
HAL Id: hal-00783028
https://hal.science/hal-00783028v1

Submitted on 31 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation techniques of high-order FFT into
low-cost FPGA

Yousri Ouerhani, Maher Jridi, Ayman Alfalou

To cite this version:
Yousri Ouerhani, Maher Jridi, Ayman Alfalou. Implementation techniques of high-order FFT into
low-cost FPGA. IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS),
2011, Aug 2011, North Korea. pp.1-4. �hal-00783028�

https://hal.science/hal-00783028v1
https://hal.archives-ouvertes.fr

Implementation techniques of high-order FFT into
low-cost FPGA

Yousri Ouerhani, Maher Jridi and A. Alfalou, Senior Member, IEEE
Equipe Vision, Laboratoire L@bISEN, CS 42807, 29228 Brest Cedex 2, France

e-mail: {yousri.ouerhani, maher.jridi and ayman.al-falou}@isen.fr

Abstract—In this paper, our objective is to detail know-how
and techniques that can help the designer of electronic circuits to
develop and to optimize their own IP in a reasonable time. For
this reason, we propose to optimize existing FFT algorithms for
low-cost FPGA implementations. For that, we have used short
length structures to obtain higher length transforms. Indeed, we
can obtain a VLSI structure by using log

4
(N) 4-point FFTs

to construct N-point FFT rather than (N/8) log8 (N) 8-point
FFTs. Furthermore, two techniques are used to yield with VLSI
architecture. Firstly, the radix-4 FFT is modified to process one
sample per clock cycle. Secondly, the memory is shared and
divided into 4 parts to reduce the consumed resources and to
improve the overall latency. Comparisons with commercial IP
cores show that the low area architecture presents the best
compromise in terms of speed/area.

I. I NTRODUCTION

The Discrete Fourier Transform (DFT) is one of the most
important tools used in Digital Signal Processing applications.
It has been widely implemented in digital communication
systems such as Radars, Ultra Wide Band (UWB) receivers
and many other applications. Computing this operation has a
high computational requirement and needs a large number of
operations (N2 complex multiplications andN.(N − 1) com-
plex additions). This makes computing and implementation
very difficult to realize.
To reduce the number of operations a fast algorithm has
been introduced by Cooley-Tukey [1] and called Fast Fourier
Transform (FFT). The latter, reduces complexity fromO(N2)
to O(NlogN). Other researchers, propose numerous tech-
niques such as radix-4 [2], split radix [3] to avoid radix-2
structure in order to reduce the complexity of FFT algorithm.
These architectures are either based on the Decimation-in-
Time (DIT) or on the Decimation-in-Frequency (DIF). Several
designs based on these architectures were proposed in order
to implement these algorithms.
On the other hand, there is a growing interest in Field
Programmable Gate Arrays (FPGAs) because of their potential
to substantially accelerate computational intensive algorithms
such as FFTs. Unfortunately, high order FFT are almost
implemented into high cost FPGAs. For example, it is not
possible to instantiate 512-point FFT with the Xilinx IP core
to implement it in Spartan 3 family.
To meet with this challenge, we present in this paper a VLSI
architecture to allow the implementation of high order FFT
into low cost FPGAs.
The remainder of this paper is organized as follows. In

section II, definition and two kinds of distributions (spatial
and temporal) are introduced. Section III is devoted to the
proposed low area architecture. We detail the principle and
the structure of 64-point FFT which may be generalized to
higher orders. Then, techniques to save area are illustrated.
Section IV presents the experimental results and comparisons
with IP core and prior works quoted in the literature. Finally,
we summarize and conclude this paper in section V.

II. BACKGROUND

A. Definition

For a given sequencex of n samples, the DFT frequency
componentsX(k) may be defined by

X(k) =
N−1∑

n=0

x(n)Wn.k
N (1)

where WN=e
−2jπ

N is the twiddle factor,n and k are re-
spectively the time and frequency indexes,0 ≤k≤ N − 1 ,
0 ≤n≤ N − 1 andN is the DFT length.
Let us considerN = M.T , k = s + T.t and n = l + M.m,
where M , T are integer ands, l ∈ {0, 1 · · ·M − 1} and
t,m∈ {0, 1 · · ·T − 1}. Applying these considerations in (1),
we obtain (2)

X(s + T.t) =
M−1∑

l=0

T−1∑

m=0

[

x(l + M.m)W
((l+M.m)(s+T.t))
M.T

]

(2)
It can be found that (2) is equivalent to

X(s + T.t) =
M−1∑

l=0

T−1∑

m=0

[

x(l + M.m)W
((l+M.m)(s+T.t))
M.T

]

(3)
And finally, (3) can be rewritten

X(s + T.t) =
M−1∑

l=0

W l.t
M

T−1∑

m=0

[
W l.s

M.T x(l + M.m)Wm.s
T

]
(4)

Equation (4) means that it is possible to realize N-point FFT
by first decomposing into one M-point and one T-point FFT
whereN = M.T , and then combining them.To illustrate this
by example, we take the 64-point as a case study after that
we can make generalization to a higher order. To perform 64-
point FFT we may chooseM = T = 8. Then equation (4)

Fig. 1. Signal Flow Graph of the spatial distribution FFT architecture

can be written as in [4] by

X(s + 8.t) =
7∑

l=0

W l.t
8

7∑

m=0

[
W l.s

64 x(l + 8.m)Wm.s
8

]
(5)

Equation (5) means that is possible to express the 64-point
FFT by two-dimensional structure of 8-point FFT.
The processing element of higher order FFT according to
equation (5) is the 8-point. Hence, the performance of high
length depends in 8-point performance. The choice of 8-point
FFT structure becomes crucial. In this work, the 8-point FFT
architecture used is the Split Radix DIT because of its lower
number of arithmetic operations.

B. Spatial distribution

One possible realization of the 64-point FFT is presented
in the Signal Flow Graph (SFG) of Fig. 1. It can be observed
that computing 64-point FFT is composed on five levels. The
first level is composed of two serial to parallel blocks used to
store real and imaginary part of data presented in a serial way.
the second floor is composed of 8 blocks of 8-point FFT Split
Radix DIT. The third block contains 49 complex multipliers
used to compute non trivial complex multiplication. The fourth
is similar to the second one. the last level is composed of two
parallel to serial blocks gives data in a serial way.
At the 64th clock cycle all input data are ready to be
proceeded. After 5 clock cycles, the 8-point FFT outputs are
available and multiplication can be started. Block multiplier
needs 2 clock cycles to perform the 49 complex multiplica-
tions. The 64-point FFT outputs are available 5 clock cycles
after the last stage of 8-point FFT transformation.
Hence, the main advantage of this architecture is the high
speed and low-latency. However, the implementation of this
architecture on FPGA needs high memory, high number of
complex multipliers and complex adders. Therefore, this ar-
chitecture is not suitable for low cost FPGA such as Spartan
3 family.

Fig. 2. Signal Flow Graph of the temporal distribution FFT architecture

C. Temporal distribution

Another possible realization of the 64-point FFT is illus-
trated in Fig. 2. According to this structure, the first stage is
realized by one block of 8-point FFT rather than 8 as in Fig. 1.
Similarly, the third stage is performed by only one block of 8-
point FFT rather than 8. Consequently, the control unit in Fig.
2 plays an important role to synchronize all the treatments.
This architecture performs FFT in a pipeline way.
First, input data comes in a serial manner. To perform the
computation input data have to be parallelized. This is realized
by S2P blocks which are implemented by means of delay
registers.
On the other side, the control unit manages the input data

addresses. The first 8-point input data has the address in the
format 8j, j ∈ {0, 1, · · · 7}. On the 56th clock cycle these
data have been proceeded to the first stage of 8-point FFT.
After 5 clock cycles, the 8-point FFT outputs are available
and multiplication can be started.
Similarly, on the57th clock cycle, data indexed8j +1 will be
transformed by the first 8-point FFT and after 7 clock cycles,
results data will be available at the multiplier output. And so
one until the last result of multiplier output which will be
available at the71st clock cycle. These results are stored on
the fly on 64-complex data memory.
Likewise, the second 8-point FFT stage will proceed the stored
data to compute 64-point FFT.

D. Compromise analysis

Some concluding remarks related to this section have to
be drawn. Firstly, decomposing a high length FFT to 8-point
FFTs may be done in a spatial or in temporal distribution. In
terms of throughput, the two distributions present one complex
output per clock cycle since data have to be serialized by P2S
component.
On the other hand, the latency which represents the elapsed
time to get the first result is the same. In fact, for a given
N = 8n where n is the number of stages, the latency in both
architectures may be expressed asL(N) = N + 7log8N − 2.
The main difference between the two distributions is the
consumed area. Obviously, the second architecture consumes
averagely 7 times less area than the first one. The number of
8-point FFT blocks pass from 16 to 2 and the number of non-
trivial multiplier pass from 49 to 7. Furthermore, the complex
data memory used in Fig. 2 may be avoided by storing the
multiplier outputs on S2P registers. Indeed, since input data at
address8j, 8j+1, .. are proceeded one can use these addresses
to store the multiplier outputs.

Definitively, the major drawback of the decomposition of
high length FFT on 8-point FFTs is related to the hardware
consumed resources of the 8-point FFT. Synthesis results of
the split radix DIT description of 8-point FFT show that the
percentage of occupied slices in Spartan3E XC3S500 is about
30%. Therefore, to design a higher order FFT, the FPGA
resources will be overflowed. Another drawback is about the
limitation of the number of input with exclusively 8-point FFT
elements sinceN = 8n.
To overcome this problem we replace the 8-point FFT by a
4-point FFT using radix-4 algorithm. This choice is reinforced
by the synthesis results of radix 4 in terms of slice occupation
which is about 2%.

III. L OW AREA ARCHITECTURE

A. Definition

The N-point FFT equation can be split into three stages
according to next equation

X(s+Mq+MKp) =

L−1∑

l=0

M−1∑

m=0

K−1∑

k=0

x(l, m, k)W
(MKl+Mm+k)(MKp+Mq+s)
N

(6)

ForN = 64, one possible solution consists on constructing the
64-point FFT according to the temporal distribution by using
8-point, 4-point FFT and 2-point FFTs. The obtained design is
not highly structured and inhomogeneous. The second solution
consists in constructing the 64-point FFT by three stages of
4-point FFT. ForL = M = K = 4, 64-point FFT equation
can be written as

X(s + 4q + 16p) =

3∑

l=0

3∑

m=0

3∑

k=0

x(l, m, k)W
(16l+4m+k)(16p+4q+s)
64 (7)

B. Optimizations

Using the radix-4 processing element, we can represent the
64-point FFT according to SFG in Fig. 3. The 64-point FFT
is composed of a control unit, three blocks 4-point FFT units,
two blocks multipliers units with two phase generator units
and a complex 64-point memory unit. The control unit, indeed
of managing the FFT4, multipliers and memorizing unit, it is
used also to generate addresses of the inputs and the outputs
of each block.

1) Radix-4 modification:Outputs of such algorithm are
presented in next equations

X(0) =

A
︷ ︸︸ ︷

x(0) + x(2)+

C
︷ ︸︸ ︷

x(1) + x(3)

X(1) =

B
︷ ︸︸ ︷

x(0) − x(2)−

D
︷ ︸︸ ︷

j(x(1) − x(3))

X(2) = x(0) + x(2) − x(1) − x(3)

X(3) = x(0) − x(2) + jx(1) − jx(3)

(8)

The SFG of the radix-4 structure is illustrated in Fig. 4. It
is shown that radix-4 algorithm is composed of 8 complex
additions/subtractions.
In order to reduce the number of complex multipliers, after
each 4-point FFT and to keep the pipeline way in computation
of the design we modify the 4-point FFT architecture.

Fig. 3. Signal Flow Graph of the proposed low area 64-point FFT architecture

Usually, the radix-4 is computed as multi-inputs multi-outputs
system. This structure requires 4 multipliers in one clock cycle.
It is true that this structure presents a high speed design, but
almost a P2S block is used to serialize data. For these reasons,
we rectify the architecture in order to have one multiplier per
clock cycle. So, the resulting design have one complex input
and give one complex output per clock cycle as represented in
Fig. 4. Intermediate signals A, B, C and D used in the diagram
are indicated to understand the parallel computing.

2) Sharing memory: For each output of the 4-point
FFT block the phase generator generates the correspondent
twiddle factor and the multiplier unit performs the complex
multiplication and stores the result on 64 complex data
memory. This last will be reused and shared between all the
blocks as it is shown on Fig. 3.
Usually, computing 64-point FFT based on 4-point FFT needs
3 complex memories. In our architecture we use only one
complex 64-point. Moreover, this memory is divided into four
small 16-point complex memories in order to improve the
latency. Indeed, the problem behind this consists in using one
shared memory with only one writer port. This is impossible
since a part of data already saved in the memory are not
used. Furthermore, if we use a dual port memory, this will
be synthesized as BRAM blocks which are oversize and
available in limited number in low cost FPGAs.

IV. EXPERIMENTAL RESULTS

A. Synthesis results

In table I some comparison results with recent works in
terms of latency are illustrated. Functional verification is
carried out using Xilinx ISE and FPGA implementation on
Spartan 3E XC3S500 FPGA from Xilinx. In [4], authors have
proposed a similar architecture as in Fig. 2 and obtained a
latency of 79 against 76 in the proposed design of section
II-C. This difference comes from the block multiplier which
is implemented by delay registers in [4].
For the low area design of Fig. 3, we obtain better result than
Xilinx IP core [5]. This is mainly due to the memory division
into 4 small memories.
Regarding the consumed resources, operating frequency and
power consumption some comparison has been made between
our proposed architecture and Xilinx IP core and are presented
in Table. II .
For the 64-point FFT, the consumed cell area by the proposed
design is 29% smaller than consumed ressources in Xilinx IP
core. And, for the 256-point FFT our proposed BRAMless

Fig. 4. SFG of the modified radix-4 algorithm and the corresponding timing diagram

TABLE I
64-POINT FFT LATENCY COMPARAISON

Low Latency Low Area
[4] design of Fig. 2 Xilinx IP design of Fig. 3
79 76 192 152

TABLE II
FPGA IMPLEMENTATION COMPARISON

Proposed Xilinx IP
Length 64 256 64 256
Slices 758 1110 1063 1702

Slices Flip Flops 1080 1442 1764 2654
BRAM 0 0 0 1

Mult18x18 8 12 8 12
Estimate static Power (mW) 76 76 76 76
Maximum Frquency (Mhz) 170 116 219 215

design consumes 35% less than the Xilinx FFT which has
one BRAM block. In fact, the shared memory was divided
into four small memories which are synthesized as distributed
memories. These memories are implemented on LUTs without
using BRAM.

B. Implementation results

In order to validate the proposed design of Fig. 3, we
use a sine wave as test input vector. The frequency of the
input signal is set to the quarter of the sampling frequency.
To manage data in FPGA, we use Chipscope tool as in [6].
It can be observed in Fig. 5 the variation between matlab
simulation and the real performance on FPGA. The mean
residual power is equal to -0.1321 dB. Obviously, this is due
to the quantization noise since we use a fixed point operators.
It should be pointed out that the size of FFT outputs is fixed
to 18 bits.

V. CONCLUSION

Techniques to implement high order FFT into low cost
FPGAs were presented and validated. After a comprehensive
and a comparative study of existing high order FFTs, an
optimized architecture of 64-point FFT was proposed. The
transition between 64-point and 256-point was exploited.
Higher order FFTs could be obtained with the same manner.
Our future work for the FPGA implementation will be
devoted to the optimization of the block multiplier and the
use of the method proposed in [7] to replace embedded
multipliers.

Fig. 5. Residual Power between matlab simulation and real performance on
FPGA

REFERENCES

[1] J. W. Cooley and J. Tukey,An algorithm for the machine calculation
of Complex Fourier series, Math. Comput.,vol. 19, pp. 297-301, April
1965.

[2] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,Discrete-Time Signal
Processing, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1998.

[3] H. Sorensen, M. Heindeman, and C. Burrus,On computing the split-
radix FFT, IEEE Trans. Acoustics, Speech, Signal Process, vol.34, pp.
152-156, 1986.

[4] K. Maharatna, E. Grass, and Ulrich Jagldhold,A 64-Point Fourier
Transform Chip for High-Speed Wireless LAN Application Using OFDM,
IEEE J. Solid-State Circuits, vol. 39, pp. 484-493, March 2004.

[5] Xilinx Product Specification, High perfomance 64-point
Complex FFT/IFFT V.7.0 June 2009 [online]. Available on:
http://www.xilinx.com/ipcenter.

[6] M. Jridi and A. Alfalou,A Low-Power, High-Speed DCT architecture for
image compression: principle and implementation, in Proc. VLSI Syst.
in Chip Conf (VLSI-SoC), pp. 304-309, Sept 2010.

[7] M. Jridi and A. Alfalou, Direct Digital Frequency Synthetizer with
CORDIC Algorithm and Taylor Series Approximation for Digital Re-
ceivers, Euro Journal of Scientific Research, vol. 30, No. 4, pp. 542-553,
2009.

