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Ecologists and conservation biologists often study particular
trophic groups in isolation, which precludes an explicit assessment
of the impact of multitrophic interactions on community structure
and dynamics. Network ecology helps to fill this gap by focusing on
species interactions, but it often ignores spatial processes. Here, we
are taking a step forward in the integration of metacommunity and
network approaches by studying a model of bitrophic interactions
in a spatial context. We quantify the effect of bitrophic interactions
on the diversity of plants and their animal interactors, andwe show
their complex dependence on the structure of the interaction
network, the strength of interactions, and the dispersal rate. We
then develop a method to parameterize our model with real-world
networks and apply it to 54 datasets describing three types of
interactions: pollination, fungal association, and insect herbivory.
In all three network types, bitrophic interactions generally lead to
an increase of plant and animal spatial heterogeneity by decreasing
local species richness while increasing β-diversity.

ecological networks | spatial ecology

Two major frameworks in biodiversity research are network
and metacommunity theories. The metacommunity theory

highlights the role of spatial processes in community dynamics
(1), while the theory of ecological networks highlights the role
of multitrophic interactions (2, 3). Metacommunity studies
focus generally on one particular trophic group like plants (4–
7), whereas network studies consider larger communities across
several trophic groups but are generally local (7). From the
metacommunity perspective, accumulating evidence suggests
that ecological interactions impact community composition (8–
10). From the network perspective, it is unclear whether the
reported effects of network architecture on species richness (7)
stand in spatially extended systems coupled through dispersal.
In short, we need to add a spatial component to network
studies or a network component to metacommunity studies
(11–14).
In recent years, a number of studies have begun the in-

tegration of spatial processes and multispecies interactions by
exploring community modules of two or three species (15, 16).
These studies have shown that dispersal can stabilize pairwise
trophic interactions (15), tritrophic food chains (11), and com-
petitive interactions (17). Similarly, another source of multispe-
cies stability is induced by the action of predators (18, 19).
Models at the module level have been very useful at providing

a bridge between the complexity of entire communities and the
simplicity of pairwise interactions (20). To go a step farther into
closing the circle, a few theoretical papers have begun to study
the role of spatial processes in models of entire ecological net-
works (13, 14, 21, 22). Here, we follow the same avenue, focusing
on bitrophic ecological networks such as those networks de-
scribing pollination or herbivory between plants and insects. Our
aim is to understand to what degree network structure affects the
metacommunity dynamics of the two interacting groups.
We will use the neutral metacommunity model in the work by

Hubbell (4) as our baseline reference. This minimal model en-
capsulates the combined role of dispersal limitation and sto-
chasticity in metacommunity dynamics. Next, we will extend this
framework by adding a deterministic component emerging from
the nonrandom structure of bitrophic interaction networks.

Comparing the outputs of the extended model and the neutral
one will allow us to assess the impact of bitrophic interactions on
the composition and dynamics of the metacommunity.
When they act differentially among community members,

bitrophic interactions induce fitness differences among individ-
uals. For instance, if pollinators preferentially pollinate flowers
with short corollas, flowers with long corollas will tend to pro-
duce fewer seeds and will be progressively filtered out of the
plant community. Phrased in the terms of metacommunity the-
ory, bitrophic interactions act as an environmental filter for some
community members if these members suffer greater damages
from antagonists or benefit less from mutualists than their
competitors (23–25). Bitrophic interactions should, thus, de-
crease species richness.
However, bitrophic interactions can stabilize the coexistence of

different species if different community members partition biotic
resources (mutualists) or threats (antagonists) by having different
specialized interactions. For instance, assume that plant species A
is locally abundant and sustains a large population of herbivore
species B. If such species B exclusively feeds on plants of species
A, then individuals of a rare plant species C may have a compet-
itive advantage against individuals of species A in suffering less
from herbivory (18, 26, 27). Herbivory should now stabilize the
coexistence of the two plant species. Inversely, the diversity of
plants creates a diversity of food sources for the animals. This
diversity can also increase the likelihood of coexistence of dif-
ferent animal species (28). More generally, bitrophic interactions
are likely to affect the composition of a trophic group (e.g., plants)
just like abiotic conditions (29). Their overall effect on community
richness will depend on a balance between their filtering and
stabilizing (niche partitioning) effects. This overall impact of
bitrophic interactions on community richness is, thus, likely to
depend on the architecture of the interaction network, just as
the heterogeneity in the abiotic environment contributes to the
assembly of each trophic group.
Here, we first perform extensive individual-based simulations

to explore how interactions between two trophic groups can alter
their composition and dynamics (Box 1). We consider two types
of interactions independently: mutualistic (e.g., plants and their
pollinators) and antagonistic (e.g., plants and their insect her-
bivores). Each trophic group experiences stochastic lottery-like
dynamics (30) in a lattice of patches connected by dispersal.
Interactions between the trophic groups are controlled by two
trait-based rules used in isolation or combined: a threshold rule
and a matching rule (31) (Box 1). Exploring a wide range of
combinations of model parameters, we investigate under which
circumstances bitrophic interactions have an overall positive or
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negative effect on community richness and other community
characteristics.
After assessing the potential range of effects of bitrophic in-

teractions, we confront our theoretical findings to real data of
ecological networks. We, hence, develop a statistical method
based on approximate Bayesian computation (ABC) (32, 33)
(Box 2) to fit our model to 54 bipartite networks (23 plant–pol-
linator networks, 16 plant–fungi networks, and 15 plant–insect

herbivore networks) (SI Appendix). This procedure consists in
simulating the model with a wide range of parameter values and
retaining the parameter values that produce interaction networks
that are closest to real ones. The combination of our theoretical
exploration and empirical testing enables us to determine the
likely impact of community-wide bitrophic interactions on com-
munity structure in nature and pinpoint knowledge gaps where
efforts should be concentrated in the near future.

Box 1. Description of the Model
We model the dynamics of two trophic groups: plants and
animals. The groups occupy a regular grid of l × l patches.
Each patch contains Np plants and Na animals and follows
stochastic dynamics with dispersal from the four neighboring
patches at rates mp and ma and long distance dispersal from
a pool of species at rates μp and μa (SI Appendix, Fig. S1). We
consider that the patches are constantly saturated, and
therefore at each generation, Np and Na descendants are
drawn at random in a lottery manner (30) and replace their
parents. For plants (similarly for animals replacing subindex p
by a), the descendants of a patch P can come from either the
present patch P, from one of the four neighboring patches, or
from the regional pool. The respective probabilities of these
three scenarios are 1/(1 + mp + μp),mp/(1 + mp + μp), and μp/
(1 + mp + μp), respectively. We use regional pools of 300
species with equal species regional abundances. Immigrants
from the regional pool, hence, belong to a randomly drawn
species (of 300). Immigrants from the neighboring patches
have the species identity of a randomly drawn individual in the
neighboring patches. Descendants coming from the local
patch have a species identity drawn at random with a proba-
bility proportional to the product of the local species abun-
dance and its seed (egg) production. This seed (egg)
production is affected, in part, by the local interaction with the
other group as defined next.
Case 1: Mutualistic Interactions. For the group of plants (animals),
the seed (egg) production fi

p (fi
a) of an individual of species i is

equal to

f pi ¼ �
1− cp

�þ cp
XSa
j¼1

naj IijPSp

k¼1

�
npk
Np

XSa

l¼1
nal Ikl

� [1]

and

f ai ¼ ð1− caÞ þ ca
XSp
j¼1

npj
Np

IjiPSa

k¼1

nak
Na

Ijk
[2]

where cp (ca) is the component of seed (egg) production that
depends on the interaction with the other trophic group,
npi ðnai Þ is the number of individuals of species i in the group
of plants (animals), and Iij is the interaction strength between
plant i and animal j.
For plants, the term 1 − cp in Eq. 1 means that seed pro-

duction is partially uncoupled from the interaction with ani-
mals (e.g., because of selfing). Eq. 1 also describes that plants
compete to attract animals: a plant i interacts with animals at
a total rate of

PSa
j¼1n

a
j Iij. It will then receive a fraction of plant–

animal interactions proportional to the term after cp.
For animals, Eq. 2 is similarly constituted of two terms:

the uncoupled egg production 1 − ca and the coupled one,

where the term after ca describes the competition among
animals to obtain the reward offered by plants. An animal i
will receive from a plant j a fraction of its reward pro-
portional to Iji=½

PSa
k¼1ðnak=NaÞIjk�. This animal i will, thus,

obtain a total reward from the plants given by the term after
ca (SI Appendix).
If cp and ca equal zero or if interactions between plants

and animals are equivalent among species (i.e., Iij is con-
stant), the dynamics of plants and animals are purely neutral
and uncoupled.
Case 2: Antagonistic Interactions. For antagonistic interactions, the
seed production fi

p is similarly modeled by

f pi ¼ sup

8>>><
>>>:
0; 1− cp

PSa

j¼1n
a
j IijPSp

k¼1

�
npk
Np

XSa

l¼1
nal Ikl

�
9>>>=
>>>;

[3]

where sup{0; x} equals zero if x < 0 and x otherwise. f ai is given
by Eq. 2.
Interaction Rules. Each species has a set of T independent trait
values randomly drawn from the interval [0, 1] according to
a uniform probability density function. These trait values de-
termine the interaction strength between plants and animals.
For each of the T traits, one of two interaction rules is used.
The first interaction rule is a threshold rule: an animal j with

trait value taj can interact with a plant i with trait value tpi only if
taj ≥ tpi . This rule increases the nestedness of the network:
animals with low trait values are more specialist and interact
with the subset of plants that have low trait values, whereas
animals with large trait values are more generalist and interact
with a larger subset of plants having both low and large trait
values (45). Similarly, plants with large trait values are spe-
cialists and interact only with animals with large trait values,
whereas plants with low trait values interact with a larger
subset of animals.
The second interaction rule is a matching rule: an animal j

with trait value tj
a interacts with a plant i with trait value ti

p

with a probability proportional to exp½− ðtaj − tpi Þ2=2σ2�, where
σ is a parameter measuring the specificity of the interaction.
This rule increases the specificity of plant–animal interactions:
plants and animals interact more if they have similar trait
values. Consequently, plants (animals) with different trait val-
ues tend to interact with different subsets of animals (plants).
In this rule, the smaller σ is, the more specific the interactions
will be; with these two interaction rules and less than four in-
dependent traits, various topological properties of real eco-
logical networks can be reproduced as shown by ref. 31.
Our model formulation presents several advantages (di-

rectly comparable with a neutral model, simulation speed, and
control of community size) (SI Appendix), but it also makes
a number of assumptions that need to be taken into account
(Discussion).
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Box 2. ABC Procedure
We compared our model to real data using an approximate
Bayesian computation (ABC) (32, 33). The ABC procedure is
represented in Fig. 1. It consists in replacing the computation
of the model likelihood by simulations of this model (SI Ap-
pendix). This approximation is useful when likelihood formulas
are unavailable as in the present case.
The ABC procedure consists in simulating the model mul-

tiple times. For each one of these replicates, we draw the
parameter values in prior (here flat) distributions (Fig. 1A and
SI Appendix, Table S5). At the end of each simulation, a net-
work of interactions between plants and animals is simulated
(Fig. 1D). To this end, we first choose at random a patch out of
the l × l simulated patches. In this patch, Nn animals are drawn
at random, and for each of them, the plant with which it
interacts is also drawn at random with probability proportional
to npi Iij, where npi is the abundance of plant species i in the
patch and Iij is the interaction strength between plant species i
and animal species j.
Four network properties are then computed: the number of

both plant Ssp and animal SSa species sampled by this procedure,
the nestedness index of plants Nep (35), and an index of spe-
cialization ϕ defined as ϕ = 1 − Hi/ < Hi >, where
Hi ¼ −

P
nijlnðnijÞ and nij is the number of interactions be-

tween plant i and animal j divided by the total number of
interactions (< Hi > is the average of Hi computed in 100
randomized networks). The null model used consists in

randomly drawing an interaction network with the same total
number of plants, animals, and interactions and having each
interaction independently placed between a plant i and an
animal j with probability Iij ¼

P
inij

P
jnij. Note that 1 − ϕ is

close to the H′2 value in the work by Blüthgen et al. (46), but
the null model used here is different in that it does not con-
strain the number of interactions per plant and animal species.
We use these last two indices to capture the effect of the
different interaction rules on network structure: threshold
rules tend to increase Nep, whereas matching rules tend to
increase ϕ.
The properties of the simulated network are then compared

with the ones of the real network, and therefore, the closest
simulations according to these properties are retained (Fig. 1E).
These retained simulations are then used to quantify the

impact of bitrophic interactions on the composition and dy-
namics of the plant and animal groups. This quantified effect
depends on badly fitted model parameters, mainly on mp (ma)
and cp (ca), which are not well-fitted because of the limited
information content of the data used (Figs. 1F and 3 and SI
Appendix, Figs. S7–S9). Note that we used the ABC procedure
to perform an approximate Bayesian model averaging. The
goal here is neither to compare the different interaction rules
(with threshold and/or matching rules) nor obtain precise
model parameter estimates but constrain our simulations so
that they fit observed network properties.

A B C

F E D

Draw

Fig. 1. Approximate Bayesian computation (ABC) procedure. (A) Model parameter values (symbolized by ×) are randomly drawn in flat prior dis-
tributions (symbolized by rectangles). (B) A neutral metacommunity is simulated to form the benchmark. A grid of patches (circles) is connected by
dispersal (arrows). Plants and animals (lower and upper semicircles, respectively) coexist in the patches, but they do not interact. Various community
statistics are computed in this neutral benchmark ðSnp; Sna ;Hn

p;H
n
a ; . . .Þ. (C) The metacommunity dynamics are pursued including the bitrophic interactions

(dotted lines between the half circles) this time. Various community statistics are computed in this coupled metacommunity ðSip; Sia;Hi
p;H

i
a; . . .Þ. (D) A

network of bitrophic interactions is simulated in a randomly chosen patch of the metacommunity, and its properties are computed (Sp, Sa, Nep, ϕ). (E) The
properties of the simulated networks (small gray ×) are compared with those properties of the real data (large black ×), and the simulations with the best
match are selected (gray circles). (F) Selected simulations are used to assess the effect of bitrophic interactions. This assessment is done by comparing the
final metacommunity structure in the simulation (C) with the one of the neutral benchmark (B). These bitrophic effects are plotted against the twomodel
parameters explaining the bulk of their variation: mp and cp for plants and ma and ca for animals.
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Results
In this section, we will use the term animal to designate a plant’s
interactor, although it can be a fungus in the datasets studied.

Model Results. Our simulations show that mutualistic and antago-
nistic interactions can either increase or decrease local plant and
animal species richness (Fig. 2 and SI Appendix, Fig. S4) de-
pending on the balance between biotic filtering and niche parti-
tioning. This balance, in turn, depends on the model parameters
describing the structure of the interaction network, the dispersal
rate across patches (mp and ma), and the strength of the inter-
actions (i.e., the component of seed or egg production—cp and ca,
respectively—accounted by the interaction with the other trophic
group) (SI Appendix, Tables S1 and S2).
The stabilizing effect (34) of bitrophic interactions is induced,

for plants, by the heterogeneity among animals in their plant
preferences and for animals, by the diversity of plant resources.
It can be detected by looking at the variance in trait values
among community members. Communities tend to gain species
with overdispersed traits during the coupled dynamics (SI Ap-
pendix, Variance Test).
The other effect of bitrophic interactions is to filter out com-

munity members by producing fitness differences among individ-
uals. We detect this filtering effect by computing the average
interaction strength between plant and animal individuals. When
mutualistic interactions have a negative impact on plant (animal)
species richness, the average interaction strength increases com-
pared with the neutral case. The surviving plants (animals) are
those plants that encounter more mutualists. For antagonistic
interactions, the average interaction strength decreases (increases)
for plants (animals) when bitrophic interactions have a negative
impact on plant (animal) species richness. The surviving plants are

those plants that encounter fewer antagonists, whereas the sur-
viving animals are those animals that have many interactions (SI
Appendix, Coupling Test).
Bitrophic interactions, however, principally affect rare species:

in 96% of the cases, the similarity in species composition be-
tween trophically coupled and uncoupled plant sets is larger
when an abundance-weighted measure is used (SI Appendix).
Fig. 2 illustrates how the net effect of bitrophic interactions on

local plant richness Sp depends on the plant dispersal ratemp and
the component of seed production dependent on bitrophic
interactions cp. In Fig. 2, various extremes of network structure
are illustrated. These contrasting network architectures are
produced with a threshold rule, a matching rule with high trait
specificity, and a matching rule with low trait specificity, re-
spectively. They result in nested, specialized, and generalized
networks, respectively (Box 1 has details on these interaction
rules and the resulting network structures).
Two points arising from Fig. 2 are worth mentioning. First, in the

limits of low dispersal (low mp) and weak interactions (low cp), we
recover the results shown in the work by Bastolla et al. (35)—
namely, that nested networks tend to increase plant local richness
(Fig. 2A, bottom left). Second, there is a strong interaction in the
effect of the different model parameters on the outcome of bitro-
phic interactions. This finding means that, with such a relatively
simple model, one can already produce very complex outcomes,
and therefore, the effects of bitrophic interactions on meta-
community structure and dynamics are likely to be case-specific. A
detailed interpretation of the patterns observed in Fig. 2 as well as
the effect on bitrophic interactions on other community charac-
teristics, including the animal group, can be found in SI Appendix.

Application to Real Networks. Because the theoretical exploration
of our model revealed a rich variety of possible outcomes, we
proceeded by assessing what specific patterns would emerge
when the model was fitted to real data. We, therefore, developed
a statistical technique to fit our bitrophic metacommunity model
to local networks compiled in the literature. This fitting pro-
cedure is based on ABC (32, 33) (Box 2). The information
available in the data was not sufficient to fully parameterize our
metacommunity model and hence, precisely quantify the effect
of bitrophic interactions on plant and animal richness in these
datasets. It was, however, sufficient to greatly constrain our
simulations, and therefore, the remaining variation in bitrophic
effects on plant (animal) richness was highly dependent on two
noninferred parameters: the plant (animal) dispersal rate be-
tween patches mp (ma) and the proportion of seed (egg) pro-
duction cp (ca), which depends on trophic interactions (average
R2 = 61% and 23%, respectively) (Fig. 3).
We found that bitrophic interactions are likely to decrease local

plant species richness in the three types of networks (Fig. 3 A, C,
and E), producing an increase in β-diversity (SI Appendix, Fig.
S2). The sole exception is for very weak interactions and very low
dispersal rates, where our model predicts an increase in local
diversity. In plant–pollinator networks, we can estimate cp with
the index of pollen limitation, which compares the fruit set of
freely pollinated flowers with the fruit set of encapsulated flowers.
The average of reported indices of pollen limitation for angio-
sperms in the metaanalysis in the work by Larson and Barrett (36)
is cp = 0.4. This value is an order of magnitude higher than the
value required for a positive effect of pollinators on local richness
(cp < 0.02). In plant–fungi and plant–herbivore networks, cp is
more difficult to relate to any direct empirical measure. However,
even in these cases, we can use available information to set up
some general limits to the potential range of variability in this
parameter. In the case of herbivores, for example, defoliation,
flower, and fruit consumption attributable to insects represent
above 5% each of the corresponding biomass (37). It is then likely
that cp is generally well above 0.02 in real settings.
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Fig. 2. Relative variation (in percentage) of plant α-diversity between tro-
phically coupled and uncoupled communities. α-Diversity is measured as the
local plant species richness Sp. A positive value means that trophically cou-
pled communities are species-richer than uncoupled ones. Different panels
show results for the threshold model with one trait (A and B), the matching
model with one trait and σ = 0.015 (C and D), and the matching model with
one trait and σ = 1 (E and F). A, C, and E correspond to mutualistic inter-
actions, whereas B, D, and F correspond to antagonistic interactions. Pa-
rameter values are μp = μa = 0.004, ma = 0.625, and ca = 0.16.
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From the animals’ perspective, our model predictions are more
dependent on the precise value of ca and ma (Fig. 3 B, D, and F).
A combination of larger ca and ma is required for bitrophic
interactions to lead to an increase in animal spatial structure.
Because animal interactors feed on plants, ca would likely be at
least equal to 0.1 in real settings, whereas animal dispersal rates
should be, in general, larger than those rates for plants. It is,
consequently, likely that bitrophic interactions lead in general to
an increase of animal spatial structure, although this result might
be more context-dependent than for plants. Overall, our results
suggest that, in the majority of real scenarios, bitrophic inter-
actions will decrease local plant and animal species richness,
while increasing plant and animal β-diversity. These predictions
were qualitatively similar across the different empirical networks
(SI Appendix, Figs. S11–S16) and when looking at local diversity
using Shannon’s index H (SI Appendix, Fig. S7).

Discussion
We have shown theoretically that bitrophic interactions can both
decrease or increase local plant and animal species richness,
whereas regional richness is far less affected or not affected at all
(SI Appendix). This effect of bitrophic interactions was found to
principally affect rare species. This finding implies that community
ecologists may be safe while ignoring bitrophic interactions when
looking at general trends in community composition. Neverthe-
less, if they want to truly understand the composition and dy-
namics of entire groups—not just of themost abundant species—it
may be essential to take bitrophic interactions into account.
Our integrative framework confirms the importance of net-

work structure for species richness, and it is in agreement with
other recent approaches (35, 38) (SI Appendix). Similarly, our

study supports recent calls for looking at bitrophic interactions to
understand plant community assembly and dynamics (10, 39). At
the same time, however, our results show that knowing the
structure of the interaction network is insufficient to fully predict
the magnitude of this biotic filter: a large source of variation is
explained by the properties of each trophic group and the pro-
portion of fitness impacted by bitrophic interactions (Fig. 3).
For the same network structure, the decrease in local species

richness is likely to be greater for less dispersal-limited systems
(large mp or ma) and stronger coupling between plants and
animals (large cp or ca). Our results suggest that dispersal rate
and the strength of bitrophic coupling play similar roles in
explaining variation in species richness.
By means of a computer-intensive statistical technique, we

were able to relate this complex model to real world data. We
have shown that, for realistic network structure, both mutualistic
and antagonistic interactions are likely to reduce local plant and
animal species richness and that the decrease in local species
richness and associated increase in β-diversity can be substantial
(Fig. 3 and SI Appendix, Fig. S10). Because our datasets en-
compass many different interaction types and geographical
locations, our results are likely to be general and highlight the
filtering role of bitrophic interactions at local scales. Neutral
processes have already been shown to produce spatial commu-
nity turnover (40). As shown here, this neutral spatial structuring
can be amplified with realistic architectures of bitrophic inter-
actions, with which different local assemblages will filter differ-
ent local community members. These results are consistent with
the recent analysis in the work by Pellissier et al. (41) showing
that plant sets in the Swiss Alps present evidence of spatial
structuring in traits related to pollination.
To be able to fit our model to available network data, we have

made a number of simplifications that need to be acknowledged.
First, we did not consider any spatial heterogeneity in the abiotic
environment. Including this factor would add a new source of
spatial structure in the plant and animal groups.
Second, another related simplification of our model was to

ignore any kind of tradeoffs, such as those tradeoffs between
the plant’s resistance to herbivory and its growth rate and com-
petitive ability (42). In the presence of such tradeoffs, trophic
interactions would increase plant biodiversity by equalizing the
fitness of otherwise unequal competitors (27, 34).
Third, we assumed that interactions had symmetrical effects

on the plant and animal interactions. This assumption, which is
not supported by real data on interaction networks, might be
relaxed in future studies. To this goal, we need additional data
on the fitness consequences of ecological interactions.
Fourth, our model ignored any variation in community size of

plants and animals. In particular, year to year variation in animal
community sizes could increase their impact on the plant set.
Indeed, the competition among flowers to attract pollinators
should be exacerbated in years of low pollinator abundance.
Similarly, the impact of herbivores on the plant set should be
maximal in years of high herbivore abundance. Again, a detailed
analysis would be required to explore such possibilities.
Fifth, our lottery-like modeling framework is rather atypical in

the literature on ecological networks (27, 43). The pros and cons
of such a choice are detailed in SI Appendix. It would certainly be
worth examining whether similar results were obtained with other
modeling approaches, such as Lotka–Volterra-like equations,
although this method would require solving additional challenges
(SI Appendix). The fact that we recover the results from the work
by Bastolla et al. (35) in the limit of low migration and coupling is
reassuring and suggests that this finding might be the case.
We have pointed out a number of directions worth pursuing to

better understand the combined effects of dispersal and trophic
interactions on metacommunity dynamics in real world communi-
ties. Our study represents only a first step in this direction. Despite
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Fig. 3. Variation of plant and animal local species diversity between tro-
phically coupled and uncoupled communities in simulations that best fit
observed network structure in real datasets. (A, C, and E) Relative variation
of plant α-diversity measured as local plant species richness Sp; 70%, 64%,
and 45%, respectively, of the variance is explained by the interpolation on
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fungi datasets (n = 16). (E and F) Plant–insect herbivore datasets (n = 15).
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the limitations of our approach, it illustrates how complex questions
and models can be statistically compared with real world data
through an ABC approach. It also points out that, to elaborate and
test more complicated models of spatial network dynamics, new
types of data should be concurrently gathered, informing us on the
mechanisms of network assembly, the dispersal rates of organisms,
and the impact of trophic interactions on organisms’ fitness.

Materials and Methods
Model Outputs. The two trophic groups are initialized fixing cp and ca to zero.
They are, thus, at a neutral dispersal–drift dynamic equilibrium that can be
simulated quickly by coalescence (44). The coalescence procedure consists of
tracing backward in time the genealogy of the individuals in the present.
Because all individuals ultimately have a unique common ancestor, the
number of individuals to simulate progressively decreases, making the com-
putation quicker. Starting from this reference neutral point obtained by co-
alescence, the trophically coupled dynamics of the two groups are simulated
forward in time during 100 generations (with cp and ca different from zero).
Species richness in both a single patch (local) and all of the patches together
(metacommunity) and species diversity (measured as Shannon’s index) are
recorded for both plants and animals and both before and after coupling the
two trophic groups. The turnover in plant and animal composition from one
generation to the next is also recorded (SI Appendix, Temporal Turnover). We
measure the effect of the bitrophic interactions by the relative variation of
plant and animal species richness between the coupled and uncoupled sce-
narios ΔSp ¼ ðSip − SnpÞ=Snp and ΔSa ¼ ðSia − SnaÞ=Sna (the superscripts i and n in-
dicate with and without trophic interaction, respectively). We also monitor
the relative variation of the other summary statistics in the same way.

Effect of the Interactions and Role of the Different Parameters. We performed
simulations on a grid of parameter values: μp and μa in {0.0005, 0.004},mp and

ma in {0.001, 0.005, 0.025, 0.125, 0.625}, and cp and ca in {0.01, 0.04, 0.16, 0.64,
1}. Eight different interaction rules were used based on a combination of
zero, one, or two threshold rules and zero, one, or two matching rules, and
each rule applies to independent and uncorrelated traits (hence, the number
of traits T ranged between one and four depending on the interaction rule).
Matching rules were used with σ in {0.015, 0.125, 1, 8}. For each interaction
rule and set of parameter values, 10 independent communities were simu-
lated, leading to a total of 1,300,000 simulations. We used l = 5, Np = 1,000,
and Na = 200. The results were qualitatively similar with other choices of Na

and l (SI Appendix). Simulations were run with periodic boundary conditions.
Results were similar in simulations with zero-flux boundary conditions and
lost migrants at the boundary (SI Appendix). A detailed analysis of the effect
of each model parameter as well as some community properties on the im-
pact of bitrophic interactions are provided in SI Appendix.

To assess the robustness of our results to the specific choice of the com-
ponent of seed (egg) production because of the trophic interaction, we
studied an additional model where Eq. 2 is similar to Eq. 1, finding similar
results (SI Appendix).

Compilation of Ecological Networks. Datasets were included based on two
criteria: they had to be quantitative and built from a single study site (7). In the
majority of cases, there is little information on the spatial dimension of these
sampled networks, and here, we will be assuming that they correspond in our
model to a single patch.
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