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SI MATERIALS AND METHODS1 S1 Model Desription2 As desribed in the main text, simulations are stohasti, in a lottery manner (1). This3 means that at eah generation (=time step), Np plants (Na animals) are drawn at random4 to replae the Np plants (Na animals) of the previous generation. A detailed sheme of5 the spatial organization of the metaommunity an be found in Fig. S1.6 The probabilities of this lottery are detailed in the main text. We here provide addi-7 tional explanations for the hoie of seed (egg) prodution equations. In the mutualisti8 ase, we onsider that there is a base seed (egg) prodution equal to 1 − cp (1 − ca) for9 plants (animals). For the plants, this base feundity orresponds to sel�ng, that we here10 assume onstant among speies for simpliity. For the animals, assuming that feundity is11 proportional to diet, the base feundity orresponds to the diet part whih is not ahieved12 during the mutualisti interation with the plants. The additional term orresponds to13 the part of seed (egg) prodution whih depends on the mutualisti interation. For the14 plants, we onsider that eah animal of speies j e�etively pollinates a �ower of speies i15 at a rate Iij. Hene a �ower of speies i is pollinated at a total rate equal to ∑Sa
j=1

na
j Iij . We16 further assume that �owers ompete to attrat animals, so that the pollinator-mediated17 feundity of a �ower of speies i depends on the rate at whih the �ower is pollinated18 ompared to the rate at whih other �owers are pollinated. This leads to the expres-19 sion: cp
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) . Our formulation implies that a �ower will have a feundity20 above (below) 1 if it is more (less) pollinated than an average �ower. For the animals,21 we onsider that animals gather resoures from the plant at the same rate Iij that they22 pollinate the plant, and that the plants provide a �xed amount of resoures. We assume23 2



that animals ompete for these resoures, so that an animal of speies j gathers from a1 plant of speies i an amount of resoures equal to Iij
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. When summing over the2 relative frequeny of the plants, we reover Equation 2. We additionally studied another3 way to model animal feundity, and obtained similar results (see SI Setion S2.11.2). In4 the antagonisti ase, the reasoning is the same, exept that plants are negatively a�eted5 by the interation.6 This model formulation presents several advantages. First, it orresponds to a purely7 neutral model when removing between groups interations. Consequently, this model8 enables to explore the deterministi e�et of eologial interations in a bakground of9 demographi and environmental stohastiity as is often the ase in nature (2). Seond,10 this model an be quikly simulated by oalesene, so that it is possible to �t this model11 to real data by Approximate Bayesian Computation (see Methods). Third, by �xing on-12 stant ommunity sizes, it fouses on ommunity omposition by removing the potential13 onfounding in�uene of variations in ommunity sizes. This onstant ommunity size14 assumption is a good �rst approximation for plants in many terrestrial systems. Indeed,15 herbivores generally have a limited feeding e�et on plant biomass for various reasons in-16 luding the low food quality of many plant parts, and the ontrol of inset herbivores by17 natural enemies (3). Although it is not the ase for insets, their population �utuations18 are likely to be mainly driven by fators not related to plants like limate (4). Conse-19 quently, our �xed ommunity size assumption is a good simplifying assumption whih20 is unlikely to make us miss any retroations taking plae between the plant and inset21 groups. An alternative approah would have been to use Lotka-Volterra type equations22 to model the oupled dynamis of plants and animals (5). A drawbak of this approah23 is that it requires a large number of speies-spei� parameters like intrinsi growth rates24 and arrying apaities. Suh an inrease in the number of parameters would prevent25 3



the model from being �tted to available data, in that we would need muh additional1 information on eah speies or ommunity dynamis.2
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Fig. S1: Model representation. Cirles stand for pathes, horizontal and vertial arrowsrepresent dispersal between neighboring pathes, and oblique arrows indiate dispersalfrom the speies pool. Np (Na) is the number of plant (animal) individuals in eah path.
mp (ma) is the plant (animal) dispersal rate between neighboring pathes. µp (µa) is theplant (animal) dispersal rate from the speies pool to eah path.
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S2 Model results - impat on the plant set1 S2.1 α diversity of plants2 In this setion, we detail the results obtained in Fig. 2 of the main text. Let us start by3 onsidering nested mutualisti networks produed with a threshold rule (Fig. 2A). For4 the limiting ase of low dispersal rates and weak mutualism (low mp and cp), we reover5 Bastolla et al.'s result (5), namely, that nested networks tend to inrease plant loal6 rihness (bottom left of Fig. 2A). In this ase, bi-trophi interations have a stabilizing7 e�et (6) indued by the heterogeneity among animals in their plant preferenes. Thus,8 ommunities tend to gain speies with over-dispersed traits during the oupled dynamis9 (see �Variane Test� in SI Setion S2.5). This limiting ase without dispersal orresponds10 to the standard network approah.11 When dispersal rates inrease and/or mutualisti interations beome stronger (larger12
cp), the positive e�et of mutualisti interations on plant rihness dereases and even13 beomes negative (Fig. 2A). The stabilizing e�et of the mutualisti interations is now14 ounterbalaned by their �ltering e�et: plants survive only if they enounter a orre-15 sponding mutualist. We detet this �ltering e�et by omputing the average interation16 strength between plant and animal individuals. When mutualisti interations have a17 negative impat on plant speies rihness, the average interation strength inreases om-18 pared to the neutral ase (see �Coupling Test� in SI Setion S2.4). The surviving plants19 are those whih enounter more mutualists.20 Similar results are obtained with antagonisti networks (Fig. 2B). In this ase, when21 bi-trophi interations have a negative impat on plant speies rihness, the average inter-22 ation strength dereases ompared to the neutral ase (see �Coupling Test� in SI Setion23 S2.4). The surviving plants are those whih enounter fewer antagonists.24 5



One we have onsidered nested networks, we now turn our attention to highly spe-1 ialized networks. We obtained similar results for this type of networks (Fig. 2C-D). The2 ommon feature of both nested and speialized networks is their low average degree (i.e.,3 speies interat on average with a low number of speies), although the variane in degree4 distribution is larger in nested networks. This average degree hene appears to play a5 major role in how network arhiteture determines the impat of bi-trophi interations6 on plant rihness.7 When interations are generalized both mutualisti and antagonisti networks inrease8 speies rihness at low dispersal rates and derease it at high dispersal rates (Fig. 2E-F).9 At low dispersal rates, loal speies rihness is mainly ontrolled by loal interations.10 When they are generalized, the �ltering e�et of the interations is low, and the sta-11 bilizing e�et predominates. Equitability in plant abundane is low without bi-trophi12 interations and inreases in the presene of suh interations. This inrease in plant13 equitability is positively orrelated with the variation in plant rihness in the presene14 of interations (see �Equitability Test� in SI Setion S2.6). At higher dispersal rates,15 loal speies rihness inreases and beomes more dependent on the reurrent dispersal of16 loally rare speies. When disrupting the �tness equivalene among individuals, intera-17 tions tend to destabilize this dynami equilibrium (7). This disruption leads to a redued18 equitability in speies abundanes and, ultimately, in speies loss (see �Equitability Test�19 in SI Setion S2.6). This result is in agreement with a reent meta-analysis of herbi-20 vore exlusion experiments showing that herbivory redued plant speies rihness when21 equitability in plant abundanes was high, and vie versa (8).22 Along the seond axis of variation, we �nd that mutualisti interations have an in-23 reased negative e�et on plant rihness for stronger values of oupling cp (Fig. 2E).24 This is due to an inrease of the �ltering e�et of the interation, as enountered earlier25 6



for speialized interations. In ontrast, we �nd the reverse relationship for antagonis-1 ti interations: stronger oupling leads to an inreased positive e�et on plant rihness,2 espeially at low dispersal rates (Fig. 2F). Here the stabilizing e�et of herbivores ex-3 eeds their �ltering e�et, so that the resulting e�et of herbivores on plants is positive.4 Stronger oupling between plants and herbivores thus inrease the magnitude of this pos-5 itive e�et, espeially at low dispersal rates for whih loal interations have the strongest6 impat on ommunity dynamis.7 The balane between the �ltering and the stabilizing e�ets also depends on the speies8 rihness of the plant set, both at the loal and regional sales. In metaommunities with9 larger regional speies rihness, we �nd a stronger positive e�et of both mutualisti and10 antagonisti interations on loal plant speies rihness. In ontrast, in ommunities with11 larger loal rihness, we observe a stronger negative e�et of both interation types on12 plant rihness, this ontrast being stronger for antagonisti interations (see SI Setion13 2.7). These results di�er from those of Thébault and Fontaine (9) who studied network14 dynamis in losed ommunities and found that higher diversity promotes persistene15 in mutualisti networks and destabilizes it in antagonisti ones. Our urrent results,16 therefore, show that loal and regional diversity may be assoiated with di�erent e�ets17 of bi-trophi interations in spatially-extended systems. Another di�erene is that, as18 reported here, loal and regional rihness have a very small orrelation with the e�et of19 bi-trophi interations on plant rihness in this spatially extended model (R2 = 0.01).20 S2.2 β diversity of plants21 Up to here, we have desribed patterns of loal speies rihness, namely, plant rihness22 at eah lattie site. Our framework also enabled us to study the e�et of bi-trophi inter-23 ations on plant rihness at the regional sale, i.e., onsidering the regional abundanes24 7



aross the entire lattie. When interations have a negative e�et on plant loal rihness,1
β diversity simultaneously inreases (Fig. S2). In 91% (89 %) of the ases for mutual-2 isti (antagonisti) interations, the derease in metaommunity rihness is smaller than3 the derease in loal rihness. For the small system size used in the simulations (5 × 54 pathes), this inrease in β diversity is not always su�ient to make up for dereases in5 loal rihness; onsequently metaommunity rihness an also derease due to both mutu-6 alisti and antagonisti interations. However, as system size inreases in the simulations,7 metaommunity rihness beomes less a�eted by bi-trophi interations (Fig. S3A). This8 means that animals do not at to �lter the same plant speies in every path, thereby9 inreasing the spatial struture of plant diversity. Indeed, when omputing the relative10 feundity of plant speies in eah path, we �nd that 63% (56%) of the plant speies are11 positively �ltered in at least one path by the mutualisti (antagonisti) animal group12 (see SI Setion S2.10). These results suggest that bi-trophi interations tend to strongly13 impat the spatial heterogeneity of plant diversity.14
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Fig. S2: Relative variation (in %) of plant β diversity between trophially oupled andunoupled ommunities. β diversity is measured as the ratio of metaommunity overloal plant rihness Sm
p /Sp. Panels A and D display a threshold model of interationwith one trait; panels B and E show results for the mathing model with one trait and

σ = 0.015; panels C and F are based on a mathing model with one trait and σ = 1.Panels A-C orrespond to mutualisti interations. Panels D-F orrespond to antagonistiinterations. Parameter values are µp = µa = 0.004, ma = 0.625, ca = 0.16.S2.3 E�ets of the model parameters on the impat of bi-trophi1 interations2 As mentioned in the main text, mutualisti and antagonisti interations an have both3 positive and negative e�ets on plant rihness Sp, but also on Shannon's diversity Hp.4 We explore the e�ets of eah model parameter and interation type by multiple regres-5 sions (Tables S1-4). In these regressions, the dependent variable is the relative varia-6 tion in speies rihness due to the bi-trophi interations: ∆Sp =
(

Si
p − Sn

p
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/Sn
p , and7

∆Hp =
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H i
p − Hn

p

)

/Hn
p , where the supersript i means with interation, and n without8 interation.9 Less diverse, more dispersal-limited, and more strongly impated plant sets are ex-10 periening a stronger �lter from both mutualisti and antagonisti interations: plant11 9



dispersal rates mp and µp are positively orrelated with variations in plant Shannon's1 index ∆Hp, while the interation impat on plants cp is negatively orrelated with ∆Hp2 (Tables S3-4). Parameter e�ets are less straightforward when looking at variation in3 plant speies rihness ∆Sp (Tables S1-2), probably beause they impat plant diversity4 patterns at both loal and metaommunity sales, and these patterns have ontraditory5 e�ets on loal plant persistene (see below). Parameters of the animal set have overall a6 lower e�et on plant omposition.7
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Table S1: E�et of mutualisti interations on the variation in plant speies rihness1
∆Sp.2 *the �rst (seond) number is the number of mathing (threshold) rules.3 R² = 0.5245 Parameter Estimate Standard Error p-valueInterept -0.08 0.002 <2e-16

µp 5.06 0.18 <2e-16
µa 3.11 0.18 <2e-16
mp -0.09 0.001 <2e-16
ma -0.03 0.001 <2e-16
cp -0.53 0.001 <2e-16
ca 0.09 0.001 <2e-16Model_1-0* -0.12 0.002 <2e-16Model_0-2* -0.13 0.002 <2e-16Model_1-1* -0.25 0.002 <2e-16Model_2-0* -0.19 0.002 <2e-16Model_1-2* -0.33 0.002 <2e-16Model_2-1* -0.30 0.002 <2e-16Model_2-2* -0.37 0.002 <2e-16
σ 0.04 0.0001 <2e-16

6
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Table S2: E�et of antagonisti interations on the variation in plant speies rihness1
∆Sp.2 *the �rst (seond) number is the number of mathing (threshold) rules.3 R² = 0.1245 Parameter Estimate Standard Error p-valueInterept -0.17 0.007 <2e-16

µp -17.87 0.73 <2e-16
µa 9.01 0.73 <2e-16
mp -0.38 0.005 <2e-16
ma -0.04 0.005 6e-13
cp 0.09 0.003 <2e-16
ca 0.14 0.003 <2e-16Model_1-0* 0.27 0.007 <2e-16Model_0-2* -0.43 0.009 <2e-16Model_1-1* -0.39 0.007 <2e-16Model_2-0* 0.14 0.007 <2e-16Model_1-2* -0.56 0.007 <2e-16Model_2-1* -0.37 0.007 <2e-16Model_2-2* -0.51 0.007 <2e-16
σ 0.06 0.0004 <2e-16

6
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Table S3: E�et of mutualisti interations on the variation in plant equitability ∆Hp.1 *the �rst (seond) number is the number of mathing (threshold) rules.2 R² = 0.4934 Parameter Estimate Standard Error p-valueInterept -0.07 0.002 <2e-16
µp 14.15 0.19 <2e-16
µa 1.96 0.19 <2e-16
mp 0.06 0.001 <2e-16
ma -0.03 0.001 <2e-16
cp -0.47 0.001 <2e-16
ca 0.08 0.001 <2e-16Model_1-0* -0.19 0.002 <2e-16Model_0-2* -0.13 0.002 <2e-16Model_1-1* -0.30 0.002 <2e-16Model_2-0* -0.29 0.002 <2e-16Model_1-2* -0.39 0.002 <2e-16Model_2-1* -0.38 0.002 <2e-16Model_2-2* -0.45 0.002 <2e-16
σ 0.05 0.0001 <2e-16

5
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Table S4: E�et of antagonisti interations on the variation in plant equitability ∆Hp.1 *the �rst (seond) number is the number of mathing (threshold) rules.2 R² = 0.3334 Parameter Estimate Standard Error p-valueInterept -0.36 0.002 <2e-16
µp 18.71 0.23 <2e-16
µa -0.24 0.23 0.31
mp 0.03 0.002 <2e-16
ma -0.03 0.002 <2e-16
cp -0.40 0.001 <2e-16
ca 0.07 0.001 <2e-16Model_1-0* 0.32 0.002 <2e-16Model_0-2* -0.08 0.003 <2e-16Model_1-1* -0.07 0.002 <2e-16Model_2-0* 0.26 0.002 <2e-16Model_1-2* -0.08 0.002 <2e-16Model_2-1* -0.04 0.002 <2e-16Model_2-2* -0.04 0.002 <2e-16
σ 0.01 0.0001 <2e-16

5
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S2.4 Coupling Test1 Animals have two opposite e�ets on plant assemblages. Individually, they have a �ltering2 e�et by introduing �tness di�erenes among speies. But olletively, they have a sta-3 bilizing e�et by introduing some kind of heterogeneity in resoures (6). The emergent4 e�et of the interations thus depends on the relative importane of these two ounter-5 ating e�ets.6 We introdue a statisti (IS) that measures the average interation strength between7 plants and animals:8
IS =

∑

i,j Iij

SpSa

, (S1)where Iij indiates the interation strength between plant i and animal j. Before starting9 the dynamis with bi-trophi interations, we ompute the initial interation strength ISn10 between plants and animals. To do this, we use plant and animal abundanes obtained11 with neutral assembly and Iij values subsequently used in the dynamis with interations.12 At the end of the dynamis with interations (100 generations forward), we ompute the13 �nal interation strength ISi between plants and animals, using �nal abundanes of plants14 and animals. We reord the variation of the interation strength ∆IS = ISi − ISn due15 to the dynamis with bi-trophi interations. When interations are mutualisti and16 their impat on plants is dominated by the �ltering e�et, plants survive only if they17 enounter some well-adapted mutualists. Interations should thus produe an inrease of18 the statistis IS. For antagonisti interations, on the ontrary, plants survive only if they19 do not enounter well-adapted antagonists, and the statistis IS should then derease. If20 our interpretation is orret, then ∆Sp should be negatively (positively) orrelated with21
∆IS when interations are mutualisti (resp. antagonisti). This is what we observed22 15



(R² = 0.02 and 0.03 respetively, p<0.001). Note that IS is not orrelated with Sp and1
Hp, hene the orrelation observed here is not spurious.2 S2.5 Variane Test3 To measure the stabilizing e�et of the bi-trophi interations, we use the statisti V T4 whih measures the average variane in trait values among plant individuals, the average5 being done among the t traits involved in the interations. The stabilizing e�et should6 produe an inrease in V T . If our interpretation is orret, then ∆Sp should be positively7 orrelated with ∆V T . A possible onfounding e�et, though, is that V T is positively or-8 related with Sp and Hp. Hene, this dependene of V T should be taken into aount when9 testing for a orrelation between ∆V T and ∆Sp. To do this, we �t a multiple linear regres-10 sion of V T n against Sn

p and Hn
p using the simulated non-interating ommunities. We then11 use this �tted regression to predit V T i

fit based on the values of Si
p and H i

p observed in the12 interating ommunities. We then de�ne a modi�ed ∆V T =
(

V T i
observed − V T i

fit

)

/V T i
fit.13 Using this onservative statisti, we �nd a positive orrelation between ∆V T and ∆Sp14 (R² = 0.56 and 0.10 respetively, p<0.001).15 S2.6 Equitability Test16 Hillebrand et al. (8) meta-analyzed herbivore exlusion experiments, and found that her-17 bivory was reduing (inreasing) plant speies rihness when equitability in plant abun-18 danes (measured by H ′ = H/ln(S)) was high (low). We found the same negative rela-19 tionship between the equitability before the interations H ′n = Hn

p /ln(Sn) and ∆Sp (R²20 = 0.007 and 0.019 respetively, p<0.001), and this relationship was stronger for antago-21 nisti and generalized interations (i.e., mathing interation rule with one or two traits,22 and σ>1, R² = 0.008 and 0.09 respetively, p<0.001).23 16



S2.7 E�et of network rihness on the impat of bi-trophi inter-1 ations2 We also investigate the e�et of speies rihness at both the loal path, and the (land-3 sape) metaommunity on the variation in plant speies rihness by linear regressions. As4 mentioned in the main text, larger metaommunity rihness is assoiated with stronger5 positive e�et of both mutualisti and antagonisti interations on plant speies rihness,6 while larger loal rihness is assoiated with stronger negative e�et of both interation7 types (R² = 0.01, p<0.001).8 S2.8 Temporal turnover9 As mentioned in the main text, two statistis of temporal turnover in speies omposition10 from one generation to the next have been omputed for both plants and animals, in11 both unoupled and oupled metaommunities. The �rst statisti is the Jaard index of12 similarity J and is omputed as follows:13
J =

∑

i I (nt
i > 0) I

(

nt−1

i > 0
)

∑

i I
(

nt
i + nt−1

i > 0
) , (S2)where nt

i is the number of individuals of speies i at generation t, and I (n > 0) equals 114 if n > 0 and 0 otherwise.15 The seond statisti is an abundane-weighted version of the Jaard index and is16 omputed as follows:17
Jq =

∑

i I (nt
i > 0) I

(

nt−1

i > 0
) (

nt
i + nt−1

i

)

∑

i

(

nt
i + nt−1

i

) , (S3)Larger J and Jq values indiate a lower temporal turnover.18 We investigate how variations in ommunity equitability due to bi-trophi interations19 17



are orrelated with variations in the temporal turnover of ommunities due to these same1 bi-trophi interations. Temporal turnover is measured with the Jaard index of similar-2 ity aross time steps (J) and its abundane-weighted version (Jq). Sine these statistis3 are orrelated with Hp in non-interating ommunities, variations in Hp due to the intera-4 tions ould mehanially ause variations in J and Jq, without any real e�et of bi-trophi5 interations on the way ommunity omposition varies with time. We hene �t two linear6 regressions of Jn and Jn
q against Hn

p using the simulated non-interating ommunities. We7 then use this �tted regression to predit J i
fit and J i

qfit
based on the values of H i

p observed8 in the interating ommunities. We then de�ne a modi�ed ∆J =
(

J i
observed − J i

fit

)

/J i
fit,9 and a modi�ed ∆Jq = (J i

qobserved
− J i

qfit
)/J i

qfit
. Using these onservative statistis, we10 �nd a positive orrelation between ∆J and ∆Hp for both mutualisti and antagonisti11 interations (R² = 0.44 and 0.35 respetively, p<0.001), and between ∆Jq and ∆Hp (R²12 = 0.72 and 0.02 respetively, p<0.001). Sine J and Jq measure temporal similarity, this13 means that in ommunities experiening a stronger �lter from the bi-trophi interations14 (lower ∆Hp), temporal turnover will be larger than expeted if bi-trophi interations15 were not modifying ommunity dynamis. In suh ommunities, a ore of plant speies16 are temporally stabilized by the interations, while a subset of speies beome satellites17 whih are temporally unstable (10).18 S2.9 Interations mostly a�et rare speies19 Mutualists and antagonists prinipally a�et the presene and abundane of rare plant20 speies. When omparing oupled and unoupled plant ommunities, the abundane-21 weighted measure of similarity Jq is larger than the unweighted measure J in 97% (resp.22 95%) of the ases for mutualisti (resp. antagonisti) interations.23

18



S2.10 Interations produe a spatially heterogeneous �lter1 At the end of the oupled metaommunity dynamis, we test whether the �ltering e�et2 of the animal set on the plant one is homogeneous aross spae. To do this, we ompute3 the relative feundity of eah plant speies in eah path. The relative feundity of plant4 speies i equals f p
i /

∑

k

n
p
k

Np
f p

k . For eah plant speies, we ount the number of pathes where5 its relative feundity is above 1, meaning that it obtains a loal ompetitive advantage6 due to bi-trophi interations. We �nd that 63% (56%) of the plant speies are positively7 �ltered in at least one path due to mutualisti (antagonisti) interations. To perform8 this analysis, we used a large grid of 20×20 pathes, and a subset of parameter values: µp9 and µa in {0.0005; 0.004}, mp and ma in {0.005;0.625}, cp and ca in {0.04;0.64}. We only10 onsidered interation rules with one trait, using either a threshold rule or a mathing rule11 with σ in {0.015;1}. We performed 10 repliates per ombination of parameters values.12 S2.11 Robustness of the results13 S2.11.1 E�et of the number of pathes used in the simulations14 To perform this omputer intensive study, we used a relatively small number of pathes:15 a grid of l × l pathes, with l = 5. We performed additional simulations with l = 10,16 and l = 20 for a subset of parameter values: µp = µa = 0.005, mp in {0.001; 0.005;17 0.025; 0.125; 0.625}, ma in {0.005; 0.625}, cp in {0.01; 0.04; 0.16; 0.64; 1}, and ca = 0.01.18 For these simulations, we only onsidered interation rules with one trait, using either19 a threshold rule, or a mathing rule with σ in {0.015; 0.125; 1; 8}. We performed 1020 repliates per ombination of parameters values, and omputed in eah simulation the21 variation in plant metaommunity rihness due to bi-trophi interations ∆Smet
p , and the22 variation in loal plant rihness ∆Sp. As the number of pathes in the metaommunity23 inreases, the distribution of ∆Smet

p onverges to zero (Fig. S3A). On the ontrary, system24 19



size has little impat on the variation in loal plant rihness due to bi-trophi interations1 (Fig. S3B). This means that for large (and realisti) system sizes, bi-trophi interations2 have a weak e�et on metaommunity rihness, but hange loal rihness patterns, and3 hene the spatial struture of plant diversity.4 We additionally performed orrelations between ∆Sp and ∆Hp in these simulations5 with larger l, and the statistis ∆Sp, and ∆Hp of the main text. We omputed the6 orrelations R², as well as the slopes and interepts of redued major axis regressions,7 using the R pakage "smatr" (11). Correlations were high (R ≥ 0.91), interepts lose to8 0 (|intercept| ≤ 0.062), and slopes lose to 1 (|slope − 1| ≤ 0.081).9
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Fig. S3: E�et of system size on bi-trophi impat. Panel A: Distribution of ∆Smet
p as afuntion of the number l ∗ l of pathes in the simulations. Panel B: Distribution of ∆Spas a funtion of the number l ∗ l of pathes in the simulations.S2.11.2 Symmetri model of interation1 We evaluated the sensitivity of our results to the way we modeled the plants' impat2 on their interators. We onsidered alternative models of mutualisti and antagonisti3 interations, replaing Eq. (2) in the main text by:4
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) . (S4)We performed the same simulation analysis of these two models on a subset of the5 parameter grid: we used the same subset as for the analysis studying the variation in6 number of pathes. We omputed the same statistis ∆Sp and ∆Hp, whih summarize7 the way interations a�et ommunity omposition. For these alulations, ommunity8 statistis were averaged over the 10 simulated repliates. For eah of these statistis, we9 omputed the orrelations R² between their values in the these symmetri models, and10 their values in the models reported in the main text, as well as the slopes and interepts11 21



of redued major axis regressions. Correlations were high (R ≥ 0.95), interepts lose to1 0 (|intercept| ≤ 0.062), and slopes lose to 1 (|slope − 1| ≤ 0.051).2 S2.11.3 Variation in ommunity size3 We evaluated the robustness of our results to variations in the animal group sizes Na.4 We onsidered the alternative values Na = 40, and Na = 1000. We performed the same5 simulation analysis as in the main text, on a subset of the parameter grid: we used the6 same subset as for the analysis studying the variation in number of pathes. We omputed7 the same statistis ∆Sp and ∆Hp, whih summarize the way interations a�et ommunity8 omposition. For these alulations, ommunity statistis were averaged over the 109 simulated repliates. For eah of these statistis, we omputed the orrelations R² with10 the simulations of the main text, as well as the slopes and interepts of redued major axis11 regressions. Correlations were high (R ≥ 0.89), interepts lose to 0 (|intercept| ≤ 0.072),12 and slopes lose to 1 (|slope − 1| ≤ 0.124).13 S2.11.4 Variation in boundary onditions14 We evaluated the robustness of our results to boundary onditions. We onsidered two15 alternative onditions: a re�exive ondition, where migrants rossing the boundary return16 to their path of origin; and a ondition where migrants rossing the boundary are lost. We17 performed the same simulation analysis as in the main text, on a subset of the parameter18 grid: we used the same subset as for the analysis studying the variation in number of19 pathes. We omputed the two statistis ∆Sp and ∆Hp. For eah of these statistis, we20 omputed the orrelations R² with the simulations of the main text, as well as the slopes21 and interepts of redued major axis regressions. Correlations were high (R ≥ 0.95),22 interepts lose to 0 (|intercept| ≤ 0.024), and slopes lose to 1 (|slope − 1| ≤ 0.046).23 22



S3 Model results - impat on the animal set1 We performed similar analyses, fousing this time on the e�et of bi-trophi interations2 on the animal set. Overvall, we found very similar results. The analogue of Fig. 2 for3 animals is reported in Fig. S4, while the analogue of Fig. S2 is reported in Fig. S5. By4 omparing Fig. 2 and Fig. S4, one an note that the main di�erenes is that herbivores are5 more positively impated than plants by bi-trophi interations when they are speialized6 (Panel D in Fig.2, panel E in Fig. S4), while this is the opposite when interations are7 generalized (Panels F in the two �gures). Indeed, when they are speialized, herbivores8 feed on di�erent plant speies and thereby easily oexist (12), while for plants, another9 e�et is at stake: although herbivore feeding have a stabilizing e�et (13), speialized10 herbivores also indue �tness di�erenes among speies, while generalized herbivores have11 a more equalized e�et.12 The oupling test (see Setion S2.4) provides oherent results. When animals are neg-13 atively �ltered by bi-trophi interations, the average interation strength IS inreases14 for both mutualists and antagonists (R² = 0.07 and 0.02 respetively, p<0.001): only15 the more interating animals are surviving. The variane test (see Setion S2.5) is also16 providing oherent results: when animals are positively impated by bi-trophi intera-17 tions, their trait variane inrease in both mutualisti and antagonisti ases (R² = 0.1118 and 0.005 respetively, p<0.001). As for plants, larger animal metaommunity rihness is19 assoiated with more positive bi-trophi e�et, while we observe the opposite orrelation20 with animal loal rihness in both mutualisti and antagonisti ases (R² = 0.08 and 0.0321 respetively, p<0.001, see Setion S2.7). Temporal similarity in animal omposition (mea-22 sured by J and Jq) is also positively orrelated with animal equitability Ha, as we had23 observed for plants (R² = 0.0001 and 0.0001 respetively for J and R² = 0.001 and 0.000124 23



for Jq, p<0.001, see Setion S2.8). Finally, bi-trophi interations are also mostly impat-1 ing rare animal speies: when omparing oupled and unoupled animal ommunities, the2 abundane-weighted measure of similarity Jq is larger than the unweighted measure J in3 97% (92%) of the ases for mutualisti (antagonisti) interations (see Setion S2.9).4
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σ = 0.015; panels C and F are based on a mathing model with one trait and σ = 1.Panels A-C orrespond to mutualisti interations. Panels D-F orrespond to antagonistiinterations. Parameter values are µp = µa = 0.004, mp = 0.625, cp = 0.16.S4 Appliation to real datasets1 S4.1 Approximate Bayesian Computation (ABC) proedure2 Sine the e�ets of the interations depend on the interation rules used (Tables S1-4),3 and given that not all interation rules lead to realisti eologial networks (14), we want4 to onstrain our simulation results so that they use realisti network struture. To �t5 observed networks, we use Approximate Bayesian Computation (15). It onsists here in6 six steps (see Fig. 1 in the main text).7 First, we simulate a neutral unoupled metaommunity of plants and animals to serve8 as a benhmark to quantify bi-trophi impat on the plant set, drawing at random all9 the model parameters in uniform prior distributions. Prior distributions express our10 25



unertainty on the parameters values before onfronting them to real data.1 Seond, starting from this neutral metaommunity, we simulate a oupled dynamis of2 plants and animals using Eqs. (1) and (2) of main text, hoosing one of the 8 interation3 rules in turn, and drawing at random all the additional model parameters (linked to the4 interation) in uniform prior distributions. The prior distributions were tailored to eah5 dataset so as to redue omputing time. Indeed, only some areas of the parameter spae6 are likely to produe networks similar to the observed ones. The priors used for eah7 dataset are reported in Table S5.8 Third, at the end of the dynamis, a network of interations is simulated with the9 same total number of interations Nobs
n as in the real dataset. Nobs

n animals are drawn10 at random proportionally to their loal abundane, and they are simulated to interat11 with one of the plant speies. An animal j interats with a plant i proportionally to np
i Iij12 where Iij is omputed with the model parameters used in the simulation.13 Fourth, four summary statistis of the simulated networks are omputed: the plant14 speies rihness in the network Ss

p, the animal speies rihness in the network Ss
a, the15 nestedness index Nep, and the speialization index φ.16 Fifth, the omputed network statistis of the simulations are used to selet the best-�t17 simulations. The simulations are retained if both ∣
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∣ ≤ 5 and ∣
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∣ ≤ 5, and18 the simulation proedure goes on until a total of 2000 suh simulations are produed. Out19 of these 2000 simulations, 200 are retained whih statistis φ, and Nep lead to the smallest20 Eulidean distane to the observed values (

φobs, Neobs
p

). Eah statisti is normalized before21 performing this seletion (15).22 Sixth, these retained simulations are used to ompute the approximate posterior dis-23 tribution of the statistis ∆Sp, ∆Hp, ∆J , and ∆Jq, whih desribe the impat of the24 interations on plant omposition and dynamis. A large part of the variation in the pos-25 26



terior distribution of these statistis is explained by the variation among the simulations1 of the two model parameters mp and cp. Therefore, approximate posterior distributions2 are plotted as a funtion of these two parameters (see the setion �Predited e�et of the3 interations in real networks based on best-�t simulations� below).4
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Table S5: Priors used for the Approximate Bayesian Computation.1
ln (mp) is always drawn in [ln(0.001) ; ln(0.2)℄. ln (cp) is always drawn in [ln(0.01) ; ln(1)℄.2
ln (σ) is always drawn in [ln(0.01) ; ln(10)℄.34 Datasets PriorsCode Interation Type Citation ln

(

µp

)

ln (µa) ln (ma)

ARIZ Pollination Arizmendi and Ornelas (1990) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.011)℄ [ln(0.001) ; ln(0.2)℄
BAHE♣ Pollination Barrett and Helenurm (1987) [ln(0.0001) ; ln(0.02)℄ [ln(0.1002) ; ln(0.5)℄ [ln(0.001) ; ln(0.2)℄
BAUE Pollination Bauer (1983) [ln(0.0001) ; ln(0.02)℄ [ln(0.0005) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
BEZE Pollination Bezerra et al. (2009) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.018)℄ [ln(0.001) ; ln(0.2)℄
BRIA Pollination Brian (1957) [ln(0.0002) ; ln(0.02)℄ [ln(0.0001) ; ln(0.01)℄ [ln(0.001) ; ln(0.2)℄
BRHO Pollination Brown and Hopkins (1995) [ln(0.0001) ; ln(0.02)℄ [ln(0.0002) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
DIHI♠ Pollination Diks et al. (2002) [ln(0.0002) ; ln(0.007)℄ [ln(0.01) ; ln(0.02)℄ [ln(0.11) ; ln(0.2)℄
DISH♠ Pollination Diks et al. (2002) [ln(0.0001) ; ln(0.02)℄ [ln(0.002) ; ln(0.02)℄ [ln(0.11) ; ln(0.2)℄
ELBE♣ Pollination Elberling and Olesen (1999) [ln(0.0015) ; ln(0.018)℄ [ln(0.47) ; ln(0.6)℄ [ln(0.001) ; ln(0.2)℄
HARD Pollination Harder (1985) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.013)℄ [ln(0.001) ; ln(0.2)℄
MACI Pollination Maior (1978) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.015)℄ [ln(0.001) ; ln(0.2)℄

MEMM♣ Pollination Memmott (1999) [ln(0.0001) ; ln(0.02)℄ [ln(0.0252) ; ln(0.239)℄ [ln(0.001) ; ln(0.19)℄
OLLE♣ Pollination Ollerton et al. (2003) [ln(0.0001) ; ln(0.013)℄ [ln(0.0074) ; ln(0.02)℄ [ln(0.051) ; ln(0.2)℄
SCHM♣ Pollination Shemske (1978) [ln(0.0001) ; ln(0.02)℄ [ln(0.0036) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
SNOW Pollination Snow and Snow (1972) [ln(0.0002) ; ln(0.02)℄ [ln(0.0001) ; ln(0.012)℄ [ln(0.001) ; ln(0.2)℄
V AZ1♣ Pollination Vazquez and Simberlo� (2002) [ln(0.0001) ; ln(0.02)℄ [ln(0.0011) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
V AZ2♣ Pollination Vazquez and Simberlo� (2002) [ln(0.0001) ; ln(0.011)℄ [ln(0.0018) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
V AZ3♣ Pollination Vazquez and Simberlo� (2002) [ln(0.0001) ; ln(0.02)℄ [ln(0.001) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
V AZ4♣ Pollination Vazquez and Simberlo� (2002) [ln(0.0001) ; ln(0.02)℄ [ln(0.0017) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
V AZ5♣ Pollination Vazquez and Simberlo� (2002) [ln(0.0001) ; ln(0.02)℄ [ln(0.0007) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
V AZ6♣ Pollination Vazquez and Simberlo� (2002) [ln(0.0001) ; ln(0.02)℄ [ln(0.001) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
V AZ7♣ Pollination Vazquez and Simberlo� (2002) [ln(0.0001) ; ln(0.02)℄ [ln(0.0007) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
V AZ8♣ Pollination Vazquez and Simberlo� (2002) [ln(0.0001) ; ln(0.02)℄ [ln(0.0009) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
HELG Arbusular Myorrhizal Fungi Helgason et al. (2002) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
OPIO Arbusular Myorrhizal Fungi Opik et al. (2008) [ln(0.0001) ; ln(0.018)℄ [ln(0.001) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
OPIY Arbusular Myorrhizal Fungi Opik et al. (2008) [ln(0.0001) ; ln(0.02)℄ [ln(0.0008) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
WU15 Arbusular Myorrhizal Fungi Wu et al. (2007) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
WU16 Arbusular Myorrhizal Fungi Wu et al. (2007) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
JOSW Endophyti Fungi Joshee et al. (2009) [ln(0.0001) ; ln(0.01)℄ [ln(0.006) ; ln(0.02)℄ [ln(0.01) ; ln(0.2)℄
JOSS Endophyti Fungi Joshee et al. (2009) [ln(0.0001) ; ln(0.01)℄ [ln(0.0014) ; ln(0.02)℄ [ln(0.018) ; ln(0.2)℄

MUTD Endophyti Fungi Murali et al. (2007) [ln(0.0001) ; ln(0.02)℄ [ln(0.0005) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄28



MUTW Endophyti Fungi Murali et al. (2007) [ln(0.0001) ; ln(0.02)℄ [ln(0.0006) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
MUDD Endophyti Fungi Murali et al. (2007) [ln(0.0001) ; ln(0.019)℄ [ln(0.0009) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
MUDW Endophyti Fungi Murali et al. (2007) [ln(0.0001) ; ln(0.02)℄ [ln(0.0012) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
PETR Endophyti Fungi Petrini (1984) [ln(0.0001) ; ln(0.02)℄ [ln(0.0003) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
SURB Endophyti Fungi Suryanarayanan et al. (2005) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.019)℄ [ln(0.001) ; ln(0.2)℄
SURC Endophyti Fungi Suryanarayanan et al. (2005) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.019)℄ [ln(0.001) ; ln(0.2)℄
SURD Endophyti Fungi Suryanarayanan et al. (2005) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.01)℄ [ln(0.001) ; ln(0.2)℄
SUTJ Endophyti Fungi Sutjaritvorakul et al. (2010) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄

BACH∗ Herbivory Basset and Charles (2000) [ln(0.0001) ; ln(0.006)℄ [ln(0.4001) ; ln(0.6)℄ [ln(0.003) ; ln(0.2)℄
BASA♦ Herbivory Basset and Samuelson (1996) [ln(0.0001) ; ln(0.02)℄ [ln(0.006) ; ln(0.02)℄ [ln(0.035) ; ln(0.2)℄
BERK Herbivory Berkov and Tavakilian (1999) [ln(0.0001) ; ln(0.017)℄ [ln(0.0015) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
HANS Herbivory Hansen and Uekert (1970) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.014)℄ [ln(0.001) ; ln(0.2)℄

JANZ♦ Herbivory Janzen (1980) [ln(0.006) ; ln(0.199)℄ [ln(0.1108) ; ln(0.5)℄ [ln(0.012) ; ln(0.5)℄
JOEA♣ Herbivory Joern (1979) [ln(0.0002) ; ln(0.02)℄ [ln(0.0003) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
JOEM♣ Herbivory Joern (1979) [ln(0.0003) ; ln(0.02)℄ [ln(0.0007) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
JOER Herbivory Joern (1985) [ln(0.0004) ; ln(0.02)℄ [ln(0.0013) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
NA96♦ Herbivory Nakagawa et al. (2003) [ln(0.0001) ; ln(0.02)℄ [ln(0.0005) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
NA98♦ Herbivory Nakagawa et al. (2003) [ln(0.0001) ; ln(0.02)℄ [ln(0.0012) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
NOMI Herbivory Novotny et al.(2005a) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.017)℄ [ln(0.001) ; ln(0.2)℄

NOV O♦ Herbivory Novotny et al.(2005b) [ln(0.0001) ; ln(0.02)℄ [ln(0.0006) ; ln(0.02)℄ [ln(0.001) ; ln(0.2)℄
OTTE Herbivory Otte and Joern (1977) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.019)℄ [ln(0.001) ; ln(0.2)℄
SHEL Herbivory Sheldon and Rogers (1978) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.014)℄ [ln(0.001) ; ln(0.2)℄

UECK♦ Herbivory Uekert and Hansen (1971) [ln(0.0001) ; ln(0.02)℄ [ln(0.0001) ; ln(0.019)℄ [ln(0.001) ; ln(0.2)℄
♣Datasets found in the InterationWeb Database (http://www.neas.usb.edu/interationweb/).1
♠Datasets found in Ref. (16).2
♦Datasets found in Ref. (17).3 *For this dataset, we used in the simulations Jp=2000, Ja=400 beause Sp is larger4 than 200.5
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S4.2 Predited e�et of the interations in real networks based1 on best-�t simulations2 The information available in the data was not su�ient to fully parameterize our meta-3 ommunity model, and hene to preisely quantify the e�et of bi-trophi interations on4 plant and animal rihness in these datasets. It was however su�ient to greatly onstrain5 our simulations, so that general trends ould be evidened. We illustrate this with an6 example dataset (BEZE, see Table S5). This dataset was hosen beause it ontains the7 largest number of reorded interations. The limits of our inferene approah that we are8 pointing here are thus also happening in the other datasets. Thanks to the ABC proe-9 dure, some parameters are relatively well inferred in that they have a reasonably peaked10 posterior distribution: µp, µa and σ (Fig. S6A,B,D). All the interation rules are rep-11 resented in the retained simulations (Fig. S6C), whih mean that the observed network12 struture an be reprodued in multiple ways. Note that this explains the presene of two13 peaks in the posterior distribution of parameter σ: the peak of low σ value is obtained in14 models without threshold rules, while the other peak is obtained when one or two thresh-15 old rules are modeled on top of the mathing rules. The four remaining parameters mp,16
ma, cp and ca are less well inferred by our proedure in that they have wider posterior17 distribution hene a large remaining unertainty on parameters values (Fig. S6E-H). The18 variane in these parameters values explained a large proportion of the variane of ∆Sp19 and ∆Sa observed in the simulations. More preisely, variations in mp and cp were highly20 orrelated with variations in ∆Sp in the simulations, while variations in ma and ca were21 highly orrelated with variations in ∆Sa. This is the reason why we plot our preditions22 regarding the bi-trophi impat on plants (animals) ∆Sp (∆Sa) as a funtion of mp and23
cp (ma and ca) in Figs. 2, S2, S4 and S5.24 We used a kriging tehnique to interpolate ∆Sp as a funtion of mp and cp (R library25 30



"�elds", (18)). This interpolation explained on average 70% (64%, 45%) of the variane1 for plants-pollinators datasets (plant-fungi, plant-inset herbivores). Similarly, the inter-2 polation of ∆Sa as a funtion of ma and ca explained on average 33% (40%, 30%) for3 plants-pollinators datasets (plant-fungi, plant-inset herbivores). We represent in Figs.4 S11- S16 the krigged values of ∆Sp and ∆Sa predited by the simulations �tted to eah5 dataset. In Fig. 3, these preditions are averaged for eah dataset type (plant-pollinators,6 plants-fungi, and plants-inset herbivores). Similar results for ∆H , ∆J , ∆Jq, and ∆Sm/S7 are reported in Figs. S7- S10. The temporal similarity is expeted to derease for an-8 tagonisti interations; the same happens for mutualisti interations only for realistially9 strong oupling (cp and ca ≥ 0.03) (Fig. S8). When using the abundane-weighted10 measure of turnover Jq, the temporal similarity is predited to be weakly a�eted by11 bi-trophi interations (Fig. S9). Overall, our results hene suggest that the temporal12 turnover in plant and animal sets should be larger due to bi-trophi interations, this13 being due mainly to an inreased turnover of rare speies.14 All simulations were performed in C++, and statistial analyses with the R software15 (R development Core Team 2009).16
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Fig. S11: Relative variation of plant speies rihness between oupled and unoupled om-munities in simulations whih best �t observed network struture in real plant-pollinatordatasets.
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Fig. S13: Relative variation of plant speies rihness between oupled and unoupledommunities in simulations whih best �t observed network struture in real plant-insetherbivores datasets.
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Fig. S14: Relative variation of animal speies rihness between oupled and unoupledommunities in simulations whih best �t observed network struture in real plant-pollinator datasets.
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Fig. S15: Relative variation of animal speies rihness between oupled and unoupledommunities in simulations whih best �t observed network struture in real plant-fungidatasets.
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Fig. S16: Relative variation of animal speies rihness between oupled and unoupledommunities in simulations whih best �t observed network struture in real plant-insetherbivores datasets.
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