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We derive conditions for the synchronization of coupled nonlinear oscillators affected by distributed delays in the interconnections. The distributed delays are characterized by a gamma-distribution kernel with a gap. The approach is based on the stability analysis of synchronized equilibria in the (delays,gain) parameter space and the characterization of the structure of the emanating solutions at the bifurcations. The results are applied to networks of coupled Lorenz system. In particular it is shown that, independently of the network topology, for sufficiently large coupling gains the distribution of the delay has a stabilizing effect on the stability of the synchronized equilibrium.

Synchronization of coupled nonlinear oscillators with shifted gamma-distributed delays I. INTRODUCTION

Systems of coupled nonlinear oscillators have been used to describe a variety of phenomena in different fields of science ranging from electric network modeling to brain activity behavior. The emergence of synchronization in networks of oscillators with couplings given by various types of topologies has received much attention [START_REF] Kuramoto | Chemical Oscillations, Waves and Turbulence[END_REF], [START_REF] Pecora | Master stability functions for synchronized coupled systems[END_REF], [START_REF] Strogatz | Sync: the emerging science of spontaneous order[END_REF]. The influence of discrete fixed delays on the consensus and synchronization of coupled subsystems is considered in [START_REF] Oguchi | Synchronization in networks of chaotic systems with time-delay coupling[END_REF], [START_REF] Michiels | Synchronization of delay-coupled nonlinear oscillators: An approach based on the stability analysis of synchronized equilibria[END_REF], [START_REF] Morȃrescu | Consensus with constrained convergence rate and time-delays[END_REF]. However, as pointed out in several studies [START_REF] Macdonald | Biological delay systems: linear stability theory[END_REF], [START_REF] Insperger | Semi-discretization of time-dely systems[END_REF], [START_REF] Michiels | Consensus problems with distributed delays, with application to traffic flow models[END_REF], the behavior of interconnected systems is often more accurately reflected by considering distributed delays affecting their interactions.

This paper focuses on the synchronization problem in networks of identical oscillators with couplings affected by distributed delays. Throughout the study we consider a set of p identical oscillators coupled via a fixed, directed network topology. Each oscillator has a behavior described by the following nonlinear dynamics

ẋi (t) = f (x i (t)) + Bu i (t), y i (t) = Cx i (t), i = 1, . . . , p (1) 
where x i ∈ R nx , i = 1, . . . , p, B, C ∈ R nx×m , and f : R n → R n is twice continuously differentiable.

Assumption 1: We assume that for u i = 0 the system has at least one unstable equilibrium of focus type, which we denote by x * in what follows. The network topology is described by the directed graph

G(V, E, G) (2) 
characterized by the node set V = {1, . . . , p}, a set of edges E where (k, l) ∈ E if and only if α k,l = 0, and a weighted adjacency matrix G with zero diagonal entries and non-diagonal entries equal to α k,l . Obviously, each vertex corresponds to an oscillator and the edges describe the coupling strength between them. Precisely, we couple the systems (1) by means of the control law

u i (t) = k p l=1 α i,l ∞ 0 g(θ)(y l (t -θ) -y i (t))dθ , i = 1, . . . , p, (3) 
where k > 0 represents the gain parameter and g(•) stands for the gamma-distributed delay with a gap kernel given by

g(ξ) =    0, ξ < τ, (ξ-τ ) n-1 e - ξ-τ T T n (n-1)! , ξ ≥ τ, (4) 
where n ∈ N, T > 0 and τ ≥ 0. Note that g(ξ) ≥ 0 for all ξ ≥ 0 and ∞ 0 g(ξ)dξ = 1. A motivation for the consideration of this type of delay distribution can be found in [START_REF] Morarescu | Stability crossing curves of shifted gamma-distributed delay systems[END_REF].

The coupled system (1)-( 3) has an equilibrium

(x * , . . . , x * ) ∈ R n×p , (5) 
which we denote the synchronized equilibrium. In what follows we perform a stability analysis of the equilibrium [START_REF] Michiels | Synchronization of delay-coupled nonlinear oscillators: An approach based on the stability analysis of synchronized equilibria[END_REF] in the parameter space (k, T, τ ), characterize the emanating solutions in the bifurcations and apply these results to networks of coupled Lorenz systems.

II. PRELIMINARIES

The following assumptions are supposed to hold. Assumption 2: The graph G is strongly connected. Assumption 3: The adjacency matrix G is stochastic i.e.

p l=1 α i,l = 1, i = 1, . . . , p.
The first assumption is natural in the context of synchronization while the second assumption will be motivated in the sequel.

We recall that Perron-Frobenius theorem for stochastic matrices assures that 1) G has a simple eigenvalue equal to 1 and [1, . . . , 1] is the corresponding right-eigenvector.

2) The left eigenvector γ = [γ 1 , . . . , γ p ] associated with the eigenvalue 1 may be chosen such that

γ i > 0, 1 ≤ i ≤ p and p i=1 γ i = 1.
3) All eigenvalues of G have modulus smaller than or equal to 1. In what follows we denote the eigenvalues of G as λ i (G), i = 1, . . . , p, where we take the following convention.

Convention 1: λ 1 (G) = 1. Following the coordinate transformation in [START_REF] Michiels | Synchronization of delay-coupled nonlinear oscillators: An approach based on the stability analysis of synchronized equilibria[END_REF] we can bring the system (1) and (3) in the form

ẋ1 (t) = f (x 1 (t)) + BkC p l=1 α 1,l ∞ 0 g(θ)(x 1 (t -θ) -x 1 (t))dθ + BkC p l=1 α 1,l ∞ 0 g(θ)e l (t -θ)dθ,    ė2 (t)
. . .

ėp (t)    =    f (x 1 (t) + e 2 (t)) -f (x 1 (t)) . . . f (x 1 (t) + e p (t)) -f (x 1 (t))    - k                   p l=1 α 2,l . . . p l=1 α p,l          ⊗ BC             e 2 (t) . . . e p (t)    + k G ⊗ BC    ∞ 0 g(θ)e 2 (t -θ)dθ . . . ∞ 0 g(θ)e p (t -θ)dθ    -          k          p l=1 α 1,l - p l=1 α 2,l . . . p l=1 α 1,l - p l=1 α p,l          ⊗ BC          • ∞ 0 g(θ)(x 1 (t -θ) -x 1 (t))dθ, (6) 
where e i = x i -x 1 , i = 2, . . . , p. As in [START_REF] Michiels | Synchronization of delay-coupled nonlinear oscillators: An approach based on the stability analysis of synchronized equilibria[END_REF], Assumption 3 guarantees the existence of synchronized solutions (e 2 = . . . = e p = 0 implies ė2 = . . . ėp = 0).

III. STABILITY ANALYSIS OF SYNCHRONIZED

EQUILIBRIA

Linearizing the system (1) and (3) around the synchronized equilibrium (x * , . . . , x * ), we obtain    v1 (t) . . .

vp (t)    = I ⊗ (A -BkC)    v 1 (t) . . . v p (t)    + kG ⊗ BC    ∞ 0 g(θ)v 1 (t -θ)dθ . . . ∞ 0 g(θ)v p (t -θ)dθ    , (7) 
where A = ∂f ∂x (x * ).

A. Characteristic equation

The characteristic function of ( 7) is given by

f (s, k, T, τ ) = det F (s, k, T, τ ), (8) 
where the characteristic matrix F is defined by

F (s, k, T, τ ) = I ⊗ (sI -A + kBC) -G ⊗ kBC e -sτ (1 + sT ) n .
(9) Using the factorization G = P ΛP -1 , where Λ ∈ C p×p is triangular and P ∈ C p×p , the characteristic function may be decomposed as

f (s, k, T, τ ) = p i=1 f i (s, k, T, τ ), (10) 
where

f i (s, k, T, τ ) = det F i (s, k, T, τ ), F i (s, k, T, τ ) = sI -A + kBC -kBCλ i (G) e -sτ (1 + sT ) n , i = 1, . . . , p. (11) 
We note that each function f i (s, k, T, τ ) may be rewritten

f i (s, k, T, τ ) = p l=0 Q l (s, k) e -sτ (1 + sT ) n l (12)
where Q l , l = 1, . . . , p, are polynomials satisfying

deg Q 0 (s) > deg Q l (s), l = 1, . . . , p. (13) 

B. Eigenspaces and behavior on the onset of instability

We investigate the eigenspace of the characteristic matrix (9), corresponding to a characteristic root. For reasons of simplicity we restrict ourselves to the generic case where all the eigenvalues of the adjacency matrix G are simple. Let E i be the eigenvector of G corresponding to the eigenvalue λ i (G), i = 1, . . . , p.

If for some l ∈ {1, . . . , p}, the equation

f l (s, k, T, τ ) = 0 has a simple root at s = ŝ such that F l (ŝ, k, T, τ ) V = 0, V ∈ C n×1 , (14) 
then it can be verified that

F (ŝ, k, T, τ ) (E l ⊗ V ) = 0. ( 15 
)
This implies that the linearized system (7) has an exponential solution

   ν 1 (t) . . . ν p (t)    = c(E l ⊗ V )e λt = c    e l,1 V . . . e l,p V    e λt , (16) 
with the constant c depending on the initial conditions. In words, in an exponential solution of ( 7) corresponding to a zero of f l (s, k, T, τ ), the relation between the state variables of an individual subsystem is determined by the null vector of F l , while the relation between the corresponding state variables of the different subsystems is solely determined by the eigenvector E l , corresponding to the l-th eigenvalue of the adjacency matrix G. This implies that all modes can be classified in at most p types, based on the relations between the behavior of the different subsystems. Note for example that bifurcations of the synchronized equilibrium due to imaginary axis zeros of f 1 are bifurcations where the synchronized behavior is preserved in the emanating solution, as

E 1 = [1 1 • • • 1] T .

C. Stability crossing curves in the delay parameters space

For a fixed k = k * we describe the stability crossing curves T , which is the set of (T, τ ) values such that (8) has imaginary axis solutions.

As the parameters (T, τ ) cross the stability crossing curves, some characteristic roots cross the imaginary axis. Therefore, the number of roots on the right half complex plane are different on the two sides of the curves, from which we may describe the parameter regions of (T, τ ) in R 2 + for the system to be stable.

Another related useful concept is the frequency crossing set Ω, which is defined as the collection of all ω > 0 such that there exists a parameter pair (T, τ ) such that f (jω, k * , T, τ ) = 0. In other words, as the parameters T and τ vary, the characteristic roots may cross the imaginary axis at jω if and only if ω ∈ Ω.

Proposition 1: The crossing set Ω consists of a finite number of bounded intervals, Ω 1 , Ω 2 , ..., Ω N .

Proof: Due to decomposition [START_REF] Strogatz | Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering[END_REF] we may reduce the study of f (jω, k * , T, τ ) = 0 to the study of f i (jω, k * , T, τ ) = 0. Therefore we have to study the crossing set of functions given by (12). Since 1 + jωT = 0 the equation f i (jω, k * , T, τ ) = 0 can be rewritten as

Q 0 (jω, k * )(1+jωT ) pn = - p l=1 Q l (s, k * )e -jlωτ (1+jωT ) (p-l)n
Taking the modulus in the previous equation one gets

| Q 0 (jω, k * ) | | 1+jωT | pn ≤ p l=1 | Q l (s, k * ) | | 1+jωT | (p-l)n
Using | 1 + jωT |≥ 1 one can multiply each terms in the right hand side with powers of

| 1 + jωT | to obtain | Q 0 (jω, k * ) |≤ p l=1 | Q l (s, k * ) | . ( 17 
)
In conclusion ω ∈ Ω implies that (17) is satisfied. The assertion follows from (13). Proposition 2: Given any ω > 0, ω ∈ Ω, all the corresponding T, τ satisfying f i (jω, k * , T, τ ) = 0 can be computed by

T = T l = 1 ω | z l (ω) | -2/n -1 1/2 (18) τ = τ l,m = 1 ω (-∠z l (ω) -n arctan(ωT ) + 2mπ), m = 0, ±1, ±2, .... ( 19 
)
where

z l (ω) satisfies | z l (ω) |< 1 and is a solution of p =0 Q (jω, k * )z = 0. (20) 
Proof:

Let us consider the following variable transformation z = e -jωτ (1 + jωT ) n . Then, the equation f i (jω, k * , T, τ ) = 0 rewrites as

p l=0 Q l (jω, k * )z l = 0
Solving this equation in z we get the solutions z 1 (ω), . . . , z h (ω). From definition, it is clear that | z |< 1 for any value of ω > 0. Therefore, the admissible solutions are given by those z l (ω), l = 1, . . . , h with | z l (ω) |< 1.

For such z l the corresponding pair (T, τ ) can be simply computed by ( 18) and ( 19). Note that z solving (20) can be equivalently expressed as z being an eigenvalue of the pencil

Λ(z) := (-jωI + A -k * BC) + z(k * BC).
We will not restrict ∠z l (ω) to a 2π range. Rather, we allow it to vary continuously within each interval Ω i . Thus, for each fixed m and l, (18) and ( 19) represent a continuous curve. We denote such a curve as T l,m i . Therefore, corresponding to a given interval Ω i , we have an infinite number of continuous stability crossing curves T l,m i , m = 0, ±1, ±2, .... It should be noted that, for some m, part or the entire curve may be outside of the range R 2 + and, therefore, may not be physically meaningful.

The collection of all the points in T corresponding to Ω i may be expressed as

T i = +∞ m=-∞ h l=1 T l,m i R 2 + .
Obviously, T = N i=1 T i .

D. Computation of the crossing direction

Let jω * be an imaginary axis characteristic root for parameter values (T, τ ) = (T * , τ * ), which are lying on the stability crossing curve T l,m i . Let r be such that f r (jω * , k * , T * , τ * ) = 0. Introduce the following notations:

R 0 + jI 0 = ∂fr(s,k * ,T,τ ) ∂s s=jω * ,T =T * ,τ =τ * , R 1 + jI 1 = ∂fr(s,k * ,T,τ ) ∂T s=jω * ,T =T * ,τ =τ * , R 2 + jI 2 = ∂fr(s,k * ,T,τ ) ∂τ s=jω * ,T =T * ,τ =τ * . If matrix M := R 1 R 2 I 1 I 2
is invertible then, by the implicit function theorem the equations

(f r (σ + jω, k * , T, τ )) = 0 (f r (σ + jω, k * , T, τ )) = 0
locally define a function (σ, ω) → (T, τ ) mapping (0, ω * ) to (T * , τ * ) and satisfying

∂T ∂σ (0, ω * ) ∂τ ∂σ (0, ω * ) = -M -1 R 0 I 0 , ∂T ∂ω (0, ω * ) ∂τ ∂ω (0, ω * ) = -M -1 -I 0 R 0 . (21) 
We will call the direction of the curve T l,m i that corresponds to increasing ω the positive direction. Since the tangent of . Corresponding to a pair of complex conjugate solutions of (8) crossing the imaginary axis along the horizontal direction, (T, τ ) moves along the direction ∂T ∂σ , ∂τ ∂σ . So, as (T, τ ) crosses the stability crossing curve from the right hand side to the left hand side, a pair of complex conjugate solutions of ( 8) cross the imaginary axis to the right half plane, if

∂T ∂ω ∂τ ∂σ - ∂τ ∂ω ∂T ∂σ s=jω > 0, (22) 
i.e. the region on the left of T l,m i gains two solutions on the right half plane. If the inequality ( 22) is reversed then the region on the left of T l,m i loses two right half plane solutions. Using (21) a direct computation shows that

∂T ∂ω ∂τ ∂σ - ∂τ ∂ω ∂T ∂σ s=jω = (R 2 0 + I 2 0 )(R 2 I 1 -R 1 I 2 ) (R 1 I 2 -I 1 R 2 ) 2 .
This brings us to the following result. Proposition 3: Let ω ∈ Ω r ⊂ Ω and (T, τ ) ∈ T i such that jω is a simple solution of the characteristic equation f r (s, k * , T, τ ) = 0. Then as (T, τ ) crosses a stability crossing curve T l,m i from the right-hand side to the left-hand side, a pair of solutions of (8) crosses the imaginary axis to the right, through the gate s

= ±jω if R 2 I 1 -R 1 I 2 > 0.
The crossing is to the left if the inequality is reversed.

IV. APPLICATION TO COUPLED LORENZ SYSTEMS

In this section the nonlinear oscillators (1) are specified as Lorenz systems: (24)

   ẋi,1 (t) = σ(x i,2 (t) -x i,1 (t)), ẋi,2 (t) = rx i,1 (t) -x i,2 (t) -x i,1 (t)x i,3 (t) + u i,1 (t), ẋi,3 (t) = -bx i,3 (t) + x i,1 (t)x i,2 (t) + u i,2 (t), y i,1 (t) = x i,2 (t), y i,2 (t) = x i,3 (t) -r, i = 1, . . . p, ( 23 
) where u i = [u i,1 u i,2 ] T , y i = [y i,1 y i,2 ] T .
Note that for u i ≡ 0 each Lorenz system has three equilibria given by

(0, 0, 0), ± b(r -1), ± b(r -1), r -1 , (25) 
the latter two corresponding to unstable foci. Thus, Assumption 1 holds. Furthermore, with the parameter values (24) it exhibits a chaotic attractor [START_REF] Strogatz | Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering[END_REF].

If we linearize the coupled system ( 23) and ( 3) around the synchronized equilibrium (x * , . . . , x * ), x * = (± b(r -1), ± b(r -1), r -1),

(26) then we obtain the linear system [START_REF] Morȃrescu | Consensus with constrained convergence rate and time-delays[END_REF], where the matrices are specified as

A =   -σ σ 0 1 1 ∓ b(r -1) ± b(r -1) ± b(r -1) -b   , B = C =   0 0 1 0 0 1   .
It is easy to show that the stability of the linearized system does not depend on which equilibrium x * in ( 26) is considered, Therefore, we will restrict ourselves to the one in the positive octant.

In what follows we analyze the stability properties of the synchronized equilibria (26) in the (k, T, τ ) parameter space. First we study the asymptotic behavior for large values of the gain parameters in §IV-A. For the standard parameters (24) this will allow us to make assertions about stability regions, stability switches and emerging behavior, which do not depend on the network topology. Next we present a numerical example in §IV-B.

A. Asymptotic behavior for large gain values

For T = 0 the behavior of the stability crossing curves for large gain values is described by the following result from [START_REF] Michiels | Synchronization of delay-coupled nonlinear oscillators: An approach based on the stability analysis of synchronized equilibria[END_REF].

Theorem 1: Consider a network of coupled Lorenz systems (23) with parameters (24) and coupling [START_REF] Macdonald | Biological delay systems: linear stability theory[END_REF]. Assume that T = 0. Then there exists a number k > 0 and a function

τ * : [ k, ∞] → R + , k → τ * (k), (27) 
satisfying the following properties: 1) there is a constant k > k such that for every k > k, the synchronized equilibrium has two characteristic roots in the open right half plane for all τ ∈ [0, τ * ], while it is asymptotically stable for τ ∈ (τ * , τ * + ), with sufficiently small; 2) at τ = τ * a synchronization preserving Hopf bifurcation occurs; 3) for all k ∈ [ k, ∞] we can factor

τ * (k) = υ(k) k where lim k→∞ υ(k) = 0.586004. (28) 
Furthermore, the number k and the function ( 27) are independent of the number of subsystems and of the network topology.

The following theorem shows that the qualitative behavior for large values of k is significantly different if T = 0.

Theorem 2: Consider a network of coupled Lorenz systems (23) with parameters (24) and coupling [START_REF] Macdonald | Biological delay systems: linear stability theory[END_REF]. Assume that T > 0. Then there is a constant k such that for every k > k, the synchronized equilibrium is asymptotically stable independently of τ ≥ 0.

Proof: Part 1: We first show that for τ = 0 all characteristic roots are in left half plane for sufficiently large k.

Let i ∈ {1, . . . , p}. As k → ∞ the function

f i (s, k, T, 0) k 2 = det N i (s, k), with N i (s, k) =     s + σ -σ 0 -1 k s+1 k -λ i (G) (1+st) n -1 √ b(r-1) k - √ b(r-1) k - √ b(r-1) k s+b k - λ i (G) (1+sT ) n -1     ,
uniformly converges on compact subsets of C to the function

1 -λi(G) (1+sT ) n 2 (s + σ). (29) 
From Rouché's theorem it follows that, as k → ∞, 2n + 1 zeros of f i (s, k, T, 0) converge pair-wise to the 2n + 1 zeros of (29) (taking multiplicity into account). Similarly, letting

s = s k we get f i (sk, k, T, 0) k 3 = det(sI -P i (s, k)), where P i (s, k) =     -σ k σ k 0 1 k -1 k + λ i (G) (1+skT ) n -1 - √ b(r-1) k √ b(r-1) k √ b(r-1) k -b k + λ i (G) (1+skT ) n -1     .
Thus, fi(sk,k,T,0) k 3

uniformly converges on compact sets in the s-plane to s(s + 1) 2 . Rouché's theorem then implies that for sufficiently large k the function f i (s, k, T, 0) has two zeros equal to k. The function f i (s, k, T, 0) has exactly 2n + 3 zeros, induced by rank(BC) = 2. We conclude from the previous observations that all these zeros are in the open left half plane for large k if the zeros of (29) are in the open left half plane. This is the case for i ∈ {2, . . . , p}. The case i = 1 deserves special attention, since for λ 1 (G) = 1, (29) has two (rightmost) zeros equal to zero. The latter means that two zeros of f 1 (s, k, T, 0) approach the origin as k → ∞. It remains to show that these approach the imaginary axis from the left.

With ŝ = ks we define g(ŝ, k) := f 1 ŝ k , k, T, 0 . By the expansion

1 (1 + ŝT /k) n -1 = - ŝT n k + O ŝT n k 2
and, again, an application of Rouché's theorem, it follows that, as k → ∞, two zeros of g(•, k) converge to the finite eigenvalues of the pencil -A + ŝ(T n)BC. With the parameters (24) these eigenvalues are given by ŝ1,2 = 1 T n (-1.333 ± 1.926j). We conclude that the two zeros of f 1 (s, k, T, τ ) that converge to the origin as k → ∞ satisfy

s 1,2 = 1 k ŝ1,2 + O 1 k 2 ,
hence, (s 1,2 ) < 0 for large k. Part 2: We show that for large values of k eigenvalues cannot cross the imaginary axis when varying parameter τ . The theorem then follows from the stability for τ = 0.

The equation

f i (jω, k, T, τ ) = 0 is equivalent to det I -(jωI -A + kBC) -1 kBCλ i (G) e -jωτ (1 + jωT ) n = 0.
A necessary solvability conditions is given by

ρ (jωI -A + kBC) -1 kBC λ i (G) (1 + jωT ) n = 1,
with ρ(•) the spectral radius. This condition is always violated for large k. Indeed, in the complex plane the nonzero eigenvalues of the matrix

j ω k I - A k + BC -1 BCλ i (G), (30) 
converge to the curve

Ω ≥ 0 → 1 jΩ + 1 λ i (G)
as k → ∞, uniformly in the parameter ω ≥ 0. Furthermore, we have:

1 1 + jΩ λ i (G) ≤ |λ i (G)| ≤ 1, ∀Ω ≥ 0 and 1 |(1 + jωT ) n | < 1, ∀ω > 0.
It follows that zeros on the imaginary axis are not possible for large values of k.

B. Numerical example

We consider a ring topology with unidirectional coupling, described by the adjacency matrix

G =      0 • • • 0 1 1 0 . . . . . . 1 0      ∈ R p×p , (31) 
which has the following properties:

λ l (G) = e j 2π(l-1) p , E l =       1 e -j 2π(l-1) p . . . e -j 2π(p-1)(l-1) p      
for l = 1, . . . , p. If ( 14) is satisfied for ŝ = jω, ω > 0, then the emanating solution (16) becomes

   ν 1 (t) . . . ν p (t)    = c         V e jωt V e jωt-2π(l-1) p V e jωt-4π(l-1) p . . . V e jωt-2(p-1)π(l-1) p         . ( 32 
)
It can be interpreted as a traveling wave solution, where the agents follow each other with a phase shift of 360(l -1)/p degrees. Therefore, if the characteristic root ŝ on the imaginary axis corresponds to a Hopf bifurcation of the original nonlinear system (23) and ( 3) for a critical value of some free parameter, we refer to this bifurcation as a "Hopf 360(l -1)/p" bifurcation. For p = 4 subsystems the stability regions in the (k, τ ) parameter space are displayed in Figure 1, for T = 0 (left pane) and T = 0.01 (right pane). These results are in accordance with Theorems 1-2. Figure 2 is obtained by zooming in on Figure 1 (right). Finally, Figure 3 shows the stability regions in the (T, τ ) parameter space for k = 12 and k = 25, computed by the approach of Section III-C. 

V. CONCLUSION

We gained qualitative and quantitative insight in the synchronization of delay-coupled nonlinear oscillations, where the latency in the coupling is modeled by shifted gammadistributed delays, by studying the stability regions of the synchronized equilibrium in the (coupling gain-delay) parameter space and by characterizing the structure of the emanating solutions in the bifurcations. Applying the results to the particular case of coupled Lorenz systems we have shown that, independently of the network topology, for sufficiently large coupling gains the distribution of the delay has a stabilizing effect on the stability of the synchronized equilibrium. The fact that the synchronization mechanism is a high-gain mechanism, based on dominating the destabilizing terms in the synchronization error dynamics, suggests that a similar conclusion can be drawn for other types of nonlinear oscillators.

  The parameter values are given by σ = 10, r = 28, b = 8/3.

  s 1,2 , where lim k→∞ s1,2 = -1, hence they move off the infinity without leaving the open left half plane.
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 123 Fig. 1. Stability regions of synchronized equilibria of 4 coupled Lorenz systems in a ring configuration. The numbers refer to the number of characteristic roots in the closed right half plane. The Hopf bifurcation curves are classified based on type of emanating solution (32).