M has the spherical coordinate

(R,α0, π), and the integration range for ϕ1 is [π, 2π]. If we

define

ϕm(α0) =

®
π if Rs

R < α0 ≤ Rc

2R

arccos
cos Rc

R
−cos2 α0

sin2 α0
othewise

then the two cases can be regarded as the same in terms of

the integration domain D(α0).
Furthermore, |S+(α0, ϕ1)| can be expressed as

|S+(α0, ϕ1)| =
∫ ϕ1

2π−ϕm(α0)

∫ θ1u(α0,ϕ)

α0

R2 sin θdθdϕ

As illustrated in Section IV-B, assume only τ0, τ1 and nodes

in S−(τ0, τ1) can contribute to the spherical triangle which

bounds a spherical triangular hole containing the point N , we

can get a lower bound of the probability that the point N is

inside a spherical triangular hole. Based on the assumption,

we have

P{
⋃

{n1,n2}⊆Φ′
θ0

T ((R, θ0, 0), n1, n2)}

> P{
⋃

n2⊆Φ′
θ0

⋂

S−(τ0,τ1)

T ((R, θ0, 0), τ1, n2)}

=

∫∫

D(θ0)

P{
⋃

n2⊆Φ′
θ0

⋂

S−(θ0,θ1,ϕ1)

T ((R, θ0, 0), (R, θ1, ϕ1), n2)}

Fτ1(dθ1, dϕ1)

=

∫∫

D(θ0)

P{Φ′
θ0(S

−(θ0, θ1, ϕ1)) > 0}Fτ1(dθ1, dϕ1)

=

∫∫

D(θ0)

(1− e−λ|S−(θ0,θ1,ϕ1)|)Fτ1(dθ1, dϕ1)

(32)

where |S−(θ0, θ1, ϕ1)| can be expressed as

|S−(θ0, θ1, ϕ1)| =
∫ ϕm

ϕ2l

∫ θ2u

θ0

R2 sin θ2dθ2dϕ2

and

ϕ2l = ϕ1 − arccos
cos(Rc/R)− cos θ1 cos θ0

sin θ1 sin θ0
θ2u = min{θ1u1, θ2u2}
θ2u2 = arccos

[

cos(Rc/R)/
»
1− sin2 θ0 sin

2(ϕ2 − ϕ1)
]

+ arctan(cos(ϕ2 − ϕ1) tan θ1)

Therefore, from (29), (30), (31) and (32), the lower bound

shown in (3) can be derived.

As for the upper bound, replace |S−(θ0, θ1, ϕ1)| by

|S−(θ0, θ0, ϕ1)|, we can get the upper bound as illustrated

in Section IV-B.
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APPENDIX C

PROOF OF THEOREM 2

Comparing (3) to (12), (4) to (13), we can find that they

are very similar. If we can show that each item related with R
in (3) and (4) tends to its counterpart in (12) and (13) when

R → ∞, then it is easy to prove Theorem 2. For convenience,

let θ0 = r0/R, θ1 = r1/R, ϕ′
1 = π + ϕ1.

Proof: First, we have

lim
R→∞

R arccos([3 cos2(Rs/R)− 1]/2)

=Rs lim
x→0

arccos([3 cos2(x) − 1]/2)

x
(letx = Rs/R)

(a)
=Rs lim

x→0

3 cosx sinx
√

1− ([3 cos2(x) − 1]/2)2

=Rs lim
x→0

6 cosx sinx
√

(3− 3 cos2 x)(1 + 3 cos2 x)
=

√
3Rs

(33)

where (a) follows from l’Hôpital’s rule.

From (33), we know that when R → ∞, the condition

Rc > R arccos([3 cos2(Rs/R) − 1]/2) is equivalent to the

condition Rc >
√
3Rs.

Similarly, we can get

lim
R→∞

Rθ0u = lim
R→∞

R arccos

 
1 + 2 cos(Rc/R)

3
=

Rc√
3
(34)

Then, we can also obtain

lim
R→∞

arccos[(cos(Rc/R)− cos2 θ0)/ sin
2 θ0]

= arccos( lim
R→∞

cos(Rc/R)− cos2(r0/R)

sin2(r0/R)
)

(a)
= arccos( lim

R→∞

Rc

R2 sin
Rc

R − 2r0
R2 sin r0

R cos r0
R

−2r0/R2 sin(r0/R) cos(r0/R)
)

= arccos(1−R2
c/(2r

2
0))

(b)
=π − 2 arccos(Rc/(2r0))

(35)

where (a) uses l’Hôpital’s rule and (b) follows from cos(π −
2 arccos(Rc/(2r0))) = 1 − R2

c/(2r
2
0) and 0 ≤ π −

2 arccos(Rc/(2r0)) ≤ π.

According to (35), comparing (5) to (14) and (15), we can

get

ϕl(r0) = π − lim
R→∞

ϕm(θ0) (36)

ϕu(r0) = lim
R→∞

2ϕm(θ0)− π (37)

Still using l’Hôpital’s rule, we can get the following results.

The detailed calculation is omitted due to space limitation.

lim
R→∞

Rθ1u1(θ0, ϕ1) =
»
R2

c − r20 sin
2 ϕ′

1 − r0 cosϕ
′
1 (38)

lim
R→∞

Rθ1u2(θ0, ϕ1) =
»
R2

c − r20 sin
2(ϕ′

1 + ϕl(r0)) (39)

+ r0 cos(ϕ
′
1 + ϕl(r0))

where θ1u1(θ0, ϕ1) and θ1u2(θ0, ϕ1) are shown in (7) and (8).

From (38) and (39), comparing (6) to (16), we have

lim
R→∞

Rθ1u(θ0, ϕ1) = R1(r0, ϕ
′
1) (40)

From (36), (37) and (40), comparing (10) to (17) and by

some simple replacement, we can obtain

lim
R→∞

|S+(θ0, ϕ1)| = |S+(r0, ϕ
′
1)| (41)

Similarly, we get

lim
R→∞

|S−(θ0, θ1, ϕ1)| = |S−(r0, r1, ϕ
′
1)| (42)

where |S−(θ0, θ1, ϕ1)| and |S−(r0, r1, ϕ′
1)| are shown in (11)

and (18).

In addition, from (9), we have

lim
R→∞

|C(N,Rθ0)| = lim
R→∞

2πR2(1 − cos(r0/R)) = πr20
(43)

Finally, using (34), (36), (37), (40), (41), (42) and (43), we

can obtain from (3) that

lim
R→∞

pl(λ) = lim
R→∞

2πλ2

∫ Rθ0u

Rs

R sin
r0
R
dr0

∫ 2ϕm(θ0)−π

π−ϕm(θ0)

dϕ′
1

∫ Rθ1u(θ0,ϕ1)

Rθ0

R sin
r1
R

× e−λπr20e−λ|S+(r0,ϕ
′
1)|

× (1 − e−λ|S−(r0,r1,ϕ
′
1)|)dr1

= 2πλ2

∫ Rc/
√
3

Rs

r0dr0

∫ ϕu(r0)

ϕl(r0)

dϕ′
1

∫ R1(r0,ϕ
′
1)

r0

e−λπr20

× e−λ|S+(r0,ϕ
′
1)|(1 − e−λ|S−(r0,r1,ϕ

′
1)|)r1dr1

= p′l(λ)

Similarly, we can get lim
R→∞

pu(λ) = p′u(λ).
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