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Abstract

A study of the Nonlinear Normal Modes (NNMs) of a two degrees of freedom
mechanical system with a bilateral elastic stop for one of them is considered.
The issue related to the non-smoothness of the impact force is handled through
a regularization technique. In order to obtain the NNM, the Harmonic Balance
Method (HBM) with a large number of harmonics, combined with the Asymp-
totic Numerical Method (ANM), is used to solve the regularized problem. The
results are validated from periodic orbits obtained analytically in the time do-
main by direct integration of the non-regular problem. The two NNMs starting
respectively from the two Linear Normal Modes (LNMs) of the associated under-
lying linear system are discussed. The frequency-energy plot is used to present
a global vision of the behaviour of the two modes. Local vision of the dynamic
of the mode are also provided using modal line plots. The first NNM shows an
elaborate dynamics with the occurence of multiple impacts per period, internal
resonance and instabilities. On the other hand, the second NNM presents a
more simple, almost linear, dynamics. The two NNMs converge asymptotically
(for an infinite energy) toward two other LNMs, corresponding to the system
with a gap equal to zero.

Keywords: Nonlinear Normal Mode, Piecewise linear system, Periodic orbit,
Stability, Harmonic Balance Method, Asymptotic Numerical Method.

1. Introduction and industrial issue

Many engineering systems involves components with clearance and inter-
mittent contact. This type of nonlinearities is relevant for example in nuclear
power plants, specifically in steam generator. In vibration analysis this type of
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nonlinearities can be modeled considering piecewise linear elastic stops [26, 8] or
nonlinear elastic stops [7] or rigid impacts [16]. Such nonsmooth systems have
been subject of numerous investigations specially to analyze forced responses.
The following references [28, 32, 1, 9] give a small selection of the developed
procedures .

Recent works have shown that the Nonlinear Normal Modes (NNMs) consti-
tute an efficient vibration analysis framework for nonlinear mechanical systems
from theoretical [31, 15] as well as experimental [22] point of view. The NNMs
can be viewed as an extension of the concept of the normal modes in the theory
of the linear systems to nonlinear ones. One of the most attractive definitions is
due to Shaw and Pierre [27] in terms of a two-dimensional invariant manifold in
phase space. This definition has the advantage that it is valid for conservative
and non-conservative systems. However in case of conservative systems, a more
numerically tractable definition can be used. This definition is an extension of
the definition introduced by Rosenberg [25] and considers a NNM as a family of
free motion parametrized by energy level. Hence, the NNMs can be computed
using numerical continuation techniques of periodic solutions in conservative
system. An approach combining a shooting method to approximate the pe-
riodic orbit in time domain and the pseudo-arclength continuation method is
proposed in [23] to compute the NNMs. Another methodology combining the
Harmonic Balance Method (HBM) to approximate the periodic orbit and the
Asymptotic Numerical Method (ANM) as a continuation method is discussed
in [6, 14] to compute the periodic solutions of dynamical systems and can be
advantageously used to compute the NNMs. Other approaches exists like com-
bining the alternating frequency/time-domain harmonic balance method (AFT-
HBM) with the pseudo-arclength continuation method to compute mostly forced
response [12, 9].

The concept of NNMs is not limited to smooth systems. Nonsmooth sys-
tems have received great attention in regard to NNMs. Conservative piecewise
linear vibratory systems were considered in [3, 13] where NNMs were obtained
using the invariant manifolds form. In [20] the concept of NNMs formulated
as a functional relation between the two coordinates of the system was used
to analyze a two Degrees Of Freedom (DOF) system with vibro-impact allow-
ing the computation of various branches of bifurcating periodic solutions with
different impacting characteristics. Rigid elastic stops were considered in [30]
where the NNMs of a single DOF linear system with a vibro-impact attachment
were obtained by employing the method of nonsmooth transformation intro-
duced in [24] to approximate the periodic orbit in time domain. In [21], the
family of periodic solutions were found in analytical form for a conservative two
DOF oscillator with elastic and rigid stop. In [17], a dissipative system is con-
sidered and a Fourier series including decreasing exponential terms is used to
approximate the NNMs combined with a HBM formulation.

Though many researchers have examined the problem of computing the non-
linear normal modes for nonsmooth systems, few tools to analyze the complete
behavior of the NNMs including bifurcation diagram analysis, internal reso-
nances characterization and stability properties are available. In this context,
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the objective of this paper is to demonstrate that a method combining the
HBM method (to approximate the periodic responses) and the ANM (to carry
out the continuation of branches of periodic orbits) to analyze the NNMs of a
nonsmooth system can be efficient. As suggested in [6], the efficiency of the
HBM and ANM will be ensured introducing a regularization of the nonsmooth
terms using a family of implicit polynomial. A two degrees of freedom oscillator
with a bilateral elastic stop have been used to carry out the study. It is an
analogy with a simplified model of the out-of-plane bending of U-tube going
through supporting plates as shown in Fig. 1. Similar two degrees-of-freedom
systems have been considered in [3, 13, 21].

The paper is organized as follows. In the next section, the nonsmooth model
under consideration is described and periodic orbits with two impacts per pe-
riod are investigated. Section 3 is dedicated to the description of the proposed
procedure to compute the NNM branches. A regularized model is first intro-
duced and the HBM and ANM methods are next described. Finally, in Section
4, the results for the NNMs are discussed in detail, analysing the influence of
the regularization parameters.

Figure 1: Analogy of a simplified model of a U-tube with a two degrees of freedom oscillator

2. Nonsmooth model under consideration

2.1. A two degrees of freedom oscillator with an elastic stop

The system under consideration is shown Fig. 1 (right side). It consists of
two masses m1 and m2 connected by two linear springs of stiffness k1 and k2.
The motion of the mass m1 is limited by a bilinear elastic stops with a linear
spring of stiffness K and a gap e. The equations of motion are given by
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{

m1Ü1(t) + k1U1(t) + k2(U1(t)− U2(t)) + F (U1(t)) = 0

m2Ü2(t) + k2(U2(t)− U1(t)) = 0
(1)

with

F (U) =







K(U − e) if e ≤ U
0 if −e ≤ U ≤ e
K(U + e) if U ≤ −e

(2)

where Ui denotes the displacement of the mass mi (for i = 1, 2) and F denotes
the bilateral contact force. Using now the following rescaled quantities x = U1

e
,

u = U2

e
, f̂ = F

k1e
and the time normalization τ = ωt with ω =

√

k1m
−1
1 ,

Eqs. (1)(2) take the following nondimensional form

{

ẍ(τ) + x(τ) + β(x(τ)− u(τ)) + f̂(x(τ)) = 0
δü(τ) + β(u(τ)− x(τ)) = 0

(3)

with

f̂(x) =







α(x− 1) if 1 ≤ x
0 if −1 ≤ x ≤ 1
α(x+ 1) if x ≤ −1

(4)

where β = k2

k1

, α = K
k1

, δ = m2

m1

and (.) denotes now the time derivative with
respect to the new time τ .

Eqs. (3)(4) only depend on three parameters. The two parameters β and δ
characterize the linear system and α characterize the stop. In practice, α must
be chosen large for a good representation of the stops. The gap parameter e is
reduced to one in the nondimensional model. In the sequel, we will restrict the
discussion to the piecewise linear system of Eqs. (3)(4).

2.2. Computation of some periodic orbits

Based on the piecewise linear structure of Eqs. (3)(4), it is possible to char-
acterize some periodic solutions using event-driven resolution as in [21], or using
other methods as in [20, 28]. We focus on the synchronous oscillations (i.e peri-
odic vibration in unison: all material points of the system reach their extreme
values and pass through zero simultaneously) which corresponds to the defini-
tion of the NNM proposed by Rosenberg [25]. Periodic orbits with two impacts
per period (one impact per stop) can easily be obtained.
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Figure 2: Modal line with two impacts per period.

Starting from the equilibrium point (x0, u0) = (0, 0), a modal line in the
configuration space can be decomposed in four branches (see Fig. 2):

• for 0 ≤ τ ≤ T1 where T1 corresponds to ẋ(T1) = 0, u̇(T1) = 0 with
the associated extreme values x(T1) = max

0≤τ≤T1

x(τ) with x(T1) > 1 and

u(T1) = max
0≤τ≤T1

u(τ);

• for T1 < τ ≤ T2 where T2 corresponds to x(T2) = 0 and u(T2) = 0;

• for T2 < τ ≤ T3 where T3 corresponds to ẋ(T3) = 0, u̇(T3) = 0 with
the associated extreme values x(T3) = min

T2≤τ≤T3

x(τ) with x(T3) < −1 and

u(T3) = min
T2≤τ≤T3

u(τ);

• for T3 < τ ≤ T4 where T4 corresponds to x(T4) = 0 and u(T4) = 0;

Due to the symmetry of the system, the branches satisfy the following rela-
tions

• for T1 ≤ τ ≤ T2, x(t) = x(2T1 − τ) and u(t) = x(2T1 − τ);

• for T2 ≤ τ ≤ T3, x(t) = −x(T2 + T1 − τ) and u(t) = x(T2 + T1 − τ);

• for T3 ≤ τ ≤ T4, x(τ) = −x(T3 + T1 − τ) and u(τ) = x(T3 + T1 − τ).

showing that T2 = 2T1, T3 = 3T1 and T4 = 4T1. Hence, the period is equal to
T = T4 = 4T1 and the periodic orbit is only characterized by the first branch
(i.e only on a quarter period).

Re-writing Eqs.(3)(4) as
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- for −1 ≤ x(τ) ≤ 1,

{

ẍ(τ) + x(τ) + β(x(τ)− u(τ)) = 0
δü(τ) + β(u(τ)− x(τ)) = 0

(5)

- for x(τ) ≥ 1,

{

ẍ(τ) + (1 + α)x(τ) + β(x(τ)− u(τ)) = α
δü(τ) + β(u(τ)− x(τ)) = 0

(6)

- for x(τ) ≤ −1,

{

ẍ(τ) + (1 + α)x(τ) + β(x(τ)− u(τ)) = −α
δü(τ) + β(u(τ)− x(τ)) = 0

(7)

the first branch is defined in two steps :

- for 0 ≤ τ ≤ τ1, the branch solves the equations of motion Eq. (5) with the
initial conditions (0, 0, ẋ0, u̇0) and the time duration τ1 satisfies x(τ1) = 1;

- for τ1 ≤ τ ≤ T1, the branch solves the equations of motion Eq. (6) with the
initial conditions (1, 0, ẋ(τ1), u̇(τ1)) and the final time T1 satisfies ẋ(T1) =
0, u̇(T1) = 0.

Four unknowns (ẋ0, u̇0, τ1, T1) are needed to characterize the quarter period
branch and the unknowns satisfy three equations: x(τ1) = 1, ẋ(T1) = 0, u̇(T1) =
0. As in [21], analytic expressions of the Cauchy problems associated to Eq. (5)
and Eq. (6) can be obtained. The expressions are not reported here for the sake
of brievety. The resulting equations can be re-written in terms of a nonlinear
algebraic system. This nonlinear algebraic system has been solved using the
continuation Asymptotic Numerical Method (ANM) [4].

This approach gives access to the periodic orbits with two impacts per period
of the two degrees of freedom oscillator with an elastic stop. It will be used to
validate the method based on the HBM combined with a regularization of the
nonsmooth terms using a family of implicit polynomial, method which permits
to compute more complicated dynamics.

3. The regularized-HBM-ANM method to compute the NNM

For conservative systems, a NNM may be defined as a family of periodic
orbits as retained in [29, 2, 15]. To compute them, the proposed method, named
regularized-HBM-ANMmethod, combines the HBMmethod to approximate the
NNM motions and the ANM method to gives access to the branches of solution.
Moreover the efficiency of the HBM and ANM will be ensured introducing a
regularization of the nonsmooth terms using a family of implicit polynomial.
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3.1. The associated two degrees of freedom oscillator with regularized elastic stop

Regularized equations of motion can be derived approximating the piecewise
linear function (4) by the following implicit polynomial of degree three (with
respect to the variable f)

f(f − α(x− 1))(f − α(x+ 1)) + ηα2x = 0 (8)

where η denotes the regularization parameter. We will assume in the sequel
that η ≥ 0. For η = 0, the possible values of f̂(x) for any given x (see Eq. (4))
appear to be the roots of the polynomial Eq. (8). For η 6= 0 and a given set
of parameter values (x, α, η), the polynomial Eq. (8) always admits a real root
denoted f(x;α, η) (the expression is not given here) represented in Fig. 3, which
satisfies the following properties:

(i) x and f(x;α, η) have the same sign,
(ii) f(x;α, η) = −f(−x;α, η),
(iii) if |x| << 1, f(x;α, η) ≈ ηx,
(iv) if |x| >> 1, f(x;α, η) ≈ α(x+ sign(x)).

(9)

Hence, the regularized elastic stop can be viewed as an odd restoring force where
the regularization parameter introduces a linear spring with stiffness coefficient
η at the neighborhood of the equilibrium point x = 0 (see Eq. (9)(iii)) and
for large x reproduces the elastic stop behavior (see Eq. (9)(iv)). Finally, the
regularized equations of motion defined by

{

ẍ(τ) + x(τ) + β(x(τ)− u(τ)) + f(x(τ);α, η) = 0
δü(τ) + β(u(τ)− x(τ)) = 0

(10)

can advantageously replace Eqs.(3)(4) when η is small compared to spring stiff-
ness of the underlying linear system.
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Figure 3: Comparison of the piecewise-linear contact force obtained with Eq. (2) (in black)
and the regularized contact force obtained with Eq. (9) (in grey) for different values of η.
Parameter values : α = 30, η = 0.005 (solid line), η = 0.05 (dashed line), η = 0.5 (dotted
line).

3.2. Computation of the branch of periodic solutions

To apply ANM, the equations of motion (10) are first recast into a dynamical
system where the nonlinearities are polynomial and at most quadratic [6].

Introducing a new variable z, the nonlinearity as defined by Eq.(8) is re-
written in the quadratic form

{

f − ηx− fz = 0

z − ( f
α
− x)2 = 0

(11)

and is combined with Eq. (10) giving the following quadratic algebro-differential
system

ẍ(τ) + x(τ) + β(x(τ)− u(τ)) + f(τ) = 0
δü(τ) + β(u(τ)− x(τ)) = 0

(12a)

f(τ)− ηx(τ)− f(τ)z(τ) = 0

z(τ)− ( f(τ)
α

− x(τ))2 = 0
(12b)

Assuming periodicity, the nonlinear response is approximated by a truncated
Fourier series up to Hth term for the displacement variables u and x:

u(τ) = u0 +

H
∑

k=1

uk
c cos(kωτ) + uk

ssin(kωτ)

x(τ) = x0 +

H
∑

k=1

xk
c cos(kωτ) + xk

ssin(kωτ)

(13)
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and up toHfth term for the nonlinear force f and the associated internal variable
z:

f(τ) = f0 +

Hf
∑

k=1

fk
c cos(kωτ) + fk

s sin(kωτ)

z(τ) = z0 +

Hf
∑

k=1

zkc cos(kωτ) + zks sin(kωτ)

(14)

where as classical ω denotes the frequency (which is related to the period as
T = 2π/ω). This formulation permits selecting Hf >> H to improve the
approximation of the nonlinear term. Indeed, f(τ) is almost zero when there
is no contact and reach high values during contact. Then, its Fourier series
representation requires more harmonics than for u and x.

Substituting Eqs. (13) and (14) into Eqs .(12a) and (12b) and balancing the
terms of same frequency up to Hth term in Eq .(12a) and up to Hfth term in
Eq (12b), one obtains a nonlinear algebraic system of 2(2H + 1) + 2(2Hf + 1)
equations which can be written under the quadratic form

S(U) = L(U) +Q(U,U) = 0 (15)

where U = (Ud,Uf , ω) ∈ R
2(2H+1)+2(2Hf+1)+1

denotes the unknown coeffi-

cients with Ud = (u0, x0, ..., u
H
s , xH

s ) and Uf = (f0, ..., f
Hf
s , z0, ..., z

Hf
s ), L is

linear transformation and Q is quadratic transformation.
Finally, the system (15) is solve applying the ANM method which is based on

power series expansions of the unknownsU with respect to the path parameter a
asU(a) = U0+

∑N
i=1 Uia

i. ANM generates a succession of continuous branches,
instead of a sequence of points to compute the NNM. This method has been
implemented as described in [4] excepts that Fast Fourier Transform (FFT)
algorithm has been used to compute efficiently the quadratic term Q(U,U)
with a passage in the time domain as in the Alternating Frequency-Time HBM
method. Moreover, the bifurcation indicator as described in [5] to locate and
compute very efficiently any simple bifurcation point has been used.

The ANM method is a continuation method which needs a starting point. A
periodic orbit of the underlying linear system can be used as a first point (one
orbit) for initiating continuation.

3.3. Stability analysis

The linear stability of the NNM motions are characterized using Floquet
theory [11].

Rewriting Eq. (10) into a first-order dynamical system, the stability of a peri-
odic solution p0(τ) = [x0(τ) y0(τ) u0(τ) v0(τ)] of period T can be deduced from
the eigenvalues of the monodromy matrix (also named the Floquet multipliers)
associated with the fundamental matrix solution of the T -periodic variational
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linear differential system

π̇(τ) =















0 1 0 0

−(1 + β) +
∂f

∂x
(x0(τ);α, η) 0 β 0

0 0 0 1

0 0 −β

δ

β

δ















π(τ) (16)

where an analytic expression of the gradient function
∂f

∂x
(x;α, η) is deduced

from the implicit equation (8)) as

∂f

∂x
(x;α, η) =

2α2(f(x;α, η)2 − x(τ)f(x;α, η))− α2(x(τ)2 − 1)− ηα2

3f(x;α, η)2 − 4αx(τ)f(x;α, η)
. (17)

The monodromy matrix is computed over one period, using the four canon-
ical basis vectors as initial conditions successively.

The autonomous equations of motion Eq. (10) defining an Hamiltonian sys-
tem, it can be shown [10] that two Floquet multipliers are equal to one and the
other two are reciprocal and complex-conjugate.

Hence, no Floquet multiplier can leave the unit circle with a nonzero imagi-
nary part and the motion will be unstable only if at least one Floquet multiplier
is greater than one or smaller than minus one.

4. Application

This section is dedicated to the analysis of the NNM of Eqs. (12) with the
following numerical values : β = 1, δ = 1 and α = 30 using the regularized-
HBM-ANM method (η, H and Hf will be given later).

4.1. About the associated linear systems

To enlight the behavior of the NNMs, it is useful to introduce a notation
for the Linear Normal Modes (LNMs) of the various linear systems which are
connected to the nonlinear system.

Three linear systems have been yet introduced: Eq. (5) which characterizes
motions without impact and Eq. (6) (respectively Eq. (7)) which characterizes
motions during the impact on the right (respectively left) elastic stop. One
more linear system has to be considered. It is defined as

{

ẍ(τ) + (1 + η)x(τ) + β(x(τ)− u(τ)) = 0
δü(τ) + β(u(τ)− x(τ)) = 0

(18)

and corresponds to the underlying linear system around the equilibrium position
associated to Eq. (10) (the regularized piecewise linear system).

These linear systems (Eqs. (5), (18), (6) and (7)) differ by the stiffness
associated to the component x which is equal to 1, 1 + η, 1 + α and 1 + α
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respectively. In the sequel, the LNMs of the linear systems (Eq. (5), Eq. (18)
and Eq. (6)) will be denoted L0

p, L
η
p and Lα

p respectively where the integer index
p refers to the first (p = 1) and second (p = 2) linear normal mode. Note that
the LNMs of Eq. (7) coincide with the LNMs of Eq. (6) and hence no distinction
will made.

Finally, the last linear system considered in the sequel is the one with the
mass at rest, x(τ) = 0. It is a 1-DOF system and the associated LNM will be
denoted L∞

1 .

4.2. Validation of the regularized-HBM-ANM method

The objective here is to compare the NNMs of the piecewise linear system
Eqs. (3)(4) obtained from the direct computation (see Section 2.2) and from the
regularized-HBM-ANM method (Section 3.2) applied to Eqs. (12). We focus on
the first NNM starting at low energy level from the LNM L0

1 (corresponding to

the resonance frequency ω2
L0

1

= 3−
√
5

2 ≈ 2π0.098). The starting point used in

the regularized-HBM-ANM method is defined from the LNM Lη
1 .

To implement the regularized-HBM-ANM method, the regularization pa-
rameter η and the harmonic numbers H and Hf have to be chosen. At low
energy level, the NNM being approximated by the LNM Lη

1 (corresponding to

the resonance frequency ω2
L

η
1

=
3+η−

√
5+2η+η2

2 ), the numerical value of η can be

chosen such that
|ω

L0
1

−ω
L
η
1

|
ω

L0
1

< ǫrel. The results discussed here after have been

obtained with η = 0.005 corresponding to the relative error ǫrel = 2 × 10−3.
The following numerical values will be used for the harmonic numbers: H = 33
and Hf = 151.

The NNM obtained from the two approaches are compared in Fig. 4 in
terms of Frequency-Energy Plot (FEP). The energy range considered here cor-
responds to periodic orbits with zero or one impact on each stop per period
(see Section 2.2). As expected, the curves differ at low energy level due to the
bias introduced by the parameter η. At high energy level, the curves coincide
showing that H = 33, Hf = 151 is enough to correctly approximate the periodic
orbits. However around the threshold energy level (≈ 7× 10−1) where impacts
occur, the approximation is less accurate due to the regularization procedure of
the regularized-HBM-ANM method.

The period orbits obtained from the two approaches are compared in Fig. 5
for an intermediate energy level near the impact threshold energy level (point
a) in Fig. 4) and for a high energy level (point b) in Fig. 4). At the first energy
level (point a)), the orbits obtained from the direct computation and from the
regularized-HBM-ANM method slightly differ. The direct computation shows
impacts (see Fig. 5, left) whereas the regularized-HBM-ANM method predicts
x displacement in the range ]− 1, 1[ (no impact). However, in the configuration
space, the modal curves are in very good agreement. At the second energy level
(point b)), the two approaches give results in very good agreement.

11



10
−3

10
−2

10
−1

10
0

10
1

10
2

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Energy (log)

F
re

q
u
e
n
c
y

 b)

 a)
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red) and from the regularized-HBM-ANM method (in blue). First row : phase subspace (x, ẋ),
second row : phase subspace (u, u̇), third row : configuration space (x, u). (Parameter values:
α = 30, β = 1, δ = 1, η = 0.005, H = 33 and Hf = 151).

The time series of the contact forces are shown in Fig. 6. In both cases (point
a) and point b)), the two approaches give results in very good agreement.

These results show that the smoothness can be explicitly controlled and give
a good approximation.
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Figure 6: Contact force for point a) and b) in Fig. 4 given by Eq. (9) (in red) and obtained from
the regularized-HBM-ANM method (in blue). First row : Time evolution over one period,
second row : (x, f(x))-plot. (Parameter values: α = 30, β = 1, δ = 1, η = 0.005, H = 33 and
Hf = 151).

4.3. Analysis of two NNMs of the regularized piecewise linear system

The regularized-HBM-ANM method is now used to analysis in detail and
on a large energy range two NNMs of the regularized piecewise linear system
of Eqs. (12), one starting from the LNM L0

1 (the in-phase NNM) and the other
starting from L0

2 (the out-of-phase NNM). The following parameter values have
been used: η = 0.005, H = 33 and Hf = 151 to implement the regularized-
HBM-ANM method.

As in [18, 19], the following classification of the periodic orbits will be used:

(i) Snmpq± denotes symmetric orbits with n and m the number of half waves
in a half period respectively for the variable x and u. The indices p and q
correspond respectively to the number of impacts for the first and second
quarter period. The sign ± indicate if the curve in the configuration space
(x, u) pass through the origin with positve or negative slope.

(ii) Unmpq denotes unsymmetric orbits with the same meaning for the integer
indices than the previous one. Besides, there is no ± to indicate the sign
of the slope because the motion is asynchronous and is represented by
Lissajous curves in the configuration space (x, u).

4.3.1. The out-of-phase NNM

The out-of-phase NNM of the regularized piecewise linear system of Eqs. (12)
is defined at low energy level by the LNM L0

2 where the components of the
associated mode shape have opposite sign. The behavior of the out-of-phase
NNM is shown in Fig. 7 in terms of Frequency-Energy Plot (FEP). Modal line
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of periodic orbits are also reported in Fig. 7 in the configuration space (x, u).
The tick mark locations are given at the multiples of the gap 1 in x and u
direction and two vertical lines represent the gap positions in x direction. At
low energy level, the branch starts with S1100− motions (black branch) and it
coincides with the LNM Lη

2 which is close to LNM L0
2. At the impact threshold

energy level, S1110− motions (one impact per half period) take place and this
type of motions persists when the energy level increases (dark gray branch) up
to the LNM Lα

2 .
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Figure 7: FEP of the out-phase NNM (Parameter values: α = 30, β = 1, δ = 1, η = 0.005,
H = 33, Hf = 151).

4.3.2. The in-phase NNM

The in-phase NNM of the regularized piecewise linear system of Eqs. (12)
is defined at low energy level by the LNM L0

1 where the components of the
associated mode shape have the same sign. The behavior of the in-phase NNM
is shown in Fig. 8 in terms of FEP. Similarly to the out-of-phase NNM, the
branch starts, at low energy level, with S1100+ motions (black branch) and it
coincides with the LNM Lη

1 which is close to LNM L0
1. At very hight energy level,

S1110+ motions take place and this type of motions persists when the energy
level increases (dark gray branch) up to the LNM Lα

1 . Moreover and contrary
to the out-of-phase NNM, more complicated dynamics are observed between
these two states characterized by period motions with the number of impacts
which increases and internal resonances. Internal resonances corresponds to
interaction of the in-phase NNM with the out-of-phase NNM. Three internal
resonances (3 : 1, 4 : 1, 5 : 1) have been identified (see the tongues (S3121+,
S3121−), U4122 and (S5132+, S5132−)). It is interesting to note the absence
of the internal resonance 2 : 1 which is due to asymmetrical spring configuration
of the model (see for example the system [23]), and also the absence of internal
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resonances k : 1 for k > 5 which is due to the stiffness parameter α of the system
(see Section 4.3.3).
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Figure 8: FEP of the in-phase NNM (Parameter values: α = 30, β = 1, δ = 1, η = 0.005,
H = 33, Hf = 151).

To understand the behavior of this complicate NNM, zooms on different
branches of FEP are analyzed in detail in Figs. (9-16) reporting some represen-
tative periodic orbits in the configuration space (x, u) and including stability
properties.

Fig. 9 shows the branches S1100+ (black curve), S1110+ (dark gray curve),
S3110− (light gray curve). All the branches characterize stable periodic mo-
tions. As already mentioned, the branch S1100+ coincides with the LNM Lη

1

which ends when the energy (or the amplitude) is sufficient for the first mass
(x component) to reach the stop. From this point modal straight lines in the
configuration space are replaced by modal curved lines. Then the amplitude of
the second mass (u component) increase whereas that the amplitude of the first
mass which is limited by the elastic stop. This behavior implies a change of the
sign of the slope of the modal line (on the neighborhood of the origin), and the
apparition of a new oscillation. The transition between S1110+ and S3110−
occurs. This new oscillation increases with the energy level and the the first
mass (x component) reaches the stops. A new impact occurs which corresponds
to the transition between S3110− and S3121−.
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Figure 9: Zoom on particular branches (S1100+, S1110+, S3110−) of the FEP of the in-phase
NNM, some periodic orbits are represented by modal line (see the boxes). (Parameter values:
α = 30, β = 1, δ = 1, η = 0.005, H = 33, Hf = 151).

Fig. 10 shows the branches S3121− (dark gray curve), S3121+ (light gray
curve) corresponding to the first tongue. Following the branch S3121−, the
energy level decreases and only the amplitude of the second mass is mainly
influenced. This type of motions persists up to the modal curved lines tend
towards a modal straight line where a bifurcation point between the in-phase
NNM and the branch S1110− of the out-of-phase NNM (depicted on three-
period given a S3121− motion) is reached (see black square) corresponding to
the internal resonance 3 : 1. At this point, the transition between S3121−
and S3121+ also occurs with the change of sign of the slop of the modal line.
Increasing the energy level, the S3121+ branch vanishes when the number of
impacts decreases and the transition between S3121+ and S3111+ occurs. Note
that instability zones have been detected on these branches.
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Figure 10: Zoom on particular branches (S3121−, S3121+) of the FEP of the in-phase NNM,
some periodic orbits are represented by modal line (see the boxes). The instability is depicted
by dark blue (+) (Floquet multiplier greater than +1). (Parameter values: α = 30, β = 1,
δ = 1, η = 0.005, H = 33, Hf = 151).

Fig. 11 shows the branches S3111+ and S5111−. The transition between
S3111+ and S5111− occurs at the black (+). This point corresponds to the
increase in the oscillation of the x motion. Another important phenomenon is
the appearance of a bifurcation point (see black circle), obtained by the method
described in [5].This bifurcation point doesn’t correspond to an internal reso-
nance but leads to a new branch of periodic solutions. This secondary branch
is the tongue associated to the even internal resonance 4 : 1 (see Figs. 12-13).
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Figure 11: Zoom on particular branches (S+

3111
, S−

5111
) of the FEP of the in-phase NNM,

some periodic orbits are represented by modal line (see the boxes). The instability is depicted
by dark blue (+) (Floquet multiplier greater than +1). The black marker (+) indicate the
change of branches. (Parameter values: α = 30, β = 1, δ = 1, η = 0.005, H = 33, Hf = 151).

Fig. 12 (respectively Fig. 13) shows the branches U3111, U4111, U4120 (re-
spectively U4121, U4122). The motions here are no more symmetric, however
some kinds of phenomenon such as variations of the number of oscillations and
variations of the number of impacts are observed, but only for a half-period.
After the transition between U4121 and U4121 (see black (+) Fig. 13) the mo-
tions persist up to the modal curved lines tend towards a modal line where
a bifurcation point between the in-phase NNM and the branch S1110− of the
out-of-phase NNM (depicted on four-period given a S4422− motion) is reached
(see black square) corresponding to the internal resonance 4 : 1. We can also
observed that for these branches instabilities occur (with a Floquet multiplier
greater than +1).
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Figure 12: Zoom on particular branches (U3111, U4111, U4120) of the FEP of the in-phase
NNM, some periodic orbits are represented by modal line (see the boxes). The instability
is depicted by light blue (o) (Floquet multiplier smaller than −1). The black markers (+)
indicates the change of branches. (Parameter values: α = 30, β = 1, δ = 1, η = 0.005,
H = 33, Hf = 151).
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Figure 13: Zoom on particular branches (U4121, U4122) of the FEP of the in-phase NNM,
some periodic orbits are represented by modal line (see the boxes). The instability is depicted
by dark blue (+) when a Floquet multiplier is greater than +1, and by light blue (o) when a
Floquet multiplier is smaller than −1. The black marker (+) indicate the change of branches.
(Parameter values: α = 30, β = 1, δ = 1, η = 0.005, H = 33, Hf = 151).

Fig. 14 shows the branches S5110−, S5121−, S5122− on the main backbone
of the FEP. These branches correspond to symmetric motions. Oscillations oc-
cur during the first and the second half-period, and the first mass (x component)
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reaches the elastic stop increasing the number of impacts (transition between
S5110−, and S5121− and between S5121− and S5122− ) without changing the
number of half waves. Hence internal resonance can not occur here. The num-
ber of impacts need to be equal to five, which happens at the end of the branch
S5122−.
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Figure 14: Zoom on particular branches (S5110−, S5121−, S5122−) of the FEP of the in-phase
NNM, some periodic orbits are represented by modal line (see the boxes). The instability is
depicted by dark blue (+) (Floquet multiplier greater than +1). The black markers (+)
indicates the change of branches. (Parameter values: α = 30, β = 1, δ = 1, η = 0.005,
H = 33, Hf = 151).

Fig. 15 shows the part of the third tongue where the internal resonance
5 : 1 occurs (branches S5132− and S5132+). These two branches (in the FEP
plot) are nearly identical and they are plotted separately. As oberved for the
3 : 1 internal resonance, a bifurcation point between the in-phase NNM and
the branch S1110− of the out-of-phase NNM (depicted on five-period given a
S5132− motion) is reached. At this point, the transition between S5132− and
S5132+ also occurs with the change of sign of the slop of the modal line.
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Figure 15: Zoom on particular branches (S5132− at left, S5132+ at right) of the FEP of
the in-phase NNM, some periodic orbits are represented by modal line (see the boxes). The
instability is depicted by dark blue (+) (Floquet multiplier greater than +1). (Parameter
values: α = 30, β = 1, δ = 1, η = 0.005, H = 33, Hf = 151).

Finally the last part of the main backbone of the FEP is shown Fig. 16.
The same phenomenon observed on the branch S3111+ is observed here, so the
number of impacts decreases. But instead of the apparition of an oscillation
when the energy starts to increase, which implies new impacts, the amplitude
of the second mass increases and the impacts disappears. The period motions
are now close to the LNM Lα

1 .
It is interesting to note that the frequency contain of the backbone of the

in-phase NNM can be greater than ωLα
1
(see Fig. 10). An upper bound is given

by ωL∞

1
(see Fig. 8).
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Figure 16: Zoom on particular branches (S5121+, S5110+, S1110+) of the FEP of the in-phase
NNM, some periodic orbits are represented by modal line (see the boxes). The instability is
depicted by dark blue (+) (Floquet multiplier greater than +1). The black markers (+)
indicates the change of branches. (Parameter values: α = 30, β = 1, δ = 1, η = 0.005,
H = 33, Hf = 151).
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4.3.3. About the parameter α

The objective of this section is to evaluate the influence of the parameter α
on the dynamics richness of the in-phase NNM. .

Figs. 17-18 show the behavior of the in-phase NNM in terms of FEP for
α = 20 and α = 50.
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Figure 17: FEP of the first NNM, with α = 20. (Parameter values: β = 1, δ = 1, η = 0.005,
H = 33, Hf = 151).

We note that we use for α = 50 a higher number of harmonics Hf = 201 to
have a better precision.
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Figure 18: FEP of the first NNM, with α = 50. (Parameter values: β = 1, δ = 1, η = 0.005,
H = 33, Hf = 201).
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We observe that the parameter α (stiffness of the elastic stop) influences the
number of internal resonance. For α = 20, we have only the internal resonances
3 : 1 and 4 : 1 whereas for α = 50 we have the internal resonances 3 : 1, 4 : 1,
5 : 1 and 6 : 1. Note that the odd internal resonances appear as the turning
points of the main branch whereas the even internal resonances appear as a
turning point of the secondary branches.

As already mentioned, the upper bound in terms of frequency of the back-
bone of the in-phase NNM is given by ωL∞

1
. By increasing α the asymptotic

limit ωLα
1
increases and tends to approach the limit ωL∞

1
. The comparison of

the Figs. 17, 8 and 18 helps to understand this phenomenon that is the increase
of the number of internal resonance with α.

5. Conclusion

The computation of the nonlinear normal modes of a two degrees-of-freedom
with a piecewise linearity was performed using a numerical procedure, called
regularization-HBM-ANM. This procedure combine a regularization of the con-
tact force, the harmonic balance method and the asymptotic numerical method.
The HBM was considered using Fourier series with different order of truncation
for linear and nonlinear components. Moreover, stability analysis of the peri-
odic orbits was carry out using Floquet theory, reminding also the specificity of
2-DOF Hamiltonian system. The regularization-HBM-ANM method was vali-
date comparing the results with a direct computation of the periodic solutions
of the piecewise linear system when only two impact per period occur. Some
particular behaviour was observed more often for the in-phase nonlinear normal
mode. The first was the absence of the internal resonance 2 : 1 due to the asym-
metrical spring configuration. Moreover, the stiffness of the spring of the elastic
stop influences the number of internal resonance. The NNMs tend asymptoti-
cally to the in-phase linear normal mode of the system where the spring of the
elastic stop is directly connected to the mass (in other words for a gap equal
to zero). Besides, the odd internal resonances appear as the turning points of
the main branch whereas the even internal resonances appear as a turning point
of the secondary branches. These efficient numerical procedure can be used to
compute NNMs of industrial structure.
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