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Abstract

The recent development of high-throughput genotyping technologies has revolutionized the collection of data in a wide range of
both model and nonmodel species. These data generally contain huge amounts of information about the demographic history of
populations. In this study, we introduce a new method to estimate divergence times on a diffusion time scale from large
single-nucleotide polymorphism (SNP) data sets, conditionally on a population history that is represented as a tree. We further
assume that all the observed polymorphisms originate from the most ancestral (root) population; that is, we neglect mutations
that occur after the split of the most ancestral population. This method relies on a hierarchical Bayesian model, based on
Kimura’s time-dependent diffusion approximation of genetic drift. We implemented a Metropolis–Hastings within Gibbs sam-
pler to estimate the posterior distribution of the parameters of interest in this model, which we refer to as the Kimura model.
Evaluating the Kimura model on simulated population histories, we found that it provides accurate estimates of divergence time.
Assessing model fit using the deviance information criterion (DIC) proved efficient for retrieving the correct tree topology among
a set of competing histories. We show that this procedure is robust to low-to-moderate gene flow, as well as to ascertainment
bias, providing that the most distantly related populations are represented in the discovery panel. As an illustrative example, we
finally analyzed published human data consisting in genotypes for 452,198 SNPs from individuals belonging to four populations
worldwide. Our results suggest that the Kimura model may be helpful to characterize the demographic history of differentiated
populations, using genome-wide allele frequency data.

Introduction
The recent development of high-throughput genotyping
technologies has revolutionized the collection of data in a
wide range of both model and nonmodel species. These
data, which may involve tens to hundreds of thousands of
single-nucleotide polymorphisms (SNPs) in humans
(Jakobsson et al. 2008; Li et al. 2008) and other model species
(Gautier, Laloë, et al. 2010; Kijas et al. 2012), contain huge
amounts of information about the demographic history of
populations (Wang and Nielsen 2012). By efficiently reducing
multidimensional genetic data into a few synthetic variables,
multivariate analyses (see Jombart et al. 2009, for a review)
such as principal component analyses have proven useful to
summarize available information about population structure
(Patterson et al. 2006; Novembre et al. 2008; Gautier, Laloë,
et al. 2010). However, because they are exploratory and model
free, such approaches are not aimed at making inferences
about the underlying history of populations (but see
McVean [2009], for a coalescent interpretation of principal
components). Alternatively, model-based approaches have
been developed to infer the population structure from multi-
locus genotypes. One of the most popular, which has been
implemented in the software package structure (Pritchard
et al. 2000), performs a clustering of individuals into genetic-
ally homogeneous groups based on an explicit population
genetic model (see also Tang et al. 2005; Alexander et al.

2009). It allows not only the assignment of individuals into
genetically homogeneous clusters (sometimes interpreted as
ancestral populations) but also the estimation of parameters
like the (unknown) allele frequencies in each cluster or the
admixture proportions for each individual. However, a limi-
tation of both multivariate analyses and clustering methods
is that they are only aimed at characterizing the genetic struc-
ture of populations. They do not provide any clue regarding
the historical processes that caused the observed structure.

A convenient way of representing the demographic history
of populations is borrowed from phylogenetics (Felsenstein
2003). It is based on the idea that the historical relationship
between populations can be represented as a multifurcating
diagram or a “tree.” The terminal nodes, or leaves, of the tree
represent the present-day populations, whereas the internal
nodes are interpreted as ancestral (unobserved) populations.
The branch length between any two nodes is proportional to
the amount of genetic divergence between the corresponding
populations. Early attempts to characterize population trees
relied on moment-based methods to infer the tree topology
and to obtain estimates of the branch lengths (Saitou and Nei
1987). In principle, likelihood-based techniques are more ef-
ficient in using the information present in the genetic data.
However, they require the definition of a stochastic model to
compute the likelihood of a sample of genes, which is
expressed as a function of some parameters that characterize
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the topology and the branch lengths of a population tree.
Two categories of approaches have been followed to derive
such likelihood. These differ in whether genetic drift is
approximated as a backward-in-time (coalescent) process
or as a forward-in-time (diffusion) process.

The first approach, based on coalescent theory (Kingman
1982), provides the probabilistic framework to compute the
likelihood of a sample of genes, conditional on the (unknown)
genealogy of that sample (Hein et al. 2005; Wakeley 2008).
Because it can only be computed for a single genealogical
history and because many such histories are compatible
with the data, Markov chain Monte Carlo (MCMC) algo-
rithms have been developed to integrate over unknown
genealogies (Hey and Nielsen 2004, 2007). However, the con-
vergence of these algorithms can be very difficult to achieve,
particularly as the sample size increases and scenarios are
more complex (Marjoram and Tavaré 2006; Beaumont
2008; Wakeley 2008). The second approach, to which this
study belongs, is based on diffusion theory (Kimura 1964).
It consists in approximating the discrete process of genetic
drift by a continuous-time diffusion process. Applications of
diffusion theory provide a probability density of allele frequen-
cies in some simple population models (Kimura 1964; Ewens
2004), which can then be used to compute the likelihood of a
sample of genes.

In the absence of migration, genetic drift occurs independ-
ently in each branch of a population tree. Let us consider one
particular branch, with effective population size N. At one
SNP locus, the allele frequencies drift from one generation
to the next, so that, in the absence of mutation, the number
Xðt + 1Þ of copies of one allele at generation t+1 is a binomial
random variable with index 2N and parameter XðtÞ=2N. In
this so-called Wright–Fisher model, starting from an ancestral
frequency �, the expected allele frequency �ðtÞ of that allele
after t generations is unchanged: E �ðtÞ½ � ¼ �, and its variance
is VarWF �ðtÞ½ � ¼ F�ð1� �Þ, where F ¼ 1� 1� 1

2N

� �t
is a

measure of divergence between the ancestral and the current
population (Wright 1969, p. 345–346). Although deriving ex-
plicit formulas for the whole distribution of allele frequencies
in the Wright–Fisher model proves to be difficult (Ewens
2004), it is possible to accurately approximate this discrete
process by a continuous-time diffusion process. This diffusion
approximation is based on a change of time scale whereby
infinitesimal changes in gene frequencies occur every
�t � 1=2N units of time (Crow and Kimura 1971; Ewens
2004). Hence, the unit of time in the diffusion process corres-
ponds to 2N generations in the discrete–time model. Using a
diffusion approximation to the one-locus, two-alleles Wright–
Fisher process, Gutenkunst et al. (2009) proposed a new
method to infer population history in models involving up
to three populations. Their method, implemented in the soft-
ware package @a@i, is based on numerical computation of the
expected joint frequency spectrum within and between
populations. Numerical evaluation of the diffusion approxi-
mation of the joint frequency spectrum allows considering
complex evolutionary scenarios including expansions, con-
tractions, migrations, etc. However, the generality of the
approach comes at the cost of computational burden.

Hence, although @a@i handles large resequencing data sets
(several Mb), it is limited by the number of populations ana-
lyzed. In the Wright–Fisher model, Kimura (1964) derived a
general solution, in the absence of selection and mutation, for
the distribution of allele frequencies in a finite-size population
at any time t. In principle, this solution may be used to com-
pute the likelihood of a sample of genes, which paves the way
for the inference of the model parameters. However, because
Kimura’s (1964) expression, which depends on some hyper-
geometric functions, is notoriously difficult to compute
(Wang and Rannala 2004), its use in likelihood-based infer-
ence for large genetic data sets has been extremely limited
so far.

Instead, several approximations to the pure-drift diver-
gence process have been sought to facilitate the computation
of the likelihood of population trees and estimate the under-
lying parameters. Cavalli-Sforza and Edwards (1967) approxi-
mated genetic drift as a Brownian motion process through
arc-sine square root transformation of allele frequencies. Very
efficient algorithms based on this approximation have been
developed, which have been extensively used in the context
of maximum-likelihood inference of population trees (see
Felsenstein 2003, p. 410–414). However, the Brownian
motion approximation is only valid for small divergence
times. Recently, Sı́ren et al. (2011) proposed to reconstruct
population histories from a combination of analytical, numer-
ical, and Monte Carlo integration techniques based on a beta
approximation of the allele frequency distribution, with ex-
pectation � and variance F�ð1� �Þ. Even more recently,
Pickrell and Pritchard (2012) developed a statistical model
for inferring population splits and mixtures, based on a multi-
variate generalization of the Gaussian approximation
of the allele frequency distribution (Coop et al. 2010).
Approximating the allele frequency distribution by a
Gaussian distribution with mean � and variance F�ð1� �Þ
was originally suggested by Nicholson et al. (2002). However,
although the Gaussian and the beta distributions have the
same expectation and variance as predicted in the Wright–
Fisher model, neither can be derived from first principles in
this model. In that respect, both models are reminiscent of
Cavalli-Sforza and Edwards’s (1967) approach, in the sense
that they are based on mathematically convenient instru-
mental distributions, rather than on the diffusion approxima-
tion of the process at play.

With the advent of computing power, though, the calcu-
lation of complex expressions in likelihood-based inference
techniques is now within reach, even for large data sets. In this
study, we therefore use Kimura’s (1964) diffusion approxima-
tion to estimate divergence times from large SNP data sets,
conditionally on a population history that is represented as a
tree. We further assume that all the observed polymorphisms
originate from the most ancestral (root) population, that is,
we neglect mutation. This method is based on a hierarchical
Bayesian model, for which we implemented a Metropolis–
Hastings within Gibbs sampler to estimate the posterior dis-
tribution of the parameters of interest, namely the branch
lengths throughout the population tree. We evaluated our
method using simulated population histories, accounting for
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various departures from the model assumptions (gene flow
and ascertainment bias). Because the true population history
is usually unknown, we further investigated the use of the
deviance information criterion (DIC) (Spiegelhalter et al.
2002) for choosing between alternative population histories.
As an application example, we finally reanalyzed published
human data consisting in genotypes for 452,198 SNPs from
individuals belonging to four human populations worldwide
(Jakobsson et al. 2008).

New Approaches

The Kimura Statistical Model

In the following, we derive a hierarchical Bayesian model for
integrating gene frequencies in a population tree. Consider a
sample made of J populations sharing a common history.
Each population has a label, k, which varies from 1 to J for
the sampled populations, and from J + 1 to r for the internal
nodes of the tree, where r represents the population at the
root of the tree. For a bifurcating tree, there are J� 1 internal
nodes and therefore r ¼ 2J� 1. For a star-shaped phylogeny,
where all sampled populations derive from a single ancestral
population, r ¼ J + 1. In the following, we note aðkÞ the an-
cestral population of population k. The directed acyclic graph
of the model is provided in figure 1, where the annotations
are given for illustrative purposes in the special case of a
bifurcating tree with three populations. The data consist in
I SNP loci, which are biallelic markers with an ancestral and a
derived allelic state. In the following, we consider a reference
allele, which is arbitrarily defined (e.g., by randomly drawing
the ancestral or the derived state). Let nij be the total number

of genes sampled at the ith locus (1 � i � I) in the jth popu-
lation (1 � j � J), that is, twice the number of genotyped
individuals in a diploid population. Let xij be the observed
count of the reference allele at the ith locus in the jth sampled
population. Assuming Hardy–Weinberg Equilibrium, the con-
ditional distribution of xij given nij and the true (yet un-
known) allele frequency �ij is binomial:

xij j nij,�ij �iid Bð�ij, nijÞ: ð1Þ

Let us now consider the second level of the hierarchical
model (fig. 1), which integrates over the distribution of the
reference allele frequencies �ik at the ith SNP in the kth
population (k < r). In the absence of mutation, assuming
that population k with effective size Nk diverged from aðkÞ
for tk discrete nonoverlapping generations, the distribution of
�ik, conditional upon the allele frequency�iaðkÞ in the parental
population, and upon the branch length �k � tk= 2Nkð Þ,
reads:

�ð�ik j�iaðkÞ, �kÞ

¼ ð1� w2
ikÞ
P1
l¼1

2l+1
lðl+1ÞT

1
l�1ðwikÞT

1
l�1ðziÞe

�1
2lðl+1Þ�k if 0 < �ik < 1

Pð�ik ¼ 0 j�iaðkÞ, �kÞ

¼ ð1� �iaðkÞÞ+
ð1�ziÞ

2

2

P1
l¼1

ð�1Þl 2l+1
lðl+1Þ T

1
l�1ð�ziÞe

�1
2lðl+1Þ�k

Pð�ik ¼ 1 j�iaðkÞ, �kÞ

¼ �iaðkÞ+
ð1�ziÞ

2

2

P1
l¼1

ð�1Þl 2l+1
lðl+1Þ T

1
l�1ðziÞe

�1
2lðl+1Þ�k

8>>>>>>>>>>>><
>>>>>>>>>>>>:

;

ð2Þ

 

FIG. 1. Directed acyclic graph (DAG) of the hierarchical Bayesian model for an example tree with J ¼ 3 populations. The topology ((P1,P2),P3) is
represented in gray. Yij represents the observed count of the reference allele at the ith SNP in population j, and �ij is its (unknown) frequency in that
population. The parameter �j � t=Nj is the length (on a diffusion time scale) of the branch leading to population j. Following our notations (see the
main text), the observed populations (P1, P2, and P3) are indexed from j ¼ 1 to j ¼ J ¼ 3. The (unobserved) population ancestral to P1 and P2 is
indexed by að1Þ ¼ að2Þ ¼ 4, and the (unobserved) population that is ancestral to P3 and P4 (root population) is indexed by r ¼ að3Þ ¼ að4Þ ¼ 5.
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(see formulae 4.9 and 4.16 in Kimura [1964]). In equation (2),
wik ¼ 1� 2�ik and zi ¼ 1� 2�iaðkÞ; T1

l�1ðxÞ denotes the
Gegenbauer polynomial, which can be computed using the
recursion: T1

0ðxÞ ¼ 1, T1
1ðxÞ ¼ 3x, . . . , and T1

nðxÞ ¼
1
n ð2xðn+ 1

2ÞT
1
n�1ðxÞ � ðn+1ÞT1

n�2ðxÞ
� �

for n � 2. In practice,
the Gegenbauer polynomial was computed using an iterative
algorithm checking for convergence for two consecutive iter-
ations. Convergence was generally achieved within 30 iter-
ations, except for low divergence (e.g., �k < 0:02) whereby
a few hundreds iterations could be needed.

Although it is possible in theory to integrate the binomial
sampling over the first level of the hierarchy (i.e., over the �ik

for k ¼ 1 to k ¼ J; see the supplementary materials,
Supplementary Material online), we found that the evalu-
ation of the resulting formula was numerically instable and
was not efficient computationally (data not shown).

As the allele frequencies in the ancestral population of the
full sample ðk ¼ rÞ are unknown, we assumed that the prior
distribution of the frequency �ir of the reference allele for the
ith SNP follows a beta distribution:

�ir �iid Betað1:0, 1:0Þ: ð3Þ

This prior is noninformative in the sense of the indifference
principle, which assigns equal probabilities to all possibilities.

Finally, the divergence parameter �k’s are assumed to be
sampled from a uniform distribution:

�k �iid Uð0, 10Þ: ð4Þ

Assuming that genetic drift occurs independently in each
branch of the tree, we may characterize the gene frequency
hierarchically along the tree from the most ancestral popula-
tion toward the leaves. The full model (fig. 1) then takes the
form:

� �, � j xð Þ /
Yi¼I

i¼1

Yj¼J

j¼1

P xij j �ij

� �" #

�
Yj¼r�1

j¼1

� �j

� �Yi¼I

i¼1

� �ij j �iaðjÞ, �j

� �" #Yi¼I

i¼1

� �irð Þ:

ð5Þ

Results

Precision of the Kimura Model for Estimating
Differentiation in the Wright–Fisher Model

To analyze the precision of the Kimura model based on
Kimura’s diffusion approximation, we first analyzed simulated
data consisting of allele counts at 5,000 SNPs genotyped from
four populations having diverged simultaneously from a
single ancestral population (star-shaped phylogeny). As the
truncated Gaussian model (Nicholson et al. 2002) and the
beta model (Balding and Nichols 1995) have been used to
approximate genetic drift in star-shaped population histories
(see, e.g., Gautier, Hocking, et al. 2010), we analyzed these
simulated data sets using previously described programs
based on these two models (Gautier, Hocking, et al. 2010).
For the truncated Gaussian and the beta models, branch
lengths were interpreted in terms of a differentiation

parameter Fk 2 ð0, 1Þ, which corresponds to a
population-specific FST (Weir and Hill 2002; Excoffier 2007).
Following the notations and assumptions made earlier,
Fk ¼ 1� 1� 1= 2Nkð Þ½ �

t (Wright 1969, p. 345–346). Hence,
providing Nk is not too small (e.g., Nk > 50) and �k is not too
large (e.g., �k < 0:15), then Fk 	 �k (fig. 2B and C).
Twenty-three temporal samples (from t ¼ 0:01 to t ¼ 1
unit of time) were taken to assess the precision of the esti-
mations as a function of the level of differentiation. The
Kimura model provided very good estimates of divergence
times [�k � t= 2Nkð Þ], irrespectively of the level of differenti-
ation (fig. 2A). Conversely, and as already observed (Gautier,
Hocking, et al. 2010), both the truncated Gaussian model (fig.
2B) and the beta model (fig. 2C) provided upwardly biased
estimates for Fk when �k exceeded 0.2. For the beta model,
though, biased estimates of Fk were close to �k as long as
�k < 0:5 (fig. 2C).

We further evaluated the performance of the Kimura
model to estimate branch lengths in bifurcating trees. To
that end, allele count data for 5,000 SNPs were simulated
for three populations (denoted as P1, P2, and P3) related by
the same topology ((P1,P2),P3) but with varying branch
lengths. Fifty replicates per history were performed. As illu-
strated in figure 3, the Kimura model provided accurate esti-
mates of divergence times even if a slight-to-moderate bias
was observed for the internal branch (leading to population
P4 in the simulated scenarios). The bias was more pro-
nounced with smaller divergence time (fig. 3D).

Performance of the Kimura Model to Characterize
Population History

Fifty data sets consisting in allele counts at 5,000 SNPs were
simulated using ms coalescent-based simulations for a
three-population history noted T1 in figure 4. Each data set
was then analyzed conditionally on the four possible tree
topologies represented in figure 4 and denoted by T1, T2,
T3, and S. As mentioned earlier, T1 corresponded to the
true (simulated) history, T2 and T3 corresponded to incorrect
histories, and S corresponded to a star-shaped (also incorrect)
history.

We found that, across replicated simulated data sets, the
DIC always provided a clear support in favor of the correct
population history (table 1). However, the power of the DIC
to identify the correct tree was strongly dependent on the
information available in the data sets. Indeed, as presented in
table 2, for small data sets (1,000 SNPs), the DIC criterion
provided support for an incorrect tree topology in a substan-
tial number of cases, whereas for reasonably larger data sets
(including 5,000 or 25,000 SNPs), the DIC was always support-
ing the correct tree topology. Similarly, the average difference
in DIC across replicates between the correct and alternative
tree topologies increased sharply with the number of SNPs in
the data sets. Finally, for any given number of SNPs, the power
of the DIC to support the correct population history slightly
decreased with the number of populations considered, and
the complexity of the tree topology, as illustrated in supple-
mentary figures S1 and S2, Supplementary Material online.
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Nevertheless, a realistic number of 25,000 SNPs (considering
currently available data sets in both model and nonmodel
species) was sufficient to obtain very satisfactory results on
more complex tree topologies, as illustrated in supplementary
figure S2, Supplementary Material online, for six-population
trees.

As shown in figure 4B, and in agreement with the above
results (fig. 3B), the different branch lengths were correctly
estimated when the analyses were performed conditionally
on the correct population tree T1. However, when the ana-
lyses were performed conditionally on incorrect tree

topologies (T2 and T3), and although the length of the
branch leading to population P3 was correctly estimated,
the lengths of the branches leading to P1 and P2 were up-
wardly biased, and the length of the internal branch (leading
to P4) tended toward zero. Therefore, although the method
provided correct estimates of the divergence of P3 (the most
diverged population in the simulations), all other branch
lengths in the population tree were poorly estimated.
Interestingly, all else being equal, the internal branch leading
to P4 tended to be shrunk, and therefore the lengths of the
branches leading to P1, P2, and P3 were close to the values

FIG. 2. Estimating branch lengths in star phylogenies with four populations. The posterior means of each of the four branch lengths were estimated with
the Kimura model in terms of divergence on a diffusion time scale �k (A). With the truncated Gaussian and the beta models (graphs B and C,
respectively), divergence was measured as Fk , which corresponds to a population-specific FST. The data sets consisted in 5,000 SNPs sampled from four
populations diverging simultaneously from their common ancestor (star-shaped phylogeny). The data were collected at 24 different time points after
divergence (see the main text for further details). In (A), (B), and (C), the dashed lines indicate the (true) divergence time on the diffusion time scale
(here, �k � t= 2Neð Þ where Ne ¼ 500 is the [diploid] effective population size). In (B) and (C), the dotted lines indicate the (true) value of the
population-specific FST (Fk ¼ 1� 1= 2Neð Þ½ �

t). Note that for small �k (e.g., �k < 0:15), Fk 	 �k .
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obtained in the analyses run conditionally on a star-shaped
population history (S).

Robustness to Model Misspecification
Inference of Branch Lengths in the Presence of Gene Flow
Overall, we found that the DIC always provided a clear sup-
port for the correct population tree, across replicated simu-
lated data sets, for low-to-moderate levels of migration
(M ¼ 0:1 and M ¼ 1, table 1) and in most instances
(>90%) for a high level of migration (M ¼ 10). As for the
estimation of branch lengths, we obtained similar results as
above when analyzing data sets simulated with a low amount
of gene flow between populations (M ¼ 0:1, fig. 4C).
However, and as expected, increasing the level of migration
from moderate (M ¼ 1, fig. 4D) to high levels (M ¼ 10,
fig. 4E) tended to bias downward the branch length estimates.
The magnitude of the bias increased with M and was more
pronounced for the internal branches. In the most extreme
case (M ¼ 10, fig. 4E) values, the results obtained condition-
ally on the correct tree topology (T1) were similar to those
obtained conditionally on the incorrect topologies T2, T3, and
S.

Inference of Branch Lengths with Ascertained SNPs
To investigate the sensitivity of the Kimura model to ascer-
tainment bias, we simulated data sets based on the
three-population history T1 considered earlier. To mimic

ascertainment bias, we defined “ghost” individuals within
each of the three sampled populations that were used exclu-
sively for discovery and then discarded from further analyses.
We considered three different ascertainment schemes, which
differed by the origins of the discovery panels used to ascer-
tain SNPs (see the Material and Methods section). As shown
in figure 5A, when the three populations contributed evenly
to the SNP discovery panel (ascertainment scheme AS1), we
obtained similar results as in the absence of ascertainment
bias (compare figs. 4B and 5B). However, we observed a mod-
erate upward bias in the estimate of the branch leading to P3
and a downward bias for the internal branch length estimate
(leading to P4), which was larger for analyses performed con-
ditionally on incorrect population histories. When only popu-
lations P1 and P3 contributed to the SNP discovery panel
(ascertainment scheme AS2), and although the correct popu-
lation tree was still recognized based on the DIC criterion
(table 1), more substantial downward (respectively upward)
biases were observed for estimates of the branch lengths
leading to P1 and P3 (respectively P2 and P4) (fig. 5C).
Finally, when only populations P1 and P2 contributed to
the SNP discovery panel (ascertainment scheme AS3),
severe biases were observed for estimates of the branch
lengths for populations P3 and P4 (fig. 5D). In this latter
ascertainment scheme, all else being equal, the branch
length estimates were very similar across analyses run with

FIG. 3. Performance of the Kimura model for estimating branch lengths in population trees. All histories represented from A to D share the same
topology ((P1,P2),P3) but differ in divergence times. For each history, 50 data sets made of 5,000 SNPs were simulated. The boxplots summarize the
distributions of the 50 posterior means of �k for each of the four branches. The branches are identified by the index of their terminal population, and the
horizontal dashed lines indicate the (true) simulated values.
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FIG. 4. Performance of the Kimura model for different levels of gene flow and for different underlying topologies. In all cases, data were simulated
according to the T1 history, represented at the left-hand side of the upper panel (A). The analyses were then performed conditionally on each of the
four possible histories (T1, T2, T3, and S) represented in (A). Four levels of gene flow were considered: M ¼ 0 (B), M ¼ 0:1 (C), M ¼ 1 (D), and M ¼ 10
(E). In each case, 50 data sets made of 5,000 SNPs were simulated. The boxplots summarize the distributions of the 50 posterior means of �k for each
branch. The branches are identified by the index of their terminal population, and the horizontal dashed lines indicate the (true) simulated values.
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different prior tree topologies. In particular, the analyses run
conditionally on incorrect topologies T2 and T3 provided
similar branch length estimates as in the analyses run condi-
tionally on a star-shaped population history (S), with a shrunk
internal branch leading to P4. It was only for this ascertain-
ment scheme (AS3) that the DIC failed to support the correct
population tree (table 1).

Inference of Branch Lengths in the Presence of

Recent Mutations
In SNP genotyping assays, the SNP ascertainment schemes
similar to the AS1 and the AS2 schemes ensure that “ances-
tral” SNPs (i.e., SNPs that predate the divergence of the popu-
lations under study) are largely over-represented. An
over-representation of ancestral SNPs may also occur if the
common ancestral population has undergone a strong bottle-
neck, as for instance in humans or in most domesticated
species. However, overlooking “derived” SNPs (i.e., SNPs that
arose after the divergence of the populations under study
from the root population) is expected to affect the robustness
of our model, if new mutations occur after the split of the
most ancestral population.

Removing the bottleneck (i.e., the -en option in the ms
command) in our simulations resulted indeed in higher
downward biases for the estimation of branch lengths (sup-
plementary fig. S3, Supplementary Material online) and
poorer identification of the correct underlying tree (supple-
mentary table S2, Supplementary Material online) as diver-
gence times increased. However, some ascertainment
schemes (particularly AS1) may improve performance prob-
ably if they result in an enrichment of the data sets in ances-
tral SNPs (supplementary fig. S4, Supplementary Material
online).

Example Application on a Large Human Data Set

As an illustration example, we ran our model based on
Kimura’s diffusion approximation on a large human data
set. The data consisted in allele counts at 452,198 autosomal
SNPs from four human populations of African (the Yorubas
from Nigeria or YRI and the Biaka Pygmies from Congo or
BIA), European (the US European American from Utah or
CEU), and East Asian (the Japanese or JPT) ancestry
(Jakobsson et al. 2008). To evaluate the extent to which sum-
marizing the history of these four populations by a bifurcating
tree is not overly simplistic, we first performed four-
population tests for treeness (also referred to as quartet
tests for migration) on the three possible (labeled) unrooted
tree topologies (see Keinan et al. 2007; Reich et al. 2009). As
detailed in supplementary table S1, Supplementary Material
online, the four-population tests for treeness supported the
((YRI,BIA),(CEU,JPT)) unrooted tree topology (P < 0:15) and
rejected the two alternative ones (P < 10�20). This result is in
agreement with Keinan et al. (2007), who considered individ-
uals from the same populations (YRI and CEU) and closely
related ones (Mbuti Pygmy and Chinese from Beijing) but a
different set of SNPs. This result further suggests that migra-
tion between YRI or BIA on the one hand and CEU or JPT on
the other hand has been maintained at a low level since the
population split and has not seriously distorted the joint allele
frequency spectrum.

To infer more precisely the relations between the four
worldwide populations YRI, BIA, CEU, and JPT, we then ran
our analyses conditionally on six alternative rooted popu-
lation trees. As represented in figure 6, these trees cor-
responded to the five possible rooted topologies derived
from the ((YRI,BIA),(CEU,JPT)) unrooted topology plus a

Table 1. Strength of Evidence for the Different Topologies Considered in Figures 4 and 5, Based on the DIC.

Topology DICT2
–DICT1

DICT3
–DICT1

DICS–DICT1

Median (Min.; Max.) n10 Median (Min.; Max.) n10 Median (Min.; Max.) n10

Figure 4B (M ¼ 0) 72.0 (45.9; 94.7) 50 68.2 (47.3; 100.6) 50 69.8 (35.9; 94.2) 50

Figure 4C (M ¼ 0:1) 72.7 (44.3; 103.2) 50 73.5 (44.6; 106.1) 50 65.9 (38.5; 107.8) 50

Figure 4D (M ¼ 1) 61.0 (30.7; 87.0) 50 61.5 (33.2; 94.5) 50 57.1 (26.8; 87.0) 50

Figure 4E (M ¼ 10) 26.5 (�13.2; 58.8) 40 27.6 (�5.2; 56.5) 43 30.6 (�0.7; 63.2) 44

Figure 5B (AS1) 65.8 (36.9; 88.5) 50 68.7 (31.4; 97.1) 50 69.7 (36.9; 99.5) 50

Figure 5C (AS2) 81.3 (44.0; 106.6) 50 98.8 (66.4; 126.5) 50 101 (65.5; 135) 50

Figure 5D (AS3) 10.6 (�22.2; 41.8) 25 8.80 (�26.3; 38.2) 22 10.3 (�17.6; 44) 25

NOTE.—The median (minimum; maximum) of the distribution of the difference between the DIC (�DIC) of a wrong topology (T2, T3, or S) and the correct one (T1), over 50
replicated simulations, is listed. n10 gives the number of simulations (out of 50) where �DIC > 10.

Table 2. Effect of the Number of SNPs on the DIC.

Number of SNPs DICT2
–DICT1

DICT3
–DICT1

DICS–DICT1

Median (Min.; Max.) n10 Median (Min.; Max.) n10 Median (Min.; Max.) n10

1,000 13.6 (0.2; 27) 38 14.3 (2.6; 26.2) 40 14.4 (�7.1; 28.6) 38

5,000 72.0 (45.9; 94.7) 50 68.2 (47.3; 100.6) 50 69.8 (35.9; 94.2) 50

25,000 364.1 (286.8; 451.5) 50 357.3 (306.2; 425.7) 50 338.4 (276.7; 408.9) 50

NOTE.—Data were simulated according to the same history as in figure 3A, with 1,000, 5,000, and 25,000 SNPs. Each column reports the median (minimum; maximum) of the
distribution of the difference (�DIC) between the DIC of a wrong tree (T2, T3, or S) and the correct one (T1), over 50 replicated simulations. n10 gives the number of simulations
(out of 50) where �DIC > 10.
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FIG. 5. Performance of the Kimura model for different SNP ascertainment schemes and for different underlying topologies. In all cases, data were
simulated according to the T1 history, represented at the left-hand side of the upper panel (A). The analyses were then performed conditionally on each
of the four possible histories (T1, T2, T3, and S) represented in (A). Three different SNP ascertainment schemes were considered: AS1 (B), AS2 (C), and
AS3 (D) (see the main text for further details on the ascertainment schemes). In each case, 50 data sets made of 5,000 SNPs were simulated. The
boxplots summarize the distributions of the 50 posterior means of �k for each branch. The branches are identified by the index of their terminal
population, and the horizontal dashed lines indicate the (true) simulated values.
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star-shaped phylogeny. Based on the DIC criterion, the tree T1
unambiguously received the strongest support, in agreement
with the widely accepted Out-Of-Africa model of human
evolution.

Discussion

An Efficient Model to Estimate Divergence Times

In this study, we developed a new hierarchical Bayesian model
to estimate divergence times (on a diffusion time scale) con-
ditionally on a population tree, using genome-wide allele fre-
quency data. Because genetic drift occurs independently in
each branch of the tree in the absence of gene flow, the allele
frequency at one particular locus can be modeled

hierarchically along the tree from the most ancestral popula-
tion toward the leaves. Our model is based on Kimura’s dif-
fusion approximation (Kimura 1964), which arises as an
explicit solution of the time-dependent Wright–Fisher
model. The parameters of interest in this model are the
branch lengths, measured as �k � t= 2Nkð Þ. This definition
calls for two remarks. First, it is evident from Kimura’s diffu-
sion approximation that disentangling divergence time t from
effective population size Nk is not possible, because of the
nonidentifiability of these two parameters. Estimating t,
which is generally the parameter of biological interest,
would therefore require informative priors on Nk, which in
practice can be derived from other analyses (see, e.g., Gautier
et al. 2007).
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FIG. 6. Estimation of divergence times conditionally on different histories relating four human populations: the Yorubas from Nigeria (YRI), the Biaka
Pygmies from Congo (BIA), the US European Americans from Utah with Northern and Western European ancestry (CEU), and the Japanese (JPT). The
data set from Jakobsson et al. (2008) consisted in allele counts at 452,198 autosomal SNPs. We analyzed the data using the Kimura model conditionally
on five rooted bifurcating topologies (each of which represented from A to E was derived by placing the root on one of the five branches of the most
likely unrooted tree, following the four-population test for treeness) and a star phylogeny (F). The estimated posterior means of the divergence time (on
a diffusion time scale) are provided for each branch. The topology (A) that received the strongest support based on the DIC is highlighted in red.
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Second, the population size Nk need not to be a constant.
Indeed, we expect Kimura’s diffusion approximation to be
robust to the (unknown) demography of the population
(see, e.g., Ewens 2004, chapter 5). For instance, with demo-
graphic fluctuations, and if we assume that population k has
size Nk, i in each generation i, then �k ¼ N�1

k, 0 + �2
Pt

i¼1 N�1
k, i

(see Nicholson et al. 2002), where �2 represents the variance
in the number of descendant across generations (e.g., �2 ¼ 1
in the Wright–Fisher model).

Not surprisingly, Kimura’s diffusion approximation out-
performs the two alternative models that have been pro-
posed so far for estimating divergence in star-shaped
population histories (Nicholson et al. 2002; Falush et al.
2003; Gautier, Hocking, et al. 2010). One of these alternative
models assumed that the allele frequency distribution in
each population might be well approximated by a trun-
cated Gaussian distribution (Nicholson et al. 2002), whereas
the second model relied on a beta distribution for allele
frequencies (Balding and Nichols 1995; Balding 2003).
However, neither the truncated Gaussian nor the beta
models are based on the analysis of the Wright–Fisher
model of genetic drift. Both models are indeed only
aimed at modeling the first two moments of the expected
distribution of allele frequency, conditionally on the fre-
quency in the ancestral population and the amount of di-
vergence. Note, however, that the beta model (which has
been referred to as the F-model by Falush et al. [2003])
arises as the diffusion approximation of genetic drift in
the migration-drift equilibrium island model (Balding and
Nichols 1995; Balding 2003).

An important difference between the truncated
Gaussian and the beta models stems from the fact that
only the former allows for variation to be lost in some
populations: although the support of the truncated
Gaussian is by construction on the ½0, 1� real line, the
beta model does not include probability masses in 0 and
1 and therefore ignores the possibility of allele loss or fix-
ation. Furthermore, the truncation made on the Gaussian
distribution by Nicholson et al. (2002) to account for the
masses in 0 and 1 reduces the variance of the distribution
of allele frequencies, which becomes rapidly smaller than
that expected under pure-drift divergence, as divergence
increases and the ancestral allele frequency departs from
0.5 (supplementary fig. S5, Supplementary Material online).
Indeed, although the expected variance in the Wright–
Fisher model equals VarWF ¼ F�ð1� �Þ, the variance of
the truncated Gaussian distribution considered by
Nicholson et al. (2002) equals

Var¼ 1+
a�ðaÞ� b�ðbÞ

�ðbÞ��ðaÞ
�

�ðaÞ ��ðbÞ

�ðbÞ ��ðaÞ

� �2� 	
VarWF; ð6Þ

where a ¼ ��=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�ð1� �Þ

p
and b ¼ ð1� �Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c�ð1� �Þ
p

. In equation (6), �ðxÞ and �ðxÞ represent,
respectively, the probability density function and the cumu-
lative distribution function of the standard normal distribu-
tion. The mismatch between the variance of the allele

frequency distribution in the truncated Gaussian model
and that expected in the Wright–Fisher model may very
well explain the observed upward bias in estimates of diver-
gence with the truncated Gaussian model as divergence time
increases (fig. 2).

For all the reasons cited earlier, the Kimura model clearly
outperforms the truncated Gaussian and the beta models
for the estimation of divergence time under pure-drift
scenarios (fig. 2), even for small effective population sizes,
over the whole parameter space (supplementary fig. S6,
Supplementary Material online). This improved accuracy
comes at the expense of computational burden, though,
even if the use of a recursive algorithm to estimate the density
function was proven to be efficient. For instance, a typical
analysis of one of the data sets from figures 3 and 4 (i.e., with
5,000 SNPs and 3 sampled populations, conditionally on a
bifurcating tree) took approximately 39 min on a desktop
computer equipped with a 3.4 GHz processor. Because com-
putation times are approximately proportional to the prod-
uct of the number of SNPs and the total number of
populations in a given scenario (including internal nodes),
analyzing large data sets of several tens to hundreds of thou-
sands SNPs therefore remains tractable even with standard
computers.

Providing a prior knowledge on plausible alternative trees
(and thus population histories) is available, the DIC model
comparison criterion (Spiegelhalter et al. 2002) was proven to
be efficient. The DIC had a better behavior than the pseudo
Bayes Factor (Gelfand and Dey 1994), another commonly
used measure to assess model fit (see supplementary mater-
ials, Supplementary Material online, and compare supple-
mentary table S3, Supplementary Material online, and table
2). However, the identification of the correct underlying top-
ology requires, of course, that the correct tree lies among the
set of tested trees. As a consequence, our approach might
only be viewed as complementary to tree inference methods,
to which the two aforementioned approaches proposed by
Sı́ren et al. (2011) and Pickrell and Pritchard (2012) belong.
Sı́ren’s (2011) approach may indeed be used to characterize
the posterior optimal tree topology but remains in practice
limited to the analysis of a few hundred SNPs due to the
computational burden. Similarly, Pickrell and Pritchard’s
(2012) approach provides a graph representation of the rela-
tionships between populations, but because it relies on some
extensions of the truncated Gaussian model, it may therefore
provide accurate branch length estimates for recent diver-
gences only. In any case, we recommend running three- or
four-population tests for treeness (Keinan et al. 2007; Reich
et al. 2009), to evaluate the extent to which summarizing a
population history by a bifurcating tree is a reasonable as-
sumption (see the example application on a large human
data set, earlier).

Influence of Data Set Properties on the Method
Performance

Increasing the number of SNPs had generally no effect on the
accuracy of branch length estimates. However, based on the
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DIC criterion, increasing the number of markers improved
substantially the choice of the correct population tree top-
ology. Typically, approximately 5,000 SNPs seemed sufficient
to resolve three-population trees in most instances. The
number of SNPs required to resolve alternative tree topolo-
gies increased with tree complexity, that is, with increasing
numbers of sampled populations.

With the recent development of high-throughput geno-
typing technologies, typical data sets may involve hundreds of
thousands of SNPs. In this context, the implicit assumption of
conditional independence of markers, which is made in our
and others model, and amounts to assume the exchangeabil-
ity of markers, might be violated. First, the residual linkage
disequilibrium (LD) within the genome creates local depend-
ency among neighboring SNPs. The expected squared correl-
ation coefficient r2 between two SNPs (Hill and Robertson
1968) is well approximated by Eðr2Þ 	 1=� for large values of
the population recombination rate � � 4Nr, where r repre-
sents the frequency of crossing over events per generation
(Ohta and Kimura 1969; Sved 1971; McVean 2007). Hence,
the extent of pairwise LD declines rapidly toward negligible
values as the genetic distance increases, which typically re-
duces the data to several tens of thousands of “effective”
SNPs, as confirmed by empirical studies (see, e.g., Duggal
et al. 2008). Although the correlation structure among SNP
allele frequencies is not explicitly accounted for in the models,
we expect LD to have a limited effect on divergence time
estimates in population trees. Nevertheless, LD-based pruning
techniques (Purcell et al. 2007), which aim at generating sub-
sets of SNP data in approximate linkage equilibrium, might
represent a valuable approach to overcome these difficulties.

Second, the SNP exchangeability assumption also implicitly
requires that SNPs are not located within genomic regions
targeted by selection. However, the model is expected to
remain robust to such departure from neutrality, provided
that only a small fraction of SNPs are indeed affected by
selective effects (see, e.g., Gautier, Hocking, et al. 2010).
Conversely, evaluating the local adjustment of the model at
each locus (e.g., using posterior predictive checking) may pro-
vide a means to identify outlier SNPs, while simultaneously
taking into account the demographic history of the sampled
populations (see, e.g., Gautier, Hocking, et al. 2010).

Third, SNP exchangeability requires the absence of ascer-
tainment bias. This assumption is valid for SNP genotyping
data sets obtained by means of next-generation sequencing
technologies (Baird et al. 2008) but not for SNP genotyping
assays, which remain common in most model species.
Extending the model to distinguish demographic from ascer-
tainment processes is theoretically possible (Guillot and Foll
2009), although it might lead to additional computational
burden in practice. However, our simulation evaluation
showed that the Kimura model was robust to ascertainment
bias, if the discovery panel was made of individuals sampled
from all the populations, or from the most distant popula-
tions. This suggests that the discovery panel needs to contain
at least some information about the history of the sampled
populations as a whole. Both the AS1 and the AS2 ascertain-
ment schemes considered in this study are representative of

the procedures used in humans, which generally rely on the
sequencing of a small subset of individuals from very diverse
origins. Conversely, when the discovery panel is only made of
individuals from the most recently diverged populations (as-
certainment scheme AS3), there is virtually no information
for the branches issued from the most ancestral population.
More generally, our results suggest that demographic
inference should be interpreted with caution, and we recom-
mend accounting for SNP ascertainment bias if the
analyzed populations are only barely related to the discovery
panel. The resulting bias may mainly be related to the
over-representation of derived SNPs (i.e., SNPs that did not
exist in the most ancestral population) and is therefore ex-
pected to be more pronounced if the populations repre-
sented in the discovery panel have rapidly expanded since
divergence (supplementary fig. S3, Supplementary Material
online).

Overlooking derived SNPs is expected to affect the robust-
ness of any inference method based on models that neglect
recent mutations (Nicholson et al. 2002; Coop et al. 2010;
Gautier, Hocking, et al. 2010; Sı́ren et al. 2011), although this
limitation is generally not explicitly stated. New mutations
may occur after the split of the most ancestral population,
for example, if population sizes are large or if divergence is
ancient. Accordingly, the models of population divergence
that neglect recent mutations should be used with caution
on data sets enriched with derived SNPs.

Finally, we investigated the robustness of our model to
departure from pure-drift divergence, by analyzing data sets
with simulated with low-to-high levels of gene flow.
Interestingly, the correct population tree was generally well
supported, even for moderate levels of divergence. Of course,
branch lengths were generally biased downward, and the
bias increased as the migration rate increased. Alternatively,
because of the flexibility of Bayesian hierarchical modeling,
it should be straightforward to account (and to test) for
admixture in the model by modifying the priors on the an-
cestral allele frequencies for the presumably admixed
populations.

Material and Methods

Parameter Estimation

Our aim is to estimate divergence times (on a diffusion time
scale) from genome-wide allele frequency data, conditionally
on a population tree from the hierarchical Bayesian model
described earlier. To that end, the full posterior distribution of
the parameters is estimated by means of a Metropolis–
Hastings within Gibbs MCMC algorithm. In this algorithm,
each parameter of interest is updated iteratively. The starting
values of the chains are taken as standard moment-based
estimates of the parameter of interest. At each iteration t of
the algorithm, the I� J parameters �ik (for k � J), the
I� ðr � JÞ parameters �ik (for J < k < r), the I parameters
�ir

, and the ðr � 1Þ parameters �k are successively updated in
that order, following the steps briefly described in the sup-
plementary materials, Supplementary Material online.
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In practice, to deal with probability masses in �ik ¼ 0 and
�ik ¼ 1, we introduced a latent (continuous) variable 	ik

with support ½�1, 2�, so that �ik ¼ minð1, maxð0, 	ikÞÞ.
The model was then redefined using 	ik with probability
density function �ð	ik j �iaðkÞ, �kÞ:

�ð	ik j �iaðkÞ, �kÞ ¼ Pð�ik ¼ 0 j �iaðkÞ, �kÞ

if � 1 � 	ik � 0 and �iaðkÞ 2 ð0, 1Þ
�ð	ik j �iaðkÞ, �kÞ ¼ �ð�ik j �iaðkÞ, �kÞ

if 0 < 	ik < 1 and �iaðkÞ 2 ð0, 1Þ
�ð	ik j �iaðkÞ, �kÞ ¼ Pð�ik ¼ 1 j �iaðkÞ, �kÞ

if 1 � 	ik � 2 and �iaðkÞ 2 ð0, 1Þ
�ð	ik j �iaðkÞ ¼ 0, �kÞ ¼ 1 if 	ik � 0
�ð	ik j �iaðkÞ ¼ 0, �kÞ ¼ 0 if 	ik > 0
�ð	ik j �iaðkÞ ¼ 1, �kÞ ¼ 1 if 	ik � 1
�ð	ik j �iaðkÞ ¼ 1, �kÞ ¼ 0 if 	ik < 1:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð7Þ
The proposal distributions for the Metropolis–Hastings

updates of the parameters 	ij and �j are provided in the
supplementary materials, Supplementary Material online.
To achieve good convergence of the MCMC, these proposal
distributions were adjusted during pilot runs (typically, 25
runs of 1,000 steps were run for each Markov chain). After
each pilot run, the proposals were adjusted to increase or
decrease the acceptance rate, to obtain acceptance rates
lying between 0.2 and 0.4 (Gilks et al. 1996). Then, each
MCMC was run for 25,000 iterations after a 5,000 iterations
burn-in period. Samples were taken from the chain every 25
iterations (thinning) to reduce autocorrelations. A Fortran
executable implementing the MCMC algorithm is available
for download at http://mbb.univ-montp2.fr/MBB/uploads/
kim_tree.tar.gz (last accessed December 3, 2012).

Model Assessment

Because the tree topology is usually unknown, we were
interested in characterizing, for a given data set, the strength
of evidence for alternative tree topologies. To do so, we
used the DIC, which is a standard criterion for model selec-
tion among a finite set of models (Spiegelhalter et al. 2002).
It relies on a measure of deviance defined as
D ¼ �2log �ðy j hÞð Þ+2log �ðyÞð Þ, where log �ðy j hÞð Þ repre-
sents the log likelihood of the data y under the model speci-
fied by the parameters h, and �ðyÞ is some fully specified
standardizing term, which is function of the data alone. The
DIC is then defined as DIC ¼ �D + pD ¼ 2 �D� Dð�hÞ, where �D
is the posterior mean deviance, which can be interpreted as a
Bayesian measure of fit. The effective dimension of the hier-
archical model pD is such that pD ¼ �D� Dð�hÞ, where Dð�hÞ is
the Bayesian deviance evaluated at the posterior mean of the
parameters h. A DIC difference larger than 10 units between
any two models is generally regarded as strong evidence (in
term of predictive ability) in favor of the model with the
smallest DIC. Here, the data y correspond to the allele
counts fxijg, and the parameters h correspond to the subset
of parameters in the hierarchical models, upon which the
data immediately depend, that is, the �ijs with 1 � j � J.
Because the latter parameters are not straightforward to

integrate out (see earlier and supplementary materials,
Supplementary Material online), the DIC was simply com-
puted as:

DIC ¼
2

T

XT

t¼1

XI

i¼1

XJ

j¼1

log
nij

xij

� �
�ijðtÞ

xijð1� �ijðtÞÞ
nij�xij

� 	

�
XI

i¼1

XJ

j¼1

log
nij

xij

� �
�ij

xijð1� �ijÞ
nij�xij

� 	
:

ð8Þ
In equation (8), �ijðtÞ is the tth sampled value of the par-

ameter �ij along the MCMC, out of a total of T value, and
�ij ¼

1
T

PT
t¼1 �ij, ðtÞ is the posterior mean of �ij.

Simulated Data Sets

To analyze the precision of our model for estimating the level
of differentiation over generations, relatively to the beta
(Balding and Nichols 1995) and the truncated Gaussian
(Nicholson et al. 2002) models, we used a Wright–Fisher
forward-in-time simulation algorithm consisting in successive
binomial sampling over generations, as described in Gautier,
Hocking, et al. (2010). In these simulations, we considered four
populations diverging simultaneously from a single ancestral
population (star-shaped history), each made of 1,000 haploid
individuals. We simulated 5,000 SNPs, and the initial reference
allele frequencies (in the most ancestral population) were
sampled from a uniform distribution: Uð0:001, 0:999Þ. The
sample sizes were set to 100 genes per population to allow the
accurate estimation of population differentiation parameters
in the first generations (t < 50). All SNPs were retained in
that set of simulations, even if fixed.

To test the performance of our model in more general
settings, we performed additional stochastic simulations, in-
dependent from the model assumptions. To that end, simu-
lations were carried out using the coalescent algorithm
implemented in the ms software package (Hudson 2002).
We used the �s option, which randomly puts a single mu-
tation on the simulated genealogies. Each of these simulated
data sets also consisted in 5,000 SNPs, genotyped in 50 diploid
individuals (100 genes) per population. As an example, for the
tree topology described in figure 3B, which assumes that P1
and P2 derived from population P4 �1 ¼ �2 ¼ 0:1 units of
time ago (on a diffusion time scale) and that P3 and P4
derived from the most ancestral one �3 ¼ 0:2 and
�4 ¼ 0:1 units of time ago, respectively, we used the following
ms command line:

ms 300 5000 -I 3 100 100 100 0 -ej 0.05 2 1 -ej 0.1 3 1 -en 0.1 1
25 -s 1.

Note that we assumed that the most ancestral (root)
population went through a bottleneck before splitting into
P3 and P4, to limit the occurrence of SNPs that arose after the
divergence of the populations under study from the most
ancestral (root) population (see earlier), which were referred
to as derived SNPs.

We then investigated the sensitivity of our model to mis-
specification, in particular in the presence of gene flow,
ascertainment bias, and derived SNPs. We tested the effect
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of model misspecification both on model choice (when com-
paring alternative tree topologies) and branch length esti-
mates. We first examined the consequence of gene flow on
the inference of population histories. To that end, we intro-
duced a migration parameter M � 4Nm (where m represents
the immigration rate in each generation along the simulated
tree). Four values were investigated, namely M ¼ 0 (corres-
ponding to the simulation model earlier), M ¼ 0:1 (slight
departure from the pure-drift model), M ¼ 1 (moderate de-
parture), and M ¼ 10 (strong departure).

The analysis of SNP data is usually complicated by the
discovery protocols applied to ascertain SNPs. Typically,
SNPs are called from the genetic material of a small sample
of individuals, referred to as the discovery panel. Only then are
the ascertained SNPs genotyped in the samples of interest.
This procedure results in samples that contain less alleles at
low frequency than expected in the absence of ascertainment
(Nielsen 2000). To analyze the consequences of SNP ascer-
tainment bias on the inference of divergence times, we simu-
lated SNP data sets mimicking different ascertainment
schemes. For that purpose, we simulated three-population
trees with the ms program, introducing diploid “ghost” indi-
viduals that were used exclusively for discovery and then
discarded from further analyses. Three different ascertain-
ment schemes were considered. In the first (AS1), SNPs
were retained if polymorphic in the six ghost individuals (12
genes) originating from P1, P2, and P3. In the second (AS2),
SNPs were retained if polymorphic in the four ghost individ-
uals (8 genes) originating from P1 and P3. In the third (AS3),
SNPs were retained if polymorphic in the four ghost individ-
uals originating from P1 and P2.

Real Data Set

As an illustrative example, we analyzed a subset of the human
data from Jakobsson et al. (2008) consisting in allele counts at
452,198 autosomal SNPs from four human populations: the
Yorubas from Nigeria (YRI, 2n ¼ 72), the Biaka Pygmies from
Congo (BIA, 2n ¼ 64), the US European Americans from
Utah with Northern and Western European ancestry (CEU,
2n ¼ 96), and the Japanese (JPT, 2n ¼ 32). The 452,198 SNPs
that we retained from the total data set fulfilled the following
conditions: 1) to pass the quality check performed by
Jakobsson et al. (2008), 2) to be polymorphic in the total
pooled sample, and 3) to be genotyped in at least 95% of
individuals from each population.

Supplementary Material
Supplementary materials, figures S1–S6, and tables S1–S3 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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