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Résumé — Cet article de revue traite deux thématiques de recherche en géosciences qui ont connu
d’importants développements pendant les dernières années. Dans la première partie on considère un
ingrédient clé pour la résolution numérique du problème d’écoulement de Darcy, à savoir les sché-
mas de discrétisation des termes de diffusion sur des maillages polygonaux/polyèdriques généraux. On
présente différents schémas et on discute en détail leurs propriétés numériques fondamentales (stabil-
ité, consistance et robustesse). La deuxième partie de l’article est consacrée au contrôle de l’erreur et à
l’adaptivité pour des problèmes modèles en géosciences. On présente des estimations a posteriori qui
garantissent une borne supérieure de l’erreur totale et qui permettent d’identifier les différentes com-
posantes d’erreur. Ces estimations sont utilisées pour formuler des critères d’arrêt adaptatifs pour des
solveurs linéaires et non linéaires ainsi que pour ajuster le pas de temps et pour raffiner le maillage de
façon adaptative. Des essais numériques illustrent de tels algorithmes entièrement adaptatifs.

Abstract — Two research subjects in geosciences which lately underwent significant progress are
treated in this review. In the first part we focus on one key ingredient for the numerical approximation of
the Darcy flow problem, namely the discretization of diffusion terms on general polygonal/polyhedral
meshes. We present different schemes and discuss in detail their fundamental numerical properties
such as stability, consistency, and robustness. The second part of the paper is devoted to error con-
trol and adaptivity for model geosciences problems. We present the available a posteriori estimates
guaranteeing the maximal overall error and show how the different error components can be identified.
These estimates are used to formulate adaptive stopping criteria for linear and nonlinear solvers, time
step choice adjustment, and adaptive mesh refinement. Numerical experiments illustrate such entirely
adaptive algorithms.
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1 INTRODUCTION

Recently, there has been an increased interest and sig-
nificant progress in two subjects related to the numerical
approximation of geosciences problems: the conception of
novel discretization schemes for diffusion terms on almost
arbitrary polygonal/polyhedral meshes and the development
of a posteriori error estimates and of adaptive algorithms.
The study of new schemes is a key ingredient to simulate
more realistic models including complex geometric features
and physical properties. The use of a posteriori-driven algo-
rithms is a promising way of compensating the increased
computational cost for complex models. This paper pro-
vides an overview of some recent advances in both fields.
The material is organized as follows.

In Section 2 we introduce the basic model of geosciences
treated in this work, the compositional multi-phase Darcy
flow problem. Its sub-models, the single-phase steady,
single-phase unsteady, and two-phase immiscible incom-
pressible unsteady Darcy flow problems will also be consid-
ered in the paper in order to pertinently illustrate individual
issues.

Section 3 summarizes some recent advances in dis-
cretization schemes for diffusion terms on general polygo-
nal/polyhedral meshes. After discussing some general prop-
erties that are relevant both from the theoretical and practical
point of view, we briefly present three families of numerical
methods which have received extensive attention over the
last few years. More specifically, Section 3.3 is devoted to
multi-point finite volume (and mixed finite element) meth-
ods, Section 3.4 presents a few examples of lowest-order
variational methods, while Section 3.5 focuses on discon-
tinuous Galerkin methods. For all the methods we provide
a concise introduction stating the main principles, some ex-
amples of actual schemes, and discuss their properties in de-
tail. In the discussion we pay special attention to practical
issues concerning the implementation and/or in the integra-
tion into existing codes.

In Section 4 we then present fully computable, guaranteed
a posteriori error estimates successively for the three sub-
models mentioned above and for the compositional model
itself. These estimates allow to certify the error commit-
ted in a numerical approximation. Moreover, they enable to
distinguish and estimate separately the different error com-
ponents, such as the spatial discretization error, the temporal
discretization error, the linearization error, or the algebraic
solver error. This distinction then gives rise to entirely adap-
tive algorithms, where in addition to the common time step
choice and adaptive mesh refinement, the linear and nonlin-
ear iterative solvers are steered by adaptive stopping criteria.
We shall see that this typically leads to important computa-
tional savings.

2 THE COMPOSITIONAL DARCY MODEL

The compositional Darcy model describes the flow of sev-
eral fluids through a porous medium occupying the space re-
gion Ω ⊂ Rd, d = 2, 3, (assumed to be fixed for simplicity
of exposition) over the time interval (0, tF). We consider a
system where matter is present in different phases from the
set P = {p}, each containing one or more components from
the set C = {c}. The number of phases and components are
respectively denoted by NP and NC. A synthetic description
of the system which accounts for the fact that a component
may only be present in selected phases is provided by the bi-
nary component-phase matrix M = (mcp)c∈C, p∈P such that,
for all c ∈ C and all p ∈ P,

mcp =

1 if the component c is present in the phase p,
0 otherwise.

For all c ∈ Cwe denote byPc ⊂ P the set of phases in which
the component c is present. Symmetrically, for all p ∈ P,
Cp ⊂ C denotes the set of components present in the phase
p. The governing equations are inferred from the general
principles of mass and energy conservation supplemented by
a suitable set of algebraic closure relations. For the sake of
simplicity, it is assumed in what follows that all the phases
are present. When this is not the case, the model can be
modified as outlined in the work of Coats et al. [28], where
an additional, discrete-valued unknown accounting for the
phases present in each point of the domain is added associ-
ated to a flash calculation to enforce local equilibrium. In
what follows we also assume that the temperature is fixed
and uniform and that no energy source or sink is present, so
that the energy balance is trivially verified.

Following [28], the unknowns of the models are the refer-
ence pressure P, the saturations S p defined as the volumetric
fraction occupied by the phase p ∈ P, and the molar frac-
tions Cp,c of each component c ∈ C in the phases p ∈ Pc in
which it is present. It is convenient, for all p ∈ P, to define
the vector of molar fractions Cp := (Cc,p)c∈Cp . While other
choices are possible for the set of unknowns, this one has
the advantage of lending itself to discretizations with arbi-
trary levels of implicitness in the time integration schemes,
and allegedly milder nonlinearities. For all p ∈ P, the phase
pressure Pp is obtained by adding the capillary pressure to
the reference pressure,

Pp := P + Pcp .

The reference pressure P can be chosen equal to the pres-
sure of a given phase. In this case, the corresponding cap-
illary pressure is identically zero. A more general choice
consists in using as a reference pressure a linear combina-
tion of phase pressures.

The tensor-valued absolute permeability and the poros-
ity of the medium are denoted by K and φ, respectively.
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For each phase p ∈ P the following properties are rele-
vant to the model (the usual dependence on the unknowns
of the model is provided in brackets): (i) molar density
ζp(Pp,Cp); (ii) mass density, ρp(Pp,Cp); (iii) viscosity,
µp(P,Cp); (iv) capillary pressure, Pcp (S p); (v) relative per-
meability, krp (S p).

To account for the presence of injection or production
wells, for all c ∈ C we denote by qc a source field defined
on the space-time domain Ω × (0, tF). A detailed treatment
of well models is out of the scope of the present review. The
mass balance for each component yields

∂tnc +
∑
p∈Pc

∇·

(
ζpkrp

µp
Cp,cup

)
= qc ∀c ∈ C, (1)

where nc denotes the number of moles for the component c
and, for all p ∈ P, the average phase velocity is given by
Darcy’s law (g denotes the oriented gravity acceleration),

up = −K
(
∇Pp + ρp g

)
. (2)

The pore conservation principle states that the sum of the
saturations is equal to one in each point of the space-time
domain, as expressed by the following algebraic equation:∑

p∈P

S p = 1. (3)

Phase conservation requires that the sum of the molar frac-
tions of the components present in a given phase be equal to
one, ∑

c∈Cp

Cc,p = 1 ∀p ∈ P. (4)

Additional algebraic laws are obtained by enforcing the
equality of component fugacities, which corresponds to as-
suming thermodynamic equilibrium in mass transfer be-
tween phases. For simplicity of exposition this topic is not
addressed here, and we refer to [4, 28] for further details.
Finally, we assume that the system of PDEs (1) is supple-
mented with no flow boundary conditions and that suitable
initial conditions are derived, e.g., by an equilibrium com-
putation.

3 DISCRETIZATION OF DIFFUSIVE TERMS

3.1 General considerations

One of the key ingredients of numerical methods for the
compositional Darcy problem of Section 2 is the discretiza-
tion of the diffusive terms −K∇Pp, p ∈ P, appearing in
the expression of the average phase velocity (2). From the
model standpoint, the permeability field K displays strong
heterogeneities reflecting the different mineral composition
of geological layers. In addition, the upscaling of fine scale

heterogeneities or of extensive fracturing can result in full
permeability tensors with large anisotropy ratios. From
the discretization standpoint, mesh generation is often per-
formed in a separate stage, and is focused on integrating
physical and geometric data from the seismic analysis. As
a result, fairly general meshes can be encountered, featur-
ing, e.g., nonmatching interfaces corresponding to geologi-
cal faults or general polyhedral elements resulting from the
degeneration of hexahedral cells in eroded layers. This is
notably the case in basin modeling, where deposition and
erosion as well as fracturing must be accounted for ow-
ing to the long time scales. In reservoir modeling, polyhe-
dral elements may also be present in near wellbore regions,
where the use of radial meshes can be prompted by (quali-
tative) a priori knowledge of the solution. Nonconforming
h-refinement can also appear at specific locations where the
resolution needs to be increased or when moving fronts are
present; cf., e.g., Chainais-Hillairet et al. [27].

Identifying an appropriate discretization of diffusive
terms is not an easy task, since several and often mutually
contradictory requirements come into play. The most rele-
vant can be summarized as follows:

(i) Consistency on general polyhedral meshes and for
heterogeneous anisotropic diffusion tensors. It is well
known that the classical Two-Point Finite Volume method
(TPFV) is consistent only on superadmissible meshes for
which the line segments joining the center of a cell and the
barycenters of its faces are K-orthogonal to the correspond-
ing face (cf. [54, Lemma 2.1] for further details).

(ii) Robustness with respect to the heterogeneity and
anisotropy ratios of the permeability tensor. Technically
speaking, robustness is achieved if error estimates are avail-
able that are uniform with respect to K; cf., e.g., [38] for a
discussion on the robustness of a diffusion-advection model
in the presence of impermeable regions. In practice, this
means that the discretization error can be bounded in terms
of the product of a constant independent of the physical pa-
rameters and a power of the meshsize. Of course, this is
only possible if the method is appropriately designed and a
suitable error measure is chosen.

(iii) Stability, i.e., the ability of the scheme to prevent the
amplification of numerical errors. While the consistency re-
quirement has been well assimilated by practitioners (who
sometimes formulate it in terms of a patch test, cf., e.g., [90,
Chapter 10]), this is often not the case for the equally impor-
tant stability requirement. In what follows we will mainly
focus on stability in an energy-like or similar norm, which
is a sufficient requirement for convergence in the linear case.
Most of the modern schemes successfully embed this prin-
ciple. In the nonlinear case, however, tighter forms of sta-
bility are required, which are not easy to obtain at a discrete
level. A particularly relevant form for degenerate parabolic
problems is the discrete maximum principle, which essen-
tially states that, under suitable conditions, the extrema of
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the solution are to be found on the boundary of the domain.
This topic is not addressed in detail in the following discus-
sion. For further insight on the role of the maximum prin-
ciple in proving the convergence of discretization schemes
for the Darcy problem, the reader may consult, e.g., the
Ph.D. thesis of Michel [68, Chapter 6] and the references
therein. A particularly instructive convergence study of a
finite volume (FV) method on superadmissible meshes for
unsteady advection-diffusion problems is carried out by Gal-
louët et al. [57]. A Discrete-Duality Finite Volume (DDFV)
method for a large class of nonlinear degenerate hyperbolic-
parabolic problems is considered by Andreianov et al. [8]
under assumptions on the mesh that allow to infer a discrete
maximum principle. Numerical enforcement of the maxi-
mum principle by nonlinear corrections is considered, e.g.,
by Cancès et al. in [25], to which we also refer for an up-to-
date bibliographic section on this topic.

(iv) Low computational cost both in terms of CPU time
and parallel communications. This is a key requirement in
industrial codes, since competition is often based on reduc-
ing the simulation time rather than on improving the resolu-
tion of the model. The demand for faster simulators reflects
in different ways on the design of numerical schemes. First,
with the notable exception of the energy equation in basin
modeling, it is generally admitted that lowest-order method
are the sole offering an acceptable trade-off between preci-
sion and simulation time. More generally, a great care must
be spent to avoid the explosion of the number of unknowns
while still meeting the previous requirements. Second, the
stencil of the scheme should be as compact as possible in
order to limit the amount of data exchange in parallel execu-
tions. Indeed, on the one hand, the trend for computer man-
ufacturers is to increase computing power by adding mul-
tiple cores on a single processor rather than increasing the
speed of each core; on the other hand, the users of commer-
cial simulators are often interested in increasing the com-
plexity of the model rather than the mesh resolution. As
a result, achieving parallel efficiency requires to handle sit-
uations where heavy computations are performed on (rela-
tively) few cells on each processor. In such circumstances,
boundary cells and, hence, parallel data exchanges, have a
major impact on the overall simulation time. Another re-
lated aspect is the availability of efficient parallel precon-
ditioners for the linear systems arising from the discretiza-
tion and the linearization of the Darcy problem. Although
this topic is not addressed in detail here, it is usually ac-
knowledged that (relatively) standard preconditioners such
as the algebraic multigrid Boomer AMG available in the
HYPRE library [55] perform well when FV or FV-like meth-
ods are used and mild heterogeneities are present, while this
is not always the case when discontinuous Galerkin (dG)
discretizations are employed. The issue of devising good
preconditioners for highly heterogeneous problems is an ac-
tive field of research. For a discussion on this topic as well as

for an up-to-date bibliographic section see, e.g., the recent
works of Scheichl et al. [77] and Havé et al. [60]. When
it comes to dG methods, one of the very few contributions
available is the work of Ayuso de Dios and Zikatanov [12].

(v) Local conservation on the computational mesh. This
is a somewhat controversial point, since local conservation
does not seem mandatory from the analysis point of view.
Moreover, possibly after minor modifications or after a re-
construction postprocessing procedure, most discretization
methods can exhibit conservation properties, cf., e.g., the
discussion in Vohralík and Wohlmuth [83] for mixed fi-
nite element and nonconforming finite element methods on
general polygonal meshes, Di Pietro [33] for cell centered
Galerkin methods, Eymard et al. [54] and Di Pietro and
Lemaire [37] for nonconforming finite element and gener-
alized FV methods, Di Pietro and Ern [35, Chapter 4] for
dG methods, and, e.g., Ern and Vohralík [52] and the ref-
erences therein for conforming finite element methods. For
the purposes of the present work this property will hence be
intended as the availability of a simple expression for the
flux and the Darcy velocity (2) rather than its sheer exis-
tence. Note that the possibility of reconstruction of locally
conservative Darcy fluxes is a key ingredient for the a pos-
teriori analysis of Section 4, see Assumptions 2, 7, and 11
therein.

(vi) Integrability in existing simulators. The introduction
of this latter point is essentially dictated by practical con-
siderations. The lifespan of an industrial simulator is usu-
ally of ten years or more, and it is possibly only slightly
shorter when it comes to large-scale academic codes. Dur-
ing this time, innovations are usually incremental and major
changes to incorporate new schemes may only be consid-
ered if a clear tradeoff can be identified. As a result, cop-
ing with existing codes can play a major role in deciding
which numerical method is best-suited for the application
at hand. The most widely used industrial reservoir simu-
lators are based on traditional FV methods, and modifica-
tions to include radically different schemes are not neces-
sarily possible or economically viable. Similar consider-
ations also apply to large-scale academic simulators. The
advances both in the understanding of discretization meth-
ods and in the flexibility of programming languages have
prompted recent projects to build upon generic bricks that
allow to easily modify the numerical formulation. In the
context of geosciences, an example is provided by the re-
cent work of Di Pietro et al. [36, 39] based on the proprietary
platform Arcane [58] and inspired by similar tools for finite
element methods [73], whereas an open source example is
provided by the DuMuX project [56].

3.2 Model problem and notation

In the rest of this section we briefly review some rele-
vant advances in the development and analysis of numerical
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schemes for diffusive terms, and highlight the characteristics
of each method based on the points listed Section 3.1. For
the sake of simplicity, our main focus is on the steady model
problem,

−∇·(K∇u) = f in Ω,

u = 0 on ∂Ω,
(5)

where Ω denotes the spatial domain and f models a source
term. Problem (5) coincides with the single-phase, single-
component (NP = NC = 1) Darcy problem provided gravi-
tational effects are neglected. In this case, u represents the
(unique) phase pressure. The interest in problem (5) is not
merely theoretical, as it is used in practice as a starting point
to infer an expression for the diffusive terms −K∇Pp, p ∈ P,
in the compositional model of Section 2.

In what follows we denote by Th = {T } a mesh, that is
to say, a collection of open polyhedra called cells or ele-
ments such that

∑
T∈Th

T = Ω. The notion of general mesh
is related to the range of element shapes and arrangements
for which the numerical scheme possesses the mathematical
requirements of consistency and stability. As such, its pre-
cise definition depends on the scheme itself. Moreover, it is
often not possible to provide an optimal definition of admis-
sible mesh, but only formulate sufficient conditions based on
computable quantities. In practice, we would like to be able
to treat (at least) all meaningful degenerate elements ob-
tained by suppressing edges of a quadrilaterally-faced hex-
ahedron. Such elements are encountered in basin modeling
as a result of erosion. In reservoir modeling we may also be
interested in allowing more general polyhedral elements to
discretize the near wellbore region. A mesh Th is primarily
caracterized by a linear dimension h corresponding to the
largest diameter of its elements. We say that a method is
convergent if a suitable measure of the error tends to zero
when h does so. From a mathematical viewpoint, conver-
gence is equivalent to stability for a consistent method (this
result is sometimes referred to as the Lax–Richtmyer theo-
rem).

An important notion for all the discretization methods dis-
cussed in what follows is that of interface, which defines
the way two elements can come into contact. Here, a basic
requirement is that nonmatching interfaces should be sup-
ported, i.e., two neighboring elements should be allowed to
share only portions of faces. In basin modeling, nonmatch-
ing interfaces may be used to represent faults; in reservoir
modeling they may appear as a consequence of nonconform-
ing h-adaptivity, i.e., the increase of the local mesh resolu-
tion obtained by subdiving a mesh element leaving its neigh-
bors untouched. The definition of interface may vary from
one method to another. As an example, interfaces are con-
nected and planar for the SUSHI method of [54], while they
can be defined as the intersection of two elements (hence
non necessarily planar and possibly non connected) when it
comes to dG methods; cf. [35, Definition 1.16] and also [16,
Section 3.2] for a discussion on this subject. In what follows

the set of interfaces is denoted by F i
h , the set of boundary

faces by F b
h and we let Fh := F i

h ∪ F
b

h . For every ele-
ment T ∈ Th we denote by FT the set of faces that lie on
the boundary of T . For every interface F ∈ F i

h we choose
an arbitrary but fixed orientation for the unit normal nF and
enumerate the elements T1, T2 ∈ Th such that F ⊂ ∂T1∩∂T2
so that the outward unit normal nT1,F coincides with nF .

In what follows we assume that K is piecewise constant
on Th, i.e., jumps in the permeability can only occur at in-
terfaces. In practice, this assumption is always verified in
geological modeling since the computational mesh is used
as a support for the physical properties.

3.3 Multi-point finite volume methods

3.3.1 Principles

A class of schemes that is nowadays very popular in the
oil industry is that of Multi-point Finite Volume Methods
(MPFV), independently introduced in the 90s by Aavats-
mark et al. [2] and Edwards and Rogers [45]. The key
idea of MPFV methods is to recover consistency on gen-
eral meshes by extending the dependence of diffusive fluxes
to cell unknowns other than the ones associated to the cells
sharing a face. The coefficient associated to each cell un-
known is usually obtained by solving a local problem. In
what follows we exemplify these ideas by outlining the G-
method proposed by Agélas et al. [5], which generalizes the
L-method of Aavatsmark et al. [3]. For a survey of other
constructions we refer to Aavatsmark [1]. We cite, in par-
ticular, the O-method, for which a convergence analysis un-
der very general assumptions on the permeability tensor has
been recently proposed Agélas and Masson [1].

The FV discretization of problem (5) reads

−
∑

F∈FT

|F|d−1ΦT,F = 〈 f 〉T ∀T ∈ Th, (6)

where 〈 f 〉T := |T |−1
d

∫
T f and (ΦT,F)T∈Th, F∈FT are numerical

fluxes which satisfy the following local conservation prop-
erty:

∀F ∈ F i
h , F ⊂ ∂T1 ∩ ∂T2, ΦF := ΦT1,F = −ΦT2,F . (7)

The single-valued quantity ΦF is termed interface flux. In
the TPFV method, the interface flux only depends on the
(scalar-valued) cell unknowns uT1 and uT2 which are meant
to approximate representative values of the solution in the
cells T1 and T2, respectively. More specifically, for all T ∈
Th we identify a point xT ∈ T away from the boundary of
T to which the value uT is associated. For all T ∈ Th and
all F ∈ FT , denote by dT,F the orthogonal distance between
xT and F. Using a finite difference approximation of the
directional derivative along nF and enforcing relation (7) we
infer

ΦF =
α1α2

α1 + α2
(uT2 − uT1 ), αi :=

K|Ti nF ·nF

dTi,F
.
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xT
xT2

xT1

F1

F2

(a) Notation

F F

F F

(b) Possible choices for the second face used to reconstruct
ΦF (thick dashed lines)

Figure 1: Local reconstruction

This expression yields a consistent method only if the mesh
satisfies the superadmissibility condition [54, Lemma 2.1].
To remedy this lack of consistency, Aavatsmark et al. [3]
propose a local reconstruction based on d + 1 cells which
share a same node usually referred to as the L-method. In
Figure 1a we show a two-dimensional example where these
faces are denoted by F1 and F2. The key idea is to recon-
struct a piecewise affine function on the gray patch only
depending on the values of the unknowns uT , uT1 , and uT2

and of the permeability field in the cells T , T1, and T2.
This piecewise affine reconstruction is obtained by enforc-
ing pressure continuity and flux conservation across F1 and
F2. The interface fluxes ΦF1 and ΦF2 are then obtained re-
placing the exact solution u by the piecewise affine recon-
struction in the expression −(K∇u)|T ·nFi , i ∈ {1, 2}. It can be
shown that this reconstruction requires the solution of a d×d
linear system. An explicit expression for the entries of the
system is provided in [5, Lemma 3.1], to which we refer for
a more formal and detailed presentation. When the perme-
ability field is heterogeneous, this construction outperforms
a Lagrange interpolation based on the cell values uT , uT1 , uT2

in terms of consistency, since the resulting piecewise gradi-
ent embeds a dependence on the jumps of K via (7).

It is a simple matter to realize that, for a given interface
F ∈ F i

h , there are multiple choices for a second face to per-
form the construction outlined above; cf. Figure 1b. As a re-
sult, several different flux expressions are in principle avail-
able. The key idea of the G-method is to define ΦF as a
linear combination of all possible fluxes with weights cho-
sen in such a way as to enhance a selected property for the
method. A criterion geared towards increased stability is
proposed in [5, Section 3.4]. In a different context where
the construction is used as a trace interpolator, an accuracy-
oriented criterion is discussed in [32, Section 2.3].

3.3.2 A numerical example in basin modeling

To assess the properties of the G-method method and pro-
vide a comparison with the other methods discussed in what

follows, we consider the benchmark problem in basin mod-
eling originally proposed in [5]. The results are obtained
using the unified implementation discussed in [39]. Conver-
gence is studied on a mesh family obtained by successive
refinements of the two-dimensional basin mesh depicted in
Figure 2, which contains both quadrangular and triangular
elements as a result of erosion. We consider the following
analytical solution:

u(x) = sin(πx1) sin(πx2), K =

[
ε 0
0 1

]
, (8)

with suitable right-hand side f . The anisotropy ratio ε is
taken equal to 0.1, corresponding to a permeability which is
ten times smaller in the vertical than in the horizontal direc-
tion.

Figure 2: Two-dimensional stratigraphic mesh. The actual
aspect ratio is x:y = 10:1

In Figure 3 we evaluate the performance of several
schemes including the G-method with respect to different
metrics. Accuracy is evaluated in terms of the error on the
pressure (L2-error) and on its gradient (H1-error), both com-
puted using the cell center as a quadrature node. We empha-
size that the error on the gradient is perhaps the most sig-
nificant measure, since it closely relates to fluxes, which are
the quantities of interest in oil-related problems. The order
of convergence is classically expressed relating the error to
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Figure 3: Accuracy and memory consumption analysis for the example (8) in basin modeling
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the meshsize h, and it measures how fast the error tends to
zero as the meshsize does so. When dealing with solutions
that are sufficiently regular, one can expect that the error
scales as a power of h, corresponding to the different slopes
of the curves in the log-log plots of Figures 3a and 3b. Since
the comparison includes schemes which feature a different
number of unknowns for a given mesh, a fairer compari-
son consists in relating the error to the number of unknowns
NDOF, which we do in Figures 3c and 3d. The memory con-
sumption can be evaluated by plotting the error as a function
of the number of nonzero entries in the linear system corre-
sponding to the discretization of problem (5), which is the
contents of Figures 3e and 3f.

3.3.3 Discussion

We conclude by summarizing the features of MPFV
methods in terms of the points identified in Section 3.1:

(i) Consistency. The comparison in Figures 3a–3d shows
that, although MPFV are consistent by construction, the lack
of an embedded stability mechanism sometimes results in
the loss of convergence. This is the case, e.g., for the L-
method on the first three levels of mesh refinement. More-
over, while MPFV methods stand the competition when the
L2-error is considered, this is often not the case for the H1-
error.

(ii) Robustness. The local problems introduced to con-
struct numerical fluxes in MPFV methods embed a depen-
dence on the permeability tensor. In a way, this adds to the
robustness of the method since accuracy may be retained in
the heterogeneous anisotropic case. In some cases, how-
ever, the conditioning of the local problems may be dramat-
ically affected by rough permeability tensors, resulting in
highly inaccurate reconstructions. For some methods, the
local problems may even be ill-posed, and backup strategies
must be devised; for the G-method cf., e.g., the discussion
in [5, Section 3.1]; for the O-method cf., e.g., the discussion
in [84, Example 3.10], and [83, Remark 4.2].

(iii) Stability. As we have already mentioned, conver-
gence may sometimes be lost owing to the absence of an
intrinsic stability mechanism in MPFV methods. Although
stability can be proved in some circumstances (cf., e.g., [5,
Lemma 3.4]), this typically requires assumptions on the
mesh and on the permeability tensor that are either too strin-
gent or difficult to check in practice.

(iv) Low computational cost. This is one of the key ad-
vantages of MPFV methods, which feature only one un-
known per cell as is the case for the classical TPFV method.
A major difference is, however, that the stencil is typically
extended to the neighbors in the sense of nodes. While this
is acceptable in most of the cases (most notably for quasi-
hexahedral meshes), it can sometimes lead to very large
stencils when tetrahedral meshes are used. The difference
with respect to other methods can be appreciated, e.g., in
Figures 3e and 3f. As regards the solution of the result-

ing linear system, one point that deserves to be mentioned
is that AMG preconditioners may be less efficient that in the
TPFV case since the global matrix is no longer an M-matrix.
When stability is lost, the presence of eigenvalues with op-
posite sign may significantly affect the solution of the linear
system (even when the solution remains unique).

(v) Local conservation. MPFV are classical finite vol-
ume methods, hence they inherently provide a simple ex-
pression for interface fluxes.

(vi) Integrability in existing simulators. A common prac-
tice in finite volume codes is to express the links between
cells in terms of a graph. MPFV methods naturally fit this
approach, since the sole difference with respect to the TPFV
scheme lies in the number of connections. In this respect
they are the easiest method to integrate in existing simula-
tors. A possible difficulty that deserves to be mentioned is
that the stencil of MPFV methods includes neighbors in the
sense of nodes, which may require to redesign the commu-
nication patterns in parallel codes.

3.3.4 Mixed finite element methods

We would like to emphasize here that mixed finite el-
ement methods, in particular the lowest-order Raviart–
Thomas scheme, see Raviart and Thomas [74] or Brezzi and
Fortin [23], can be viewed as a member of the MPFV family.
Indeed, following Younès et al. [89] and Vohralík [84], they
can likewise be implemented with one unknown per mesh
element and local flux expressions can be obtained upon so-
lution of local problems on patches of elements. They are in
particular tightly related to the MPFA O-method, see [84].
Moreover, they can easily be defined on general polygo-
nal/polyhedral meshes, see Vohralík and Wohlmuth [83]. At
the same time, they do not suffer from the loss of conver-
gence as discussed in point (i) above and as observed in Fig-
ure 3, neither they exhibit stability problems as those dis-
cussed in point (iii) above. A detailed discussion of these
issues can be found in [83].

3.4 Variational lowest-order methods on general
meshes

3.4.1 Principles

In recent years, several new methods have been proposed
that successfully address the stability issues of MPFV meth-
ods. These methods include, in particular, the Mimetic Fi-
nite Difference (MFD) methods of Brezzi et al. [20–22],
the Hybrid Finite Volume (HFV) methods of Eymard et
al. [53, 54], the Mixed Finite Volume (MFV) method of
Droniou and Eymard [42], the finite volume vision of mixed
finite elements [83, 84], and the cell centered Galerkin meth-
ods introduced in [31, 32]. The close relation between these
methods has recently been investigated in [43]; see also [44],
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where a different formalism is presented leading to Gradi-
ent Schemes; [83] gives yet another equivalence viewpoint.
Another emerging formalism that deserves to be mentioned
is that of Compatible Discrete Operators recently proposed
by Bonelle and Ern [18]. In what follows we collectively
refer to these methods as Variational Lowest-Order (VLO)
methods. While this naming is by no means standard, it un-
derlines the fact that, unlike classical finite volume methods,
they are inspired by the weak formulation of the problem.

These schemes rely on a weak or variational formula-
tion and often share significant similarities with mixed or
nonconforming Finite Element (FE) methods. To illustrate
some important ideas we focus on two examples that are re-
lated to nonconforming FE methods. In what follows we
assume for the sake of simplicity that the source term f is
square-integrable. Moreover, zero pressure boundary condi-
tions are considered, so that the natural space for the solution
is V := H1

0(Ω) (the space of square-integrable functions with
square-integrable derivatives that vanish on ∂Ω). The weak
formulation of problem (5) consists in finding u ∈ V such
that

a(u, v) :=
∫

Ω

K∇u·∇v =

∫
Ω

f v ∀v ∈ V. (9)

Problem (9) classically admits a unique solution as a conse-
quence of the Poincaré inequality,

‖v‖L2(Ω) ≤ CΩ‖∇v‖L2(Ω)d , (10)

where CΩ > 0 only depends on the spatial domain Ω. In-
equality (10) states that the L2-norm of the gradient is a
norm and not just a seminorm in V . In other words, if a
function v ∈ V is such that ‖∇v‖L2(Ω)d = 0, then v is the null
function. This allows, in particular, to infer a stability result
for the bilinear form a provided the permeability tensor K
is uniformly elliptic. This means that diffusion occurs along
every direction at every point of a cell.

To formulate a convergent approximate version of (9) it
is necessary to devise a bilinear form ah which (i) provides
a good approximation of a, i.e., is consistent possibly up to
an error which decreases with the meshsize h; (ii) is stable
based on a discrete version of (10). A key ingredient for ob-
taining these properties is to design a suitable approximation
of the gradient.

3.4.2 Hybrid finite volume and cell centered Galerkin
methods

In this section we present two examples of VLO meth-
ods which, up to minor modifications, were proposed in [54]
and [32], respectively.

A remark that can be exploited to design a gradient ap-
proximation is that Green’s formula (cf., e.g., [7, Theo-
rem 3.2.1]) together with the planarity of faces yields, for

all T ∈ Th and v smooth enough,

|T |d〈∇v〉T =

∫
T
∇v =

∫
∂T

vnT =
∑

F∈FT

|F|d−1〈v〉F nT,F , (11)

where, for X ⊂ Ω, 〈ϕ〉X denotes the average value of ϕ on
X, while nT,F is the unit normal to F pointing out of T .
Formula (11) suggests that, introducing the face unknowns
vF := (vF)F∈Fh and interpreting them as average values over
faces, a gradient approximation is given by the piecewise
constant function Gh(vF ) such that

Gh(vF )|T = GT (vF ) ≡
1
|T |d

∑
F∈FT

|F|d−1vF nT,F ∀T ∈ Th.

(12)
This choice is consistent in the following sense: For all v ∈
V , letting vF = (〈v〉F)F∈Fh , there holds,

Gh(vF )|T = 〈∇v〉T ∀T ∈ Th. (13)

It is assumed henceforth that vF = 0 for all F ∈ F b
h , which

amounts to strongly enforcing the zero pressure boundary
condition. A drawback of the gradient approximation de-
fined by (12) is that it does not satisfy a discrete version
of (10), that is to say, one can have ‖Gh(vF )‖L2(Ω)d = 0
even if vF is not null. This is the case, e.g., for the mesh

0 1 2 3 4 5

1

2

3

4

Figure 4: Example of polygonal mesh where the gradient
reconstruction (12) does not satisfy a discrete Poincaré in-
equality. Interface unknowns are marked with a dot, bound-
ary face unknowns are set equal to zero to strongly enforce
the homogeneous Dirichlet boundary condition

depicted in Figure 4, where a (tedious) hand calculation
shows that the matrix of the linear system obtained enforc-
ing Gh(vF )|T = 0 for all T ∈ Th has kernel dimension equal
to 2.

Stabilizing using residuals

A possible strategy to recover a discrete Poincaré inequal-
ity consists in adding a consistent subgrid correction to the
expression (12). For every cell T ∈ Th we fix one interior
point xT ∈ T such that T is star-shaped with respect to xT .
We introduce the cell unknowns vT := (vT )T∈Th which can
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xT

FPT,F

Figure 5: Cell center and face-based pyramid PT,F

be interpreted as approximations of the solution values at
cell centers, and define the function Gh(vT , vF ) such that,
for all T ∈ Th and all F ∈ FT ,

Gh(vT , vF )|PT,F = GT (vF ) + RT,F(vT , vF ), (14)

with PT,F denoting the F-based pyramid with apex xT (cf.
Figure 5) and

RT,F(vT , vF ) ≡
η

dT,F
(vF − vT − GT (vF )·(xF − xT )) nT,F ,

(15)
where dT,F denotes again the orthogonal distance between
xT and F, xF is the barycenter of F, and η > 0 is a user-
defined parameter. The discretization of (9) reads: Find u :=
(uT , uF ) such that, for all v := (vT , vF ) there holds

ahfv
h (u, v) :=

∫
Ω

KGh(u)·Gh(v) =
∑
T∈Th

|T |d〈 f 〉T vT . (16)

It can be shown that the bilinear form ahfv
h admits the follow-

ing alternative expression:

ahfv
h (u, v) =

∑
T∈Th

|T |dK|T GT (uF )·GT (vF )

+
∑
T∈Th

∑
F∈FT

|PT,F |dK|T RT,F(u)·RT,F(v).
(17)

To interpret the correction (15), we introduce the piecewise
affine reconstruction Rh such that, for all T ∈ Th,

Rh(v)|T (x) = vT + GT (vF )·(x − xT ) ∀x ∈ T, (18)

where v := (vT , vF ). Plugging (18) into (15) yields

RT,F(v) =
η

dT,F
(vF − 〈Rh(v)〉F) .

As a result, since |PT,F |d =
|F|d−1dT,F

d , the term in the second
line of (17) can be alternatively written∑

T∈Th

∑
F∈FT

η2|F|d−1

d dT,F

(
uF − 〈Rh(u)〉F

)(
vF − 〈Rh(v)〉F

)
,

which shows that it is nothing but a least squares penaliza-
tion of the difference between uF and 〈Rh(u)〉F . The consis-
tency of this term stems from the fact that it vanishes when
the exact solution is piecewise affine on Th.

Different choices are possible for the penalty parameter
η in (15). The choice η =

√
d is advocated in [54] since

it allows to recover the TPFV method on superadmissible
meshes, whereas it has been recently shown in [37] that
the choice η = d leads to interesting analogies with the
Crouzeix–Raviart element. The fact that the discrete gra-
dient (14) satisfies a discrete Poincaré inequality has been
proved in [54, Section 5.1] with finite volume techniques.
An analogous result can be obtained with finite element
techniques using [37, Proposition 15] together with [34,
Theorem 6.1].

Stabilizing using jumps

Starting from (18), an alternative way of recovering a
discrete Poincaré inequality is to introduce a least-square
penalization of interface jumps inspired by the work of
Arnold [10]. For all F ∈ F i

h with F ⊂ ∂T1 ∩ ∂T2 we in-
troduce the jump and (weighted) average operators defined
by

~ϕ� := ϕ|T1 − ϕ|T2 , {ϕ} := λ2
λ1+λ2

ϕ|T1 + λ1
λ1+λ2

ϕ|T2 ,

where λi := K|Ti nF ·nF represents the permeability in the
normal direction. For the sake of brevity, on boundary faces
we conventionally set ~ϕ� = {ϕ} = ϕ. Stability hinges in this
case on the following discrete Poincaré inequality valid for
piecewise H1 functions on Th (cf. [19] and also [35, Corol-
lary 5.4]):

‖v‖L2(Ω) ≤ σ2

‖∇hv‖2L2(Ω)d +
∑
F∈Fh

h−1
F ‖~v�‖

2
L2(F)


1
2

,

where ∇h denotes the element-by-element broken gradient
operator and hF is the face diameter. The penalization of
jumps is realized by the bilinear form

jh(u, v) =
∑
F∈Fh

∫
F
ηλharh−1

F ~u�~v�, (19)

where λhar = λ1λ2/(λ1 + λ2) on interfaces and λhar = λ on
boundary faces, while η > 0 is a user-dependent parameter.
Let Vh denote the vector space of cell- and face- DOFs, and
let Vccg

h := Rh(Vh) be the space of piecewise affine functions
obtained from the reconstruction (18). The discretization of
problem (5) reads: Find uh ∈ Vccg

h such that

aswip
h (uh, vh) =

∫
Ω

f vh ∀vh ∈ Vccg
h , (20)

where

aswip
h (uh, vh) :=

∫
Ω

K∇huh·∇hvh + jh(uh, vh)

−
∑
F∈Fh

∫
F
~uh�{K∇hvh}·nF + {K∇huh}·nF~vh�.

(21)
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The terms in the first line of (21) are responsible for con-
sistency and stability, whereas those in the second line re-
spectively ensure consistency and symmetry. The bilinear
form (21) was introduced in the context of domain decom-
position methods for degenerate advection-diffusion prob-
lems by Burman and Zunino [24]. A general analysis for
dG methods for degenerate advection-diffusion problems in-
spired by similar mechanisms was later established in [38].

3.4.3 Discussion

It is useful to summarize the features of VLO methods
with respect to the points identified in Section 3.1.

(i) Consistency. Variational lowest-order methods are
consistent on quite general meshes and often for het-
erogeneous anisotropic permeability tensors. In the
examples of Section 3.4.2 this comes at the cost of
introducing additional face unknowns in the construc-
tion. A possible remedy consists in eliminating face
unknowns by interpolating their values in terms of cell
centered unknowns. In this case, special procedures
are required to retain consistency when heterogeneities
are present. For a discussion we refer to [32, Sec-
tion 2.3], where interpolation relies on the construction
of [5].

(ii) Robustness. Unlike MPFV methods, VLO methods do
not inherently require local constructions which may
lead to ill-posed problems. On the other hand, the
underlying discrete space has some degree of global
regularity (e.g., the continuity of face-averaged values
proved in [37]), which narrows the range of singulari-
ties in the exact solution that can be accurately repre-
sented with respect to dG methods (cf. Section 3.5.1
for an example).

(iii) Stability. As discussed in Section 3.4.2, stability is as-
sured by introducing penalty terms that allow to con-
trol the L2-norm of discrete functions in terms of the
L2-norm of the gradient. However, tighter forms of
stability such as the discrete maximum principle are
generally not available.

(iv) Low computational cost. While the methods presented
in Section 3.4.2 have more unknowns than cell cen-
tered finite volume methods, several reduction strate-
gies are available. As already mentioned, one possi-
bility consists in interpolating face unknowns in terms
of cell unknowns. Although the local constructions re-
quired for interpolation have similar problems as the
ones used in MPFV methods, this can be fixed by lo-
cally maintaining face unknowns as proposed in [54].
In general, the stencils of the resulting methods are
larger than those of MPFV methods. When possi-
ble, a second strategy to reduce the number of un-
knowns consists in performing hybridization to solve

the discrete problems in terms of face unknowns only.
The linear systems resulting from VLO discretizations
can be solved efficiently with standard preconditioners
when mild homogeneities are present. Unlike MPFV
methods, the embedded stability ensures that the ma-
trices are definite.

(v) Local conservation. When interface unknowns are
kept, the local conservation properties of LOV meth-
ods can be formulated in terms of numerical fluxes
whose expression can be obtained analytically. In this
case, the interface unknowns act as Lagrange multipli-
ers of the flux continuity constraint. For further details
we refer, e.g., to [54] and [33].

(vi) Integrability in existing simulators. Even when a sim-
ple expression for the numerical flux is available, LOV
methods are less easily integrated in existing numer-
ical codes when compared to MPFV methods. In-
deed, dealing with interface unknowns, whether they
are kept or interpolated, may require substantial modi-
fications to the data structures of the code as well as to
the way parallelism is handled.

3.5 Discontinuous Galerkin methods

3.5.1 Principles

The key idea of dG methods is to search the approxi-
mate solution in a space of piecewise polynomial functions
that are fully discontinuous at interfaces, i.e., for an integer
k ≥ 1,

Vk
h :=

{
v ∈ L2(Ω) | v|T ∈ Pk

d(T ), ∀T ∈ Th

}
,

where Pk
d(T ) denotes the restriction to T of polynomial func-

tions of total degree ≤ k. The main advantage of consid-
ering fully discontinuous functions is that sharp gradients
or singularities affect the numerical solution only locally,
which is not the case when considering discrete spaces en-
dowed with some form of global regularity. This feature
was first recognized by Reed and Hill in 1973 [75], who
introduced a dG discretization of a steady neutron transport
problem. The first analysis for steady first-order PDEs is due
to Lesaint and Raviart [65–67]. However, dG methods only
reached popularity in the 90s, when Cockburn and Shu con-
sidered their application to time-dependent hyperbolic PDEs
in conjunction with explicit Runge–Kutta schemes [29, 30].
For PDEs with diffusion, dG methods originate from the
work of Nitsche on boundary-penalty methods in the early
70s [70, 71] and the use of Interior Penalty (IP) techniques
to weakly enforce continuity conditions imposed on the so-
lution or its derivatives across interfaces, as in the work of
Babuška [13], Baker [14], Wheeler [88], and Arnold [9]. In
the late 90s, following the success of Runge–Kutta dG meth-
ods applied to hyperbolic problems, a new interest arose in
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dG formulations of diffusion terms. An extension of the
techniques of Cockburn and Shu to problems with diffu-
sion was considered by Bassi and Rebay [15] in the context
of compressible flows. A unified analysis of dG methods
for diffusive terms can be found in the work of Arnold et
al. [11], while a unified analysis encompassing both dif-
fusive and hyperbolic PDEs has been derived by Ern and
Guermond [47–49].

The use of dG methods in geosciences has been consid-
ered in several works, mainly focusing on reactive transport,
where advection terms play an important role; cf., e.g., Sun
and Wheeler [79, 80] or Bastian et al. [17] and references
therein. In this context, a key point is to ensure the ro-
bustness of the method in the vanishing or zero permeabil-
ity limit. This problem has been addressed by Houston et
al. [62], and Di Pietro et al. [38]. The latter work provides
the backbone for the discussion in the following section.

3.5.2 Degenerate advection-diffusion

Following [38] we show how the features of dG methods
can be exploited to construct a discretization which is robust
with respect to vanishing (or even zero) permeability. We
modify (5) to include advection and reaction terms,

∇·(−K∇u + βu) + µu = f in Ω,

u = 0 on ∂Ω∗,
(22)

where β is an incompressible vector-valued velocity field,
µ > 0 is a reaction coefficient, while

∂Ω∗ := {x ∈ ∂Ω | (Kn·n)(x) > 0 or β·n < 0} . (23)

(n denotes here the unit normal vector pointing out of Ω).
To include the case when the permeability tensor vanishes
along one direction, the boundary condition is only en-
forced on the portion of ∂Ω where either normal diffusion
is present, or where the advective flow enters the domain.
Problem (22) is representative of a class of reactive trans-
port models encountered, e.g., in CO2 storage simulation. It
has been shown in [38] that the solution to (22) features sin-
gularities along the discontinuities of the permeability field.
In particular, jumps occur when the advection field flows
from a nonpermeable to a permeable region, as shown in
Figure 6. Jump singularities are not naturally handled by
methods such as the ones described in Section 3.4.2, since
the gradient reconstruction (12) is inherently based on the
approximation of single-valued traces. On the contrary, dis-
continuities can be captured by dG methods provided they
occur at element boundaries and not inside elements. To
make sure that the appropriate interface conditions are au-
tomatically selected, (i) diffusive penalization of interface
jumps should only occur when the permeability in the nor-
mal direction is nonzero on both sides of an interface. This is
the case, e.g., for the bilinear form aswip

h , where the harmonic
averaging in (19) makes the penalty term vanish if λ1λ2 = 0;

β

β

K = π

K = 0

Figure 6: Jumps singularity occurring when the advection
field β flows from a nonpermeable (etched) to a permeable
(shaded) region

(ii) advective penalization of interface jumps should incor-
porate a mechanism to enforce boundary conditions on the
inflow portion of ∂Ω∗ and interface condition on the inter-
face between permeable and nonpermeable regions. It has
been shown in [38] that this is the case when upwind fluxes
are considered, corresponding to the bilinear form

aupw
h (uh, vh) := −

∫
Ω

uh(β·∇hvh) +
∑
F∈Fh

∫
F

Φ
upw
h (uh)~vh�,

where, letting βF := β·nF for all F ∈ Fh,

Φ
upw
h (uh) :=

βF{uh} +
1
2 |βF |~uh� if F ∈ F i

h ,

β⊕Fuh if F ∈ F b
h .

The discretization of problem (22) reads: Find uh ∈ Vk
h such

that, for all vh ∈ Vk
h ,

aswip
h (uh, vh) + aupw

h (uh, vh) +

∫
Ω

µuhvh =

∫
Ω

f vh. (24)

An important difference with respect to the methods of Sec-
tion 3.4.2 is that, this time, the discrete problem is formu-
lated for an arbitrary order k ≥ 1. As an example, con-
vergence results for the problem described in Figure 6 are
provided in Figure 7.

3.5.3 Discussion

We briefly revise the features of dG methods with respect
to the points identified in Section 3.1.

(i) Consistency. Since dG methods are (nonconforming)
finite element methods, consistency can be interpreted
as an orthogonality property for the numerical error
u−uh. This has the important consequence that higher-
order approximations can be considered, since the con-
vergence rate is not limited by the consistency error.
The use of high-order methods in subsoil modeling,
although not common, can be justified when complex
flow patterns are present, as shown, e.g., by Scov-
azzi et al. [78].
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Figure 7: Convergence of the dG method (24) for the problem of Figure 6

(ii) Robustness. As shown in the previous section, it is
possible to design dG methods that are robust with re-
spect to variations of the physical parameters of the
problem. Indeed, the additional flexibility resulting
from the use of fully discontinuous polynomial spaces
allows to represent singularities in the solution which
would otherwise affect the overall precision. More
generally, coarse features can be expected to have only
local effects, leaving the numerical solution in the far
field unperturbed.

(iii) Stability. The stability of dG method is inherent to the
use of penalty terms which allow to control the jumps
of the discrete solution at interfaces. A relevant point
in the example of Section 3.5.2 is that these terms can
be finely tuned to avoid unnecessary (or unphysical)
numerical diffusion. As is the case for all of MPFA
and LOV methods, the discrete maximum principle is
not available in general.

(iv) Low computational cost. Discontinuous Galerkin
methods are usually the most expensive among the
methods considered in this review. In fact, a fully dis-
continuous polynomial representation requires to in-
troduce as many cell DOFs as the coefficients of a
polynomial in Pk

d. Moreover, the resulting linear sys-
tems are usually more difficult to solve, although stan-
dard preconditioners are still usable when mild hetero-
geneities are present.

(v) Local conservation. Although this point is not de-
tailed here for the sake of conciseness, it has been
long known that dG methods enjoy local conservation
properties expressed in terms of continuous numerical
fluxes; see, e.g., [35, Section 4.3.4].

(vi) Integrability in existing simulators. Discontinuous
Galerkin methods are generally difficult to integrate
into existing finite volume codes, while this is gener-
ally easier for finite element codes. One point in favor

of dG methods is that the connectivity is analogous to
that of the TPFV method, which therefore can be used
as a model to design communications in parallel im-
plementations.

4 A POSTERIORI ERROR ANALYSIS AND
ADAPTIVE ALGORITHMS

This last section of the paper is devoted to a posteri-
ori error estimates and adaptive algorithms for the con-
sidered geosciences problems. The use of a posteriori-
driven algorithms seems to be a promising way of compen-
sating the increased computational cost for complex mod-
els. Our presentation is done along the recent contribu-
tions [26, 40, 46, 50–52, 59, 63, 85–87]. The basic idea can
be traced back at least to the Prager and Synge equality [72]
and has been used in a posteriori error estimation previ-
ously; we refer for a general orientation to the monographs
of Ladevèze [64], Verfürth [81], Ainsworth and Oden [6],
Neittaanmäki and Repin [69], and Repin [76]. Rather en-
gineering approaches have also been previously; let us in
particular refer to [27] and to the references therein.

4.1 General considerations

A posteriori error estimates aim at giving bounds on the
error between the known numerical approximation, say uhτ,
and the unknown exact solution, say u, that can be computed
in practice, once the approximate solution uhτ is known.
They typically take the form

|||u − uhτ||| ≤


N∑

n=1

∑
T∈T n

h

(ηn
T )2


1/2

, (25)

where ηn
T = ηn

T (uhτ) is a quantity linked to the discrete time
tn and mesh element T , computable from uhτ, called an ele-
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ment estimator. In (25), |||·||| is some space-time error mea-
sure, often the energy norm. The estimate (25) is written
directly for an unsteady problem; for steady problems, we
simply set N := 1 and leave out the temporal indices n.
Then, |||·||| is only a space error measure and we use the no-
tation uh for the approximate solution. Detailed notation is
given below.

One may formulate the following six properties describ-
ing an optimal a posteriori error estimate:

(i) ensure that (25) holds and that the element estimators
ηn

T are fully computable from uhτ (guaranteed upper
bound);

(ii) ensure that, for all 1 ≤ n ≤ N and all T ∈ T n
h , ηn

T
represents a lower bound for the actual error on the
time interval (tn−1, tn] and in the vicinity of the element
T , up to a generic constant; this means that there exists
a constant C > 0 such that

ηn
T ≤ C|||u − uhτ|||(tn−1,tn]×TT , (26)

where TT stands for the element T and its neighbors
(local efficiency);

(iii) ensure that the effectivity index defined as the ratio of
the estimated and actual error,

Ieff :=

{∑N
n=1

∑
T∈T n

h
(ηn

T )2
}1/2

|||u − uhτ|||
, (27)

goes to one as the computational effort grows (asymp-
totic exactness);

(iv) guarantee the three previous properties independently
of the parameters of the problem and of their variations
(robustness);

(v) give estimators ηn
T which can be evaluated locally

(only performing calculations in the element T or in
its neighborhood TT ) (small evaluation cost);

(vi) distinguish and estimate separately the different error
components (error components identification).

Property (i) above allows to give a truly computable upper
bound on |||u−uhτ||| and thus to certify the error committed in
a numerical simulation. Property (ii) enables to predict the
localization of the error. It is possible to satisfy it entirely
for steady problems. It then enables to detect the areas of the
computational domain Ω where the error is large. Knowing
such areas, one can concentrate more effort therein, by per-
forming an adaptive mesh refinement. For unsteady prob-
lems, one typically only arrives at ∑

T∈T n
h

(ηn
T )2


1/2

≤ C|||u − uhτ|||(tn−1,tn]

which justifies theoretically the localization of the error in
time but not in space. Property (iii) ensures the optimality
of the upper bound; if the error is quite small and the estima-
tor predicts a large value, it may well satisfy properties (i)
and (ii), but is probably not very useful as it overestimates
highly the error. Property (iv) is one of the most important in
practice. In real-life problems, parameters and coefficients
such as the domain size, final simulation time, space and
time steps, the permeability tensor K, the porosity φ, the
viscosities µ, the sources q, or the nonlinear state functions
for nonlinear problems may be very large or small or vary
abruptly; an estimator satisfying property (iv) ensures that
its results will be equally good in all situations. Property (v)
then guarantees that the computational cost needed for the
evaluation of the estimators ηn

T will be much smaller than
the cost required to obtain the approximate solution uhτ it-
self (recall that typically a global problem needs to be solved
in order to obtain the approximate solution for steady prob-
lems and one such a problem needs to be solved at each
time step for implicit time discretizations of unsteady prob-
lems). Finally, the numerical error u − uhτ typically consists
of several error components. The first one is the discretiza-
tion error, which further splits into temporal (for unsteady
problems) and spatial errors. These result from the approx-
imation properties of the time stepping procedure and of the
numerical scheme, and by the current temporal and spatial
meshes. Another typical error component is the algebraic
error, linked to the imprecision in the solution of the as-
sociated systems of linear algebraic equations. For nonlin-
ear problems, the linearization error, linked to incomplete
convergence of iterative nonlinear solvers such as the New-
ton method, arises equally. Property (vi) is essential for
the identification of the discretization (spatial and temporal),
linearization, and algebraic errors and for entire adaptivity,
relying not solely on adaptive mesh refinement but employ-
ing crucially adaptive stopping criteria for linear and non-
linear solvers.

In the subsequent sections, we will illuminate the current
knowledge on a posteriori error estimates for geosciences
problems. We start by the model steady linear problem (5)
and arrive up to the compositional Darcy flow model dis-
cussed in Section 2. The error estimates are derived un-
der very general assumptions that allow to cover all the dis-
cretization methods discussed in Section 3, taking advantage
of the unified framework developed in [50, 51, 59], see also
the references therein.

4.2 The single-phase steady Darcy flow

Let us first consider the single-phase Darcy flow (5). In
order to make the presentation independent of the numeri-
cal scheme at hand, we suppose that uh is a piecewise reg-
ular, typically piecewise polynomial function on the mesh
Th. This in particular allows for uh being nonconforming,
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i.e., not contained in the energy space H1
0(Ω) (not continu-

ous).

4.2.1 Controlling a posteriori the error

To give an a posteriori error estimate for the generic ap-
proximation uh we, following [51, 59, 85], henceforth as-
sume that we are able to construct two functions sh and σh

such that:

Assumption 1 (Potential reconstruction). There exists a
scalar function sh ∈ H1

0(Ω), termed potential reconstruction.

Assumption 2 (Equilibrated flux reconstruction). There ex-
ists a vector function σh ∈ H(div,Ω) such that

(∇·σh, 1)T = ( f , 1)T ∀T ∈ Th,

termed equilibrated flux reconstruction.

The two above assumptions mimic two essential proper-
ties of the exact solution of (5). First, the exact pressure
u is continuous in the sense that it belongs to the space
H1

0(Ω). Second, the exact (Darcy) flux given by −K∇u be-
longs to the space H(div,Ω), which implies, in particular,
that its normal component is continuous across interfaces.
Last, for the exact flux it holds that its divergence is equal
to the source term f . Assumptions 1 and 2 mimic these
properties on the discrete level. In conforming numerical
methods such as vertex-centered finite volumes or conform-
ing finite elements, the approximate solution itself satisfies
uh ∈ H1

0(Ω). Then we simply set sh := uh. Similarly, in flux-
conforming numerical methods such as cell-centered finite
volumes or mixed finite elements, a discrete flux satisfying
Assumption 2 is readily available and can be taken for σh.

Suppose f ∈ L2(Ω), K symmetric, bounded, and uni-
formly positive definite, and recall that the energy (semi-
)norm for (5) is then given by, for a function v piece-
wise H1 on Th, |||v||| := ‖K1/2∇hv‖L2(Ω)d . Then we have,
see [51, 72, 85]:

Theorem 3 (A posteriori error estimate, steady single phase
flow). Let u be the exact (weak) solution of (5), let uh be
its arbitrary (piecewise regular) approximation, and let As-
sumptions 1 and 2 hold. Then

|||u − uh||| ≤

∑
T∈Th

(ηF,T + ηR,T )2 +
∑
T∈Th

η2
NC,T


1/2

,

where the nonconformity estimators ηNC,T are given by

ηNC,T := ‖K1/2
∇h(uh − sh)‖T ,

the flux estimators ηF,T are given by

ηF,T := ‖K1/2
∇huh + K−1/2σh‖T ,

and the residual estimators ηR,T are given by

ηR,T :=
CP,T hT

c1/2
K,T

‖ f − ∇·σh‖T .

In Theorem 3, CP,T is the constant from the Poincaré in-
equality, equal to 1/πwhenever the element T is convex, and
cK,T is the smallest eigenvalue of the permeability tensor K
on the element T .

Remark 4 (Estimators of Theorem 3). The estimator ηNC,T
of Theorem 3 is related to the H1

0(Ω)-constraint on the pres-
sures and evaluates the possible departure of uh from H1

0(Ω).
The estimator ηF,T is related to the constitutive law saying
that the flux is given by −K∇u (this is precisely the Darcy
law (2) when the gravitational effects are neglected) and to
the H(div,Ω)-constraint on the fluxes and evaluates the de-
parture of −K∇huh from H(div,Ω). Finally, the last estima-
tor ηR,T is related to the strong form (5) and to the condition
of flux being in equilibrium with the sources.

It follows from Theorem 3 that the a posteriori estimate
for the energy norm of the approximation error for prob-
lem (5) is certified, so that property (i) of Section 4.1 is
satisfied. With appropriate choices of the reconstructions
sh and σh, it can be shown that also the properties (ii)–(v)
hold true; property (iii) may not hold fully (but effectivity in-
dices below two are usually observed), and, similarly, prop-
erty (iv) does not hold with respect to the inhomogeneities
and anisotropies of the diffusion tensor K unless specific
adaptations are made, see [86] and the references therein.
Finally, the estimate of Theorem 3 assumes that the sys-
tem of linear equations associated to the given numerical
method is solved exactly. Identification of the algebraic and
discretization errors in the spirit of property (vi), leading to
stopping criteria for iterative liner solvers, was undertaken
in [63]. Further details can be found in [51, 85] and the ref-
erences therein.

4.2.2 Refining adaptively the mesh

If follows from the fact that property (ii) of Section 4.1
is satisfied that the estimators of Theorem 3 allow to predict
the spatial distribution of the error. This is illustrated in Fig-
ure 8: in its left part, the actual error distribution over the
mesh elements is plotted, whereas in its right part, the es-
timators for the cell-centered TPFV scheme approximation
of (5) are shown. We can see that our prediction matches
nicely the reality. It is then natural to refine the mesh adap-
tively, around those elements where the estimators predict a
high error value. Such a concept is crucial especially in pres-
ence of singularities in the exact solution: then the mesh can
be almost exclusively refined in such places, as we can wit-
ness it in Figure 9. Both these examples, as well as the one
in Figure 10, are given for problem (5) with a model domain
Ω = (−1, 1)× (−1, 1), zero source term f , isotropic but inho-
mogeneous diffusion tensor K being ε multiple of the iden-
tity tensor in the first and third quadrant and by the identity
tensor in the other quadrants, and with an inhomogeneous
Dirichlet boundary condition instead of the homogeneous
one. This problem admits an analytical solution featuring a
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singularity at the origin (see [85] and the references therein).
We consider two cases ε = 5 and ε = 100 corresponding to
Figure 8 and Figure 9, respectively.

Finally, in Figure 10, we first asses the precision of our
estimators: we plot both the energy error |||u − uh||| and the
estimate of Theorem 3, in the left part for ε = 5 and in the
right part for ε = 100. We see that our estimators over-
estimate the actual error only mildly. Second, Figure 10
compares the situation of classical uniform mesh refinement
with the adaptive mesh refinement based on our estimators.
We see that the same precision can be achieved for signifi-
cantly fewer unknowns in the adaptive case with respect to
the uniform one. Equivalently, the error for the same number
of unknowns is much smaller in the adaptive case. Actually,
the error decrease in function of the number of unknowns
is very slow (given by the regularity of the solution) in the
uniform case, whereas it recovers the best possible speed in
the adaptive case.

4.3 The single-phase unsteady Darcy flow

To lay the foundations for time-dependent problems, we
consider the unsteady version of the model problem (5). For
the sake of simplicity, we consider for the theoretical devel-
opments K to be an identity matrix, so that we look for u
such that

∂tu − ∇·(∇u) = f in Ω × (0, tF),
u = 0 on ∂Ω × (0, tF),

u(·, 0) = u0 in Ω,

(28)

for some given initial pressure u0. Let tn, 0 ≤ n ≤ N, be a
strictly increasing sequence of discrete times such that 0 =

t0 and tN = tF. We introduce the time intervals In := (tn−1, tn]
and the time steps τn := tn − tn−1 for all 1 ≤ n ≤ N. On each
tn, we suppose a (possibly different) mesh T n

h . Again, to
make the presentation as general as possible, and include
all the space discretization schemes discussed in Section 3,
we suppose that uhτ is such that un

h := uhτ(·, tn) is piecewise
regular (typically piecewise polynomial) on T n

h , and that uhτ

is piecewise affine and continuous with respect to time. We
follow in our presentation [50, 51].

4.3.1 Controlling a posteriori the error

Let the source function f ∈ L2(Ω× (0, tF)) be for simplic-
ity piecewise constant in time, where we denote f n := f |In ,
and let the initial condition u0 ∈ L2(Ω). The exact so-
lution lies in the space Y := {y ∈ X; ∂ty ∈ X′}, with
X := L2(0, tF; H1

0(Ω)) and X′ = L2(0, tF; H−1(Ω)). The
space-time energy norm is given by, for y ∈ X,

‖y‖X :=
{∫ tF

0
‖∇y‖2(t) dt

}1/2

. (29)

We extend it to only piecewise regular functions in space
while replacing the usual gradient ∇ by the broken one ∇h.
It appears impossible so far to obtain the property (ii) (even
local in time but global in space) for the energy norm. For
this reason we, following Verfürth [82], augment the energy
norm by a dual norm of the time derivative as

‖y‖Y := ‖y‖X + ‖∂ty‖X′ , (30)

with

‖∂ty‖X′ :=
{∫ tF

0
‖∂ty‖2H−1 (t) dt

}1/2

.

Then property (ii), local in time but global in space, can be
obtained.

We suppose that the temporal discretization is fully im-
plicit, backward Euler. In order to once again make the pre-
sentation independent of the spatial discretization scheme at
hand, we make the following equivalents of Assumptions 1
and 2:

Assumption 5 (Potential reconstruction). There exists a
scalar function shτ, piecewise affine in time and satisfying
sn

h := shτ(·, tn) ∈ H1
0(Ω), such that, for all 1 ≤ n ≤ N and for

all T ∈ T n
h ,

(∂t sn
hτ, 1)T = (∂tun

hτ, 1)T , (31)

where sn
hτ := shτ|In and un

hτ := uhτ|In . We call shτ a potential
reconstruction.

Remark 6 (Condition (31)). Condition (31) is necessary
as we shall estimate the error in the augmented ‖·‖Y -norm
of (30). For a similar estimate in the ‖·‖X-norm of (29), it
would not be necessary.

Assumption 7 (Equilibrated flux reconstruction). There ex-
ists a vector function σhτ, piecewise constant in time, such
that, for all 1 ≤ n ≤ N, σn

h := σhτ|In ∈ H(div,Ω) and

( f n − ∂tun
hτ − ∇·σ

n
h, 1)T = 0 ∀T ∈ T n

h .

We call σhτ an equilibrated flux reconstruction.

We then have, see [50, 51]:

Theorem 8 (A posteriori error estimate, unsteady single
phase flow). Let u be the exact (weak) solution of (28) and
let uhτ be its arbitrary piecewise regular in space and piece-
wise affine and continuous in time approximation. Let As-
sumptions 5 and 7 be satisfied. Then,

‖u − uhτ‖Y ≤

 N∑
n=1

(ηn
sp)2


1/2

+

 N∑
n=1

(ηn
tm)2


1/2

+ ηIC, (32)
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Figure 8: Estimated (left) and actual (right) error distribution, permeability ratio 1:5, single-phase steady Darcy flow

Figure 9: Approximate solution and the corresponding adaptively refined mesh, permeability ratio 1:100, single-phase steady
Darcy flow

Figure 10: Estimated and actual error against the number of elements in uniformly/adaptively refined meshes for permeability
ratio 1:5 (left) and 1:100 (right), single-phase steady Darcy flow
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with, for all 1 ≤ n ≤ N, the spatial and temporal error esti-
mators given by

(ηn
sp)2 :=

∑
T∈T n

h

3
{
τn(9(ηn

R,K + ηn
F,K)2 + (ηn

NC,2,K)2)
+

∫
In

(ηn
NC,1,K)2(t) dt

}
,

(ηn
tm)2 :=

∑
T∈T n

h

3τn‖∇(sn
h − sn−1

h )‖2T .

For all T ∈ T n
h , the residual estimator, the flux estimator,

and the nonconformity estimators are given by

ηn
R,K := CP,T hT ‖ f n − ∂t sn

hτ − ∇·σ
n
h‖T ,

ηn
F,K := ‖∇sn

h + σn
h‖T ,

ηn
NC,1,K(t) := ‖∇h(shτ − uhτ)(t)‖T , ∀t ∈ In,

ηn
NC,2,K := CP,T hT ‖∂t(shτ − uhτ)n‖T .

Finally, the initial condition estimator is given by

ηIC := 21/2‖s0
h − u0‖.

It follows from Theorem 8 that the augmented norm error
in approximation of problem (28) is certified by the a pos-
teriori error estimate (32), so that property (i) of Section 4.1
is satisfied. With appropriate choices of the reconstructions
shτ and σhτ, it can be shown that also the properties (ii)–(v)
hold true; (ii) is local in time but unfortunately only global
in space, whereas property (iii) typically only gives effectiv-
ity indices around five. Importantly, property (iv) do holds
with respect to the final time tF. This is illustrated in Fig-
ure 11. We consider (28) posed on Ω := (0, 3) × (0, 3) with
K = 0.5I (I being the identity matrix), f = 0, and with u0
and an inhomogeneous Dirichlet boundary condition given
by the exact solution u(x, t) = exeyet

e3 . Three square meshes of
Ω with 10 × 10, 30 × 30, 90 × 90 grids and associated time
steps 0.3, 0.1, 0.3333 are considered. A vertex-centered fi-
nite volume scheme with backward Euler time stepping is
tested in the left part of Figure 11 for tF = 1.5 and in the
right part for tF = 3. The results confirm experimentally that
the effectivity indices (overestimation factors) are indepen-
dent of the final time. For illustration, we give the effectivity
indices also for the energy norm in Figure 12. Although in
this case we have no theoretical support, we numerically ob-
serve efficiency and the same robustness; moreover, here the
effectivity indices are closer to the optimal value of one.

4.3.2 Adaptivity: mesh and time step (de)refinement

The two main error components in the present case are
the spatial and temporal ones. Thanks to Theorem 8, we can
identify them in the spirit of property (vi) of Section 4.1.
Such a result is a basic theoretical ingredient for adaptivity
in unsteady problems, where both the spatial meshes T n

h and

the time steps τn can be refined and derefined during the
simulation. An example of a resulting adaptive algorithm
and numerical illustrations of the computational benefits of
such an space-time adaptive approach can be found in [61].

4.4 The two-phase unsteady Darcy flow

We now move in our presentation further to the simplest
multi-phase flow model: we consider a simplification of
the compositional model of Section 2 with only two phases
present and one component identified with each phase. The
results of Sections 4.2 and 4.3 were recently extended to
such a case in [26] for vertex-centered finite volume dis-
cretizations and in [87] in a general, discretization scheme-
independent setting. We focus here particularly on prop-
erty (vi) from Section 4.1 and on its practical benefits; all
the mathematical details can be found in [26, 87], which de-
velop the ideas of [46, 52, 63].

4.4.1 Controlling a posteriori the error

Suppose again an implicit Euler time discretization. In
analogy with Sections 4.2 and 4.3, to give an a posteriori er-
ror estimate for general approximations (S p,hτ, Pp,hτ), p ∈ P
fixed, without specifying the spatial discretization scheme,
we make the two following assumptions:

Assumption 9 (Pressure reconstructions). There exist two
scalar functions s1,hτ, s2,hτ, piecewise affine in time and sat-
isfying sn

1,h := s1,hτ(·, tn) ∈ H1
0(Ω), sn

2,h := s2,hτ(·, tn) ∈
H1

0(Ω). We call s1,hτ, s2,hτ pressure reconstructions.

Remark 10 (Assumption 9). In a proper mathematical for-
mulation of the two-phase flow model, see [26] and the ref-
erences therein, there are two quantities which posses the
same continuity as the weak potential in (28): these are the
global pressure and the complementary pressure (Kirchhoff

transform). For nonconforming discretizations, where the
discrete versions of these quantities are not continuous, the
scalar functions s1,hτ, s2,hτ represent their continuous recon-
structions. Alternatively, when one knows for instance that
the reference pressure P and the capillary pressure of a phase
p should physically be continuous, then s1,hτ, s2,hτ may rep-
resent their reconstructions.

Assumption 11 (Equilibrated phase flux reconstructions).
There exist two vector functions σp,hτ, p ∈ P, piecewise
constant in time, such that, for all 1 ≤ n ≤ N, σn

p,h :=
σp,hτ|In ∈ H(div,Ω), p ∈ P, verifying

(qn
p − ∂t(φS n

p,hτ) − ∇·σ
n
p,h, 1)T = 0 ∀T ∈ T n

h .

We callσp,hτ, p ∈ P, equilibrated phase flux reconstructions.

For the following result, we suppose that we are on a cer-
tain time step tn, 1 ≤ n ≤ N, that some iterative linearization
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Figure 11: Effectivity indices for final times tF = 1.5 (left) and tF = 3 (right), augmented norm error ‖u − uhτ‖Y , single-phase
unsteady Darcy flow

Figure 12: Effectivity indices for final times tF = 1.5 (left) and tF = 3 (right), energy norm error ‖u − uhτ‖X , single-phase
unsteady Darcy flow
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(e.g., the Newton one) has been applied to the system of non-
linear algebraic equations resulting from the given numeri-
cal method and that we are on its step k, and that in order to
solve the arising system of linear equations, some iterative
linear solver has been applied, with the current step i. The
corresponding saturation–pressure approximation couple on
the time interval In is denoted by (S n,k,i

p,hτ, P
n,k,i
p,hτ).

Theorem 12 (A posteriori error estimate, two-phase flow).
Let (S p, Pp) for one chosen p ∈ P be the exact (weak) sat-
uration and pressure. Let (S p,hτ, Pp,hτ) be their arbitrary
piecewise regular in space and piecewise affine and contin-
uous in time approximations. Let Assumptions 9 and 11 be
satisfied. Let a time step tn, 1 ≤ n ≤ N, a linearization step
k ≥ 1, and an algebraic solver step i ≥ 1 be given. Then

|||(S p−S n,k,i
p,hτ, Pp−Pn,k,i

p,hτ)|||In ≤ η
n,k,i
sp +ηn,k,i

tm +ηn,k,i
lin +ηn,k,i

alg , (33)

where ηn,k,i
sp , ηn,k,i

tm , ηn,k,i
lin , and ηn,k,i

alg are respectively the spatial,
temporal, linearization, and algebraic error estimators.

The precise form of the error measure ||| · |||In , as well as
of the error estimators ηn,k,i

sp , ηn,k,i
tm , ηn,k,i

lin , ηn,k,i
alg , can be found

in [26, 87].

4.4.2 Adaptivity: stopping the linear and nonlinear
solvers and (de)refining the mesh and time step

Theorem 12 enables once again to control the overall error
in a numerical approximation of the given problem. In ad-
dition to Sections 4.2 and 4.3, however, it allows to identify
the different error components in the spirit of property (vi)
from Section 4.1. It is thus suitable for designing an en-
tirely adaptive algorithm, with adaptive stopping criteria for
both linear and nonlinear solvers, adaptive time step choice,
and adaptive mesh refinement and derefinement. We now
illustrate numerically such adaptive procedures for a cell-
centered TPFV discretization of the immiscible incompress-
ible two-phase flow. The time discretization is fully implicit
coupled, the Newton method is used for the linearization
of the arising systems of linear equations, and the GMRes
linear solver with Jacobi (diagonal) preconditioning is em-
ployed (the examples are taken from [87]).

In the left part of Figure 13, for a fixed discrete time and
Newton step, we track the dependence of the different es-
timators of Theorem 12 on the GMRes iterations. We see
that all ηn,k,i

sp , ηn,k,i
tm , and ηn,k,i

lin stabilize after a few GMRes
iterations, whereas ηn,k,i

alg as expected decreases with GM-
Res iterations. Classically, one would wait until the alge-
braic relative residual becomes very small, say smaller than
10−13. In the present case, this requires 1530 GMRes itera-
tions. Our adaptive stopping criterion instead says that it is
sufficient that the algebraic error estimate ηn,k,i

alg is some user-

given constant γalg smaller than the sum ηn,k,i
sp + ηn,k,i

tm + ηn,k,i
lin ,

expressing that there is no need to continue with algebraic
solver iterations once the algebraic error does not influence

significantly the overall error. For γalg = 10−3, such a crite-
rion only requires 435 GMRes iterations. In the right part of
Figure 13, we then plot the different estimators as function
of the Newton iterations, at the same discrete time. 11 iter-
ations are necessary to reach the classical stopping criterion
requiring the L∞ difference between two consecutive pres-
sure and saturation approximations to be smaller or equal
to 10−11, whereas only 3 iterations are sufficient to arrive at
the adaptive stopping criterion ηn,k,i

lin ≤ γlin(ηn,k,i
sp + ηn,k,i

tm ) with
γlin = 10−3.

The overall gains achievable thanks to our approach are
then illustrated in Figure 14. In its left part, we plot the
number of necessary Newton iterations on each time step
for both the adaptive and classical stopping criteria. We can
see that they are considerably smaller in the adaptive case.
It is to be emphasized that in particular much fewer Jaco-
bian matrix assemblies are necessary in our approach. In the
right part of Figure 14 the cumulative number of GMRes it-
erations is given as function of time. From this last graph,
we can conclude that in the adaptive approach the number
of cumulative GMRes iterations is approximately 12-times
smaller compared to that in the classical one.

The above usage of a posteriori error estimates seems to
be rather new. More common is the procedure already de-
scribed in Section 4.3.2, consisting in equilibrating of ηn,k,i

sp

with ηn,k,i
tm and in equilibrating of the individual element com-

ponents ηn,k,i
sp,T of ηn,k,i

sp through adaptive time and space mesh
refinement and derefinement. Adaptive algorithms and nu-
merical experiments in such a spirit are given in [87]. A
simplified example can be summarized as follows:

Algorithm 1 (An entirely adaptive algorithm).

1. Assembly the initial conditions. Set n = 1.

2. Set up the system of nonlinear algebraic equations on
time tn.

3. (a) Initialize the iterative linearization (typically by
the last available approximations). Set k = 1.

(b) Set up the system of linear algebraic equations on
linearization step k.

(c) i. Initialize the iterative linear solver (typically
by the last available approximations). Set i =

1.
ii. Perform one or several linear solver steps (in

the latter case increase i appropriately). This
gives the approximation (S n,k,i

p,hτ, P
n,k,i
p,hτ).

iii. From the numerical method at hand, build
the pressure reconstructions s1,hτ, s2,hτ and
the equilibrated phase flux reconstructions
σp,hτ, p ∈ P.

iv. Evaluate the estimators ηn,k,i
sp , ηn,k,i

tm , ηn,k,i
lin ,

ηn,k,i
alg .
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Figure 13: Spatial, temporal, linearization, and algebraic estimators and their sum as function of the GMRes iterations on
the first Newton iteration (left) and of the Newton iterations (right) at time 2.6·106s, two-phase Darcy flow

Figure 14: Number of Newton iterations on each time step (left) and cumulative number of GMRes iterations as a function
of time (right), two-phase Darcy flow
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v. Check the convergence criterion for the lin-
ear solver

ηn,k,i
alg ≤ γalg(ηn,k,i

sp + ηn,k,i
tm + ηn,k,i

lin ). (34)

If this criterion is not satisfied, set i := i + 1
and go back to step 3(c)ii.

(d) Check the convergence criterion for the nonlinear
solver

ηn,k,i
lin ≤ γlin(ηn,k,i

sp + ηn,k,i
tm ). (35)

If this criterion is not satisfied, set k := k + 1 and
go back to step 3b.

4. Check whether the spatial and temporal errors are
comparable in the sense that

ηn,k,i
sp ≈ ηn,k,i

tm , (36)

whether the spatial errors are equally distributed in the
computational domain in the sense that

ηn,k,i
sp,T are comparable for all T ∈ T n

h , (37)

and whether the total error is small enough in the sense
that

ηn,k,i
sp + ηn,k,i

tm + ηn,k,i
lin + ηn,k,i

alg ≤ ε
n, (38)

where εn is a user-given criterion for the maximal error
on the time interval In. If this is the case, and tn < tF,
set n := n + 1 and go to step 2. If not, refine the time
step τn and/or the space mesh T n

h and go to step 2.

Remark 13 (Computational cost). The above algorithm is
essentially a very standard resolution algorithm. Its basic
novel ingredient are the estimators ηn,k,i

sp , ηn,k,i
tm , ηn,k,i

lin , ηn,k,i
alg ;

according to property (v) of Section 4.1, their evaluation
price is very small. The simplest adaptivity to implement
in an existing program is then that of the adaptive stopping
criteria (34) and (35). It basically consists in replacing two
source code lines. It is more demanding to implement (36),
(37), and (38).

4.5 The compositional unsteady Darcy flow

We finally return back to the compositional multi-phase
Darcy model introduced in Section 2. We are currently
in [41] adapting the developments presented in Section 4.4
to this setting.

4.5.1 Controlling a posteriori the error

In [41], we have in particular derived an equivalent of
Theorem 12 for the compositional multi-phase flow. Thus
the overall error can be controlled and moreover its individ-
ual components identified.

4.5.2 Adaptivity: stopping the linear and nonlinear
solvers and (de)refining the mesh and time step

Finally, similarly to Section 4.4.2, entirely adaptive al-
gorithms were proposed for the compositional multi-phase
flow case in [41]. Results similar to those reported in Fig-
ures 13 and 14 were obtained, enabling in particular substan-
tial computational gains just by employing adaptive stop-
ping criteria for linear and nonlinear solvers. To illustrate
the capability of our estimators to likewise detect the dis-
tribution of the spatial error, typically concentrated around a
moving front, we plot in Figure 15 the element contributions
of the spatial estimator ηn,k,i

sp at two different discrete times.
Refining and derefining the mesh adaptively while follow-
ing the front (and choosing adaptively the time step size)
is likely to still increase the computational attractiveness of
our approach. Such algorithms represent for us a subject
of current work. One example of a simpler model problem
with however still many characteristic difficulties and entire
adaptivity successfully put in place is [40].
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