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Abstract— We derive conditions for the synchronization of
coupled nonlinear oscillators affected by distributed delays in
the interconnections. The distributed delays are characterized
by a gamma-distribution kernel with a gap. The approach is
based on the stability analysis of synchronized equilibria in
the (delays,gain) parameter space and the characterization of
the structure of the emanating solutions at the bifurcations.
The results are applied to networks of coupled Lorenz system.
In particular it is shown that, independently of the network
topology, for sufficiently large coupling gains the distribution
of the delay has a stabilizing effect on the stability of the
synchronized equilibrium.

Index Terms— Coupled oscillators, distributed delays, syn-
chronization, delayed couplings

I. INTRODUCTION

Systems of coupled nonlinear oscillators have been used to
describe a variety of phenomena in different fields of science
ranging from electric network modeling to brain activity
behavior. The emergence of synchronization in networks of
oscillators with couplings given by various types of topolo-
gies has received much attention [2], [9], [11]. The influence
of discrete fixed delays on the consensus and synchronization
of coupled subsystems is considered in [8], [5], [7]. However,
as pointed out in several studies [3], [1], [4], the behavior of
interconnected systems is often more accurately reflected by
considering distributed delays affecting their interactions.

This paper focuses on the synchronization problem in
networks of identical oscillators with couplings affected by
distributed delays. Throughout the study we consider a set of
p identical oscillators coupled via a fixed, directed network
topology. Each oscillator has a behavior described by the
following nonlinear dynamics

ẋi(t) = f(xi(t)) +Bui(t), yi(t) = Cxi(t), i = 1, . . . , p
(1)

where xi ∈ Rnx , i = 1, . . . , p, B,C> ∈ Rnx×m, and f :
Rn 7→ Rn is twice continuously differentiable.

Assumption 1: We assume that for ui = 0 the system has
at least one unstable equilibrium of focus type, which we
denote by x∗ in what follows.
The network topology is described by the directed graph

G(V,E,G) (2)
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characterized by the node set V = {1, . . . , p}, a set of
edges E where (k, l) ∈ E if and only if αk,l 6= 0, and a
weighted adjacency matrix G with zero diagonal entries and
non-diagonal entries equal to αk,l. Obviously, each vertex
corresponds to an oscillator and the edges describe the
coupling strength between them. Precisely, we couple the
systems (1) by means of the control law

ui(t) = k

(
p∑
l=1

αi,l

∫ ∞
0

g(θ)(yl(t− θ)− yi(t))dθ

)
,

i = 1, . . . , p,

(3)

where k > 0 represents the gain parameter and g(·) stands
for the gamma-distributed delay with a gap kernel given by

g(ξ) =


0, ξ < τ,

(ξ−τ)n−1e
− ξ−τ

T̄

Tn(n−1)! , ξ ≥ τ,
(4)

where n ∈ N, T > 0 and τ ≥ 0. Note that g(ξ) ≥ 0
for all ξ ≥ 0 and

∫∞
0
g(ξ)dξ = 1. A motivation for the

consideration of this type of delay distribution can be found
in [6].

The coupled system (1)-(3) has an equilibrium

(x∗, . . . , x∗) ∈ Rn×p, (5)

which we denote the synchronized equilibrium. In what
follows we perform a stability analysis of the equilibrium (5)
in the parameter space (k, T, τ), characterize the emanating
solutions in the bifurcations and apply these results to
networks of coupled Lorenz systems.

II. PRELIMINARIES

The following assumptions are supposed to hold.
Assumption 2: The graph G is strongly connected.
Assumption 3: The adjacency matrix G is stochastic i.e.

p∑
l=1

αi,l = 1, i = 1, . . . , p.

The first assumption is natural in the context of synchroniza-
tion while the second assumption will be motivated in the
sequel.

We recall that Perron-Frobenius theorem for stochastic
matrices assures that

1) G has a simple eigenvalue equal to 1 and [1, . . . , 1]> is
the corresponding right-eigenvector.

2) The left eigenvector γ = [γ1, . . . , γp] associated with
the eigenvalue 1 may be chosen such that γi > 0, 1 ≤
i ≤ p and

∑p
i=1 γi = 1.



3) All eigenvalues of G have modulus smaller than or
equal to 1.

In what follows we denote the eigenvalues of G as
λi(G), i = 1, . . . , p, where we take the following conven-
tion.

Convention 1: λ1(G) = 1.
Following the coordinate transformation in [5] we can bring
the system (1) and (3) in the form

ẋ1(t) = f(x1(t))

+BkC

(
p∑
l=1

α1,l

)∫ ∞
0

g(θ)(x1(t− θ)− x1(t))dθ

+BkC

p∑
l=1

α1,l

∫ ∞
0

g(θ)el(t− θ)dθ,

 ė2(t)
...

ėp(t)

 =

 f(x1(t) + e2(t))− f(x1(t))
...

f(x1(t) + ep(t))− f(x1(t))

−

k





p∑
l=1

α2,l

. . .
p∑
l=1

αp,l


⊗BC


 e2(t)

...
ep(t)



+ kG̃⊗BC


∫∞
0
g(θ)e2(t− θ)dθ

...∫∞
0
g(θ)ep(t− θ)dθ

−

k



p∑
l=1

α1,l −
p∑
l=1

α2,l

...
p∑
l=1

α1,l −
p∑
l=1

αp,l


⊗BC


·

∫ ∞
0

g(θ)(x1(t− θ)− x1(t))dθ,

(6)

where ei = xi − x1, i = 2, . . . , p. As in [5], Assumption
3 guarantees the existence of synchronized solutions (e2 =
. . . = ep = 0 implies ė2 = . . . ėp = 0).

III. STABILITY ANALYSIS OF SYNCHRONIZED
EQUILIBRIA

Linearizing the system (1) and (3) around the synchronized
equilibrium (x∗, . . . , x∗), we obtain v̇1(t)

...
v̇p(t)

 = I ⊗ (A−BkC)

 v1(t)
...

vp(t)


+ kG⊗BC


∫∞
0
g(θ)v1(t− θ)dθ

...∫∞
0
g(θ)vp(t− θ)dθ

 ,
(7)

where A =
∂f

∂x
(x∗).

A. Characteristic equation

The characteristic function of (7) is given by

f(s, k, T, τ) = detF (s, k, T, τ), (8)

where the characteristic matrix F is defined by

F (s, k, T, τ) = I⊗ (sI−A+kBC)−G⊗kBC e−sτ

(1 + sT )n
.

(9)
Using the factorization G = PΛP−1, where Λ ∈ Cp×p is
triangular and P ∈ Cp×p, the characteristic function may be
decomposed as

f(s, k, T, τ) =

p∏
i=1

fi(s, k, T, τ), (10)

where

fi(s, k, T, τ) = detFi(s, k, T, τ),

Fi(s, k, T, τ) = sI −A+ kBC − kBCλi(G)
e−sτ

(1 + sT )n
,

i = 1, . . . , p.
(11)

We note that each function fi(s, k, T, τ) may be rewritten

fi(s, k, T, τ) =

p∑
l=0

Ql(s, k)

(
e−sτ

(1 + sT )n

)l
(12)

where Ql, l = 1, . . . , p, are polynomials satisfying

degQ0(s) > degQl(s), l = 1, . . . , p. (13)

B. Eigenspaces and behavior on the onset of instability

We investigate the eigenspace of the characteristic matrix
(9), corresponding to a characteristic root. For reasons of
simplicity we restrict ourselves to the generic case where all
the eigenvalues of the adjacency matrix G are simple. Let
Ei be the eigenvector of G corresponding to the eigenvalue
λi(G), i = 1, . . . , p.

If for some l ∈ {1, . . . , p}, the equation

fl(s, k, T, τ) = 0

has a simple root at s = ŝ such that

Fl(ŝ, k, T, τ) V = 0, V ∈ Cn×1, (14)

then it can be verified that

F (ŝ, k, T, τ) (El ⊗ V ) = 0. (15)

This implies that the linearized system (7) has an exponential
solution ν1(t)

...
νp(t)

 = c(El ⊗ V )eλ̂t = c

 el,1V
...

el,pV

 eλ̂t, (16)

with the constant c depending on the initial conditions. In
words, in an exponential solution of (7) corresponding to a
zero of fl(s, k, T, τ), the relation between the state variables



of an individual subsystem is determined by the null vector
of Fl, while the relation between the corresponding state
variables of the different subsystems is solely determined
by the eigenvector El, corresponding to the l-th eigenvalue
of the adjacency matrix G. This implies that all modes
can be classified in at most p types, based on the relations
between the behavior of the different subsystems. Note for
example that bifurcations of the synchronized equilibrium
due to imaginary axis zeros of f1 are bifurcations where
the synchronized behavior is preserved in the emanating
solution, as E1 = [1 1 · · · 1]T .

C. Stability crossing curves in the delay parameters space
For a fixed k = k∗ we describe the stability crossing

curves T , which is the set of (T, τ) values such that (8)
has imaginary axis solutions.

As the parameters (T, τ) cross the stability crossing
curves, some characteristic roots cross the imaginary axis.
Therefore, the number of roots on the right half complex
plane are different on the two sides of the curves, from which
we may describe the parameter regions of (T, τ) in R2

+ for
the system to be stable.

Another related useful concept is the frequency crossing
set Ω, which is defined as the collection of all ω > 0
such that there exists a parameter pair (T, τ) such that
f(jω, k∗, T, τ) = 0. In other words, as the parameters T
and τ vary, the characteristic roots may cross the imaginary
axis at jω if and only if ω ∈ Ω.

Proposition 1: The crossing set Ω consists of a finite
number of bounded intervals, Ω1, Ω2, ..., ΩN .

Proof: Due to decomposition (10) we may re-
duce the study of f(jω, k∗, T, τ) = 0 to the study of
fi(jω, k

∗, T, τ) = 0. Therefore we have to study the crossing
set of functions given by (12). Since 1 + jωT 6= 0 the
equation fi(jω, k∗, T, τ) = 0 can be rewritten as

Q0(jω, k∗)(1+jωT )pn = −
p∑
l=1

Ql(s, k
∗)e−jlωτ (1+jωT )(p−l)n

Taking the modulus in the previous equation one gets

| Q0(jω, k∗) | | 1+jωT |pn≤
p∑
l=1

| Ql(s, k∗) | | 1+jωT |(p−l)n

Using | 1 + jωT |≥ 1 one can multiply each terms in the
right hand side with powers of | 1 + jωT | to obtain

| Q0(jω, k∗) |≤
p∑
l=1

| Ql(s, k∗) | . (17)

In conclusion ω ∈ Ω implies that (17) is satisfied. The
assertion follows from (13).

Proposition 2: Given any ω > 0, ω ∈ Ω, all the
corresponding T, τ satisfying fi(jω, k

∗, T, τ) = 0 can be
computed by

T = Tl =
1

ω

(
| zl(ω) |−2/n −1

)1/2
(18)

τ = τl,m =
1

ω
(−∠zl(ω)− n arctan(ωT ) + 2mπ),

m = 0,±1,±2, .... (19)

where zl(ω) satisfies | zl(ω) |< 1 and is a solution of
p∑
`=0

Q`(jω, k
∗)z` = 0. (20)

Proof: Let us consider the following variable

transformation z =
e−jωτ

(1 + jωT )n
. Then, the equation

fi(jω, k
∗, T, τ) = 0 rewrites as

p∑
l=0

Ql(jω, k
∗)zl = 0

Solving this equation in z we get the solutions
z1(ω), . . . , zh(ω). From definition, it is clear that | z |< 1
for any value of ω > 0. Therefore, the admissible solutions
are given by those zl(ω), l = 1, . . . , h with | zl(ω) |< 1.
For such zl the corresponding pair (T, τ) can be simply
computed by (18) and (19).
Note that z solving (20) can be equivalently expressed as z
being an eigenvalue of the pencil

Λ(z) := (−jωI +A− k∗BC) + z(k∗BC).

We will not restrict ∠zl(ω) to a 2π range. Rather, we allow it
to vary continuously within each interval Ωi. Thus, for each
fixed m and l, (18) and (19) represent a continuous curve. We
denote such a curve as T l,mi . Therefore, corresponding to a
given interval Ωi, we have an infinite number of continuous
stability crossing curves T l,mi , m = 0,±1,±2, .... It should
be noted that, for some m, part or the entire curve may be
outside of the range R2

+ and, therefore, may not be physically
meaningful.

The collection of all the points in T corresponding to Ωi
may be expressed as

Ti =

+∞⋃
m=−∞

h⋃
l=1

(
T l,mi

⋂
R2

+

)
.

Obviously, T =
⋃N
i=1 Ti.

D. Computation of the crossing direction

Let jω∗ be an imaginary axis characteristic root for
parameter values (T, τ) = (T ∗, τ∗), which are lying on
the stability crossing curve T l,mi . Let r be such that
fr(jω

∗, k∗, T ∗, τ∗) = 0. Introduce the following notations:

R0 + jI0 = ∂fr(s,k
∗,T,τ)

∂s

∣∣∣
s=jω∗,T=T∗,τ=τ∗

,

R1 + jI1 = ∂fr(s,k
∗,T,τ)

∂T

∣∣∣
s=jω∗,T=T∗,τ=τ∗

,

R2 + jI2 = ∂fr(s,k
∗,T,τ)

∂τ

∣∣∣
s=jω∗,T=T∗,τ=τ∗

.

If matrix
M :=

[
R1 R2

I1 I2

]
is invertible then, by the implicit function theorem the
equations {

<(fr(σ + jω, k∗, T, τ)) = 0
=(fr(σ + jω, k∗, T, τ)) = 0



locally define a function (σ, ω) 7→ (T, τ) mapping (0, ω∗) to
(T ∗, τ∗) and satisfying[

∂T
∂σ (0, ω∗)
∂τ
∂σ (0, ω∗)

]
= −M−1

[
R0

I0

]
,[

∂T
∂ω (0, ω∗)
∂τ
∂ω (0, ω∗)

]
= −M−1

[
−I0
R0

]
.

(21)

We will call the direction of the curve T l,mi that corresponds
to increasing ω the positive direction. Since the tangent of

T l,mi along the positive direction is
(
∂T

∂ω
,
∂τ

∂ω

)
, the normal

to T l,mi pointing to the left hand side of positive direction

is
(
− ∂τ
∂ω

,
∂T

∂ω

)
. Corresponding to a pair of complex con-

jugate solutions of (8) crossing the imaginary axis along
the horizontal direction, (T, τ) moves along the direction(
∂T

∂σ
,
∂τ

∂σ

)
. So, as (T, τ) crosses the stability crossing curve

from the right hand side to the left hand side, a pair of
complex conjugate solutions of (8) cross the imaginary axis
to the right half plane, if(

∂T

∂ω

∂τ

∂σ
− ∂τ

∂ω

∂T

∂σ

)
s=jω

> 0, (22)

i.e. the region on the left of T l,mi gains two solutions on
the right half plane. If the inequality (22) is reversed then
the region on the left of T l,mi loses two right half plane
solutions. Using (21) a direct computation shows that(

∂T

∂ω

∂τ

∂σ
− ∂τ

∂ω

∂T

∂σ

)
s=jω

=
(R2

0 + I20 )(R2I1 −R1I2)

(R1I2 − I1R2)2
.

This brings us to the following result.
Proposition 3: Let ω ∈ Ωr ⊂ Ω and (T, τ) ∈ Ti such

that jω is a simple solution of the characteristic equation
fr(s, k

∗, T, τ) = 0. Then as (T, τ) crosses a stability
crossing curve T l,mi from the right-hand side to the left-hand
side, a pair of solutions of (8) crosses the imaginary axis to
the right, through the gate s = ±jω if R2I1 − R1I2 > 0.
The crossing is to the left if the inequality is reversed.

IV. APPLICATION TO COUPLED LORENZ SYSTEMS

In this section the nonlinear oscillators (1) are specified
as Lorenz systems: ẋi,1(t) = σ(xi,2(t)− xi,1(t)),

ẋi,2(t) = rxi,1(t)− xi,2(t)− xi,1(t)xi,3(t) + ui,1(t),
ẋi,3(t) = −bxi,3(t) + xi,1(t)xi,2(t) + ui,2(t),{
yi,1(t) = xi,2(t),
yi,2(t) = xi,3(t)− r, i = 1, . . . p,

(23)
where ui = [ui,1 ui,2]T , yi = [yi,1 yi,2]T . The parameter
values are given by

σ = 10, r = 28, b = 8/3. (24)

Note that for ui ≡ 0 each Lorenz system has three equilibria
given by

(0, 0, 0),
(
±
√
b(r − 1),±

√
b(r − 1), r − 1

)
, (25)

the latter two corresponding to unstable foci. Thus, Assump-
tion 1 holds. Furthermore, with the parameter values (24) it
exhibits a chaotic attractor [10].

If we linearize the coupled system (23) and (3) around the
synchronized equilibrium

(x∗, . . . , x∗), x∗ = (±
√
b(r − 1),±

√
b(r − 1), r − 1),

(26)
then we obtain the linear system (7), where the matrices are
specified as

A =

 −σ σ 0

1 1 ∓
√
b(r − 1)

±
√
b(r − 1) ±

√
b(r − 1) −b

 ,
B = C> =

 0 0
1 0
0 1

 .
It is easy to show that the stability of the linearized

system does not depend on which equilibrium x∗ in (26)
is considered, Therefore, we will restrict ourselves to the
one in the positive octant.

In what follows we analyze the stability properties of the
synchronized equilibria (26) in the (k, T, τ) parameter space.
First we study the asymptotic behavior for large values of
the gain parameters in §IV-A. For the standard parameters
(24) this will allow us to make assertions about stability
regions, stability switches and emerging behavior, which do
not depend on the network topology. Next we present a
numerical example in §IV-B.

A. Asymptotic behavior for large gain values

For T = 0 the behavior of the stability crossing curves for
large gain values is described by the following result from
[5].

Theorem 1: Consider a network of coupled Lorenz sys-
tems (23) with parameters (24) and coupling (3). Assume
that T = 0. Then there exists a number k̂ > 0 and a function

τ∗ : [k̂, ∞]→ R+, k 7→ τ∗(k), (27)

satisfying the following properties:
1) there is a constant k̃ > k̂ such that for every k > k̃, the

synchronized equilibrium has two characteristic roots in
the open right half plane for all τ ∈ [0, τ∗], while it
is asymptotically stable for τ ∈ (τ∗, τ∗ + ε), with ε
sufficiently small;

2) at τ = τ∗ a synchronization preserving Hopf bifurcation
occurs;

3) for all k ∈ [k̂, ∞] we can factor

τ∗(k) =
υ(k)

k
where lim

k→∞
υ(k) = 0.586004. (28)



Furthermore, the number k̂ and the function (27) are inde-
pendent of the number of subsystems and of the network
topology.

The following theorem shows that the qualitative behavior
for large values of k is significantly different if T 6= 0.

Theorem 2: Consider a network of coupled Lorenz sys-
tems (23) with parameters (24) and coupling (3). Assume
that T > 0. Then there is a constant k̂ such that for every
k > k̂, the synchronized equilibrium is asymptotically stable
independently of τ ≥ 0.

Proof: Part 1: We first show that for τ = 0 all
characteristic roots are in left half plane for sufficiently large
k.

Let i ∈ {1, . . . , p}. As k → ∞ the function
fi(s, k, T, 0)

k2
= detNi(s, k), with Ni(s, k) =

s+ σ −σ 0

− 1
k

s+1
k
−
(

λi(G)
(1+st)n

− 1
) √

b(r−1)

k

−
√
b(r−1)

k
−
√
b(r−1)

k
s+b
k
−
(

λi(G)
(1+sT )n

− 1
)
 ,

uniformly converges on compact subsets of C to the function(
1− λi(G)

(1+sT )n

)2
(s+ σ). (29)

From Rouché’s theorem it follows that, as k → ∞, 2n + 1
zeros of fi(s, k, T, 0) converge pair-wise to the 2n+ 1 zeros
of (29) (taking multiplicity into account). Similarly, letting

s̃ =
s

k
we get

fi(s̃k, k, T, 0)

k3
= det(s̃I − Pi(s̃, k)), where

Pi(s̃, k) =
−σ
k

σ
k

0

1
k

− 1
k
+
(

λi(G)
(1+s̃kT )n

− 1
)

−
√
b(r−1)

k√
b(r−1)

k

√
b(r−1)

k
− b
k
+
(

λi(G)
(1+s̃kT )n

− 1
)
 .

Thus, fi(s̃k,k,T,0)
k3 uniformly converges on compact sets in

the s̃-plane to s̃(s̃+ 1)2. Rouché’s theorem then implies that
for sufficiently large k the function fi(s, k, T, 0) has two
zeros equal to k.s̃1,2, where

lim
k→∞

s̃1,2 = −1,

hence they move off the infinity without leaving the open
left half plane.

The function fi(s, k, T, 0) has exactly 2n + 3 zeros,
induced by rank(BC) = 2. We conclude from the previous
observations that all these zeros are in the open left half
plane for large k if the zeros of (29) are in the open left half
plane. This is the case for i ∈ {2, . . . , p}. The case i = 1
deserves special attention, since for λ1(G) = 1, (29) has
two (rightmost) zeros equal to zero. The latter means that
two zeros of f1(s, k, T, 0) approach the origin as k → ∞.
It remains to show that these approach the imaginary axis
from the left.

With ŝ = ks we define g(ŝ, k) := f1
(
ŝ
k , k, T, 0

)
. By the

expansion(
1

(1 + ŝT/k)n
− 1

)
= − ŝTn

k
+O

((
ŝTn

k

)2
)

and, again, an application of Rouché’s theorem, it follows
that, as k → ∞, two zeros of g(·, k) converge to the
finite eigenvalues of the pencil −A + ŝ(Tn)BC. With the
parameters (24) these eigenvalues are given by ŝ1,2 =
1
Tn (−1.333 ± 1.926j). We conclude that the two zeros of
f1(s, k, T, τ) that converge to the origin as k →∞ satisfy

s1,2 =
1

k
ŝ1,2 +O

(
1

k2

)
,

hence, <(s1,2) < 0 for large k.
Part 2: We show that for large values of k eigenvalues

cannot cross the imaginary axis when varying parameter τ .
The theorem then follows from the stability for τ = 0.

The equation
fi(jω, k, T, τ) = 0

is equivalent to

det

(
I − (jωI −A+ kBC)−1kBCλi(G)

e−jωτ

(1 + jωT )n

)
= 0.

A necessary solvability conditions is given by

ρ

(
(jωI −A+ kBC)−1kBC

λi(G)

(1 + jωT )n

)
= 1,

with ρ(·) the spectral radius. This condition is always vio-
lated for large k. Indeed, in the complex plane the nonzero
eigenvalues of the matrix(

j
ω

k
I − A

k
+BC

)−1
BCλi(G), (30)

converge to the curve

Ω ≥ 0 7→ 1

jΩ + 1
λi(G)

as k →∞, uniformly in the parameter ω ≥ 0. Furthermore,
we have: ∣∣∣∣ 1

1 + jΩ
λi(G)

∣∣∣∣ ≤ |λi(G)| ≤ 1, ∀Ω ≥ 0

and
1

|(1 + jωT )n|
< 1, ∀ω > 0.

It follows that zeros on the imaginary axis are not possible
for large values of k.

B. Numerical example
We consider a ring topology with unidirectional coupling,

described by the adjacency matrix

G =


0 · · · 0 1
1 0

. . . . . .
1 0

 ∈ Rp×p, (31)

which has the following properties:

λl(G) = ej
2π(l−1)

p , El =


1

e−j
2π(l−1)

p

...

e−j
2π(p−1)(l−1)

p





for l = 1, . . . , p.
If (14) is satisfied for ŝ = jω, ω > 0, then the emanating

solution (16) becomes

 ν1(t)
...

νp(t)

 = c



V ejωt

V ejωt−
2π(l−1)

p

V ejωt−
4π(l−1)

p

...

V ejωt−
2(p−1)π(l−1)

p

 . (32)

It can be interpreted as a traveling wave solution, where
the agents follow each other with a phase shift of 360(l −
1)/p degrees. Therefore, if the characteristic root ŝ on the
imaginary axis corresponds to a Hopf bifurcation of the
original nonlinear system (23) and (3) for a critical value of
some free parameter, we refer to this bifurcation as a ”Hopf
360(l − 1)/p” bifurcation.

For p = 4 subsystems the stability regions in the (k, τ)
parameter space are displayed in Figure 1, for T = 0
(left pane) and T = 0.01 (right pane). These results are
in accordance with Theorems 1-2. Figure 2 is obtained by
zooming in on Figure 1 (right). Finally, Figure 3 shows the
stability regions in the (T, τ) parameter space for k = 12
and k = 25, computed by the approach of Section III-C.

0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

τ

k

T=0

Hopf 180

0 02 2

Hopf 90Hopf 0

0

2

0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

τ

k

T=0.01

2 2

2

0

Hopf 180

Hopf 0

Hopf 90

Fig. 1. Stability regions of synchronized equilibria of 4 coupled Lorenz
systems in a ring configuration. The numbers refer to the number of
characteristic roots in the closed right half plane. The Hopf bifurcation
curves are classified based on type of emanating solution (32).
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Fig. 2. Stability regions of synchronized equilibria of 4 coupled Lorenz
systems in a ring configuration, for T=0.01.

0 0.005 0.01 0.015 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T

τ

k=12 (full) and k=25 (dashed) 

2

2

0

k↑
Hopf 180

Hopf 90

Hopf 0

Fig. 3. Stability regions in the (T, τ) parameter space for k = 12 and
k = 25.

V. CONCLUSION

We gained qualitative and quantitative insight in the syn-
chronization of delay-coupled nonlinear oscillations, where
the latency in the coupling is modeled by shifted gamma-
distributed delays, by studying the stability regions of the
synchronized equilibrium in the (coupling gain-delay) pa-
rameter space and by characterizing the structure of the
emanating solutions in the bifurcations. Applying the results
to the particular case of coupled Lorenz systems we have
shown that, independently of the network topology, for
sufficiently large coupling gains the distribution of the delay
has a stabilizing effect on the stability of the synchronized
equilibrium. The fact that the synchronization mechanism is
a high-gain mechanism, based on dominating the destabiliz-
ing terms in the synchronization error dynamics, suggests
that a similar conclusion can be drawn for other types of
nonlinear oscillators.
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