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1. Introduction

Considered here is the general theory of surface wave propagation in elastic thin-film/substrate

systems. Elasticity is of course an inherently nonlinear subject, although a great many applications

are amenable to analysis using the linear theory, including those developed here. Thus for the sake

of completeness and to establish the logical progression of our work we present a brief tutorial on the

general nonlinear purely mechanical theory as a prelude to linearization.

The main contribution of the present work is the derivation of and solution to an asymptotic two-

dimensional theory for the dynamics of a thin film bonded to a substrate, as distinct from the asymptotic

treatment of the underlying three-dimensional equations (Fu, 2007). Here the small parameter is the

film thickness, and the considered model furnishes the rigorous leading-order system when this is small

against the wavelength of a propagating surface wave.

The purely elastic theory is developed first, followed by an extension to electroelasticity. We draw

particular attention to some non-standard effects associated with the propagation of Love waves in con-

ventional isotropic elastic half spaces coated with thin films having various kinds of crystalline symmetry.

Standard notation is used throughout. Thus we use bold face for vectors and tensors and indices

to denote their components. Latin indices take values in {1 2 3}; Greek in {1 2}. The latter are

associated with surface coordinates and associated vector and tensor components. A dot between bold

symbols is used to denote the standard inner product. Thus, if A1 and A2 are second-order tensors,

then A1 ·A2 = (A1A

2) where (·) is the trace and the superscript  is used to denote the transpose.

The norm of a tensor A is |A| =
√
A ·A. The linear operator (·) delivers the symmetric part of

its second-order tensor argument. The notation ⊗ identifies the standard tensor product of vectors. If
C is a fourth-order tensor, then C[A] is the second-order tensor with orthogonal components C

The transpose C is defined by B · C[A] = A · C[B] and C is said to possess major symmetry if
C = C If A · C[B] = A · C[B] and A · C[B] = A · C[B

] then C is said to possess minor symmetry. We
use symbols such as  and  to denote the three-dimensional divergence and gradient operators,

while  and ∇ are reserved, after Section 2, for their two-dimensional counterparts. Thus, for example,
A =e and A = e, where {e} is an orthonormal basis and subscripts preceded by
commas are used to denote partial derivatives with respect to Cartesian coordinates. Finally, the

notation A stands for the tensor-valued derivative of a scalar-valued function  (A).
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2. Brief resumé of nonlinear elasticity theory

Background material on nonlinear elasticity theory is given in (Ciarlet, 1988; Ogden, 1997; Antman,

2005). The basic problem in this theory is to find a deformation function mapping the position x of

a material point of a body, in some reference configuration  to the position y of the same material

point of the body in its current configuration at time  Thus we seek a function χ(·) such that y =
χ(x) This is presumed to be invertible at each fixed , to reflect the notion that any given position

may be occupied by one, and only one, material point at any instant. The inverse function theorem

then requires that the deformation gradient,

F = χ (1)

the gradient of χ(·) with respect to x be invertible.
The motion χ must be such as to satisfy the linear momentum balance

T+ b = y (2)

where y = χ(x) etc.,  is the mass density in the current configuration, b is the body force

per unit mass, T is the Cauchy stress, and  is the divergence operator with respect to position y

Granted (2), the moment-of-momentum balance is simply the requirement that the Cauchy stress be

symmetric, i.e.

T = T (3)

Standard boundary data consist in the specification of y and the traction

t = Tn (4)

on complementary parts of the boundary, where n is the exterior unit normal to the bounding surface

of the body in its current configuration.

For purposes of analysis it is convenient to recast (2) as a differential equation defined on the specified

reference configuration  The relevant equation is

P+ b = y (5)

where  is the mass density in  and

P = TF∗ (6)

is the Piola stress, in which

F∗ = F− (7)

is the cofactor of the deformation gradient, with

 = detF (8)

Normally we denote the inverse by appending a superscript −1; here − is the transposed inverse, or
inverted transpose, the two being equivalent by virtue of the commutativity of the inverse and transpose
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operations. If  is a configuration that could in principle be occupied by the material (e.g., an initial

configuration), then the requirement

  0 (9)

is imposed to reflect the physical requirement that matter deforms without self penetration.

The referential and current mass densities are connected by

 =  (10)

and conservation of mass requires that  be independent of  when expressed as a function of x and 

Accordingly it is regarded as an assigned function of x

The connection between the Cauchy and Piola stresses is most readily understood by expressing the

force acting on an arbitrary material surface  ⊂  in the alternative formsZ


t =

Z


p (11)

where  = χ( ) is the image of the material surface in the current configuration, consisting of the

same set of material points. Using Nanson’s formula

n = F∗N (12)

in which N is the exterior unit normal to  and  = |F∗N| is the areal stretch of  we then use (4) to
obtain Z



p =

Z


Tn =

Z


TF∗N (13)

and hence

p = PN (14)

Thus the Piola stress operates on the referential unit normal to furnish the force per unit reference area.

To model elastic bodies we assume the stress T (or P) to be given by an empirical function of F

which may depend parametrically on x if the material properties are non-uniform, as in a functionally

graded material. Thermodynamic considerations pertaining to the non-existence of perpetual motion

machines imply that the stress is determined via an empirical strain-energy function (F) i.e. (Ogden,

1997)

P =F (15)

the gradient of  with respect to F This too depends parametrically on x in non-uniform materi-

als. Here, however, we are concerned exclusively with uniform materials, for which there is no such

dependence.

Combining (6) with (15) we conclude that the function  must be such that (F)F
 is symmetric;

that is, equal to its own transpose. This in turn is equivalent to

(F)F
 ·Ω = 0 (16)

for all skew tensors Ω (Ω = −Ω) The symmetries inherent in the dot product imply that (16) is
equivalent to

F ·ΩF = 0 (17)
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Fix Ω and consider the one-parameter family of tensors Q() defined by the initial-value problem

Q̇ = ΩQ with Q(0) = I (18)

where I is the identity tensor and the superposed dot is the derivative with respect to  The components

of the identity are simply the Kronecker deltas   It is well known that the set of such Q
0 coincides

precisely the group of rotation tensors, i.e.

Q−1 = Q; detQ = 1 (19)

Consider an associated one-parameter family of deformation gradients defined by

F() = Q()F0 with F0 = F(0) (20)

This is a rotation superposed on a deformation with gradient F0 Then,

Ḟ = Q̇F0 = Q̇Q

F = ΩF (21)

and for this family of deformations we find, using (17) and the chain rule, that

̇ =F · Ḟ = 0 (22)

so that  (F()) is independent of  i.e.

 (QF0) = (F0) (23)

in which the rotation Q is arbitrary.

A necessary condition follows on identifying Q with the transpose of the rotation factor R0 in the

polar decomposition

F = RU (24)

of the deformation gradient, where U is the positive definite, symmetric right-stretch tensor. This yields

the conclusion that is determined by the stretch, i.e.  (F0) = (U0) However, this is inconvenient

in practice becauseU is not easily obtained from F To circumvent this we note that there is a one-to-one

relation between the right stretch and the symmetric Cauchy-Green deformation tensor C = U2 = FF;

the former is the unique positive definite symmetric square root of the latter. We conclude that U is

determined by C and hence (dropping subscripts in (23)) that  (F) = ̂ (C) for some function ̂  In

turn, the Cauchy-Green tensor stands in one-to-one relation to the symmetric Lagrange strain

² = 1
2
(FF− I) (25)

and so we may write  (F) = ̄ (²) for some function ̄  An elementary application of the chain rule

then furnishes

F = F̄²  (26)

where, on the right-hand side, ̄² is the symmetric tensor-valued gradient with respect to strain. Ac-

cordingly, the 2nd Piola-Kirchhoff stress S defined by

P = FS (27)
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is given by

S = ̄²  (28)

Comparison of (6) and (27) yields T = FSF, and so the symmetry of S implied by (23), yields the

symmetry of T It follows that (23) is both necessary and sufficient for the symmetry of the Cauchy

stress.

We neglect body forces, and thus reduce (5) and (15) to the system

(F) = χ (29)

for the determination of the motion χ(x ) in which  is an assigned constant if, as we assume, the

material properties are uniform.

In this work we restrict attention to deformations for which the strong ellipticity condition is satisfied,

i.e.

a⊗ b ·FF[a⊗ b]  0 for all a⊗ b 6= 0 (30)

3. Leading order model for a thin, nonlinearly elastic film in the long-wave limit

We seek equations of motion for a thin film bonded to a substrate that are valid to leading order

in the film thickness, presumed to be small against the length scale afforded by the wavelength of a

propagating surface wave. Thus the model to be derived and studied is valid in the long-wave limit.

Consider a planar film of thickness , bonded to an elastic half space. The interface between film and

substrate, denoted by Ω is an unbounded plane with unit normal k directed away from the substrate.

It proves advantageous to decompose three-dimensional position x in the film in terms of position r to

a projected point on Ω and a linear coordinate  in the direction of the normal. Thus,

x = r+ k with r ∈ Ω and  ∈ [0 ] (31)

The motion of the film may then be regarded as a function of r and  i.e. y = χ(x ) = χ̂(r  ); we

also write F(x ) = F̂(r  ) It then follows from the definition of the gradient that

(∇y)r+ y0 = y = F̂x = F̂1r+ F̂k⊗ k (32)

where (·)0 = (·) ∇(·) is the (two-dimensional) gradient with respect to r and

1 = I− k⊗ k (33)

is the projection onto the plane Ω This yields

∇y = F̂1 and y0 = F̂k (34)

Using a similar notation for the Piola stress, we write P = P̂1+ P̂k⊗ k and find that

P = (P̂1) + P̂
0
k (35)
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where, in contrast to its use in (2),  is now the (two-dimensional) referential divergence operator on

Ω Thus (5) may be recast in the convenient form

(P̂1) + P̂
0
k = χ̂ (36)

We seek a two-dimensional model of the thin film, in terms of differential operators defined entirely

on Ω To effect the dimension reduction, we adopt the weak form of the equations of motion in which the

film thickness is made explicit. We then estimate this for small thickness and extract the leading-order

local equations.

To this end let y(x  ) be a one-parameter () family of motions, let the actual motion y = χ(x )

be its value at  = 0 and let

ẏ =



y(x  )|=0 (37)

Then the weak form of (5), holding in an arbitrary subvolume  of the film, isZ


P · Ḟ =
Z


PN · ẏ−
Z


ẏ · y (38)

in which

Ḟ = ∇ẏ+ ẏ0 ⊗ k (39)

where ẏ0 = (y0)· = (ẏ)0 We remark that, on the film/substrate interface Ω the deformation gradient is

F0 = ∇y0 + d⊗ k (40)

where, here and henceforth, the notation (·)0 stands for the restriction (·)|Ω of a variable defined in the
film. This is the interior limit of the considered quantity as  → 0 In particular,

y0(r ) = ŷ(r 0 ) and d(r ) = ŷ0(r 0 ) (41)

and these are independent vector fields on Ω

Proceeding from (38) and (39), we haveZ


P · Ḟ =
Z


(P1 ·∇ẏ+Pk · ẏ0) =
Z


Z 

0

(P1 ·∇ẏ+Pk · ẏ0) (42)

where  ⊂ Ω is an arbitrary part of Ω and we have selected  =  × [0 ] For an arbitrary function
(r) we use the Taylor expansionZ 

0

 := (r) =  0(r0) + () with  0(r) = (r) (43)

to derive the estimate

(r) = 0 + () (44)

and thus estimate (42) as Z


P · Ḟ = 

Z


(P01 ·∇ẏ0 +P0k · ḋ)+ () (45)

Similarly, Z


ẏ · y = 

Z


ẏ0 · y0+ () (46)

6



The remaining integral in (38) may be decomposed asZ


PN · ẏ =
Z


Z 

0

P1ν · ẏ +
Z
+
P+k · ẏ+−

Z


P0k · ẏ0 (47)

where + is the upper surface of the film at a distance  from  k and −k are the exterior unit normals
to the film at + and  the superscript + is used to denote the values of variables at  =  and ν is

the external unit normal to the cylindrical generating surface  × [0 ]
Traction continuity at the film/substrate interface Ω implies that

P0k = Pk (48)

where P is the limiting value of the substrate stress on Ω Assuming the upper surface of the film to

be traction free, i.e. P+k = 0 and using the rule (44), we then haveZ


PN · ẏ = 

Z


P01ν · ẏ0 −
Z


Pk · ẏ0+ () (49)

Substituting this, together with (45) and (46), into (38), we conclude thatZ


Pk · ẏ0 = () (50)

and hence, from the arbitrariness of  and ẏ0 that Pk = () i.e.

Pk = l+ () (51)

in which l(r ) is independent of  Substituting back into the balance (38), dividing by  and passing

to the limit then yieldsZ


[P01 ·∇ẏ0 +P0k · ḋ+ ẏ0 · (y0 + l)] =
Z


P01ν · ẏ0 (52)

Applying Green’s theorem in the formZ


P01ν · ẏ0 =
Z


ν · (P01)ẏ0 =
Z


[(P01)

ẏ0] =

Z


[ẏ0 · (P01)+P01 ·∇ẏ0] (53)

we reduce (52) to Z


{P0k · ḋ− ẏ0 · [(P01)− l− y0]} = 0 (54)

and then invoke the arbitrariness of  and the independence of ẏ0 and ḋ to extract the local equations

P0k = 0 and (P01)− l = y0 on Ω (55)

On multiplying the second of these by  using (51) and neglecting terms of order () we obtain

(P01)−Pk = y0 (56)

This is the rigorous leading-order (in ) boundary condition for the substrate at the film/substrate

interface Ω reducing to the usual traction-free condition Pk = 0 in the absence of the film ( = 0) It

is also seen to furnish the leading order equation of motion for the film/substrate interface. Similarly,

the first of (55) is the leading-order approximation of the traction continuity condition (48), with (51).

This condition implies that, to leading order, the film is in a state of plane stress.
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In these equations the stress P0 is given by

P0 =F(∇y0 + d⊗ k) (57)

and so (55) may be regarded as a system for the independent fields y0 and d on Ω

It happens that in the presence of strong ellipticity (55)1 may be solved for d in terms of ∇y0. To
see this we fix y0 and define (d) = (∇y0+d⊗ k) Let () = (d()) for some parameter  Then,

̇() =F(F0) · ḋ⊗ k = ḋ ·P0k and thus d = P0k (58)

Further,

̈() = d̈ ·P0k+ ḋ⊗ k ·M(F0)[ḋ⊗ k] (59)

where

M =FF (60)

and so

dd = A(F0) (61)

where A is the acoustic tensor defined by

Av = {M(F0)[v ⊗ k]}k (62)

for all vectors v In terms of components,

 = 233 (63)

having made the identification e3 = k It follows from (30) that dd is positive definite and hence,

from the implicit function theorem, that (55)1 (i.e. d = 0) has a unique solution d = d̄(∇y0) say, as
claimed. Further, the foregoing implies that this solution minimizes the energy  (∇y0 + d⊗ k) with
respect to d

In this work it is convenient to work with strain-dependent moduli. To elaborate, consider a one-

parameter family F() of deformations and let ²() be the associated strain. Using the connection (27)

we then have

M[Ḟ] = Ṗ = ḞS+FC[²̇] with ²̇ = 1
2
(ḞF+FḞ) (64)

where the superposed dots are derivatives with respect to the parameter, and

C = ̄²² (65)

are the strain-dependent moduli. We note that this possesses both major and minor symmetries whereas

M possesses only major symmetry. Accordingly,

M[B] = BS+FC[(BF)] for all tensors B (66)

and the strong-ellipticity condition (30) is thus seen to be equivalent to

(b · Sb) |a|2 +Fa⊗ b · C[Fa⊗ b]  0 (67)
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For our purposes the relevant restriction pertains to small perturbations of the reference configuration

associated with F = I This is

(b · Sb) |a|2 + a⊗ b · C[a⊗ b]  0 (68)

where S is the residual stress in that configuration and C is the associated tensor of elastic moduli.
There are equal respectively to the values of S and C at ² = 0

4. Linearization

To linearize the equations we introduce the displacement field

u(x ) = χ(x )− x (69)

and assume that supx∈ |H(x )| ¿ 1 where

H = u (70)

is the displacement gradient. From (1) and (69) we have the exact expressions

F = I+H and ² = 1
2
(H+H +HH) (71)

and our assumptions imply that supx∈ |²(x )| ¿ 1 Accordingly, the estimate

̄² = ̄²(0) + ̄²²(0)[H] + (|H|) (72)

is appropriate, in which the coefficients are the values of the stress and moduli at ² = 0, and furnishes

the linearized stress-deformation relations

S ' S + C[H] and P = (I+H)S ' S +HS + C[H] (73)

The residual stress and associated moduli are necessarily uniform if the material is homogeneous.

Assuming the body to be in equilibrium without tractions prior to undergoing the small displacement,

we have

S = 0 in  and SN = 0 on  (74)

the first of which is then identically satisfied.

The thin-film condition (55)1 may be expressed in the form

Sk+H0Sk+ (C[H0])k = 0 (75)

and as this purports to hold for all deformations it follows that

Sk = 0 and (C[H0])k = 0 (76)

the first of these implying that S is a (symmetric) two-tensor of the form S = e ⊗ e  where
{e} is an orthonormal basis in the plane Ω To investigate the consequences of the second restriction
we write H0 the restriction of the film displacement gradient to Ω in the form (40), obtaining

H0 = ∇u0 + u00 ⊗ k (77)
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where u0(r ) is the displacement of the film/substrate interface and u
0
0 is the restriction to Ω of the

through-thickness derivative u0 of the displacement field in the film. The stated restriction may then be

written in the form

(C[∇u0])k+Au
0
0 = 0 (78)

where A is the relevant acoustic tensor, defined for all v by

Av = (C[v ⊗ k])k (79)

and which is positive definite by (68) and (76)1. Consequently,

u00 = a(∇u0) with a(·) = −A−1 (C[·])k (80)

implying that H0 is determined entirely by the interfacial displacement.

The interfacial equation of motion (56) requires an expression for P01 which, on making use of

(73)2, is given to linear order by

P01 = S +H0S + (C[H0])1 with H0 = ∇u0 + a(∇u0)⊗ k (81)

This is used in (56) in the form

Pk = [(P01)− u0] (82)

in which P is the restriction to Ω of the substrate stress, assumed here to be given constitutively by

P = σ0 where

σ = E [G]; G = w (83)

in which E is the substrate elasticity tensor (possessing major and minor symmetries) and w(x ) is the
substrate displacement field. This satisfies w0 = u0 in a perfectly bonded film-substrate system but of

course w00 6= u00 in general. This expression for the stress presumes the substrate to be free of residual
stress. Generalizations are of course possible, but the present simplification suffices for our purposes.

To make the equations explicit it is convenient to decompose the interfacial displacement into tan-

gential and normal parts, i.e.

u0 = v + k where v = 1u0 and  = k · u0 (84)

In the same way we write

a = α+ k where α = 1a and  = k · a (85)

These furnish

∇u0 = ∇v + k⊗∇ and a⊗ k = α⊗ k+ k⊗ k (86)

and hence afford the representation

C[H0] = (C + C3 + C3 + C33)e ⊗ e  (87)

in which the subscript  has been suppressed on the right-hand side.
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The material properties considered in this work exhibit reflection symmetry with respect to the unit

normal k, i.e.

̄ (²) = ̄ (Q²Q) with Q = I− 2k⊗ k (88)

These have the property that all components C of the elastic moduli having an odd number of
subscripts equal to 3 vanish (Green and Zerna, 1968); hence the simplification

C[H0] = Ce ⊗ e + C33e ⊗ e + (C33 + C3333)k⊗ k
+C33( + )(e ⊗ k+ k⊗ e) (89)

Using the definition (79) of the acoustic tensor we then obtain

Ab = C33e + 3k where  = C3333 (90)

yielding

b ·Ab = C33 + 23 (91)

The acoustic tensor is then positive definite as required if and only if   0 and (C33) is positive
definite. Further, (84) and (85) give

Aa = C33e + k and (C[∇u0])k = C33k+ C33e (92)

and it follows from (78) that

α = −∇  = −−1C33  (93)

The restriction H0 to Ω of the film displacement gradient is thus given by

H0 = ∇v + k⊗ k+ k⊗∇ −∇ ⊗ k (94)

and (89), together with the minor symmetry of C, yields

C[H0] = D[∇v] = De ⊗ e (95)

where

D = C − −1C33C33 (96)

are the plane-stress moduli. This in turn furnishes

P01 = S + (∇v)S + k⊗ (S∇) +D[∇v] (97)

and eq. (82) for the interfacial motion reduces to

σ0k = [{(∇v)S +D[∇v]}+ k(S∇)− v − k] (98)

The substrate displacement is described by the classical equation of motion

σ = w (99)

where  is the substrate mass density.
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5. Surface waves: Love modes in hexagonal and cubic crystal films

We are interested in localized surface waves of the form

w(x ) =  (x )d (100)

in which d is the fixed polarization vector, x is decomposed as in (31) in which   0 for the substrate,

and

 (x ) = exp() exp[(n · r− )] (101)

in which  is a constant - assumed positive to ensure decay with depth into the substrate, n ∈ Ω is
the propagation direction,  is the wave speed, and  is the wave number. The induced interfacial

displacement is

u0 = w0 = d where  = 0 = exp[(n · r− )] (102)

The gradient of the interfacial displacement is

∇u0 = d⊗∇ = d⊗ n (103)

It proves convenient to decompose the polarization in the form (84), i.e.

d = δ + k; δ = 1d  = k · d (104)

Then,

∇v = δ ⊗ n and ∇ = n (105)

Using these results with ∇∇ = −2n⊗ n and u0 = −22d after some effort we reduce the
bracketed term on the right-hand side of (82) to

(P01)− u0 = 2{(2 − n · Sn)d−Aδ} (106)

where

A = De ⊗ e (107)

is the (symmetric) plane-stress acoustic tensor associated with the propagation direction.

The induced stress in the substrate is given by (83) with

G = d⊗ where  =  (n+ k) (108)

yielding

G =  (d⊗ n+ d⊗ k) (109)

and hence

σ = B where B = E [d⊗ n] + E [d⊗ k] (110)

Using this in the interfacial equation of motion (82) leads to the algebraic problem

Bk = {(2 − n · Sn)d−Aδ} (111)
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where

 =  ¿ 1 (112)

is the dimensionless film thickness.

5.1 Substrate motion

From (100) and (101) we have w = −22d and

σ = B( ) = 2B(n+ k) (113)

which reduce the substrate equation of motion (cf. (99)) to the algebraic problem

−(E [d⊗ n])n+ {(E[d⊗ k])n+ (E[d⊗ n])k}+ 2(E [d⊗ k])k = −2d (114)

In isotropic substrates, to which attention is restricted in this work,

E[G] = (G)I+ 2G (115)

where  and  are the substrate Lamé moduli, assumed here to satisfy the usual strong ellipticity

conditions +2  0 and   0 In this case straightforward calculation reduces (114) to the system

(n+ δ) = [(
2 − n · Sn)δ −Aδ]

(n · δ) + ( + 2) = (
2 − n · Sn) (116)

Further,

(E [d⊗ k])k = ( + 2)k+ δ (E [d⊗ n])k = (n · δ)k+ n

(E[d⊗ n])n = ( + )(n · δ)n+ d (E [d⊗ k])n = n+ (n · δ)k (117)

Love waves are polarized in the plane Ω. Accordingly,  = 0 and (116)2 requires that

n · δ = 0 (118)

Eqs. (117) simplify dramatically to

(E[d⊗ k])k = δ (E[d⊗ n])k = 0 (E[d⊗ n])n = δ and (E[d⊗ k])n = 0 (119)

and (99) delivers

 =
p
1− 2 where  =  (120)

and  =
p
 is the shear-wave speed in the substrate. Finally, (116)1 reduces to the propagation

condition

δ = [(
2 − n · Sn)δ −Aδ] (121)

which requires that δ be an eigenvector of the acoustic tensor A The restriction (118) and the symmetry
of the acoustic tensor imply that the propagation direction n is then also an eigenvector.
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5.2 Hexagonal (fibre) symmetry

In this subsection explicit dispersion relations are derived for films having hexagonal symmetry. In the

linear theory, the associated constitutive equations are of precisely the same form as those for materials

exhibiting transverse isotropy, or fibre symmetry. Accordingly, the results derived are applicable to both

fibre-reinforced film materials or hexagonal crystalline materials.

In particular, the components of C relative to an orthonormal basis {e} are (see Spencer, 1984)

C =  +  ( + ) + ( +)

+( −  )( + + +) +  (122)

where  is the Kronecker delta;     and  are material constants; and the unit vector m with

components  is the fiber axis, assumed here to be uniform. Spencer (1984) shows that  is the shear

modulus for shearing in planes transverse to m, whereas  is the shear modulus for shearing parallel

to m The remaining material constants in (122) may be interpreted in terms of extensional moduli and

Poisson ratios (Spencer, 1984).

The general form of the residual stress may be derived by enumerating the strain invariants for

transverse isotropy that are linear in the (infinitesimal) strain. These are (Spencer, 1984) I · ² and
m⊗m · ² Comparison with the leading term in (72) then furnishes

S =  (I−m⊗m)+m⊗m (123)

where  is the constant residual stress in the isotropic plane and  is the constant residual uniaxial

stress along m

Necessary and sufficient conditions for strong ellipticity in the absence of residual stress are (Merodio

and Ogden, 2003; Steigmann and Ogden, 2007):

  0   0   0 + 2  0 (124)

and

|+ + |   +
p
(+ 2 ) (125)

where

 = + 4 − 2 + 2+  (126)

We first assume the axis of transverse isotropy to coincide with the unit normal k(= e3) to the film,

and later consider the case when the axis lies in the interfacial plane; the film material exhibits reflection

symmetry with respect to the interface in both cases.

(a) Fibre axis orthogonal to the interfacial plane

In this case the plane-stress condition (76)1, with m = k yields

S = 1 (127)
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with  constant. Using (93)2, a straightforward but involved calculation (Steigmann and Ogden, 2007)

leads to

 = −(̄+ ̄)v (128)

where ̄ =  and ̄ =  Further,

D[∇v] = {[̄− (̄+ ̄)2](v)1+ ̄ [∇v+ (∇v)]} (129)

where ̄ =   yielding

Aδ = (D[δ ⊗ n])n
= {[̄− (̄+ ̄)2](δ · n)n+ ̄ [δ + (δ · n)n]} (130)

and hence

Aδ = δ (131)

in the case of Love waves. Substituting into (121), we conclude that the polarization δ is an arbitrary

vector in the interfacial plane and from (120) thatp
1− 2 = (2 −  + 


) (132)

where

 =  (133)

is the ratio of film density to substrate density. This is the relevant dispersion relation. To solve it we

assume that 1− 2 = (2) and derive the consistent estimate (Steigmann and Ogden, 2007)

 ∼ 1− 1
2
2( −  + 


)2 + (2) (134)

(b) Fibres lying in the interfacial plane

In this case (76)1 yields

S = m⊗m (135)

a uniform uniaxial stress along the fibres, while (93)2 gives

 = − 1
+2

[v + m · (∇v)m] (136)

With some effort (95) and (96) may be reduced to (Steigmann, 2009a)

D[∇v ] = [( + ) + m · (∇v)m]I+ [( + ) + m· (∇v)m]m⊗m
+2 (∇v+ k⊗ k)
+2( −  )[(∇v)m⊗m+m⊗ (∇v)m] (137)

For Love waves the latter is used to derive

Aδ = (D[δ ⊗ n])n
= (1− 

+ 2
)(m · n)(m · δ)n+ δ

+( − 2

+ 2
)(m · n)2(m · δ)[(m · n)n+ (m · δ)δ]

+( −  )[(m · n)2δ + 2(m · n)(m · δ)n+ (m · δ)2δ] (138)
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and the propagation condition (121), projected onto the directions of δ and n furnishes

(m · n)(m · δ)[(m · n)2 + (1− 

+ 2
) + 2( −  )] = 0 and

[
2 − (m · n)2 −  + (m · n)2(m · δ)2] =  (139)

where

 =  − 2

+ 2
 (140)

Typical data on carbon fibre/epoxy composites furnish a non-zero value of the bracketed expression

in the first relation, implying that

(m · n)(m · δ) = 0 (141)

and hence that either the direction of propagation or the polarization is parallel to the fibres.

In the first case we have m · n = ±1 and (139)2 delivers the associated dispersion relation

 = (
2 −  − ) (142)

which is solved as before to obtain the estimate

 ∼ 1− 1
2
2( −  + 


)2 + (2) (143)

In the second case m = ±δ and the dispersion relation is

 = (
2 − ) (144)

yielding

 ∼ 1− 1
2
2( − 


)2 + (2) (145)

We observe that in both cases the deformation is a shear, not in the isotropic plane, but rather in

the plane containing the fibres. The operative material property is therefore  the longitudinal shear

modulus (Steigmann, 2010).

5.3 Cubic symmetry

In the case of cubic crystal symmetry we assume the cubic axes to be aligned with {e} = {ek}.
The residual stress is necessarily a pure pressure which vanishes by virtue of the plane-stress condition

(76)1. Accordingly, the strain energy ̄ (²) is a homogeneous quadratic function which depends on the

strain via the combinations (Smith et al, 1963)

(11 + 22 + 33)
2 1122 + 1133 + 2233 and 212 + 213 + 223

These are common to all five subclasses of cubic symmetry.

It proves convenient to express the strain-energy function in terms of the spherical and deviatoric

part of the strain, the latter being defined by

²̄ = ²− 1
3
(²)I (146)
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yielding

1122 + 1133 + 2233 =
1
3
(²)

2 − 1
2
(̄211 + ̄222 + ̄233) (147)

and hence

̄ (²) = 1
2
[1(11 + 22 + 33)

2 + 2(̄
2
11 + ̄222 + ̄233)] + 3(

2
12 + 213 + 223) (148)

where 123 are material constants. To ensure strong ellipticity in accordance with our assumptions

thus far it is enough to require that ̄ (²) be positive definite. Because (148) is the sum of independent

quadratic forms this in turn is equivalent to the restrictions

1  0 2  0 and 3  0 (149)

According to (73) the stress in the film is then given by

P = C[²]
= 1(²)I+ 2(̄11e1 ⊗ e1 + ̄22e2 ⊗ e2 + ̄33e3 ⊗ e3)

+3[12(e1 ⊗ e2 + e2 ⊗ e1) + 13(e1 ⊗ e3 + e3 ⊗ e1) + 23(e2 ⊗ e3 + e3 ⊗ e2)] (150)

and the plane-stress condition (76)2 yields the restrictions

1(²) + 2̄33 = 0 and 3 = 0 (151)

on the interfacial values of the strain in the film.

Using (84) and (85) and the fact that ² is the symmetric part of the displacement gradient, we have

² = (∇v) + k⊗ k+ 1
2
[k⊗ (∇ +α) + (∇ +α)⊗ k] (152)

and thus conclude that (151)2 is equivalent to (93)1. Further,  = 33 ² =  +  where  = v

̄33 =
2
3
− 1

2
 and (93)2 delivers

 = −(1 + 2
3
2)
−1(1 − 1

3
2) (153)

The plane-stress moduli are defined by (95) and (96) and hence given by

D[∇v] = 1( + )1+ 2(̄11e1 ⊗ e1 + ̄22e2 ⊗ e2) + 312(e1 ⊗ e2 + e2 ⊗ e1) (154)

where

̄11 =
1

31+22
[(31 + 22)11 + 222] ̄22 =

1
31+22

[(31 + 22)22 + 211] (155)

and

 +  = 32
31+22

(11 + 22) (156)

To obtain D[δ ⊗ n] for use in (121) we simply replace ∇v by δ ⊗ n arriving at

Aδ = (D[δ ⊗ n])n
= 312

31+22
(δ · n)n+ 2

31+22
[(31 + 2)1

2
1 + 2212]e1

+ 2
31+22

[(31 + 2)2
2
2 + 2112]e2

+1
2
3(1

2
2 + 212)e1 +

1
2
3(112 + 2

2
1)e2 (157)

17



An explicit expression for A follows by using  = e ·δ with 1e1 = (e1⊗e1)δ 1e2 = (e2⊗e1)δ etc.;
thus, in the case of Love waves (δ · n = 0)

A = (2
31+2
31+22

21 +
1
2
3

2
2)e1 ⊗ e1 + (2 31+231+22

22 +
1
2
3

2
1)e2 ⊗ e2

+12(
2
2

31+22
+ 1

2
3)(e1 ⊗ e2 + e2 ⊗ e1) (158)

Recalling that the propagation condition (121) implies that n is an eigenvector, we have An = n

for some  ∈ R where

An = (2
31+2
31+22

21 +
1
2
3

2
2)1e1 + (2

31+2
31+22

22 +
1
2
3

2
1)2e2

+12(
2
2

31+22
+ 1

2
3)(2e1 + 1e2) (159)

Taking the scalar product of the equation An = n with 2e1 and 1e2 yields two equations for 12

which we subtract to derive

12(
2
1 − 22)

31+2
31+22

= 0 (160)

and with (149) this yields the possibilities

12 = 0 or 21 = 22 (161)

The first alternative implies that n ∈ {e} and hence that δ ∈ {e}; the propagation and polarization
directions are aligned with the crystallographic axes. Eq. (157) then provides

Aδ = 1
2
3δ (162)

and (121) yields the dispersion relation

 = (
2 − 1

2
3) (163)

which is solved as before to obtain

 ∼ 1− 1
2
2( − 3

2
)2 + (2) (164)

The second alternative implies that 21 = 22 = 2 with  = ±1√2 These yield the two families

n(1) = 1√
2
(e1 + e2) with δ(1) =

1√
2
(e1 − e2) and

n(2) = 1√
2
(e1 − e2) with δ(2) =

1√
2
(e1 + e2) (165)

corresponding to propagation and polarization at 45 degrees to the crystallographic axes. In either case

we have

A = 1
2
(2

31+2
31+22

+ 1
2
3)1+ 12(

2
2

31+22
+ 1

2
3)(e1 ⊗ e2 + e2 ⊗ e1) (166)

implying that

Aδ = 3
2

12
31+22

δ (167)

Finally, substitution into (121) furnishes the dispersion relation

 = (
2 − 3

2
12

31+22
) (168)
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and thus

 ∼ 1− 1
2
2[ − 3

2

12
(31+22)

]2 + (2) (169)

6. Survey of nonlinear and linearized electroelasticity

Here we review the basic theory of nonlinear electroelasticity as a prelude to the development of

a model for thin electro-elastic films. For further background reference may be made to (Eringen and

Maugin, 1990; Kovetz, 2000; Steigmann, 2009b). In nonlinear electroelasticity we assume the existence

of a free energy per unit mass,  say, that depends on the deformation gradient F and electric field e

Here we restrict attention to the purely electromechanical theory and suppress thermal and electrical

conduction. We also assume the material to be non-magnetizable.

The Cauchy stress is (Kovetz, 2000)

T = FF
 +T  (170)

where

T = 0(e⊗ e− 1
2
2I) with  = |e|  (171)

is the Maxwell stress in which 0 is the free-space permittivity. The material polarization is

p = −e (172)

By an argument similar to that leading from (3) to (23) (Kovetz, 2000), we find that the free energy

depends on the deformation and electric field via the Cauchy-Green deformation tensor C = FF and

the pullback E = Fe; thus,

(F e) = Φ(CE) (173)

Straightforward application of the chain rule yields

e = FΦE and F = 2FΦC + e⊗ΦE (174)

and hence

T = σ +T  (175)

where

σ = 2FΦCF
 (176)

together with

p = −FΦE (177)

In the absence of a magnetic induction field or volumetric distributions of charge, the equations to

be solved are

T = χ e = 0 and d = 0 (178)

where

d = 0e+ p (179)
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is the electric displacement and  is the spatial curl operator, together with h = 0 where h is

the magnetic field. The latter is valid in the absence of currents under the so-called quasi-electrostatic

approximation (Eringen and Maugin, 1990), according to which time derivatives appearing in Maxwell’s

equations are negligible compared to time derivatives occurring in the equation of motion. Further, for

non-magnetizable bodies it is possible to show that h = χ × p This is a nonlinear term and hence

negligible in the linear theory to be discussed; the restriction h = 0 is then effectively reduced to

an identity and plays no role in the linear theory.

Appended to this system are the boundary conditions

t +T
+
n = Tn n · [d] =  and n× [e] = 0 (180)

the first applying on a part of the boundary where the applied traction t is specified, where n is the

exterior unit normal to the boundary,  is the areal density of surface charge on the boundary, and where

[·] = (·)+ − (·)− with the superscripts ± referring respectively to limits as the boundary is approached
from the exterior and interior of the body.

We require the referential forms of the equations, expressed in terms of differential operators with

respect to x To derive the relevant version of (178)2, we use Stokes’ theoremZ


n · e =
Z


e · y =
Z


e · Fx =
Z


E · x =
Z


N · E (181)

where  is an arbitrary material surface with  = χ( ) its image in the current configuration, and

 is the referential curl operator, to conclude that (178)2 is equivalent to

E = 0 (182)

which implies that

E =− (183)

for some scalar potential  A slight generalization of the argument delivers the referential version of

the jump condition (180)3:

N× [E] = 0 (184)

In the same way we use the divergence theorem to deduce that, for an arbitrary material subvolume

 with  = χ( )Z


d =

Z


d · n =
Z


d · F∗N =

Z


F−1d ·N =

Z


(F−1d) (185)

and thus that (178)3 is equivalent to

D = 0 where D = F−1d (186)

Again the procedure may be generalized to derive the appropriate version of (180)2:

N · [D] = Σ (187)

where Σ =  |F∗N| is the referential surface charge density.
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A convenient definition of the referential polarization is

Π = F−1p (188)

This yields (cf. (177))

Π = −ΦE (189)

and thus (cf. (179))

D =Π+ 0C
−1E (190)

Lastly, the referential equation of motion is given precisely by (2) in which T is now given by (170)

or (175). Then,

P = (σ +TM)F
∗ = 2FC +TF

∗ (191)

with

TF
∗ = 0F

∗[E⊗ (C−1E)− 1
2
2I] (192)

and where  = Φ is the strain-energy function.

To linearize the theory we suppose the norms of the electric field and the displacement gradient to

be small and use the strain measure defined by (25) to obtain

σF∗ = F̄²

= (I+H){C[²] + SE+ }
' C[H] + SE (193)

where ̄ is the strain energy expressed as a function of ² and E, and C and S respectively are the
values of ̄²² and ̄E² when the strain and electric field vanish. Here and henceforth, for convenience,

we assume that the associated values of stress and polarization vanish. Thus we assume the absence of

residual stress and residual polarization. To linear order we also have

P ' σF∗ (194)

since the Maxwell stress is quadratic in the electric field.

In the same way we have

−Π = ̄E ' QE+R² (195)

where Q and R respectively are the values of ̄EE and ̄²E at zero strain and electric field. Combining

this with (190) and C−1E ' E we obtain

D ' 0E− ̄E (196)

In component form, eqs. (5) and (186) are given, to linear order, by

 = C + S (197)

and

[(0 −) ] = S (198)
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where

S = 2̄  (199)

 are the displacement components,  = − and commas followed by subscripts are used to denote
partial derivatives with respect to the initial Cartesian coordinates 

Relevant to our analysis of thin-film substrate problems are restrictions on the various moduli en-

suring the existence of propagating plane harmonic waves. To explore this we consider plane harmonic

bulk waves of the form

 =  exp[(k · x− )]  =  exp[(k · x− )] (200)

where  are the (constant) components of the displacement polarization,  is a constant,  is the

frequency and k is the wave vector. The direction of propagation is n and k = n where  is the

wave number; the wavespeed  is then given by  =  Substitution into (197) and (198) furnishes the

algebraic system

−2 = −C + S and S +  = 0 (201)

where

 = 0 −  (202)

We assume that η is non-singular so that k · ηk 6= 0 for any non-zero k Then,

 = −(k · ηk)−1S (203)

and


2 = [ + (k · ηk)−1ΓΓ ]  (204)

where

 = C and Γ = S (205)

Accordingly, sufficient conditions for propagation are the positivity of the tensors A and η (Baesu et

al, 2003), the former generalizing the classical propagation condition of conventional elasticity theory.

7. Thin-film model

Suppose the film is coated with a very thin layer of perfectly conducting electrode material carrying

a charge density Σ. We assume that the substrate to which the film is attached is also a perfect

conductor. Then the electric and polarization fields exterior to the film vanish. The jump conditions

(180)23, applied at the interfaces between the film and the electrode and substrate, then yield

n · d() = − and n× e() = 0 (206)

where the superscript () refers to the limit as the interface is approached from the interior of the film.

The associated referential forms are

N ·D() = −Σ and N×E() = 0 (207)
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To make the first of these explicit we write N ·D+ = −Σ+ and N ·D0 = −Σ0, these being respec-
tively equal to the surface charges at the electrode/film interface and the film/substrate interface where

N = ±k
The weak form of the equation of motion in the film material is given by (38), but with the stress P

now given by (194). The weak form of (186) is given byZ


D ·̇  =

Z


D ·N̇  (208)

in which ̇ is the variation of the electric potential and the integrand on the right-hand side is the limit

from the interior of the film.

Proceeding as in (47) we decompose the electric displacement into a part in the interfacial plane and

a part orthogonal to it, i.e.

D = 1D+k with  = k ·D (209)

Thus, Z


D ·N̇  =

Z


(

Z 

0

1D · ν̇ ) +
Z
+

+̇ +−
Z


0̇0 (210)

where  ⊂ Ω is an arbitrary part of the film/substrate interface Ω and + is its projection onto the

electrode/film interface. Using (207)1 and the estimate (44) we deriveZ


D ·N̇  = 

Z


1D0 · ν̇0 −
Z
+
Σ+̇ +−

Z


Σ0̇0+ () (211)

This is further reduced, using

 + = 0 +  0
0 + () (212)

to obtainZ


D ·N̇  = −
Z


(Σ0 +Σ
+)̇0+ 

Z


1D0 · ν̇0 − 

Z


Σ+̇ 0
0+ () (213)

In the same way, Z


D ·̇  = 

Z


(1D0 ·∇̇0 +0̇
0
0)+ () (214)

having used the decomposition

̇ = ∇̇ + ̇ 0k (215)

and the balance law (208) yields

−
Z


(Σ0 +Σ
+)̇0+ (

Z


1D0 · ν̇0 −
Z


Σ+̇ 0
0) = 

Z


(1D0 ·∇̇0 +0̇
0
0)+ () (216)

We have implicitly imposed (182) and (207)2 as constraints, the latter in the form k×E() = 0.

Thus, Ė = 0 and k× Ė() = 0 implying that Ė = −̇ with k×̇ () = 0 at the interfaces.

From (215) we then have k×∇̇0 = 0 in particular, implying that ̇0 is uniform on Ω On Ω+ we have

0 = k×∇̇ + = k×∇̇0 + k×∇̇ 0
0 + () (217)

yielding

∇̇ 0
0 = −1() (218)
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and hence

−̇0
Z


(Σ0 +Σ
+)+ ̇0

Z


1D0 · ν − ̇ 0
0

Z


(0 +Σ
+)+ () = 0 (219)

Because ̇0 and  are arbitrary it follows that Σ0 +Σ
+ = () We satisfy this by imposing

Σ+ = −Σ0 (220)

leaving

̇0

Z


1D0 · ν − ̇ 0
0

Z


(0 +Σ
+)+ −1() = 0 (221)

Passing to the limit and invoking the arbitrariness and independence of ̇0 and ̇ 0
0 results inZ



(1D0) = 0 and

Z


(0 −Σ0) = 0 (222)

and the arbitrariness of  finally yields

(1D0) = 0 and 0 = Σ0 (223)

pointwise on Ω

Under the stated conditions the Maxwell stress exterior to the film vanishes. The traction boundary

condition (180)1 is then identical in form to (4), after making the appropriate adjustment in the definition

of the stress. The procedure used in Section 3 to derive the equation of motion for the film/substrate

interface carries over unchanged and culminates in (55) in the case when the upper surface of the film

is traction free.

8. Linear theory for cubic symmetry: Love modes and extinguished waves

In the linear approximation the constitutive equations are

P = ̄² and D = 0E− ̄E (224)

and to make these explicit we require an expression for ̄ (²E) that is homogeneous of degree two.

Here we consider various subclasses of cubic symmetry. For example, the strain-energy function

pertaining to the hextetrahedral subgroup is (Smith et al, 1963)

̄ (²E) = 1
2
[1(11 + 22 + 33)

2 + 2(̄
2
11 + ̄222 + ̄233)] + 3(

2
12 + 213 + 223)

+1
2
1(

2
1 +2

2 +23) + 22(123 +213 +312)  (225)

where 123 and12 are material parameters and we impose inequalities (149) to ensure that a sufficient

condition for propagation, discussed in Section 6, is satisfied. The associated stress is

P = 1(²)I+ 2(̄11e1 ⊗ e1 + ̄22e2 ⊗ e2 + ̄33e3 ⊗ e3)
+(312 +13)(e1 ⊗ e2 + e2 ⊗ e1) + (313 +12)(e1 ⊗ e3 + e3 ⊗ e1)
+(323 +11)(e2 ⊗ e3 + e3 ⊗ e2) (226)
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and the electric displacement is

D = (0 −1)E− 22(23e1 + 13e2 + 12e3) (227)

Equation (223)2 then furnishes the restriction Σ0 = (0 −1)3 − 2212 implying that 3(= − 0
0)

satisfies

(0 −1)3 = Σ0 + 2212 (228)

whereas the restriction (55)1 on the film stress at the film/substrate interface reduces to

0 = P0k = [1(²) + 2̄33]k+ (313 +12)e1 + (323 +11)e2 (229)

yielding

13 = −(13)2 and 23 = −(13)1 (230)

Recalling that 1E = −∇0 at the interface, and hence that  = −0 = 0 we conclude that

3 = 0 in the film at the interface, as in the purely elastic theory. Further, 3 is uniform at the interfacial

plane because ∇ 0
0 vanishes. Thus, if the assigned surface charge Σ0 is uniform, and if 2 6= 0 then

(228) implies that 12 is uniform on Ω This situation pertains not only to the hextetrahedral subgroup

of the cubic symmetry group, but also to the tetardoidal and gyroidal subgroups (Smith et al, 1963).

In contrast, 2 = 0 in higher-symmetry materials characterized by the hexoctahedral and diploidal

subgroups, and so for these there is no requirement that 12 be uniform.

Proceeding, we have

1D0 = (0 −1)1E− 22(23e1 + 13e2) (231)

which vanishes identically, ensuring that (223)1 is automatically satisfied. The equation of motion for

the film/substrate interface is

σ0k = [(P01)− u0] (232)

in which σ is the stress in the substrate, assumed to be an isotropic, non-polarizable elastic solid, and

P01 = 1(²)1+ 2(̄11e1 ⊗ e1 + ̄22e2 ⊗ e2) + (312 +13)(e1 ⊗ e2 + e2 ⊗ e1) (233)

Our results yield

{3(e1 ⊗ e2 + e2 ⊗ e1)} = 0 (234)

implying that (232) reduces to the purely elastic problem treated in Section 5. Accordingly a uniform

surface charge on a polarizable cubic crystal film has no effect on propagating waves.

However, we have seen that ∇12 = 0 on Ω if the film properties are such that 2 6= 0 For Love

waves, the in-plane displacement gradient is (cf. (105)1) ∇v = δ ⊗ n, with δ · n = 0 Writing

n = cos e1 + sin e2 and δ = − sin e1 + cos e2 we use this to derive

2∇12 = −2(cos2  − sin2 )n (235)

and thus conclude that cos2  = sin2  yielding  = ±45◦ This implies that waves propagating along the
crystallographic axes are extinguished by the application of a uniform surface charge in polarizable cubic
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films belonging to the hextetrahedral, tetardoidal or gyroidal subclasses. We know of no experimental

corroboration of this remarkable and potentially useful prediction.

References

S.S. Antman, Nonlinear Problems of Elasticity. Springer, Berlin, 2005.

E. Baesu, D. Fortune and E. Soós, Incremental behaviour of hyperelastic dielectrics and piezoelectric

crystals. ZAMP 54:160-178, 2003.

P.G. Ciarlet, Mathematical Elasticity, Vol. 1: Three-Dimensional Elasticity. North-Holland, Ams-

terdam, 1988.

A.C. Eringen and G.A. Maugin, Electrodynamics of Continua, Vol. 1. Springer, N.Y., 1990.

A.E. Green and W. Zerna, Theoretical Elasticity, 2nd edn. Oxford University Press, 1968.

Y.B Fu, Linear and nonlinear wave propagation in coated or uncoated elastic half spaces. Waves

in Nonlinear Pre-Stressed Materials (M. Destrade & G. Saccomandi, Eds). CISM Courses and Lecture

Notes. Springer, Wien, 2007.

A. Kovetz, Electromagnetic Theory. Oxford University Press, 2000.

J. Merodio and R.W. Ogden, A note on strong ellipticity for transversely isotropic linearly elastic

solids. Q.J. Mech. Appl. Math. 56:589-591, 2003.

R.W. Ogden, Non-linear Elastic Deformations. Dover, N.Y., 1997.

G.F. Smith, M.M. Smith and R.S. Rivlin, Integrity bases for a symmetric tensor and a vector: The

crystal classes. Arch. Ration. Mech. Anal. 12:93-133, 1963.

A.J.M. Spencer, Constitutive theory for strongly anisotropic solids, in: Continuum Theory of the

Mechanics of Fibre-Reinforced Composites (A.J.M. Spencer, Ed.). CISM Courses and Lectures No.

282, pp. 1-32. Springer, Wien, 1984.

D.J. Steigmann and R.W. Ogden, Surface waves supported by thin-film/substrate interactions. IMA

J. Appl. Math. 72:730-47, 2007.

D.J. Steigmann, Linear theory for the bending and extension of a thin, residually stressed, fiber-

reinforced lamina. Int. J. Engng. Sci. 47:1367-78, 2009a.

D.J. Steigmann, On the formulation of balance laws for electromagnetic continua. Math. Mech.

Solids 14:390-402, 2009b.

D.J. Steigmann, Elastic waves interacting with a thin, pre-stressed, fiber-reinforced surface film. Int.

J. Engng. Sci. 48:1604-09, 2010.

26


