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Theory of elastic solids reinforced with fibers resistant to extension,

flexure and twist

David ]. Steigmann *

Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA

ABSTRACT

A model of non linearly elastic solids reinforced by continuously distributed embedded fibers is
formulated in which elastic resistance of the fibers to extension, bending and twist is taken into
account explicitly. This generalizes the conventional theory in which the solid is modeled as a
transversely isotropic simple material.

1. Introduction

The mechanics of fiber reinforced solids is a well established
subject with a long history [1,2] that has significantly enriched
and advanced continuum mechanics in general. It has been based
almost entirely on the concept of a simple anisotropic material in
which the response functions depend on the conventional defor
mation gradient, possibly augmented by constraints such as bulk
incompressibility or fiber inextensibility. In the latter case the
deformation is often so constrained as to be essentially kinema
tically determinate. The associated theory also exhibits a number
of novel features such as the hyperbolicity of the equilibrium
equations wherein the fiber trajectories emerge as characteristic
curves of the associated differential equations [1]. The continuum
theory presumes the fibers to be so densely distributed as to
render meaningful the idealization of a continuous distribution,
and purports to describe homogenized fiber matrix composites.

Recently a significant advance in the continuum theory of
fiber reinforced solids was achieved by introducing the bending
resistance of the fibers explicitly [3]. This is framed in the setting
of the non linear strain gradient theory [4 6] of anisotropic
elasticity in which elastic resistance is assigned to changes in
curvature (flexure)} of the fibers. The latter is calculated from the
second gradient of the continuum deformation in which the fibers
are regarded as convected curves. The model also accounts
for additional effects associated with the gradients of the fiber
stretches.
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In the present work we develop a model in which the fibers
offer elastic resistance to twist in addition to flexure and stretch.
Thus the fibers are regarded as continuously distributed spatial
rods of the Kirchhoff type in which the kinematics are based on a
position field and an orthonormal triad field [7 9]. Variation of
the triad along the length of a fiber accounts for flexure and twist,
while the position field generates the fiber stretch. We seek a
maodel that accounts for these effects but which does not attribute
elastic resistance to the gradient of fiber stretch. This restriction is
in accord with established rod theories.

The present model is a special case of the Cosserat theory of
non linear elasticity [4, 10, Section 98, 11,12], which has received
renewed attention in recent years. Current applications of the
general theory are treated in [13 16], for example, and mathe
matical aspects of the subject are addressed in [17]. This frame
work may be combined with strain gradient theory, which is also
in a period of active development [18,19], to obtain a model in
which bending and twisting effects are combined with fiber
stretch gradients. We do not consider such a possibility here,
however, as we are concerned with the simplest generalization of
the conventional theory. For the same reason we suppress
transverse shearing of the fiber cross sections and thus work in
the setting of the constrained Cosserat theory in which the
directors are described by a finite rotation tensor field. This is
decoupled, at the local level, from the deformation of the homo
genized continuum.

The hasic elements of Kirchhoff rod theory are summarized in
Section 2. This is followed, in Section 3, by a survey of non linear
Cosserat elasticity [11,12,17]. There we also introduce a kinematic
constraint on the rotation and deformation fields to ensure that
fibers are convected as material curves. We focus on a special case



of the general theory in which Cosserat effects are attributed
exclusively to the fibers. The resulting model is similar in
structure to the Kirchhoff theory, with the effects of fiber matrix
interaction manifesting themselves as forces and couples distrib

uted along the lengths of the embedded fibers. The theory of
material symmetry is developed in Section 4, and specialized to
the case of transverse isotropy in which the fibers are normal to
the planes of isotropy in a reference configuration. This discussion
leads to a non standard problem in representation theory which
may be of independent interest. Rather than pursue the general
solution to this problem, we simply record some example solu

tions in the form of scalars that automatically satisfy the relevant
invariance requirement. An example is used, in Section 5, to solve
the problem of finite torsion of an elastic cylinder in which the
fibers are aligned with the generators of the cylinder prior to
deformation.

We use standard notation such as A’, A~!, A*, SymA, Skw A
and tr A. These are, respectively, the transpose, the inverse, the
cofactor, the symmetric part, the skew part and the trace of a
tensor A, regarded as a linear transformation from a three
dimensional vector space to itself. We also use Sym and Skw to
denote the linear subspaces of symmetric and skew tensors and
Orth* to identify the group of rotation tensors. The tensor
product of three vectors is indicated by interposing the symbol
®, and the Euclidean inner product of tensors A,B is denoted and
defined by A - B = tr(AB"); the associated norm is |A| = v/A - A. The
symbol |- | is also used to denote the usual Euclidean norm of
three vectors. Latin and Greek indices take values in {1,2,3} and
{2,3}, respectively, and, when repeated, are summed over their
ranges. Finally, the notation F, stands for the tensor valued
derivative of a scalar valued function F(A).

2. Kirchhoff rod theory

In the present theory we regard the embedded fibers as
continuously distributed spatial Kirchhoff rods [7 9,20,21]. Con
figurations of a spatial rod are described by a position field r(S),
where S measures arclength along the rod in a reference place
ment, and a field {d;(S)} of orthonormal vectors in which d; is
everywhere tangent to the space curve defined by r(S); d,; «=2,3
are vectors embedded in the rod cross section. Thus,

r§)=/d; where 2=|r'(S)| (1)

is the local stretch of the rod. Here and elsewhere the notation (-)’
stands for d(-)/dS. We use the vernacular of rod theory in referring
to the cross section, but it should be borne in mind that the model
to be developed does not identify this explicitly. Rather, the latter
should be regarded as a microstructural feature that entails the
introduction of a local length scale; this is accounted for indirectly
via constitutive equations for the three dimensional continuum.
We also use the term matrix to refer to material properties that
are not attributable to the fibers.

The d; are presumed to remain orthonormal in all configura
tions of the rod. Accordingly, if D;(S) are their values in the
reference placement, then

d; =A(S)D; (2)

for some rotation field A(S)e Orth™". The rates of change d;(S)
describe the curvature and twist of the rod. Because the d;(S) are
orthonormal for all S in the domain (the length of the rod in the
reference placement), if the rod is initially straight and untwisted
(D; = 0) then the curvature and twist are given by the axial vector
o(S) of the skew tensor A'A’, i.e.

d,=axd; 3)

In the frame invariant formulation of the theory the response
of an elastic rod is described by a strain energy function w(/,x),
where k =A'a = k;D;, with

K=} epdy - dj, @

where ej;, is the usual permutation symbol (ejz3 = +1). The
equations of equilibrium are [7 9,21]

m+o=fxr and f+g=0, (5)
where
m = (ow/dx;)d; (6)

is the vector of bending and twisting moments exerted on the
part [0,S] of the rod by the part in the remainder,

f=2""ow/o)r +f,d,, 7

where f, («=2,3) are constitutively undetermined, is the force
on [0,S] exerted on the cross section at arclength station S; and
£(S), @(S), respectively, are the distributed force and couple per
unit reference length.

In the absence of axial extension, the strain energy function
most commonly used for isotropic rods of circular section is [7,8]

w(l,k) =1 GJic§ +1ElK, ¢y, 8)

where GJ, in which G is the shear modulus and J is the polar
moment of the section, is the torsional stiffness; and EI, in which E
is Young’s modulus and I is the second moment, is the flexural
stiffness. This yields [7]

m:GJK]d]+EIKQd1:G]K]d]+EId] X d/l (9)

The same model applies to isotropic rods of non circular section
provided that J is adjusted to account for warping of the cross
section [7,8].

3. Cosserat elasticity theory
3.1. Kinematics

To model the kinematics of the embedded fibers, we assume
the body, regarded as a homogenized continuum consisting of
matrix material and fibers together, to be endowed with a
rotation field R(X) in addition to the usual deformation yx(X). To
exhibit the main ideas as simply and clearly as possible, we
confine attention here to materials that are reinforced by a single
family of fibers.

Drawing on the structure of rod theory with axial extension,
we further assume the existence of a referential energy density
U(F,R,S; X), where F is the usual deformation gradient and S is the
rotation gradient; thus,

F=F,e;®Es, R=Ryue;®E; and S=Sipe;QEsEp (10)
with
Fia=yia and Spg=Rip, an

where (-), =0d(-)/6X,4 and we use an older Cartesian index nota
tion that emphasizes the two point character of the deformation
gradient and rotation fields. Here {e;} and {E,} are fixed ortho
normal bases associated with the coordinates x; and X4, where
X; = x;(Xa). Such notation delivers formulae which, though per
haps unwieldy, are at least explicit and unambiguous.

The rotation field acts on the orthonormal triad field {D;(X)}
associated with the unit tangents and cross sections of embedded
fibers. To make the roles of these vectors explicit, we write
{D;} ={D,D,}; «=2,3, where D(=D;) is the unit tangent to a
fiber in the reference configuration, denoted by ¢&, and D, are
cross sectional vectors embedded in the fiber, but not in the



matrix. Thus,
d;, =RD; (12)

is the (orthonormal) fiber triad in the current configuration,
where d(=d,) is the unit tangent to a fiber.

We regard the fiber as an embedded curve, and hence the
tangent field D(X) as being convected by the deformation y(X).
This generates the connection (cf. (1))

FD=/d where d=RD and 1= |FD|. (13)

The cross sectional vectors D, are not embedded in the matrix,
and so in general their images d, in the current configuration are
not directly connected to the deformation of the matrix. Rather,
they are free to shear relative to the matrix while remaining
mutually unsheared. This effectively extends the kinematics of
the ideal theory of elastic materials with embedded inextensible
fibers [1,2] to allow for fiber extension, flexure and twist. Eqs. (12)
and (13) generate the two constraints

RD,-FD=0, o=2,3, (14)

between the fiber rotation and matrix deformation, and thus yield
the interpretation of the present model as a constrained variant of
the Cosserat theory of non linear elasticity [4,11,12].

3.2. Strain energy function

We observe that the constraints (14) are invariant under the
transformations F—-QF and R—QR, where Q is the spatially
uniform rotation associated with an arbitrary superposed rigid
body motion. We assume the energy density function to be
similarly invariant, and thus impose the requirement

U(F,R,S; X) = U(QF,QR,QS; X), (15)
where (QS);43 = (Q;jRja). = Q;iSjas. The restriction

U(F,R,S; X) = W(E,I'; X), (16)
where [11,12]

E=R'F=EpEs ®Ep, Eap=RinFip, a7
I'=TIpcEp ® Ec, I'pc =3epapRiaRisc, (18)

with W a suitable function and espc the permutation symbol, is
both necessary and sufficient for the stated invariance. Sufficiency
is nearly obvious, while necessity follows by choosing Q:R‘fx,
where X is the material point in question, and making use of the
fact that for each fixed C € {1, 2,3} the matrix RisR;p c is skew; this
of course follows by differentiating RisRjp = 45, the usual Kro

necker delta. The associated axial vectors y. have components

b = 3eeapRiaRis . 19)
yielding [12]
r= Yc® Ec, (20)

and so I is equivalent to R'S.

3.3. Stationary energy and equilibrium

In the case of conservative loading equilibria may be inter
preted as states that render stationary the potential energy

E=/Wdu L 1)
Je

where L is a suitable load potential. Among the numerous
possibilities, we emphasize the dead load problem under negli
gible body forces and couples in which traction t is fixed on a
part o, of the boundary and couples m; are fixed on a part 8¢,

such that

L= .t-xda+ .m,-~d,»da. 22)

Jog, Jae,

The virtual work of the force and couples is

i-[ tqdat [ cwda 23)

Py
oGt

where the superposed dots refer to derivatives with respect to a
parameter of a one parameter family {F(X; €),R(X; €)} of deforma

tion and rotation fields, w = ax(£2) is the axial vector of the skew
tensor @ =R'R (Qv=ow x v for all v) and

c=ax[(D; ®m;))R R'(m; ® D;)] (24)

is the (configuration dependent) couple traction. This follows
from m; -d; = m; - RD; with R= RQ and m; - RQD; = R‘'m; - QD
= Rtmi [y Di - Q.

Stationarity of the energy is subsumed under the general
virtual work statement [11]

/'de:/' t.7da+
J¢ Joé,

where the derivatives are evaluated at equilibrium, corresponding
to €=0, say. We regard the values of y as being assigned on
08\0&,, and those of R as being assigned on 6£\0&,.. We emphasize
the fact that this holds whenever the virtual work of the loads is
expressible as a linear form in j and o, including the case of non
conservative loads or conservative loads other than those
discussed above.

Global balance statements may be derived from (25) by
assuming that 6¢, = 0. = o¢ and considering a rigid body motion

1X; ) =Q(O)xo(X)+b(6), R(X;6) =Q(ORy(X), (26)

superposed on a configuration described by the fixed position and
rotation fields 2,(X) and Ro(X), respectively, where Q(¢) € Orth™
with Q(0) = I. Because the strain energy remains invariant in such
motions we have W = 0; evaluating (25) at ¢ =0 then gives

. c-wda, (25)

J ol

/. (t-+c w)da=0, 27)
Joe

where

Z=ax (g bo)+b and o= Rja (28)

in which a = ax(RR") is evaluated at ¢ =0. To obtain the second
result we use

(R'R)R'v=R'(a x v)=R‘a x R'v (29)

for any v in which the second equality follows from the fact that
the rotation R’ is equal to its own cofactor. Using R'R= Q we
conclude that a= R, and the stated result follows immedi
ately. Dropping the subscripts, we then have

® axb)‘/.tda+a~/. (x xt Rc)da=0, (30)
Joé Joé

and for this to hold for all b and a it is necessary and sufficient
that the global force and moment balances,

/tda:O and /(xxt Rc)da =0, 31
o o

respectively, be satisfied.

In the course of deriving further consequences of equations
such as (25) in the general case it is conventional to use the
Lagrange multiplier rule to accommodate any constraints that
may be operative. However, for multiple integral problems of the
kind considered here it is not a trivial matter to establish the
existence of Lagrange multipliers [22]. Such matters are beyond
the scope of this work. The issue is examined in detail in [23,24]



in connection with the constraints of incompressibility and
inextensibility in conventional finite elasticity theory. These
difficulties are circumvented here by replacing the constrained
problem by an unconstrained problem for the functional

E= /’W dv L 32)
Je

in which

W =W+4,D, - ED, (33

where 4, are Lagrange multipliers associated with (14). Here E is
to be regarded as an unconstrained functional of y, R and A,. Thus
E and E coincide when the constraints are in effect, whereas the
latter effectively extends the former to states in which the
constraints are relaxed. Variation of the multipliers simply
returns the constraints, ensuring that states which render E
stationary are also stationary states for E. This follows from the
fact that stationarity in the class of unrestricted variations of x
and R implies stationarity in the restricted class defined by the
constraints. In this way equilibrium equations may be derived by
requiring that E be stationary for unconstrained variations.

The results of the Appendix may be used to reduce the
statement (E) =0 to

/{Aana -ED+ - (Div u+2ax Skw{(6+ A ® D)E' + uI'"])
4
% - Div(Re + A ® D)} dv
=/ 1-[t Re+i®Dnlda+ | o-(c+un)da, 34)
{’}i[ 55(

where n is the exterior unit normal to 8¢,
A=A,D,, A=RA, 6=Wg and u=Wr (35)

and the variations of the multipliers have been made explicit.
Hence the equilibrium equations

Div(Re+A®D)=0,

Div pu+ax{2 Skw[(c6+A Q D)E' + uI''[} =0 in ¢, (36)

and boundary conditions

t=Ro+Ai®Dn onoé and c+un=0 on &,. 37

The traction condition, with n=D, yields the interpretation of
A= A,d, as a density of kinematically undetermined transverse
shear force acting on the fiber cross sections.

Remarks. 1. Fiber inextensibility is accommodated by appending
the constraint RD - FD = 1. This affects the theory to the extent
that A and 4 are now 3 vectors given, respectively, by A;D; and
A;d; in which A7 is a kinematically undetermined density of axial
force exerted on the fibers.

2. Incompressibility entails the constraint det F(=detE)=1,
which may be accommodated by using

W=W+4,D,-ED p(detE 1) (38)

in place of (33), where p is the associated Lagrange multiplier.
With reference to the Appendix, this affects only Egs. (36); and
(37)1, which are replaced by

Div(Re pF*+i®D)=0 and t=(Re pF'+i®D)n, 39)

respectively, augmented by the identity Div F*=0.

3. The conventional theory of elasticity may be regarded as a
special case of the Cosserat theory in which ¢ vanishes, W is
independent of I' and R is constrained to be the rotation in the
polar factorization of F. Then, E =U (the symmetric right stretch
tensor) and the chain rule may be used, together with the
symmetry of the second Piola Kirchhoff stress IT (which is
necessary and sufficient for the rotation invariance of the strain

energy) to obtain 6 - U =W =R'P - U, where P(=FII) = Wg is the
usual Piola stress [25, p. 159]. This yields ¢ = Sym(R'P) and hence
the identification of ¢ as the Biot stress of the conventional
theory.

The connection between R and F means that the equilibrium
equations may not be obtained simply by specializing (36) and
(37). One way to accommodate this is to replace (14) by the
constraint Skw(R'F)=0 and to replace (33) by W =W+W .R'F
with W e Skw. We obtain

Wy =(P+RW)-F+WU - Q+W - R'F, (40)
and the associated Euler equations, replacing (36), are
Div(P+RW)=0 and Skw(WU)=0. 41

Because U is symmetric and positive definite the second of these
yields W=0 [26, Lemma 1] and the equations, including boundary
conditions, reduce to those of the conventional theory.

3.4. A simple model for fiber reinforced material

The kinematics of embedded fibers may be described in this
framework by using (12) to write (cf. (4))

Ki= %eijka . R[R/Dj, (42)

where (-) is the directional, or fiber derivative along the fiber axis
D and we have assumed, with minor loss of generality, that the
fibers are straight and untwisted in &; i.e., that D; = 0. Here we use
R}, =RiagDp to derive (cf. (A.9))

R'R = RiCSiABDBEC QR Eq = eacpl peDBEc ® Eq, (43)

which implies that k¥ = k;D; is determined by I'.

In view of the structure of the rod theory described in Section
2, we assume the constitutive response of the fiber reinforced
material to depend on I' via k; thus the strain energy is described
by a (different) constitutive function W(E,k). For the sake of
illustration we further assume the material to be uniform, and
thus that W does not depend explicitly on X.

To determine the associated response function u for use in
(36), we proceed indirectly, using [21]

k;=d;-a where a=ax(RR") (44)

(see (28)) in which the superposed dot refers, as in (25), to
the derivative with respect to the parameter in a one parameter
family of configurations. Accordingly, k;=D;-R'‘a’= D;-R’
(Rw), yielding

fC,‘ = (RIR/)D,' - (,l); where wi=w -Dj. (45)

Combining this with w;=w;4Da and fixing E (E =0) we derive
W =M - k, where

M=M;D; with M;=8W/ok; (46)
and
W = o - [Div(M ® D)+ (R‘R)M] Div[(M ® D)'e]. 47)

By equating this to the expression (A.10) for u - I" we conclude, on
taking (A.9) into account, that

u=M®D, (48)
and Eq. (36), specializes, for uniform D(x), to

M’ +(R'R)M+ax{2 Skw[(c +A ® D)E']} =0

where M’ = (VM)D, (49)
while the boundary condition (37), becomes

c= (D-nM, (50)



implying that ¢ vanishes at points where the fibers lie parallel to
the boundary.

The model may be recast in a form more easily recognizable
from rod theory by introducing the field

This yields M’ +(R'R)M = R'my'. Further, from (17) and (35), we
observe that

ax{2 Skw[(A ® D)E']} = ax[2 Skw(R'A ® R'y)]

where y' = FD. (52)
Using the easily derived rule

ax(@a®b ba)= axb (53)
we obtain

ax[2 SkwR'A@ R ) =R'y x R'A=R'(y x 4) (54)

and substitute into (49), thereby reducing it to

m'+y x A+R{ax(cE' Ec')}=0 where m’' =(Vm)D, (55)
whereas (39); may be recast as

A +Div(Re pF*)=0 where ' =(Vi)D (56)

in which the constraint of incompressibility has been incorpo
rated. These may be regarded as the equilibrium equations for the
reinforced solid.

Comparison with (5) and (46) furnishes the interpretation of
m as a density of moment transmitted by a fiber, and confirms
our earlier interpretation of 4 as a density of force acting on a
fiber. It also identifies the third term in (55) and the second term
in (56) (which incorporates the effects of the axial force on a fiber
(cf. (7))), respectively, as a density of distributed couples exerted
by the matrix on a fiber and a distributed force exerted on the
fiber. Further, the contribution to the net moment (cf. (31), (50)
and (51)) from the embedded fibers reduces to

Rc=m(D - n). (37)

The dependence of the strain energy function on x (or I')
introduces a natural length scale, | say, into the constitutive
behavior which is on the order of that of the microstructure and
hence of the diameter of a fiber cross section. Using this to define
the dimensionless curvature twist vector ¥ = Ik, supposing the
latter to be small in typical applications and assuming that the
fibers carry no bending or twisting moments when straight and
untwisted, we find that W is given to leading order in ¥ by

W(E, k) = W(E,0)+1k - KE)x, (58)
where K(E) = W (E,0).

4. Material symmetry and transverse isotropy
4.1. General considerations

In this section we develop the theory of material symmetry for
elastic Cosserat materials subject to the constraint (14). Our
development borrows from that of Noll for conventional elasticity
[27]. We first describe the manner in which the constitutive
function for the strain energy may be computed for any choice of
reference when that pertaining to any particular choice is given.
We then derive a restriction on the constitutive function pertain
ing to any given choice of reference following from the presumed
existence of alternative choices that are related to the first by
symmetry transformations.

Suppose, then, that ¢ and p are two references, and let Y(X) be
the (invertible) map that takes points in ¢ to points in u. The
deformation gradients relative to £ and u, denoted by F: and F,

respectively, are related by
F:=F,H where H=VY. (59)

We restrict attention to transformations Y with detH=1, for
reasons that are well known in conventional elasticity [27, p. 192],
and impose Y(Xo) = Xo. The specification of such a pivot removes an
inessential translational degree of freedom from the discussion of
symmetry that follows.

We have seen that the presumed rigidity of the director triad
leads to the existence of a rotation R such that (12) is satisfied;
here we write d; =R:D;. In the same way there is a rotation R,
such that d;=R,G;, where {G;(Y)} is the positively oriented
orthonormal director field defined in p. Thus,

R:=R,L, (60)

where L =G; ® D; is the rotation field that maps the directors in
¢ to their images in u. We have d =R:D =R,G, where G(=G) is
the unit tangent field to fibers in g, so that G=LD. To ensure that
D is a material vector (cf. (13)), it is thus necessary to impose

HD = |HD|LD. (61)

The rotation gradient fields S and S, relative to ¢ and g,
respectively, are related by

S =S¥ Lea+R¥WLeaplHps  Where Leap = dLca /Y p. (62)

Given the constitutive function U:(F:,R;:,S;; Xo) pertaining to
the reference ¢ that pertaining to u is given by

Ull ( F(M)

R Sihg X3) = Uc(Fig Hpa Ri5 Lpa, [S{E Lea + R Lea plHop: X3).

iAB* iB icp
(63)

Suppose now that ¢ and u respond identically to given deforma
tion and director rotation fields; that is, suppose they are related
by symmetry. Their constitutive functions then satisfy

U:(F,R,S; Xo) = U,(F.R,S; Xo), (64)
and therefore

Ug(Fia,Ria,Siag; Xa) = Ug(FigHpa,RiLpa,[SicoLca + RicLca,p]Hps: Xa).
(65)

Following Noll's characterization of solids (see [27]) we
assume the existence of an undistorted reference and suppose
¢ to be one of these. Thus we confine attention to proper
orthogonal H. Further, we remove an inessential orientational
degree of freedom in the local change of reference by requiring
that it preserve the pivotal axis D; thus,

D =HD =LD, (66)

in place of (61).

To proceed further it is necessary to express the restriction
(65) in terms of the reduced energy W(E,I'; X). Rather than pursue
this in the general case, however, we proceed instead to the
special case described in Section 3.4.

4.2. Application to the present model and specialization to
transverse isotropy

For the simple model discussed in Section 3.4, the strain
energy depends on S via k =k;D;, where k; is given by (4) in
which the prime refers to the fiber derivative in &. In particular,
for any function f we have f’ =(Vf)e -D=(Vf),H-D, where the
subscripts ¢ and p identify gradients with respect to Xe ¢ and
Y e u, respectively. Thus, from (66), f’:(Vf)N-HtD:(Vf)#-D,
implying that the fiber derivative is invariant under transforma
tions of the reference configuration that preserve the fiber axis.
Accordingly, the k; are also invariant, and the curvature twist
vectors k: and k, relative to the reference placements £ and p are



related by

K: =LK, (67)
whereas (cf. (17), (59), (60))

E:=L'E,H. (68)

These hold whether or not the fibers are straight or untwisted in
u, i.e. whether or not the G;j vanish.

If ¢ and p are related by symmetry, then the associated strain
energy functions satisfy (cf. (64))

We(E, k) = W,(E,K) (69)
at the pivot point X,, where W (E, k) = W:(E; K;); combining
this with (67) and (68) yields the restriction

W (E,k) = W:(L'"EH,L'%), (70)

where the rotations H and L are connected by (66) but otherwise
independent. This replaces (65) in the present circumstances.

If the reinforced material is transversely isotropic, with the
fibers perpendicular to the planes of isotropy, then (70) holds
without further restrictions on H or L; that is, for all rotations
H,L €S, where

S={QeOrth™ with QD =D}. [a))
For example, strain energy functions of the type

W(E, k) = W1 (E)+ W, (E)(k - D)2+ W3(E) |1k
with1=1 DD (72)

are suggested by (8) and furnish examples of (58). It is straight
forward to verify that

k-D=L%x-D and |1k|=|1L"k| (73)
for all Le S, and (70) is then satisfied for all ¥ provided that
Wi(E)=W(L'EH), i=1,23. (74)

To address this non standard representation problem we may
derive necessary conditions by setting L=HeS, writing the
functions of E in terms of Sym E and Skw E, and finally appealing
to established theorems in representation theory (see [28] or
[29]; Theorem 4.5.1 and Tables 4.1 4.7). This procedure yields the
Wi, in terms of a (possibly reducible) list of scalar invariants. Then,
we may eliminate those scalars that do not remain invariant
when LHe S are allowed to differ. For example, L =1 is permis
sible and yields W;(E)=W,;(EH) for all HeS. We would then
eliminate the scalars that fail to remain invariant when E is
replaced by EH for all such H. This laborious process must then be
repeated for all other choices of LeS. Indeed, the standard
framework for deriving representations appears not to be well
suited to the present theory.

Rather than pursue this procedure here, we simply record a list
I of functionally independent scalars that are easily shown to
satisfy (74) individually, for all L,H € S; namely,

I={l,....]q}, (75)
where

Iy =tr(E'E), I, =tr[(E'E)*], I3 =detE,

I4=D-ED, Is=D-(E'E)D,

Is=D-(EEYD, I;=D-E*D,

Is=D - (E'E)’D, Io=D-(EE")?D, (76)

and E* = (det E)E~! is the cofactor of E. Thus any function of the
elements of I automatically satisfies (74), but of course we have
not shown that I is a function basis for transverse isotropy. It is
included here mainly to establish that the representation problem
defined by (74) is not vacuous. We observe that det E=detF,

E'E=C and EE' =R'BR, where C=F'F and B=FF' are the right
and left Cauchy Green deformation tensors, respectively.
The response function ¢ derived from (72) and (75) is given by

6 =Wg =(Wi)g+k - DP(Wy)g + |1k (Wa)g, (77)
with
Wpg=> Wig where W; =0oW,/al; (78)

]

and (Ij)g are the gradients of the invariants with respect to E. To
compute these we use the chain rule in the form

e -E=1j (79)

where the superposed dot is the derivative with respect to a
parameter in a parametrized path E(-). The procedure consists in
expressing the right hand side as a linear form in E and then
using (79) to read off the associated gradient. To this end we use
the identities tr(AB) = tr(BA) = tr(B‘A") and A- BC=AC' -B=B'A .
C for arbitrary tensors A,B,C, as needed, obtaining

(g =2E, (I)y=4EC, (I3)g=E",

(I)g=D®D, (5)=2ED®D),

()g=2(D®D)E, ()g=LE"' LE'D®DE™,
(Is)g = 2E[(D ® D)C+C(D ® D)],
(I9)g = 2[(D ® D)EC+EE"(D ® D)E]. (80)

To obtain the response function M (cf. (49)) we require the
gradients

(x-D),=D and (\IK\Z)K=21x. (81)
Eq. (46) then delivers

M = W, = 2W,(E)(x - D)D+2W5(E)1k (82)
and

m = 2W,(E)(k - D)d+2W;(E)ic,d,,

where k,d,=d xd with d' =(Vd)D, (83)

which coincides with (9) provided that the torsional and flexural
rigidities are replaced by the deformation dependent terms
2W,(E) and 2Wj3(E), respectively. Accordingly we impose
W,3 >0, which in turn imply that the tensor K(E) of (58) is
positive definite.

5. Example: torsion of a cylinder

We illustrate the theory by the simple example of finite
torsion of a right circular cylinder. The reference placement ¢ of
the body is the region defined by 0<r<a,0<60<2n,0<z<Lin
a cylindrical polar coordinate system (r,60,z). Position of a material
point in this region is given by
X =re (0)+zK, (84)
where e, is the radial unit vector at azimuth 6, directed away
from the cylinder axis, k is the fixed unit vector along the axis and

e) =Kk x e,. We pursue a standard semi inverse strategy and seek
a deformation of the form

x(X) =re.(¢)+zk where ¢ =0+1z (85)

in which t the twist per unit length is constant. The associated

deformation gradient is [25]
F=Q[l+r7ey(0) @ k] where
Q=e())@e(0)+e)(p) e (0)+kxkeOrth™. (86)



This is isochoric and hence kinematically admissible in an
incompressible material. Accordingly, we consider the incompres
sibility constraint to be operative.

The fibers are assumed to be everywhere aligned with the axis
of the cylinder in the reference placement; thus, D=Kk, the fiber
derivative is (- =4&(-)/dz, and the unit tangent d to a deformed
fiber and the fiber stretch A are given by

Jd=Fk=Kk+rtey(p), A=+1+1r272, (87)

This is sufficient to determine the action of the Cosserat rotation
tensor on K, i.e. Rk=d; we do not require the complete expression
for R. The trajectory of a fiber piercing a cross section at the point
with coordinates (r,0) is obtained by fixing the latter in the
expression (85), yielding a circular helix of constant pitch. Such
configurations are known to furnish equilibria for rods that are
isolated in the sense that the distributed forces and moments
exerted on them vanish identically [30]. We show below that this
result is subsumed under the present theory.

Torsion is a standard problem in finite elasticity theory for
isotropic incompressible materials [25]. To consider the simplest
generalization of it to fiber reinforced solids, we suppose the
torsional and flexural stiffnesses to be fixed and the leading term
in (72) to be neo Hookean; thus,

WiE)=}ulh 3), WHE)=3T and Wi(E)=1F (88)
in which u,T and F are positive constants. These generate the
simple response functions

c=uE and m=T&k xk)d+Fd xd’, (89)

the first of which gives 6E' e Sym, implying (cf. (55)) that the
matrix transmits no distributed couples to the fibers. Evidently
this is not the case if the strain energy depends on the invariants
I4, I, I; or Io. Using Re=yF in the present circumstances,
together with the rule JdivA,=DivA,, with A,=AF
and J=detF, we find that the balance equations (55) and (56)
reduce to

m+Ad x A=0 and A'+pudivB=gradp, (90)

respectively, where div and grad are the divergence and gradient
operations in the coordinate system (r,¢,z), and

B=FF =1+r1[e)(¢) ® k+k ® ey(¢)]+171°e4(¢) ® ey(¢h) 91
is the left Cauchy Green deformation tensor with
divB= rt’e (¢). (92)

The standard finite elasticity problem corresponds to (90), in
which 4 vanishes identically. In this case p reduces to a function of
ronly with dp/dr=urt?, yielding

p(r)=po utr’, (93)

where po is a constant.

If the first of Egs. (90) is scalar multiplied by d we find, using
(89),, that k1(=Kk - k) is such that k) =0, i.e. k1 is independent of
z. Using the expression (87) for d, together with

dxd =27r2[rtk ey(d)], (94)
we then derive
m' =227 Fr Trp)er(d). (95)

This is sufficient to determine the fiber force A. For, 4 - d vanishes
identically (cf. (35),2), whereas (90); and (95) yield 4 xd.
We obtain

A= -dd+dx Axdy= A3r2(07'Fr Tr)rtk ey(¢)].  (96)

If (93) is to apply in the present setting then it is necessary that
X' =0. Because e,(¢)= te.(¢$) is non zero, this in turn requires

that
Ky =A"'(F/Dr, 97

yielding the fiber twist as a function of r (cf. (87),) which is
maximized on the axis of the cylinder. With this result we find
that 4 and m’ vanish separately, so that (90); is identically
satisfied. With some algebra we also find, from (87), (89), and
(94), that

m = Ftk, 98)

implying that every fiber transmits the same moment. This result
is interesting in light of the fact that the individual terms in (89),
associated with fiber twisting and bending are non uniform. In
this solution the fibers are unforced and do not interact with the
matrix.

To complete the solution we impose the traction condition
(cf. (39), with D=k)

(Ro pFYe (0)=0 atr=a. (99)

This is equivalent to (Ro)F'e,(¢) = pe;(¢) and thus, in the present
circumstances, to

uBer(¢)=per(¢p) atr=a, (100)
yielding p(a) = u and hence p(r) =1ut%(a®> r?)+p. This furnishes
RoF* pl=pdr*(* a®) 11+uB. (101)

We observe that R and 6 never occur separately in the equili
brium equations or boundary conditions. In fact, neither is
determined by the analysis.

The overall response of the cylinder may be determined by
computing the net force on a cross section and the net torque
required to effect the torsion. These in turn require the traction

t=[RoF plk=1ut>?* a®k+purre () (102)

acting on a cross section. This is the same as the traction
appearing in (25) because there is no change in cross sectional
area in the course of the deformation. The resultant force is

2n a
fo /0 /0 trdr dg = f(o)k, (103)
where
fo= Ina*us® (104)

and is a manifestation of the well known normal stress effect in
non linear elasticity theory.
Finally, the torque is (cf. (31), (50) and (51) with D=k=n)

2n a
p= / / (x x t+m)rdrd¢ = p(v)k, (105)
0 0
where
p(v) = na*t(F +1iua?). (106)

This problem may be cast in the framework of a conservative
loading problem (cf. (21) and (22)), if desired, by taking ¢, to be
the lateral surface of the cylinder, where zero traction is assigned,
and assigning position at z=0, L in accordance with (85). Thus the
ends of the cylinder comprise 0£\0&,. We note, from (87), that this
also entails the assignment of d(=d,) at the ends of the cylinder.
On the lateral surface we assume that no kinematical data are
assigned and thus also identify it with 6¢.. According to (22) and
(23) the virtual work of the assigned couples m; is
m;-d; =m; - RR'd; = m; - Qd;; therefore,

c-o=m;xd; o (107)

Because ¢ vanishes on the lateral surface (cf. (50) with D=k and
n =e;(0)), we assign m; = 0 there. At the ends z=0, L, where d is
fixed, we may regard the d, = RD, as being fixed as well, where



{D,} = {e;(0),e4(0)}, say. Then w vanishes there and the ends of the
cylinder also comprise 6&\0¢..
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Appendix A. Variational derivatives

Consider the one parameter families F(X;¢) and R(X;e¢) of
deformation and rotation fields, and let superposed dots stand
for derivatives with respect to the parameter, evaluated at ¢ =0.
Then,

Q=RR (A1)

is skew, and

E=QR'F+R'Vy, Ep=QacEcs+Riniip. (A2)

Further,

I'=FsEa ® Ep, T'ap = Jecea(Ric sRip +RicpRip) (A.3)

in which

Ria = RigQs. (A4)
The induced variation of the energy density is

W = oupEap+ tiapl as.

where g5 =0W /0Esp and i =0W /0@ pp. (A.5)

We seek an expression for this in terms of 7; and Q4. To this end
we write
tapl s = 2epacitec(Rip,cRia +RiaRig.c)
=JepaelitcRis.cRia (ttpcRin) cRip + (tcRiaRig) ]
= Jeparliec(Rip.cRia  RiacRip)]
3 esartpe cRiaRip +2epar(tpcRiaRip) . (A.6)

Because the term in square brackets in the last line is skew in the
subscripts B, A, we may simplify the expression to

Hapl 4B = epacpipcRig cRipL2ap %EBAEMEC,CQBA
+3epar(Ueca) o

where (A.4) has been used with RiyRjp = dap.

Let @ = ax(Q) be the axial vector of Q. Then, eparQpa = 2wk,
QAD = €paAFWF and €BAECDAFWIF = (1)5531) (/OB(SED; the last of these
following from one of the e ¢ identities. We substitute into (A.7)
and use RiB,CRiB = (RiBRiB),C RiBRiB,C with RigRig =3, obtaining

(A7)

tapl a8 = WE(Upc e HpcRig,cRi) (WElgC) - (A.8)
Using the inverse of (18), in the form

RigRig,c = eespI'pc, (A.9)
we finally arrive at

tiapl a8 = OE(Ugc ¢ +erpBitpcIDe)  (WEtgC) ¢ (A.10)

The first expression in (A.5); yields much more easily; we use
(A.2) to obtain

0BEap = Rin0aB} i p+€capoasEcsp

=(RiaoasX1)p Xi(Ria0aB) p+€capaEcsp. (A.11)

The variation of the expression in (33) involving the constraint is

(AyDy - EDY = A,D, -ED+A - ED, (A.12)
where A = A,D,. Using (A.2) we reduce the second term to
A-ED=A@D -Vi+ax(AQED ED®A)-»

where A=RA = A4,d,. (A.13)

The variation of the term in (38) involving the constraint of
incompressibility is

[p(detE 1) =p(detE 1)+pE*-E, (A.14)
where
E*.E=E*E'- Q+RE*. Vy (A.15)

in which the first term on the right hand side vanishes identically and
RE* = RR'F* = F¥, yielding E* - E =F* . V.
With all constraints incorporated we then have

(W) = - {Div u+2ax{Skw(cE' +ul'" + A @ ED)]}
% -Div(RRe pF*+Ai®D)
+Div[Re pF*+Ai®D)' )] Div(u'w)

+A4(Dy, -ED) p(detE 1). (A.16)
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