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1. Introduction and industrial issue

Many engineering systems involve components with clearance and intermittent contact. This type of nonlinearities is
relevant for example in nuclear power plants, specifically in steam generator. In vibration analysis this type of nonlinearities
can be modeled considering piecewise linear elastic stops [29,8] or nonlinear elastic stops [7] or rigid impacts [16]. Such
nonsmooth systems have been subject of numerous investigations specially to analyze forced responses. The following
references [31,35,1,9] give a small selection of the developed procedures.

Recent works have shown that the Nonlinear Normal Modes (NNMs) constitute an efficient vibration analysis framework
for nonlinear mechanical systems from theoretical [34,15] as well as experimental [24] point of view. The NNMs can be
viewed as an extension of the concept of the normal modes in the theory of the linear systems to nonlinear ones. One of the
most attractive definitions is due to Shaw and Pierre [30] in terms of a two-dimensional invariant manifold in phase space.
This definition has the advantage that it is valid for conservative and non-conservative systems. However in case of
conservative systems, a more numerically tractable definition can be used. This definition is an extension of the definition
introduced by Rosenberg [27] and considers a NNM as a family of free motion parametrized by energy level. Hence, the
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NNMs can be computed using numerical continuation techniques of periodic solutions in conservative system. An approach
combining a shooting method to approximate the periodic orbit in time domain and the pseudo-arclength continuation
method is proposed in [25] to compute the NNMs. Another methodology combining the Harmonic Balance Method (HBM)
to approximate the periodic orbit and the Asymptotic Numerical Method (ANM) [4] as a continuation method is discussed in
[6,14] to compute the periodic solutions of dynamical systems and can be advantageously used to compute the NNMs. The
first step of this methodology is to recast the dynamical system in quadratic polynomial form before applying the HBM
resulting in optimal form to apply the ANM method. In [6], polynomial nonlinearities are considered whereas in [14] the
procedure is extended to non-polynomial nonlinearities. Other approaches exist like combining the alternating frequency/
time-domain harmonic balance method (AFT-HBM) with the pseudo-arclength continuation method to compute mostly
forced response [12,9]. Note that in the last two references, the selection procedures of the number of harmonics in the HBM
procedure are proposed and investigated.

The concept of NNMs is not limited to smooth systems. Nonsmooth systems have received great attention in regard
to NNMs. Conservative piecewise linear vibratory systems were considered in [3,13] where NNMs were obtained
using the invariant manifolds form. In [21] the concept of NNMs formulated as a functional relation between the
two coordinates of the system was used to analyze a two Degrees Of Freedom (DOF) system with vibro-impact
allowing the computation of various branches of bifurcating periodic solutions with different impacting char-
acteristics. Rigid elastic stops were considered in [33] where the NNMs of a single DOF linear system with a vibro-
impact attachment were obtained by employing the method of nonsmooth transformation introduced in [26] to
approximate the periodic orbit in time domain. In [23], the family of periodic solutions were found in analytical form
for a conservative two DOF oscillator with elastic and rigid stop. In [17], a dissipative system is considered and a
Fourier series including decreasing exponential terms is used to approximate the NNMs combined with a HBM
formulation.

Though many researchers have examined the problem of computing the nonlinear normal modes for nonsmooth
systems, few tools to analyze the complete behavior of the NNMs including bifurcation diagram analysis, internal
resonances characterization and stability properties are available. In this context, the objective of this paper is to
demonstrate that a method combining the HBM method (to approximate the periodic responses) and the ANM (to
carry out the continuation of branches of periodic orbits) to analyze the NNMs of a nonsmooth system can be efficient.
As suggested in [6], the efficiency of the HBM and ANM will be ensured introducing a regularization of the nonsmooth
terms using a family of implicit polynomial. A two degrees of freedom oscillator with a bilateral elastic stop have been
used to carry out the study. It is an analogy with a simplified model of the out-of-plane bending of U-tube going
through supporting plates as shown in Fig. 1. Similar two degrees-of-freedom systems have been considered in
[3,13,23].

The paper is organized as follows. In the next section, the nonsmooth model under consideration is described and
periodic orbits with two impacts per period are investigated. Section 3 is dedicated to the description of the proposed
procedure to compute the NNM branches. A regularized model is first introduced and the HBM and ANM methods are next
described. Finally, in Section 4, the results for the NNMs are discussed in detail, analyzing the influence of the regularization
parameters.

2. Nonsmooth model under consideration

2.1. A two degrees of freedom oscillator with an elastic stop

The system under consideration is shown Fig. 1 (right side). It consists of two masses m1 and m2 connected by two linear
springs of stiffness k1 and k2. The motion of the mass m1 is limited by a bilinear elastic stop with a linear spring of stiffness K
Fig. 1. Analogy of a simplified model of a U-tube with a two degrees of freedom oscillator.
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and a gap e. The equations of motion are given by

m1
€U1ðtÞþk1U1ðtÞþk2ðU1ðtÞ�U2ðtÞÞþFðU1ðtÞÞ ¼ 0

m2
€U2ðtÞþk2ðU2ðtÞ�U1ðtÞÞ ¼ 0

(
ð1Þ

with

FðUÞ ¼
KðU�eÞ if erU

0 if �erUre

KðUþeÞ if Ur�e

8><
>: ð2Þ

where Ui denotes the displacement of the mass mi (for i¼1,2) and F denotes the bilateral contact force. Using now the
following rescaled quantities x¼ U1=e, u¼ U2=e, f̂ ¼ F=k1e and the time normalization τ¼ωt with ω¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
, Eqs. (1) and

(2) take the following nondimensional form:

€xðτÞþxðτÞþβðxðτÞ�uðτÞÞþ f̂ ðxðτÞÞ ¼ 0
δ €uðτÞþβðuðτÞ�xðτÞÞ ¼ 0

(
ð3Þ

with

f̂ ðxÞ ¼
αðx�1Þ if 1rx

0 if �1rxr1
αðxþ1Þ if xr�1

8><
>: ð4Þ

where β¼ k2=k1, α¼ K=k1, δ¼m2=m1 and ð�Þ denotes now the time derivative with respect to the new time τ.
Eqs. (3) and (4) only depend on three parameters. The two parameters β and δ characterize the linear system and α

characterizes the stop. In practice, α must be chosen large for a good representation of the stops. The gap parameter e is
reduced to one in the nondimensional model. In the sequel, we will restrict the discussion to the piecewise linear system of
Eqs. (3) and (4).

2.2. Computation of some periodic orbits

Based on the piecewise linear structure of Eqs. (3) and (4), it is possible to characterize some periodic solutions using
event-driven resolution as in [23], or using other methods as in [21,31]. We focus on the synchronous oscillations (i.e.
periodic vibration in unison: all material points of the system reach their extreme values and pass through zero
simultaneously) which corresponds to the definition of the NNM proposed by Rosenberg [27]. Periodic orbits with two
impacts per period (one impact per stop) can easily be obtained.

Starting from the equilibrium point ðx0;u0Þ ¼ ð0;0Þ, a modal line in the configuration space can be decomposed in four
branches (see Fig. 2):
�
 for 0rτrT1 where T1 corresponds to _xðT1Þ ¼ 0, _uðT1Þ ¼ 0 with the associated extreme values xðT1Þ ¼max0rτrT1xðτÞ
with xðT1Þ41 and uðT1Þ ¼max0rτrT1uðτÞ;
�
 for T1oτrT2 where T2 corresponds to xðT2Þ ¼ 0 and uðT2Þ ¼ 0;
�
 for T2oτrT3 where T3 corresponds to _xðT3Þ ¼ 0, _uðT3Þ ¼ 0 with the associated extreme values xðT3Þ ¼minT2 rτrT3xðτÞ
with xðT3Þo�1 and uðT3Þ ¼minT2 rτrT3uðτÞ;
�
 for T3oτrT4 where T4 corresponds to xðT4Þ ¼ 0 and uðT4Þ ¼ 0.
Fig. 2. Modal line with two impacts per period.
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Due to the symmetry of the system, the branches satisfy the following relations:
�
 for T1rτrT2, xðtÞ ¼ xð2T1�τÞ and uðtÞ ¼ xð2T1�τÞ;

�
 for T2rτrT3, xðtÞ ¼ �xðT2þT1�τÞ and uðtÞ ¼ xðT2þT1�τÞ;

�
 for T3rτrT4, xðτÞ ¼ �xðT3þT1�τÞ and uðτÞ ¼ xðT3þT1�τÞ
showing that T2 ¼ 2T1, T3 ¼ 3T1 and T4 ¼ 4T1. Hence, the period is equal to T ¼ T4 ¼ 4T1 and the periodic orbit is only
characterized by the first branch (i.e. only on a quarter period).

Re-writing Eqs. (3) and (4) as
�
 for �1rxðτÞr1,

€xðτÞþxðτÞþβðxðτÞ�uðτÞÞ ¼ 0
δ €uðτÞþβðuðτÞ�xðτÞÞ ¼ 0

(
ð5Þ
�
 for xðτÞZ1,

€xðτÞþð1þαÞxðτÞþβðxðτÞ�uðτÞÞ ¼ α
δ €uðτÞþβðuðτÞ�xðτÞÞ ¼ 0

(
ð6Þ
�
 for xðτÞr�1,

€xðτÞþð1þαÞxðτÞþβðxðτÞ�uðτÞÞ ¼ �α
δ €uðτÞþβðuðτÞ�xðτÞÞ ¼ 0

(
ð7Þ

the first branch is defined in two steps:

�
 for 0rτrτ1, the branch solves the equations of motion (5) with the initial conditions ð0;0; _x0; _u0Þ and the time duration
τ1 satisfies xðτ1Þ ¼ 1;
�
 for τ1rτrT1, the branch solves the equations of motion (6) with the initial conditions ð1;0; _xðτ1Þ; _uðτ1ÞÞ and the final
time T1 satisfies _xðT1Þ ¼ 0, _uðT1Þ ¼ 0.

Four unknowns ð _x0; _u0; τ1; T1Þ are needed to characterize the quarter period branch and the unknowns satisfy three
equations: xðτ1Þ ¼ 1, _xðT1Þ ¼ 0, _uðT1Þ ¼ 0. As in [23], analytic expressions of the Cauchy problems associated to Eqs. (5) and
(6) can be obtained. The expressions are not reported here for the sake of brevity. The resulting equations can be re-written
in terms of a nonlinear algebraic system. This nonlinear algebraic system has been solved using the continuation Asymptotic
Numerical Method (ANM) [4].

This approach gives access to the periodic orbits with two impacts per period of the two degrees of freedom oscillator
with an elastic stop. It will be used to validate the method based on the HBM combined with a regularization of the
nonsmooth terms using a family of implicit polynomial method which permits to compute more complicated dynamics.
3. Computation of the NNMs by HBM–ANM method

For autonomous conservative systems, a NNM may be defined as a family of periodic orbits as retained in [32,2,15]. To
compute them, we develop a method combining (as done in [6,14]) the HBM method to approximate the NNM motions and
the ANM method to give access to the branches of solution. The numerical efficiency of method proposed in [6] is here
improved by using a different order of truncature on the Fourier series representation of unknown which permits a
significant reduction of the dimension of the final algebraic system to be solved. For instance, a much higher order of
truncature will be used for the impact force than for the displacement of the masses. Another point is that the method in [6]
needs a regularization of the nonsmooth terms and this is done hereafter by using a family of implicit polynomial.
3.1. The associated two degrees of freedom oscillator with regularized elastic stop

Regularized equations of motion can be derived approximating the piecewise linear function (4) by the following implicit
polynomial of degree three (with respect to the variable f)

f ðf �αðx�1ÞÞðf �αðxþ1ÞÞþηα2x¼ 0 ð8Þ

where η denotes the regularization parameter. We will assume in the sequel that ηZ0. For η¼ 0, the possible values of f̂ ðxÞ
for any given x (see (4)) appear to be the roots of the polynomial equation (8). For ηa0 and a given set of parameter values
ðx;α;ηÞ, the polynomial equation (8) always admits a real root denoted f ðx;α;ηÞ (the expression is not given here)
4
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Fig. 3. Comparison of the piecewise-linear contact force obtained with Eq. (2) (in black) and the regularized contact force obtained with Eq. (9) (in grey) for
different values of η. Parameter values: α¼30, η¼0.005 (solid line), η¼0.05 (dashed line), η¼0.5 (dotted line).
represented in Fig. 3, which satisfies the following properties:

ðiÞ x and f ðx;α;ηÞ have the same sign;
ðiiÞ f ðx;α;ηÞ ¼ � f ð�x;α;ηÞ;
ðiiiÞ if jxj51; f ðx;α;ηÞ � ηx;
ðivÞ if jxjb1; f ðx;α;ηÞ � αðxþsignðxÞÞ:

ð9Þ

Hence, the regularized elastic stop can be viewed as an odd restoring force where the regularization parameter introduces a
linear spring with stiffness coefficient η at the neighborhood of the equilibrium point x¼0 (see Eq. (9)(iii)) and for large x
reproduces the elastic stop behavior (see Eq. (9)(iv)). Finally, the regularized equations of motion defined by

€xðτÞþxðτÞþβðxðτÞ�uðτÞÞþ f ðxðτÞ;α;ηÞ ¼ 0
δ €uðτÞþβðuðτÞ�xðτÞÞ ¼ 0

(
ð10Þ

can advantageously replace Eqs. (3) and (4) when η is small compared to spring stiffness of the underlying linear system.
By introducing z¼ ðf =α�xÞ2 as a new variable, Eq. (8) can be re-written in the quadratic form as

f �ηx� fz¼ 0 ð11Þ
and combining with Eq. (10), we obtain the following quadratic algebro-differential system:

€xðτÞþxðτÞþβðxðτÞ�uðτÞÞþ f ðτÞ ¼ 0 ð12Þ

δ €uðτÞþβðuðτÞ�xðτÞÞ ¼ 0 ð13Þ

f ðτÞ�ηxðτÞ� f ðτÞzðτÞ ¼ 0 ð14Þ

z τð Þ� f ðτÞ
α

�x τð Þ
� �2

¼ 0 ð15Þ
3.2. Computation of the branches of periodic orbits

The objective of this section is to develop a numerical tool which is able to compute the NNMs of the autonomous
conservative system (10). The methodology combines the HBM and ANM approaches as described in [6,14] to compute the
branches of periodic orbits. The main steps are described here after.

3.2.1. HBM step
The system (12)–(15) is first perturbed to obtain a quadratic algebro-differential system in a standard continuation

framework to compute a family of periodic solutions (see [2,14]). To do this, damping terms are added to the first two
equations (12) and (13) giving

€xðτÞþλ _xðτÞþxðτÞþβðxðτÞ�uðτÞÞþ f ðτÞ ¼ 0 ð16Þ

δ €uðτÞþλ _uðτÞþβðuðτÞ�xðτÞÞ ¼ 0 ð17Þ
where λ is a free parameter.
5



The initial system (12)–(15) is then embedded into a general dissipative system (14)–(17) which possesses periodic
solutions that are exactly those of the initial system if and only if λ¼0. This way, the additional parameter λ defines an
explicit control parameter to the continuation method.

Since the differential system is autonomous, a phase condition has to be added to define a unique periodic orbit [28,22].
Usually [2], this is done imposing a velocity degree of freedom, for example,

_uð0Þ ¼ 0 ð18Þ
The HBM method is now applied to the system (14)–(18).

The periodic orbit is approximated by a truncated Fourier series up to Hth term for the displacement variables u and x:

uðτÞ ¼ u0þ
XH
k ¼ 1

uk
c cos ðkωτÞþuk

s sin ðkωτÞ

xðτÞ ¼ x0þ
XH
k ¼ 1

xkc cos ðkωτÞþxks sin ðkωτÞ ð19Þ

and up to Hf th term for the nonlinear force f and the associated internal variable z:

f ðτÞ ¼ f 0þ
XHf

k ¼ 1

f kc cos ðkωτÞþ f ks sin ðkωτÞ

zðτÞ ¼ z0þ
XHf

k ¼ 1

zkc cos ðkωτÞþzks sin ðkωτÞ ð20Þ

where as classical ω denotes the (unknown) frequency (which is related to the period as T ¼ 2π=ωÞ). This formulation
permits selecting Hf≫H to improve the approximation of the nonlinear term. Indeed, f ðτÞ is almost zero when there is no
contact and reach high values during contact. Then, its Fourier series representation requires more harmonics than for u and
x.

Substituting Eqs. (19) and (20) and their second time derives into Eqs. (14)–(18) and balancing the terms of same
frequency up to Hth term in Eqs. (16) and (17) and up to Hf th term in Eqs. (14) and (15), one obtains a nonlinear algebraic
system of 2ð2Hþ1Þþ2ð2Hf þ1Þþ1 equations which can be recasted, introducing the new variables γ1 ¼ω2 and γ2 ¼ λω,
into a quadratic algebraic system of 2ð2Hþ1Þþ2ð2Hf þ1Þþ3 as

RðU¼ LðUÞþQ ðU;UÞ ¼ 0 ð21Þ
where U¼ ðUT

d;U
T
f ; γ1; γ2; λ;ωÞT denotes the 2ð2Hþ1Þþ2ð2Hf þ1Þþ4 unknown coefficients with

Ud ¼ ðu0; x0;u1
c ; x

1
c ;u

1
s ; x

1
s ;…;uH

c ; x
H
c ;u

H
s ; x

H
s ÞT ð22Þ

Uf ¼ ðf 0; f 1c ; f 1s ;…; f Hf
c ; f Hf

s ; z0; z1c ; z
1
s ;…; zHf

c ; zHf
s ÞT ð23Þ

L( � ) is a linear operator and Q( � , � ) is a quadratic operator. The expressions of L( � ) and Q( � , � ) are not given here.

3.2.2. ANM step
The solutions of the quadratic algebraic system (21) with Neq ¼ 2ð2Hþ1Þþ2ð2Hf þ1Þþ3 equations and Neqþ1 unknowns

are made of one or several continuous branches. They can be computed with the ANM continuation method.
One of the main particularities of the ANM is that it gives access to branches of solutions in the form of power series.

Assuming that we know a regular solution point U0, the branch of solution passing through this point is computed in the
form of a power series expansion (truncated at order N) of the pseudo-arclength path parameter a¼ ðU�U0ÞTU1, where U1

is the tangent vector at U0:

UðaÞ ¼U0þU1a1þ⋯þUNaN ð24Þ
The series (24) is substituted into Eq. (21) and each power of a is equated to zero, giving a series of linear systems (involving
the Jacobian matrix of R evaluated at U0) characterizing the UpðpA ½1;…;N�Þ [6].

The range of utility of the truncated power series (24) is limited because the series have a finite radius of convergence.
Once each Up ðpA ½0;…;N�Þ has been found, the range of utility amax of the series expansion (24), satisfying

JRðaÞJoεtol; 8aA ½0; amax� ð25Þ
where εtol is a user-defined tolerance parameter, can be estimated [4].

The series (24) defines for aA ½0; amax� a section of a branch of solution. A new section of a branch can be computed
restarting the whole series calculation from U0 ¼UðamaxÞ.

One of the advantages of the ANM continuation approach is that the series (24) contain many useful information which
can be advantageously used to define robust tools to detect bifurcation points [4] or to define indicator to locate and
compute very efficiently any simple bifurcation point [5].

Finally, the ANM method needs a starting point. In our case, a periodic orbit of the underlying linear system can be used
as a first point (one orbit) for initiating continuation.
6



The reader is referred to [4–6], for the details concerning the principle and the implementation of the ANM in the
classical quadratic framework.

The MANLAB interactive package [20], which supports the proposed ANM continuation algorithm including bifurcation
detection and branch switching, has been used to solve this quadratic algebraic system. Note that to reduce the numerical
cost of the ANM, Fast Fourier Transform (FFT) algorithm has been implemented to compute efficiently the quadratic term
Q ðU;UÞ with a passage in the time domain as in the Alternating Frequency-Time HBM method.

3.3. Stability analysis

The linear stability of the NNM motions is characterized using Floquet theory [11].
Rewriting Eq. (10) into a first-order dynamical system, the stability of a periodic solution p0ðτÞ ¼ ½x0ðτÞ y0ðτÞ u0ðτÞ v0ðτÞ�

of period T can be deduced from the eigenvalues of the monodromy matrix (also named the Floquet multipliers) associated
with the fundamental matrix solution of the T-periodic variational linear differential system

_π τð Þ ¼

0 1 0 0

� 1þβ
� �þ∂f

∂x
x0 τð Þ;α;η� �

0 β 0

0 0 0 1

0 0 �β
δ

β
δ

0
BBBBBB@

1
CCCCCCA
π τð Þ ð26Þ

where an analytic expression of the gradient function ð∂f =∂xÞðx;α;ηÞ is deduced from the implicit equation (8)) as

∂f
∂x

x;α;η
� �¼ 2α2ðf ðx;α;ηÞ2�xðτÞf ðx;α;ηÞÞ�α2ðxðτÞ2�1Þ�ηα2

3f ðx;α;ηÞ2�4αxðτÞf ðx;α;ηÞ
: ð27Þ

The monodromy matrix is computed over one period, using the four canonical basis vectors as initial conditions
successively.

The autonomous equations of motion equation (10) defining an Hamiltonian system, it can be shown [10] that two
Floquet multipliers are equal to one and the other two are reciprocal and complex-conjugate.

Hence, no Floquet multiplier can leave the unit circle with a nonzero imaginary part and the motion will be unstable only
if at least one Floquet multiplier is greater than one or smaller than minus one.

4. Application

This section is dedicated to the analysis of the NNM of Eqs. (12)–(15) with the following numerical values: β¼1, δ¼1 and
α¼30 using the HBM–ANM method (η, H and Hf will be given later).

4.1. About the associated linear systems

To enlighten the behavior of the NNMs, it is useful to introduce a notation for the Linear Normal Modes (LNMs) of the
various linear systems which are connected to the nonlinear system.

Three linear systems have been yet introduced: Eq. (5) which characterizes motions without impact and Eq. (6)
(respectively Eq. (7)) which characterizes motions during the impact on the right (respectively left) elastic stop. One more
linear system has to be considered. It is defined as

€xðτÞþð1þηÞxðτÞþβðxðτÞ�uðτÞÞ ¼ 0
δ €uðτÞþβðuðτÞ�xðτÞÞ ¼ 0

(
ð28Þ

and corresponds to the underlying linear system around the equilibrium position associated to Eq. (10) (the regularized
piecewise linear system).

These linear systems (Eqs. (5), (28), (6) and (7)) differ by the stiffness associated to the component x which is equal to 1,
1þη, 1þα and 1þα respectively. In the sequel, the LNMs of the linear systems (Eqs. (5), (28) and (6)) will be denoted Lp

0
, Lηp

and Lαp respectively where the integer index p refers to the first (p¼1) and second (p¼2) linear normal mode. Note that the
LNMs of Eq. (7) coincide with the LNMs of Eq. (6) and hence no distinction will made.

Finally, the last linear system considered in the sequel is the one with the mass at rest, xðτÞ ¼ 0. It is a 1-DOF system and
the associated LNM will be denoted L11 .

4.2. Validation of the HBM–ANM method

The objective here is to compare the NNMs of the piecewise linear system equations (3) and (4) obtained from the direct
computation (see Section 2.2) and from the HBM–ANM method (Section 3.2) applied to Eqs. (12)–(15).

We focus on the first NNM starting at low energy level from the LNM L1
0
(corresponding to the resonance frequency

ω2
L01
¼ ð3�

ffiffiffi
5

p
Þ=2� 2π0:098). The starting point used in the HBM–ANM method is defined from the LNM Lη1.
7



To implement the HBM–ANM method, the regularization parameter η and the harmonic numbers H and Hf have to be
chosen. At low energy level, the NNM being approximated by the LNM Lη1 (corresponding to the resonance frequency
ω2

Lη1
¼ ð3þη�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ2ηþη2

p
Þ=2), the numerical value of η can be chosen such that ðjωL01

�ωLη1
jÞ=ωL01

oϵrel. The results discussed
here after have been obtained with η¼0.005 corresponding to the relative error ϵrel ¼ 2� 10�3. The following numerical
values will be used for the harmonic numbers: H¼33 and Hf ¼ 151.

The NNMs obtained from the two approaches are compared in Fig. 4 in terms of Frequency-Energy Plot (FEP). The energy
range considered here corresponds to periodic orbits with zero or one impact on each stop per period (see Section 2.2). As
expected, the curves differ at low energy level due to the bias introduced by the parameter η. At high energy level, the
curves coincide showing that H¼33, Hf ¼ 151 is enough to correctly approximate the periodic orbits. However around the
threshold energy level (� 7� 10�1) where impacts occur, the approximation is less accurate due to the regularization
procedure of the HBM–ANM method.

The period orbits obtained from the two approaches are compared in Fig. 5 for an intermediate energy level near the
impact threshold energy level (point a in Fig. 4) and for a high energy level (point b in Fig. 4). At the first energy level (point a),
the orbits obtained from the direct computation and from the HBM–ANM method slightly differ. The direct computation
shows impacts (see Fig. 5, left) whereas the HBM–ANM method predicts x displacement in the range ��1;1½ (no impact).
However, in the configuration space, the modal curves are in very good agreement. At the second energy level (point b), the
two approaches give results in very good agreement.
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The time series of the contact forces are shown in Fig. 6. In both cases (point a) and (point b), the two approaches give
results in very good agreement.

These results show that the smoothness can be explicitly controlled and give a good approximation.
4.3. Analysis of two NNMs of the regularized piecewise linear system

The HBM–ANM method is now used to analyze in detail and on a large energy range two NNMs of the regularized
piecewise linear system of equations (12)–(15), one starting from the LNM L1

0
(the in-phase NNM) and the other starting

from L2
0
(the out-of-phase NNM). The following parameter values have been used: η¼0.005, H¼33 and Hf ¼ 151 to

implement the HBM–ANM method. We checked that the curves were only very slightly modified by increasing H from 33 to
35.

As in [18,19], the following classification of the periodic orbits will be used:
(i)
 Snmpq7 denotes symmetric orbits with n and m the number of half waves in a half period respectively for the variable
x and u. The indices p and q correspond respectively to the number of impacts for the first and second quarter period.
The sign7 indicates if the curve in the configuration space (x,u) pass through the origin with positive or negative slope.
(ii)
 Unmpq denotes unsymmetric orbits with the same meaning for the integer indices than the previous one. Besides, there
is no7 to indicate the sign of the slope because the motion is asynchronous and is represented by Lissajous curves in
the configuration space (x,u).
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4.3.1. The out-of-phase NNM
The out-of-phase NNM of the regularized piecewise linear system of Eqs. (12)–(15) is defined at low energy level by the

LNM L2
0
where the components of the associated mode shape have opposite sign. The behavior of the out-of-phase NNM is

shown in Fig. 7 in terms of Frequency-Energy Plot (FEP). Modal line of periodic orbits is also reported in Fig. 7 in the
configuration space (x,u). The tick mark locations are given at the multiples of the gap 1 in x and u direction and two vertical
lines represent the gap positions in x direction. At low energy level, the branch starts with S1100� motions (black branch)
and it coincides with the LNM Lη2 which is close to LNM L2

0
. At the impact threshold energy level, S1110� motions (one

impact per half period) take place and this type of motions persists when the energy level increases (dark gray branch) up to
the LNM Lα2 .

4.3.2. The in-phase NNM
The in-phase NNM of the regularized piecewise linear system of Eqs. (12)–(15) is defined at low energy level by the LNM

L1
0
where the components of the associated mode shape have the same sign. The behavior of the in-phase NNM is shown in

Fig. 8(a) in terms of FEP with close ups in Fig. 8(b) and (c). Similar to the out-of-phase NNM, the branch starts, at low energy
level, with S1100þ motions (black branch) and it coincides with the LNM Lη1 which is close to LNM L1

0
(see Fig. 8(a)). At very

hight energy level, S1110þ motions take place and this type of motions persists when the energy level increases (dark gray
branch) up to the LNM Lα1 (see Fig. 8(a)). Moreover and contrary to the out-of-phase NNM, more complicated dynamics are
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observed between these two states (see the close ups in Fig. 8(b) and (c)) characterized by period motions with the number
of impacts which increases and internal resonances. Three internal resonances have been identified. They emanate from
interaction of the in-phase NNM with the out-of-phase NNM. The first internal resonance is associated to the tongue
(S3121þ , S3121�) (see Fig. 8(b)) and corresponds to a 3:1 internal resonance between the in-phase and out-of-phase
NNMs. The second internal resonance is associated to the tongue (U4122) (see Fig. 8(b)) and corresponds to a 4:1 internal
resonance and the last one is associated to the tongue (S5132þ , S5132�) (see Fig. 8(c)) and corresponds to a 5:1 internal
resonance.
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It is interesting to note the absence of the internal resonance 2:1 which is due to asymmetrical spring configuration of
the model (see for example the system [25]), and also the absence of internal resonances k:1 for k45 which is due to the
stiffness parameter α of the system (see Section 4.3.3).

To understand the behavior of this complicate NNM, zooms on different branches of FEP are analyzed in detail in Figs. 9
and 16 reporting some representative periodic orbits in the configuration space (x,u) and including stability properties.

Fig. 9 shows the branches S1100þ (black curve), S1110þ (dark gray curve), S3110� (light gray curve). All the branches
characterize stable periodic motions. As already mentioned, the branch S1100þ coincides with the LNM Lη1 which ends
12



when the energy (or the amplitude) is sufficient for the first mass (x component) to reach the stop. From this point modal
straight lines in the configuration space are replaced by modal curved lines. Then the amplitude of the second mass (u
component) increases whereas that the amplitude of the first mass which is limited by the elastic stop. This behavior
implies a change of the sign of the slope of the modal line (on the neighborhood of the origin), and the apparition of a new
oscillation. The transition between S1110þ and S3110� occurs. This new oscillation increases with the energy level and the
first mass (x component) reaches the stops. A new impact occurs which corresponds to the transition between S3110� and
S3121� .

Fig. 10 shows the branches S3121� (dark gray curve), S3121þ (light gray curve) corresponding to the first tongue.
Following the branch S3121� , the energy level decreases and only the amplitude of the second mass is mainly influenced.
This type of motions persists up to the modal curved lines tend towards a modal straight line where a bifurcation point
between the in-phase NNM and the branch S1110� of the out-of-phase NNM (depicted on three-period given a S3121�
motion corresponding to dashed line named ðS3121�Þ in Fig. 10) is reached (see black square) defining an internal
resonance 3:1. At this point, the transition between S3121� and S3121þ also occurs with the change of sign of the slop of
the modal line. Increasing the energy level, the S3121þ branch vanishes when the number of impacts decreases and the
transition between S3121þ and S3111þ occurs. Note that instability zones have been detected on these branches.

Fig. 11 shows the branches S3111þ and S5111� . The transition between S3111þ and S5111� occurs at the black (þ).
This point corresponds to the increase in the oscillation of the x motion. Another important phenomenon is the appearance
of a bifurcation point (see black circle), obtained by the method described in [5]. This bifurcation point does not correspond
to an internal resonance but leads to a new branch of periodic solutions. This secondary branch is the tongue associated to
the even internal resonance 4:1 (see Figs. 12 and 13).

Fig. 12 (respectively Fig. 13) shows the branches U3111, U4111, U4120 (respectively U4121, U4122). The motions here
are no more symmetric, however some kinds of phenomenon such as variations of the number of oscillations and variations
of the number of impacts are observed, but only for a half-period. After the transition between U4121 and U4121 (see black
(þ) Fig. 13) the motions persist up to the modal curved lines tend towards a modal line where a bifurcation point between
the in-phase NNM and the branch S1110� of the out-of-phase NNM (depicted on four-period given a S4422� motion
corresponding to dashed line named ðS4422�Þ in Fig. 13) is reached (see black square) defining the internal resonance 4:1.
We can also observed that for these branches instabilities occur (with a Floquet multiplier greater than þ1).

Fig. 14 shows the branches S5110� , S5121� , S5122� on the main backbone of the FEP. These branches correspond to
symmetric motions. Oscillations occur during the first and the second half-period, and the first mass (x component) reaches
the elastic stop increasing the number of impacts (transition between S5110� , and S5121� and between S5121� and
S5122�) without changing the number of half waves. Hence internal resonance cannot occur here. The number of impacts
needs to be equal to five, which happens at the end of the branch S5122� .

Fig. 15 shows the part of the third tongue where the internal resonance 5:1 occurs (branches S5132� and S5132þ).
These two branches (in the FEP plot) are nearly identical and they are plotted separately. As observed for the 3:1 internal
resonance, a bifurcation point between the in-phase NNM and the branch S1110� of the out-of-phase NNM (depicted on
five-period given a S5132� motion) is reached. At this point, the transition between S5132� and S5132þ also occurs with
the change of sign of the slop of the modal line.

Finally the last part of the main backbone of the FEP is shown Fig. 16. The same phenomenon observed on the branch
S3111þ is observed here, so the number of impacts decreases. But instead of the apparition of an oscillation when the
energy starts to increase, which implies new impacts, the amplitude of the second mass increases and the impacts
disappear. The period motions are now close to the LNM Lα1 .

It is interesting to note that the frequency contains of the backbone of the in-phase NNM can be greater than ωLα1
(see

Fig. 10). An upper bound is given by ωL11 (see Fig. 8).
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Fig. 15. Zoom on particular branches (S5132� at left, S5132þ at right) of the FEP of the in-phase NNM, some periodic orbits are represented by modal line
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the web version of this paper.)
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4.3.3. About the parameter α
The objective of this section is to evaluate the influence of the parameter α on the dynamics richness of the in-

phase NNM.
Figs. 17 and 18 show the behavior of the in-phase NNM in terms of FEP for α¼20 and α¼50.
We note that we use for α¼50 a higher number of harmonics Hf ¼ 201 to have a better precision.
We observe that the parameter α (stiffness of the elastic stop) influences the number of internal resonance. For α¼20,

we have only the internal resonances 3:1 and 4:1 whereas for α¼50 we have the internal resonances 3:1, 4:1, 5:1 and 6:1.
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Note that the odd internal resonances appear as the turning points of the main branch whereas the even internal resonances
appear as a turning point of the secondary branches.

As already mentioned, the upper bound in terms of frequency of the backbone of the in-phase NNM is given by ωL11 . By
increasing α the asymptotic limit ωLα1

increases and tends to approach the limit ωL11 . The comparison of Figs. 17, 8 and 18
helps to understand this phenomenon that is the increase of the number of internal resonance with α.

5. Conclusion

The computation of the nonlinear normal modes of a two degrees-of-freedom with a piecewise linearity was performed
using a numerical procedure, called regularization-HBM–ANM. This procedure combines a regularization of the contact
force, the harmonic balance method and the asymptotic numerical method. The HBM was considered using Fourier series
with different order of truncation for linear and nonlinear components. Moreover, stability analysis of the periodic orbits
was carry out using Floquet theory, reminding also the specificity of 2-DOF Hamiltonian system. The regularization-HBM–

ANM method was validated comparing the results with a direct computation of the periodic solutions of the piecewise
linear system when only two impact per period occur. Some particular behavior was observed more often for the in-phase
nonlinear normal mode. The first was the absence of the internal resonance 2:1 due to the asymmetrical spring
configuration. Moreover, the stiffness of the spring of the elastic stop influences the number of internal resonance. The
NNMs tend asymptotically to the in-phase linear normal mode of the system where the spring of the elastic stop is directly
connected to the mass (in other words for a gap equal to zero). Besides, the odd internal resonances appear as the turning
points of the main branch whereas the even internal resonances appear as a turning point of the secondary branches. These
efficient numerical procedures can be used to compute NNMs of industrial structure.
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