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ABSTRACT 

Scarcity of water resource and increasing competition for its use promoted recently the development of advanced 

control algorithms and SCADA technologies for the automatic management of open-surface hydraulic systems. In order 

to control hydraulic devices on irrigation canals or rivers, detailed information on the hydraulic state of the system 

must be available. This is particularly true when the control algorithms are based on Linear Quadratic Gaussian or 

Predictive Control approaches using full state space models. Usually, the only known quantities are water levels, 

measured at limited locations. In this case, the design of an observer is a very useful tool for reconstructing 

unmeasured data, such as discharges or water levels at other locations, and unknown perturbations, such as inflows or 

outflows. Since the original work of Luenberger, state observers proved to be useful and are widely used in estimation 

and other engineering applications. In this line, the Kalman Filter, which provides a minimum variance recursive 

algorithm to optimally estimate the unknown states of a dynamic linear system with Gaussian uncertainties, has 

dominated the applications in signal processing and control areas. When the basic assumptions are not fulfilled, 

Extended Kalman Filtering (EKF) has been proposed to overcome its limitations. A portion of the Rhône River, between 

two hydropower plants managed by the Compagnie Nationale du Rhône, is modelled using the SIC hydrodynamic 

model. A Kalman Filter is then used, in a generic approach, to reconstruct unmeasured data, detect sensor faults and 

correct erroneous data. Real-time field data is used to validate the methodology. 

RESUME 

Assimilation de données pour le recalage en temps réel d’un modèle hydrodynamique 1D, la détection d'anomalies et 

leur correction – Application au fleuve Rhône. 

La rareté de la ressource en eau et l’augmentation de la compétition pour ses usages a récemment favorisé le 

développement d'algorithmes de contrôle et des outils informatiques de supervision (SCADA) pour la gestion des 

aménagements hydrauliques à surface libre. Pour contrôler les ouvrages des canaux ou rivières, l’état hydraulique doit 

être fiable. Cela est particulièrement vrai lorsque le contrôle est basé sur l’approche Linéaire Quadratique Gaussienne 

(LQG) ou sur l’approche par commande prédictive. Généralement, les seules variables connues sont les niveaux d’eau 

mesurés en certains points. Dans ce cas, l’emploi d’un observateur d’état est utile pour estimer les données non 

mesurées telles que les débits et les cotes à d’autres endroits ainsi que pour estimer des perturbations inconnues. 
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Depuis les travaux de Luenberger, les observateurs d’états ont prouvé leur utilité et sont fréquemment employés pour 

l’estimation et autres applications d’ingénierie. Dans ce même esprit, le filtre de Kalman basé sur des algorithmes de 

minimisation de la variance d’erreur reconstruit les états inconnus d’un système linéaire entaché d’incertitudes et de 

bruits blancs gaussiens. En présence de phénomènes non linéaires importants, le filtre de Kalman étendu (EKF) est 

mieux adapté. Une portion du Rhône entre deux aménagements hydroélectriques gérés par la CNR a été modélisée sous 

le logiciel SIC. Le filtre de Kalman a ensuite été utilisé pour reconstruire les données non mesurées, détecter les défauts 

des capteurs et corriger les données erronées. La méthodologie a été testée sur des données terrains. 

1. INTRODUCTION 

The Compagnie Nationale du Rhône (CNR) manages 18 hydropower schemes (19 hydropower plants and 19 

dams).  Given the absence of water storage at the different schemes, standard predictive control regulation 

algorithms were developed during a PhD thesis [1] and a major project: Rhône 2000.  At present, 14 

development schemes on the Rhone including the 12 on the lower Rhône (i.e. downstream of Lyon) are 

equipped with predictive control.  This control improves the management of the development schemes on the 

Rhône, in particular in terms of conformity with operating instructions, as well as incorporating the 

constraints dictated by water levels and flow rates (and their gradients). 

 

After five years of feedback from experience, it has been observed, in a general way, that a model embedded 

in the predictive control system provides a good basis for calculation as it relies on a large number of 

measurements transmitted from field stations.  This ensures that regulation always matches realistic 

hydraulic conditions so that the control calculation strategy using the model and the simulated scenarios is 

reliable [2]. 

 

However, it has been observed that regulation by predictive control can be disturbed in the case of important 

errors occurring in the embedded model.  Many uncertainties exist on the model parameters (change in the 

cross section geometry due to sedimentation, change in the roughness due to weed growth, etc.) and on the 

model inputs (inflows or outflows).  In those cases, we can consider that the model no longer matches reality.  

Predictive control can also be disturbed by measurement uncertainties and measurement errors.  That means 

when the measurements are corrupted by noise or when they are transmitted by faulty sensors.  A 

methodology allowing to take into account all possible uncertainties, detecting the errors, correcting them 

and updating the embedded model is required.  A previous method based on simple hydraulic calculation has 

been used for many years by CNR but needed to be improved. 

 

A Kalman Filter, which is a data assimilation method, appears to be the most appropriate method for solving 

the problems generated by the uncertainties above cited.  A study started in February 2008 and scheduled to 

end in February 2011 is being carried out in a view to test feasibility and performances related to the 

estimation/correction of water level and discharge all along the hydraulic system.  This paper presents the 

hydraulic system considered and the underlining modelling and filter concepts.  Then, the results obtained 

with some tests performed on a reach of the Rhône River are presented.  Three scenarios have been selected 

to test the filter.  The first one aims at detecting and correcting a sensor fault.  The second one aims at 

reconstructing unknown inflows and the latest scenario presents a test on real field data with a sensor failure.  

For the three scenarios the considered inputs, measurements and model states are sullied with uncertainties. 

2. THE HYDRAULIC SYSTEM CONSIDERED 

A section of the natural Rhône is diverted via a bypass channel where a power plant and a lock (locks only 

between Lyon and the Mediterranean sea) are in place.  A diversion dam is installed on the natural river 

channel to pass the floods (ref. Figure 1).  Outside flood periods, this diversion dam diverts most of the flow 

to the power plant, thus creating a small reservoir upstream while allowing a constant minimum flow of 

compensation water along the old natural Rhône.  The compensation water flow rate is determined by local 

authorities (from 5 to 150 m
3
/s, depending on the site). 
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Figure 1: Example concept of a development 

 

A portion of the Rhône River, between two hydropower plants managed by the Compagnie Nationale du 

Rhône, is selected for this study (ref. Figure 2).  The pilot development scheme is Baix le Logis Neuf.  This 

system is controlled in real time using a predictive controller based on a full Saint-Venant embedded model. 

 

 
Figure 2: Developments schemes between Switzerland and the Mediterranean sea. Zoom on the pilot development 

scheme. 
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3. THE OPEN CHANNEL HYDRAULIC MODEL – THE NON LINEAR SYSTEM 

3.1 The Barré de Saint Venant equations 

In order to be well founded, a state estimation must be based on a proper modelling of the physical system.  

Cemagref is developing methodologies and software tools (the SIC hydrodynamic software) dedicated to 

consultant companies and canal or river managers allowing accurate hydrodynamic modelling [3].  This 

model is based on the 1D Saint-Venant equations.  That means: the continuity equation (1) and the 

dynamical equation (2).  The equations are completed by external and internal boundary conditions such as 

inflows and gate equations. 
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With: 

• Q: Discharge (m
3
/s) 

• Z: water elevation (m) 

• S: Cross section (m
2
) 

• I: Bed slope 

• J: Friction slope 

• t: Time (t) 

• x: Longitudinal abscissa (m) 

• g: gravity (9.81 m/s
2
) 

 

In order to match the typical field operating conditions, the SIC software will perform successive time steps 

calculations, which will be called observation time steps.  The numerical time step used in these successive 

calculations can be smaller, so as to obtain an accurate enough description of the open channel flow. 

3.2 The discretization 

The Barré de Saint Venant equations can not be solved analytically.  We use the implicit Preissmann’s 

discretization scheme [4]: 
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With: 

• i: Space step 

• n: Time step 

• �: Weighting coefficient 

4. THE LINEAR SYSTEM 

After discretization, the Barré de Saint Venant equations are linearized around a reference state in order to 

design an approximate linear model of the true system in state space form [5]: 
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Where  

• A: state transition model 

• B: control-input model 

• C: observation model 

These matrices are real constant matrices of appropriate dimensions. 

The X state vector is composed of hydraulic variables (discharges Q and water levels Z) at each calculation 

cross section , relative to a reference state (� variables) (5): 
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5. THE KALMAN FILTER 

5.1 The uncertainties on the linear system 

In practice, a linear model is not a perfect representation of the reality and the inputs and the measurements 

are not perfectly precise.  There are some uncertainties on the model, on the inputs and on the measurements.  

This is the reason why noise is added to the process model and to the measurements, in order to better 

represent a realistic system, when used to generate data in a twin experiment framework.  The linear 

stochastic difference equations become (6): 
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The random variables wk and vk are assumed to be independent to each other.  They are considered like white 

noises, and with normal probability distributions: 

 P(w) ~ N(0,Q), (7) 

 P(v) ~ N(0,R), (8) 

The Q and R matrices can be time varying.  In our simulations we took these matrices as time invariant and 

diagonal (9): 
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5.2 Kalman filter equations 
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The equations for the Kalman Filter are divided into two groups: time update equations and measurement 

update equations.  The time update equations project forward in time the current state and error covariance 

estimates to obtain the a priori estimates for the next time step.  The measurement update equations 

incorporate new measurements into the a priori estimate to obtain an improved a posteriori estimate. 

 

 
Figure 3: Kalman filter equations 

 

These equations are simple matrix calculations, requiring little CPU time even for 300×300 matrices.  The 

calculation can even be further reduced by using the asymptotic Kk matrix (obtained solving a Riccati 

equation) without loss of performance (this has been tested and verified, but not presented in this paper). 

6. TESTS 

A Kalman Filter is first used to reconstruct unmeasured data on three scenarios, representative of real field 

problems.  In these scenarios twin experiments are conducted.  The first simulation is used to generate data.  

White noises are then added to them to simulate uncertainties on the model and on the measurements.  The 

second simulation is then done using the Kalman filter to reconstruct data and detect faults. 

Hypotheses 

• Time step for the simulations is 300 seconds. 

• The upstream hydropower plant is on operation.  That means there are discharge variations of 100 

m
3
/s around an initial value of 1683m

3
/s.  The other inflows are supposed to remain constant during 

the simulation: 10m
3
/s at Charmes dam, 1m

3
/s at Eyrieux, 5m

3
/s at Drôme, 1m

3
/s at Ouvèze, 999m

3
/s 

at Logis-Neuf downstream power plant and 701m
3
/s at Pouzin dam. 

• The initial state is null (+ white noise). 

• For the matrix Q, we choose �Q = 2m
3
/s, �Z = 0.001m. For the matrix R, we choose � = 0.02m. 

• There are 8 water level measurements (y1, y2, … , y8) 

 
 

Figure 4: Inputs, outputs and measurements on the studied system 
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6.1 The first scenario 

In this scenario we suppose that the water level sensor at location PR1 (Fig. 4) has a drift of 7cm from time 

4h to 10h.  We can see (Fig. 5-6) that the re-estimation state at the sensor location is very close to the real 

value, despite the wrong measurement.  The high frequencies changes on the graphs are due to the white 

noise added to the measurements to simulate the uncertainties on the measurements.  This sensor can then be 

detected as in default, and removed from the Kalman filter inputs.  We observed in this case that the state 

reconstruction is even slightly improved. 

 
Figure 5 : State estimation at sensor location 

 
Figure 6 : State estimation error at sensor location 

6.2 The second scenario 

The second scenario aims at reconstructing unknown inflows at Eyrieux and Ouvèze tributaries, along with 

all the states of the system.  We can observe (Fig. 7-8) that the inflows are correctly reconstructed.  First, we 

tested the Kalman filter with all the 8 water level measurements.  Then we tested with only 2 measurements: 

upstream (y1) and downstream (y8) of the development scheme.  We can see the uncertainties on the 

measurements and on the model do not disturb the reconstruction of the unknown inflow by the Kalman 

filter even if just two measurements are taken into account.  The filter can determine the value and time of 

the discharge of the unknown tributaries. 

 
Figure 7 : State estimation with 8 measurements 

 
Figure 8 : State estimation with 2 measurements 

 

6.3 The third scenario 

This scenario using real data aims at reconstructing unknown upstream flows following sensors breakdowns.  

This is a realistic scenario, since even thought most sensors are redundant on the Rhône River, they can have 
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simultaneous failures.  This event really happened on the field in March 2009.  We can observe that the 

missing discharge measurement at the upstream power plant is correctly reconstructed along with the water 

measurements at PK126.8, PR1 and PR2 (Fig 4). 

 
Figure 9: Real case, faulty sensor at upstream plant 

CONCLUSIONS  

In this paper, we have proposed a way to estimate, in real time, the hydraulic state of a river reach from 

measurements.  The uncertainties on the model, on the inputs and on the measurements are correctly taken 

into account, detected and corrected by the Kalman filter.  With this result, these errors will not disturb the 

automatic control of the development scheme.  This knowledge of the hydraulic state, despite different 

sources of uncertainties and errors is of first importance in the current context of more demanding water 

resources management. 
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