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It has been proved by Lalley and Sellke [13] that every particle born in a branching Brownian motion has a descendant reaching the rightmost position at some future time. The main goal of the present paper is to estimate asymptotically as s goes to infinity, the first time that every particle alive at the time s has a descendant reaching the rightmost position.

1 Introduction

The model

We consider a branching Brownian motion (BBM) on the real line R, which evolves as follows. Starting at time t = 0, one particle located at 0, called the root, moves like a standard Brownian motion until an independent exponentially distributed time with parameter 1. At this time it splits into two particles, which, relative to their birth time and position, behave like independent copies of their parent, thus moving like Brownian motions and branching at rate 1 into two copies of themselves. Let N (t) denote the set of all particles alive at time t and let N(t) := #N (t). For any v ∈ N (t) let X v (t) be the position of v at time t; and for any s < t, let X v (s) be the position of the unique ancestor of v that was alive at time s. We define R(t) := max u∈N (t)

X u (t) and L(t) := min u∈N (t)

X u (t), which stand for the rightmost and leftmost positions, respectively. The positions of the extremal particles of a BBM, R(t), have been much studied both analytically and probabilistically. Kolmogorov et al. [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] proved that R(t)/t converges almost surely to √ 2. Bramson [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF] [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF] showed that R(t)-√ 2t+(3/2 √ 2) log t converges in law. These results hold as well for a wide class of branching random walks under mild conditions: see for example Biggins [START_REF] Biggins | The first-and last-birth problems for a multitype age-dependent branching process[END_REF], Addario-Berry and Reed [START_REF] Addario-Berry | Minima in branching random walks[END_REF], Hu and Shi [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF], Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF]. In particular, we state the following fact, which is first given by Hu and Shi [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] for branching random walks, and is recently proved by Roberts [START_REF] Roberts | A simple path to asymptotics for the frontier of a branching Brownian motion[END_REF]:

lim inf t→∞ R(t) - √ 2t log t = - 3 2 √ 2 almost surely; (1.1) lim sup t→∞ R(t) - √ 2t log t = - 1 2 √ 2 almost surely. (1.2)
In [START_REF] Lalley | A Conditional Limit Theorem for the Frontier of a Branching Brownian Motion[END_REF], Lalley and Sellke showed the following interesting property: every particle born in a BBM has a descendant reaching the rightmost position at some future time. Such a particle was thought of having a prominent descendant "in the lead" at this time. This property is in agreement with the branching-selection particle systems investigated in [START_REF] Brunet | Shift in the velocity of a front due to a cutoff[END_REF], [START_REF] Brunet | Microscopic models of traveling wave equations[END_REF] and [START_REF] Bérard | Brunet-Derrida Behavior of branching-selection particle systems on the line[END_REF]. These papers bring out the fact that the extremal positions of a branching system on the line cannot always be occupied by the descendants of some "elite" particles.

In the present work, we give some quantitative understanding of this behavior, and precisely speaking, about how long we have to wait so that every particle alive at time s has a descendent that has occupied the rightmost position.

The main problem

Let us make an analytic presentation for our problem. For any s > 0 and each particle u ∈ N (s), the shifted subtree generated by u is

(1.3) N u (t) := v ∈ N (t + s), u ≤ v , ∀t ≥ 0,
where u ≤ v indicates that v is a descendant of u or is u itself. Further, for any v ∈ N u (t), let

(1.4) X u v (t) := X v (t + s) -X u (s), be its shifted position. We set R u (t) := max v∈N u (t) X u v (t) and L u (t) := min v∈N u (t) X u v (t). Moreover, Let F t ; t ≥ 0 be the natural filtration of the branching Brownian motion. The branching property implies that, given F s , {R u (•); u ∈ N (s)} are independent copies of R(•). Moreover, we denote by F u ∞ the sigma-field generated by the shifted subtree started from the time s rooted at u.

For every u ∈ N (s), let

(1.5) τ u := inf{t > 0 : R(t + s) = X u (s) + R u (t)}.

The random variable τ u stands for the first time that started from time s, the particle u has a descendant reaching the rightmost position in the system. It is the object in which we are interested. We define

(1.6) Θ s := max u∈N (s) τ u ,
which represents the first time when every particle in N (s) has had a descendant occupying the rightmost position.

According to Lalley and Sellke [START_REF] Lalley | A Conditional Limit Theorem for the Frontier of a Branching Brownian Motion[END_REF], for any s > 0, P[Θ s < ∞] = 1. Since Θ s → ∞ almost surely as s → ∞, we intend to determine the rate at which Θ s increases to infinity.

The main results

To estimate Θ s = max u∈N (s) τ u , an intuitive idea consists in saying that, the further a particle is away from the rightmost one, the longer it has to wait for a descendant to be located on the rightmost position. We thus first focus on the leftmost particle. Let ℓ(s) be the leftmost particle alive at time s. By (1.5), τ ℓ(s) is defined as the shortest time needed for ℓ(s) to wait to have a descendant occupying the rightmost position.

Theorem 1.1 The following convergence holds almost surely

(1.7) lim s→∞ log τ ℓ(s) s = 4.
However, the leftmost particle is not the one who "drags the feet" of the whole population N (s). By considering the positions of all particles alive at time s, as well as their evolutions, we obtain our main result as follows.

Theorem 1.2 The following convergence holds almost surely

(1.8) lim s→∞ log Θ s s = 2 + 2 √ 2 > 4.
Remark 1.3 The proof of the theorems will reveal that the largest τ u for u ∈ N (s) is achieved by some particle located at a position around -(2 -√ 2)s which does not split until time s + 1 √ 2 s and moves towards to the left as far as possible.

The rest of this paper is organized as follows. Section 2 is devoted to discussing the behaviors of the extremal position R(•), which leads to two propositions. In Section 3, we consider the case of two independent branching Brownian motions and state another proposition. We prove Theorem 1.1 in Section 4 by means of these propositions. Finally, in Section 5, we prove Theorem 1.2.

The behavior of the rightmost position

We recall Proposition 3 in Bramson's work [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF]. It is shown that for all 0 ≤ y ≤ t 1/2 and t ≥ 2, there exists a positive constant c which is independent of t and y, such that

(2.1) P R(t) > m(t) + y ≤ c(1 + y) 2 exp(- √ 2y),
where

m(t) := √ 2t - 3 2 √ 2 log t.
Therefore, with c 1 := c + 1, we get the following inequality, which will be applied several times in our arguments.

Fact 2.1 (Bramson [6]) For any t ≥ 2 and y ≤ √ t,

(2.2) P R(t) > m(t) + y ≤ c 1 1 + y + 2 e - √ 2y ,
with y + := max{y, 0}. Let (B s ; s ≥ 0) be a standard Brownian motion on R. We state the following lemma, which can be found in several papers (e.g. [15] [10]). It is also of frequent use.

Lemma 2.2 (many-to-one) For any measurable function F and each t > 0,

(2.3) E u∈N (t) F (X u (s), s ∈ [0, t]) = e t E F (B s , s ∈ [0, t]) ,
where, for each u ∈ N (t) and s ∈ [0, t], X u (s) denotes the position, at time s, of the ancestor of u.

Let us present the following inequality as well, which is Equation (57) in Bramson [START_REF] Bramson | Maximal displacement of branching Brownian motion[END_REF].

Fact 2.3 For any s ≥ 1 and any a > 0,

1 - s a 2 s 2π a -1 exp - a 2 2s ≤ P[B s ≥ a] ≤ s 2π a -1 exp - a 2 2s .
It immediately follows that

(2.4) P[B s ≤ -a] = P[B s ≥ a] ≤ √ s a exp - a 2 2s .
Moreover, if a = αs with some constant α > 0, we have

(2.5) P[B s ≤ -αs] = P[B s ≥ αs] = exp - α 2 2 + o s (1) s ,
where o s (1) → 0 as s goes to infinity. We define, for any y > 0,

T (y) := inf t ≥ 1; R(t) -m(t) > y .
Because of (1.2), one immediately sees that P T (y) < ∞ = 1 for any y > 0. Moreover, T (y) ↑ ∞ almost surely as y ↑ ∞.

Proposition 2.4

The following convergence holds almost surely

(2.6) lim y→∞ log T (y) y = √ 2.
Proof: First, we prove the lower bound. Let 2 ≤ y ≤ √ t, and set

Λ := E t+1 1 1 (R(s)>m(s)+y-1) ds .
Clearly, Λ = hold. Plugging them into the integration of (2.7) yields that (2.9) 

t+1 1 P R(s) > m(s) + y -1 ds. Hence, Λ = y 2 1 P R(s) > m(s) + y -1 ds + t+1 y 2 P R(s) > m(s) + y -1 ds ≤ y 2 1 E u∈N (s)
y 2 1 E u∈N (s)
P R(s) > m(s) + y -1 ds ≤ t+1 y 2 c 1 y 2 e - √ 2y+ √ 2 ds ≤ c 1 ty 2 e - √ 2y+ √ 2 .
Combining (2.9) with (2.10), we have with c 3 > 0 a constant independent of (y, t).

On the other hand,

Λ ≥ E t+1 1 1 (R(s)>m(s)+y-1) ds; T (y) ≤ t = t 1 P T (y) ∈ dr E t+1 1 1 (R(s)>m(s)+y-1) ds T (y) = r .
Conditionally on the event {T (y) = r ≤ t}, the rightmost particle in N (r), denoted by ω, is located at m(r) + y. Started from the time r, ω moves according to a Brownian motion and splits into two after an exponential time. By ignoring its branches, we observe that 

R(s + r) > [m(r) + y] + [ √ 2s -1] ≥ m(s + r) + y -
ds ≥ st t+1-r 0 1 Bs> √ 2s-1 ds ≥ min{1, T (- √ 2) -1 },
where ≥ st denotes stochastic dominance and T

(- √ 2) -1 := inf{t ≥ 0; B t < √ 2t -1}.
These arguments imply that (2.12) Λ ≥

t 1 P[T (y) ∈ dr]E min{1, T (- √ 2) -1 } =: c 13 P[T (y) ≤ t],
where c 13 := E min{1, T

(- √ 2) -1
} ∈ (0, ∞). Compared with (2.11), this tells us that (2.13)

P T (y) ≤ t ≤ c 5 ty 2 e - √ 2y , for 2 ≤ y ≤ √ t,
where c 5 := c 3 c 13 ∈ (0, ∞). Taking t = e √ 2y(1-δ) with δ ∈ (0, 1) yields that

∞ k=1 P T (k) ≤ e √ 2k(1-δ) < ∞.
According to the Borel-Cantelli lemma, lim inf

y→∞ log T (y) y ≥ √ 2, almost surely,
proving the lower bound in the proposition.

To prove the upper bound, we recall that

R u (t) = max{X u v (t); v ∈ N u (t)}, u ∈ N (s).
Obviously, R u (t); u ∈ N (s) are i.i.d. given F s , and are distributed as R(t).

We fix a y ∈ (0, y) and define the measurable events 1+δ) .

Σ 1 := L(a y ) ≥ -2a y ; N(a y ) ≥ exp 1 2 a y , Σ := Σ 1 ∩ T (y) > e √ 2y ( 
Then, (2.14)

P T (y) > e √ 2y(1+δ) ≤ P Σ c 1 + P Σ 1 ∩ T (y) > e √ 2y (1+δ) 
≤ P N(a y ) ≤ exp 1 2 a y + P L(a y ) ≤ -2a y + P Σ .

We .

At this stage, it is convenient to recall the proof of Proposition 15 of Roberts [START_REF] Roberts | A simple path to asymptotics for the frontier of a branching Brownian motion[END_REF], saying that there exists a constant c ′ > 0 such that for y large enough,

P ∃r ∈ e √ 2y(1+ 1 2 δ) , 2e √ 2y(1+ 1 2 δ) : R(r) ≥ m(r) + 1 √ 2 log r > c ′ > 0.
Thus, P Σ ≤ (1c ′ ) e ay/2 ≤ exp(-c ′ e δ 1 y/2 ).

It remains to estimate P N(a y ) ≤ exp( 1 2 a y ) and P L(a y ) ≤ -2a y . On the one hand, the branching mechanism tells us that for any s ≥ 0, N(s) follows the geometric distribution with parameter e -s (for example, see Page 324 of [START_REF] Mckean | Application of Brownian motion to the equation of Kolomogrov-Petrovskii-Piskunov[END_REF]). It thus yields that P N(a y ) ≤ exp( 1 2 a y ) ≤ e -δ 1 y/2 . On the other hand, as shown in Proposition 1 of Lalley and Sellke [START_REF] Lalley | Travelling waves in inhomogeneous branching Brownian motions II[END_REF], for any µ ≥ √ 2 and s > 0,

(2.15)

P L(s) ≤ -µs = P R(s) ≥ µs ≤ µ -1 (2πs) -1/2 exp -s µ 2 2 -1 .
Consequently, (2.14) becomes that

P T (y) > e √ 2y (1+δ) 
≤ e -δ 1 y/2 + e -δ 1 y + exp(-c ′ e δ 1 y/2 ) (2.16)

≤ c 6 e -δ 1 y/2 .
By the Borel-Cantelli lemma again, we conclude that almost surely lim sup

y→∞ log T (y) y ≤ √ 2,
which completes the proof of the proposition. For α > 0 and β > 0, set p(z, α, β) := P ∃r ≤ e αz : R(r) ≤ m(r)βz .

Proposition 2.5 There exists a positive constant C 1 , independent of (α, β, z), such that for any z ≥ z(α, β),

(2.17) p(z, α, β) ≤ C 1 exp - βz 6 √ 2 .
Proof:

It follows from (1.1) that as z → ∞, p(z, α, β) = P ∃r ≤ e αz : R(r) ≤ m(r) -βz -→ 0.
Hence, there exists z 0 (α, β) large enough, such that for all z ≥ z 0 (α, β),

(2.18) P ∃r ≤ e αz : R(r) ≤ m(r) -βz/2 ≤ 1/2.
For any b z < e αz , we have

(2.19) p(z, α, β) ≤ P ∃u ∈ N (b z ), s.t. min s≤bz X u (s) ≤ √ 2b z -βz/2 + P ∃r ≤ e αz : R(r) ≤ m(r) -βz ∩ L(b z ) ≥ √ 2b z -βz/2 .
On the one hand, by the many-to-one lemma,

P ∃u ∈ N (b z ), s.t. min s≤bz X u (s) ≤ √ 2b z -βz/2 ≤ E u∈N (bz) 1 (min s≤bz Xu(s)≤ √ 2bz-βz/2) = e bz P min s≤bz B s ≤ √ 2b z -βz/2 .
On the other hand, by simple observations,

P ∃r ≤ e αz : R(r) ≤ m(r) -βz ∩ L(b z ) ≥ √ 2b z -βz/2 ≤ P u∈N (bz) ∃t ≤ e αz , s.t. R u (t) < m(t) -βz/2 = E u∈N (bz) P ∃t ≤ e αz , s.t. R(t) < m(t) -βz/2 ,
where the last equality follows from the branching property. Going back to (2.19), one has

p(z, α, β) ≤ e bz P min s≤bz B s ≤ √ 2b z -βz/2 +E u∈N (bz) P ∃t ≤ e αz , s.t. R(t) < m(t)-βz/2 . Let b z = β 6 √ 2 z. Then, by (2.18), for all z ≥ z(α, β) := max{z 0 (α, β), 1 β }, p(z, α, β) ≤ e bz P min s≤bz B s ≤ -βz/3 + E 1 2 N (bz ) ≤ c 7 e -3bz + e -bz ≤ C 1 exp - βz 6 √ 2 ,
with C 1 := c 7 + 1, which completes the proof of the proposition.

Corollary 2.6 For any δ ∈ (0, 1), there exists some s(δ) ≥ 1, such that for all s ≥ s(δ),

(2.20) P R(s) ≤ √ 2(1 -δ)s ≤ C 1 exp - δs 12 √ 2 .
Proof: Since we always have m(s)

-δs/2 ≥ √ 2(1 -δ)s when s is sufficiently large, P R(s) ≤ √ 2(1 -δ)s ≤ P ∃r ≤ e s : R(r) ≤ m(r) -δs/2 .
which by Proposition 2.5 is bounded by

C 1 exp -δs 12 √
2 for all s large enough.

The case of two independent branching Brownian motions

We consider two independent branching Brownian motions, denoted by X A (•) and X B (•).

Suppose that P[X A (0) = 0] = P[X B (0) = z] = 1 with z > 0, where X A (0) and X B (0) represent the position of the roots, respectively. We write R A (•) (R B (•), respectively) for the position of rightmost particle of the BBM X A (•) (X B (•), respectively). We define, for any y > 0,

T A (y) := inf{t ≥ 1; R A (t) > m(t) + y}; T B (y) := inf{t ≥ 1; R B (t) > m(t) + y}.
Let T A>B be the first time when the rightmost point of X A exceeds that of X B , i.e.,

T A>B = T A>B (z) := inf{t ≥ 0; R A (t) > R B (t)}.
We immediately observe that the distribution of T A>B (z) merely depends on the parameter z. Actually, we can take another pair of independent standard BBM's (both rooted at the origin), namely, X I (•) and X II (•). Their rightmost positions are denoted by R I (•) and R II (•), respectively. For any positive z, let

T (z) := inf{t ≥ 0 : R I (t) -R II (t) > z}.
Then T A>B (z) is distributed as T (z). Besides, z → T (z) is increasing.

Proposition 3.1 The following convergence holds almost surely

(3.1) lim z→∞ log T (z) z = √ 2.
Proof: For any δ ∈ (0, 1),

P T (z) ≤ e √ 2z(1-δ) = P T A>B (z) ≤ e √ 2z(1-δ) ≤ p 1 + p 2 ,
where

p 1 := P ∃t ≤ e √ 2z(1-δ) , s.t. R B (t) < m(t) + z -δz/2 , p 2 := P T A>B ≤ e √ 2z(1-δ) ∩ R B (t) ≥ m(t) + (1 -δ/2)z, ∀t ≤ e √ 2z (1-δ) 
.

Clearly,

p 1 = P ∃t ≤ e √ 2z(1-δ) , s.t. R(t) < m(t) -δz/2 = p(z, √ 2(1 -δ), δ/2)
. By Proposition 2.5, for all z ≥ z(δ),

p 1 ≤ C 1 exp - δz 12 √ 2 .
At the same time, we notice that

(3.2) T A>B ≤ e √ 2z(1-δ) ∩ R B (t) ≥ m(t) + (1 -δ/2)z, ∀t ≤ e √ 2z(1-δ) ⊂ ∃t ≤ e √ 2z(1-δ) : R A (t) ≥ R B (t) ≥ m(t) + (1 -δ/2)z ⊂ T A (1 -δ/2)z ≤ e √ 2z(1-δ) .
This yields that

p 2 ≤ P T (1 -δ/2)z ≤ e √ 2z(1-δ) ≤ c 5 z 2 e -δz/ √ 2 ,
because of the inequality (2.13).

As a result,

(3.3) P T (z) ≤ e √ 2z(1-δ) ≤ C 1 exp - δz 12 √ 2 + c 5 z 2 e -δz/ √ 2 ≤ c 8 exp - δz 12 √ 2 ,
for some constant c 8 > 0 and all z large enough. Thus, by the Borel-Cantelli lemma, lim inf

z→∞ log T (z) z ≥ √ 2 almost surely.
To prove the upper bound, we observe that

(3.4) P T (z) > e √ 2z(1+δ) = P T A>B (z) > e √ 2z(1+δ) ≤ q 1 + q 2 ,
where

q 1 := P T A z(1 + δ/2) > e √ 2z(1+δ) ∪ T A z(1 + δ/2) < e √ 2z
,

q 2 := P e √ 2z ≤ T A z(1 + δ/2) ≤ e √ 2z(1+δ) < T A>B (z) .
Notice that T A (y) is distributed as T (y) for any y > 0. According to the inequalities (2.13) and (2.16), there exists δ 2 := δ 2 (δ) > 0 such that q 1 ≤ e -δ 2 z for z large enough. It remains to estimate q 2 :

q 2 ≤ e √ 2z (1+δ) 
e

√ 2z P T A z(1 + δ/2) ∈ dr P T A>B > r T A z(1 + δ/2) = r ≤ e √ 2z (1+δ) 
e

√ 2z P T A z(1 + δ/2) ∈ dr P R B (r) > m(r) + z(1 + δ/2) .
By the inequality (2.2) again, this tells that

q 2 ≤ e √ 2z(1+δ) e √ 2z P T A z(1 + δ/2) ∈ dr c 2 (z + 1) 2 e - √ 2δz/2 ≤ c 2 (z + 1) 2 e - √ 2δz/2 .
Thus, recalling (3.4), we obtain that for all z large enough,

P T (z) > e √ 2z(1+δ) ≤ e -δ 2 z + c 2 (z + 1) 2 e - √ 2δz/2 .
It follows that almost surely lim sup z→∞

log T (z) z ≤ √ 2. Proposition 3.1 is proved.
4 Proof of Theorem 1.1

For any k ∈ N + and δ ∈ (0, 1/20), we define

N δ (k) := {u ∈ N (k) : X u (k) ≤ - √ 2(1 -δ/2)k}.
In order to study the asymptotic behavior of τ ℓ(s) for s ∈ R + , we first look for a lower bound for min u∈N δ (k) τ u and an upper bound for max u∈N δ (k) τ u .

Recall the definitions (1.3) and (1.4) of the shifted subtrees. For any particle u ∈ N δ (k), we use X u (•) to represent the branching Brownian motion generated by u started from the time k. Meanwhile, we use X r (•) to represent the branching Brownian motion generated by the rightmost point at time k. Accordingly, the random variable T u>r is defined to be the first time when u has a descendant exceeding all descendants of the rightmost particle at time k.

Considering that T u>r ≤ τ u for each u ∈ N δ (k), one sees that

P u∈N δ (k) {τ u ≤ e 4k(1-10δ) } ≤ p ′ 1 + p ′ 2 ,
where

p ′ 1 := P R(k) ≤ √ 2(1 -δ/2)k , p ′ 2 := P 1 R(k)≥ √ 2(1-δ/2)k u∈N δ (k) 1 T u>r ≤e 4k(1-10δ)
.

Given F k , the BBM's X u and X r are independent. Then,

p ′ 2 ≤ E u∈N δ (k) 1 R(k)≥ √ 2(1-δ/2)k P T u>r ≤ e 4k(1-10δ) F k = E u∈N δ (k) 1 R(k)≥ √ 2(1-δ/2)k P T (R(k) -X u (k)) ≤ e 4k(1-10δ) F k .
By the monotonicity of T (•), this gives that

p ′ 2 ≤ E u∈N δ (k) P T (2 √ 2k(1 -δ/2)) ≤ e 4k(1-10δ) = E u∈N δ (k) 1 P T (2 √ 2k(1 -δ/2)) ≤ e 4k(1-10δ) .
Using the inequality (3.3), for all k sufficiently large,

p ′ 2 ≤ E u∈N δ (k) 1 c 8 exp - 3δk 2 (1 -δ/2) .
Then by the many-to-one lemma and by (2.4), we obtain that (4.1)

p ′ 2 ≤ e k P[B k ≤ - √ 2k(1 -δ/2)]c 8 exp -3δk 2 (1 -δ/2) ≤ e -c 9 δk ,
where c 9 is a positive constant independent of (δ, k).

In view of Corollary 2.6, for large k, one has

(4.2) p ′ 1 ≤ C 1 exp - δk 24 √ 2 .
Combining (4.2) with (4.1) yields that for k large enough,

P u∈N δ (k) {τ u ≤ e 4k(1-10δ) } ≤ C 1 exp - δk 24 √ 2 + e -c 9 δk .
By the Borel-Cantelli lemma, almost surely,

(4.3) lim inf k→∞ log min u∈N δ (k) τ u k ≥ 4(1 -10δ),
which gives the lower bound for min u∈N δ (k) τ u .

To obtain an upper bound for max u∈N δ (k) τ u , let us estimate P ∪ u∈N δ (k) τ u ≥ e 4k(1+10δ) . We consider the subtree generated by any particle u ∈ N δ (k). Recall that the shifted positions of its descendants are denoted by

X u v (•) := X v (• + k) -X u (k) for any v ∈ N (• + k) satisfying u < v,
and that R u (•) := max X u v (•). We set T u (y) := inf{t ≥ 1; R u (t)m(t) > y} for any y > 0, which is obviously distributed as T (y). Let y = 2 √ 2k(1 + δ/2), then (4.4)

P u∈N δ (k) τ u ≥ e 4k(1+10δ) ≤ q ′ 1 + q ′ 2 + q ′ 3 ,
where

q ′ 1 := P u∈N δ (k) T u (y) ≥ e 4k(1+10δ) ∪ T u (y) ≤ e k , q ′ 2 := P L(k) ≤ - √ 2k , q ′ 3 := P u∈N δ (k) {e k < T u (y) < e 4k(1+10δ) ≤ τ u }; L(k) > - √ 2k .
First, we observe that

q ′ 1 ≤ E u∈N δ (k) 1 P T (y) ≥ e 4k(1+10δ) ∪ T (y) ≤ e k .
Using the many-to-one lemma for the first term on the right-hand side,

q ′ 1 ≤ e k P B k ≤ - √ 2k(1 -δ/2) P T (y) ≥ e 4k(1+10δ) ∪ T (y) ≤ e k .
According to the inequalities (2.4) (2.13) and (2.16), there exists

δ 4 := δ 4 (δ) > 0 such that q ′ 1 ≤ e -δ 4 k for k large enough. Meanwhile, by (2.2), q ′ 2 ≤ 2c 2 (log k + 1) 2 k -3/2 . It remains to bound q ′ 3 . Since T u (y) is independent of F k , it follows that q ′ 3 ≤ E   u∈N δ (k) e 4k(1+10δ) e k P T u (y) ∈ dr P τ u > r; L(k) ≥ - √ 2k T u (y) = r, F k   .
Given {T u (y) = r} and F k , the event

{τ u > r}∩{L(k) ≥ - √ 2k} implies that ∪ w∈N (k)\{u} {R ω (r)+ X w (k) > R u (r)+X u (k) ≥ m(r)+y - √ 2k}, whose probability is less than w∈N (k)\{u} c 1 1+ (y - √ 2k -X w (k)) 2 + e - √ 2y+2k+ √ 2Xw(k) (see (2.2)
). This yields that k) .

q ′ 3 ≤ E   u∈N δ (k) e 4k(1+10δ) e k P T u (y) ∈ dr w∈N (k)\{u} c 2 (y + 1) 2 e - √ 2y+2k+ √ 2Xw(k)   ≤ E   u∈N δ (k) w∈N (k)\{u} c 2 (y + 1) 2 e - √ 2y+2k+ √ 2Xω(k)   = c 2 (y + 1) 2 e - √ 2y+2k E u∈N δ (k) w∈N (k)\{u} e √ 2Xw ( 
By integrating with respect to the last time at which the most recent common ancestor of u and ω was alive (see e.g. [START_REF] Harris | The many-to-few lemma and multiple spines[END_REF] for more details),

E u∈N δ (k) ω =u e √ 2Xω(k) is equal to 2 k 0 e 2k-s ds R P B s ∈ dx P B k ≤ - √ 2(1 -δ/2)k B s = x E e √ 2B k B s = x = 2 k 0 e 2k-s ds R P B s ∈ dx P B k ≤ - √ 2(1 -δ/2)k B s = x e √ 2x e k-s ,
where the second equivalence follows from the Markov property of Brownian Motion. We rearrange the integration as follows:

E u∈N δ (k) w∈N (k)\{u} e √ 2Xw(k) = 2 k 0 e 3k-2s E e √ 2Bs ; B k ≤ - √ 2(1 -δ/2)k ds = 2 k 0 e 3k-2s E e √ 2B k e - √ 2(B k -Bs) ; B k ≤ - √ 2(1 -δ/2)k ds ≤ 2 k 0 e 3k-2s e -2(1-δ/2)k E e - √ 2(B k -Bs) ds,
which is bounded by e (2+δ)k by simple computation. Thus, q ′ 3 ≤ c 10 k 2 e -δk for some constant c 10 > 0.

Going back to (4.4),

P u∈N δ (k) τ u ≥ e 4k(1+10δ) ≤ e -δ 4 k + 2c 2 (log k + 1) 2 k -3/2 + c 10 k 2 e -δk ,
for all k sufficiently large.

Therefore, by the Borel-Cantelli lemma, lim sup

N∋k→∞ log max u∈N δ (k) τ u k ≤ 4(1 + 10δ) almost surely.
We now turn to study {τ ℓ(s) ; s ≥ 0}. On the one hand, for any δ > 0, we claim that almost surely for s large enough, the leftmost particle ℓ(s) at time s must have at least one descendant belonging to N δ (⌊s⌋ + 1). In fact, let us write

Υ k := {∃u ∈ N (k + 1) : u / ∈ N δ (k + 1); ∃s ∈ [k, k + 1], X u (s) ≤ - √ 2s + δ ′ s} with δ ′ := ( √ 2 -1)δ/2
. By the many-to-one lemma, we get that for k ≥ 100/δ,

P[Υ k ] ≤ 4 δk √ 2π e 1+k-δ 2 k 2 8 ,
which is summable over k. It follows that (4.5) P[Υ k infinitely often] = 0.

In view of (1.2), when s is large enough, L(s) always lie below -√ 2s + δ ′ s almost surely. Combining with (4.5), we obtain that almost surely for k sufficiently large, max

s∈[k,k+1] τ ℓ(s) ≤ max u∈N δ (k+1) τ u + 1.
On the other hand, using similar arguments, one can say that almost surely for s sufficiently large, the leftmost located particle ℓ(s) at time s must come from one particle in N δ (⌊s⌋). This gives that almost surely for k sufficiently large, 

The lower bound of Theorem 1.2

This subsection is devoted to checking that: almost surely, lim inf

k→∞ log Θ k k ≥ 2 + 2 √ 2.
For 0 < a < √ 2, we define

Z a (k) := u ∈ N (k); X u (k) ≤ -ak and Z a (k) := #Z a (k).
For 0 < ε < (1 -a 2 2 )/2 and 0 < δ < 1, we denote

E k := Z a (k) ≥ exp[k(1 - a 2 2 -ε)] , D k := Θ k ≤ exp[(2 + 2 √ 2 -δ)k] . Let us estimate P[D k ∩ E k ].
For any s > 0 and β > 0, we write Γ = Γ(s, β) := N(s) = 1, L(s) ≤ -βs . Similarly, let Γ u := N u (s) = 1, L u (s) ≤ -βs for every u ∈ N (k). Then, (5.1)

P D k ∩ E k ≤ P u∈Za(k) Γ c u ∩ E k + P u∈Za(k) Γ u ∩ D k .
By the branching structure, we obtain that (5.2)

P u∈Za(k) Γ c u ∩ E k ≤ P 1 -P[Γ] Za(k) ; E k ≤ e -P[Γ] exp[k(1-a 2 2 -ε)] .
Clearly, P[Γ] = e -s P[B s ≤ -βs]. By (2.5), one sees that, for ε > 0 small and s large enough, (5.3)

P u∈Za(k) Γ c u ∩ E k ≤ exp -exp -s(1 + β 2 2 + ε) + k(1 - a 2 2 -ε) ,
which is bounded by e -e kε if we choose s =

1-a 2 2 -2ε 1+ β 2 2 +ε
k with k sufficiently large.

It remains to bound Ω :

= P u∈Za(k) Γ u ∩ D k for s = 1-a 2 2 -2ε 1+ β 2 2 +ε
k. Recalling the definition of Θ k , one sees that for any ρ ∈ (0, 2),

(5.4) Ω ≤ P u∈Za(k)

τ u < e ρk + P u∈Za(k) Γ u ∩ u∈Za(k) e ρk ≤ τ u ≤ e (2+2 √ 2-δ)k =: Ω a + Ω b .
We choose now ρ = 1 -2ε and z = ( In view of the inequalities (2.4) and (2.13), one immediately has (5.6)

√ 2 -a 2 2 √ 2 -ε √ 
P u∈Za(k) {T u (z) < e ρk } ≤ e k √ k ak e -a 2 k/2 c 5 e ρk z 2 e - √ 2z ≤ e -ηk ,
for some η := η(ε) > 0 small enough.

For the second term of the right-hand side in (5.5), we observe that for any u ∈ Z a (k), {τ u < e ρk ≤ T u (z)} implies that at time τ u < e ρk , the rightmost position R(k + τ u ) is exactly equal to R u (τ u ) + X u (k), which is less than m(τ u ) + zak. Hence, the event ∪ u∈Za(k) {τ u < e ρk ≤ T u (z)} ensures that there exists some time r < e ρk such that the rightmost position R(k + r) is less than m(r) + zak. This gives that (5.7)

P u∈Za(k) {τ u < e ρk ≤ T u (z)} ≤ P ∃r ≤ e ρk s.t. R(k + r) ≤ m(r) + z -ak .
Notice that with our choice of ρ and z, Proposition 2.5 can be applied to show that for all k sufficiently large, (5.8)

P u∈Za(k) {τ u < e ρk ≤ T u (z)} ≤ e -ηk .
Combined with (5.6), the inequality (5.5) becomes Ω a ≤ 2e -ηk .

As shown in (5.4), it remains to study Ω b . For the particles u ∈ Z a (k) such that N u (s) = 1, we focus on the subtree rooted at u but started from time k + s. Define

R u (t) := max X v (k + s + t) -X u (k + s); v ∈ N (k + s + t), u < v , ∀t ≥ 0; and T u (y) := inf t ≥ 1; R u (t) ≥ m(t) + y , ∀y > 1.
Since ( R u (t), t ≥ 0) is distributed as (R(t), t ≥ 0), T u (y) has the same law as T (y). Let us take

√ 2x = k(2 + 2 √ 2 -δ/2). Comparing T u (x) with e k(2+2 √ 2-δ) yields that (5.9) Ω b ≤ P ∃ ω ∈ Z a (k), s.t. N ω (s) = 1, L ω (s) ≤ -βs, T ω (x) ≤ e k(2+2 √ 2-δ) +P ∃u ∈ Z a (k) s.t. N u (s) = 1, L u (s) ≤ -βs, e (1-2ε)k ≤ τ u ≤ e k(2+2 √ 2-δ) < T u (x) =: Ω b1 +Ω b2 .
By first conditioning on F k+s and then on F k , one has

Ω b1 ≤ E Z a (k) P Γ P T (x) ≤ e k(2+2 √ 2-δ) (5.10) = e k P B k ≤ -ak e -s P B s ≤ -βs P T (x) ≤ e k(2+2 √ 2-δ) .
For 0 < ε < min{δ/8, (1 -a 2 2 )/2}, by (2.13) and (2.4),

Ω b1 ≤ e 3εk c 5 x 2 e - √ 2x e k(2+2 √ 2-δ) ≤ c 11 k 2 e -εk . (5.11) On the other hand, the event {∃u ∈ Z a (k) s.t. N u (s) = 1, L u (s) ≤ -βs, e (1-2ε)k ≤ τ u ≤ e k(2+2 √ 2-δ) < T u (x)} implies that there exists some time r ∈ [e (1-2ε)k -s, e k(2+2 √ 2-δ) -s]
such that the rightmost position R(k + s + r) is less than -akβs + m(r) + x. Thus,

Ω b2 = P ∃u ∈ Z a (k) s.t. N u (s) = 1, L u (s) ≤ -βs, e (1-2ε)k ≤ τ u ≤ e k(2+2 √ 2-δ) < T u (x) ≤ P ∃r ∈ [e (1-2ε)k , e k(2+2 √ 2-δ) + k], s.t. R(r) ≤ m(r -k -s) + x -ak -βs . By taking a = β = 2 - √ 2, we obtain s = 1-a 2 2 -2ε 1+ β 2 2 +ε k = ( 1 √ 2 -ε 1 )k for some sufficiently small ε 1 = ε 1 (ε) > 0. Let δ ≥ 8 √ 2ε 1 , then m(r -k -s) + x-ak -βs ≤ m(r) -ε 1 k. By Proposition 2.5, for k large enough, (5.12) Ω b2 ≤ C 1 e -ε 1 k/6 √ 2 .
Since Ω b ≤ Ω b1 + Ω b2 , it follows from (5.11) and (5.12) that

Ω b ≤ c 11 k 2 e -εk + C 1 e -ε 1 k/6 √ 2 .
Combined with the fact that Ω a ≤ 2e -ηk , (5.4) implies that

Ω 1 ≤ Ω a + Ω b ≤ 2e -ηk + c 11 k 2 e -εk + C 1 e -ε 1 k/6 √ 2 .
According to the inequality (5.1), for 0

< ε < δ/8, η(ε) > 0, 0 < ε 1 (ε) ≤ δ/8 √ 2 with δ
sufficiently small, and for all k sufficiently large,

P[D k ∩ E k ] ≤ exp -e k(1-a 2 2 -ε)-s(1+ β 2 2 +ε) + Ω 1 ≤ e -e εk + 2e -ηk + c 11 k 2 e -εk + C 1 e -ε 1 k/6 √ 2 .
Consequently, [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF] showed that almost surely (5.13) lim

k P[D k ∩ E k ] < ∞. By Borel-Cantelli lemma, P[D k ∩ E k i.o.] = 0. Recall that E k := Z a (k) ≥ exp k(1 -a 2 2 - ε) . Biggins
k→∞ log Z a (k) k = 1 - a 2 2 .
Therefore, for any δ > 0 small, lim inf k→∞

log Θ k k ≥ 2 + 2 √ 2 -δ almost surely.
This implies the lower bound of Theorem 1.2.

The upper bound of Theorem 1.2

It remains to prove the upper bound, namely, almost surely, (5.14) lim sup

k→∞ log Θ k k ≤ 2 + 2 √ 2.
Before bringing out the proof of (5.14), let us state some preliminary results first.

For M ∈ N + , define

σ M := inf{s > 0; N(s) = M + 1}.
Clearly, σ M is a stopping time with respect to {F s ; s ≥ 0}. Since N(s) follows the geometric distribution, one sees that for any s ≥ 0,

P[σ M ≤ s] = P[N(s) ≥ 1 + M] = (1 -e -s ) M .
Moreover, σ M has a density function, denoted by f M , as follows:

(5.15)

f M (s) := 1 (s≥0) Me -s (1 -e -s ) M -1 ≤ 1 (s≥0) Me -s .
Recall that L(s) = inf u∈N (s) X u (s). Let L(σ M ) denote the leftmost position at time σ M .

Notice that at time σ M , there are M +1 particles which occupy at most M different positions. This tells us that for any s, µ > 0, (5.16)

P L(s) ≤ -µs σ M = s ≤ MP B s ≤ -µs ≤ M µs e -µ 2 s/2 ,
where the last inequality holds because of (2.4). Let ε ∈ (0, 1/2). For r > 1/ε and 0 < s < r, we set λ := λ(s, r) > 0 such that

s(1 + λ 2 2 ) = r. Let Φ(r, λ) := {σ M > r -1} ∪ {εr ≤ σ M ≤ r -1, L(σ M ) ≤ -λ(σ M , r)σ M }, (5.17) Ψ(r, λ) := εr ≤ σ M ≤ r -1, L(σ M ) ≥ -λ(σ M , r)σ M . (5.18)
We have the following lemma, which gives some results of the random vector (σ M , L(σ M )).

Lemma 5.1 (i)

There exists a constant c 12 > 0 such that

(5.19) P Φ r, λ ≤ c 12 M 2 re -r .
(ii) There exists a constant c 13 > 0 such that

(5.20) E e 2σ M - √ 2L(σ M ) ; Ψ(r, λ) ≤ c 13 M 2 r 2 e √ 2r .
Proof of Lemma 5.1. (i) Observe that

P Φ r, λ ≤ P σ M > r -1 + P εr ≤ σ M ≤ r -1, L(σ M ) ≤ -λ(σ M , r)σ M = ∞ r-1 f M (s)ds + r-1 εr P L(s) ≤ -λ(s, r)s σ M = s f M (s)ds ≤ ∞ r-1 Me -s ds + r-1 εr M λ(s, r)s e -λ(s,r) 2 s/2 Me -s ds,
where the last inequality follows from (5.15) and (5.16). A few lines of simple computation yield (5.19).

(ii) Let us prove the inequality (5.20). By Fubini's theorem, we rewrite the expectation

E e 2σ M - √ 2L(σ M ) ; Ψ(r, λ) as follows: r-1 εr e 2s f M (s)E e - √ 2L(s) ; L(s) ≥ -λ(s, r)s σ M = s ds (5.21) = r-1 εr e 2s f M (s) +∞ -λ(s,r)s √ 2e - √ 2x P -λ(s, r)s ≤ L(s) ≤ x σ M = s dxds.
For εr ≤ s ≤ r, one sees that λ(s, r) = 2(rs)/s ≥ 2/(r -1) > 0. We choose

0 < λ 0 = min{1 - √ 2/2, 2/(r -1)} so that +∞ -λ(s,r)s √ 2e - √ 2x P -λ(s, r)s ≤ L(s) ≤ x σ M = s dx ≤ +∞ -λ 0 s √ 2e - √ 2x dx + -λ 0 s -λ(s,r)s √ 2e - √ 2x P -λ(s, r)s ≤ L(s) ≤ x σ M = s dx ≤ e ( √ 2-1)s + -λ 0 s -λ(s,r)s √ 2e - √ 2x P -λ(s, r)s ≤ L(s) ≤ x σ M = s dx. (5.22)
The last term on the right-hand side of (5.22), by a change of variable x = -µs, becomes

λ(s,r) λ 0 √ 2se √ 2µs P -λ(s, r)s ≤ L(s) ≤ -µs σ M = s dµ ≤ λ(s,r) λ 0 √ 2se √ 2µs P L(s) ≤ -µs σ M = s dµ ≤ λ(s,r) λ 0 √ 2se √ 2µs M µs e -µ 2 s/2 dµ,
where the last inequality comes from (5.16). Going back to (5.21),

E e 2σ M - √ 2L(σ M ) ; Ψ(r, λ) ≤ r-1 εr e 2s f M (s) λ(s,r) λ 0 √ 2s M µ e ( √ 2µ-µ 2 
2 )s dµ + e ( √ 2-1)s ds.

By (5.15), this is bounded by

r-1 εr λ(s,r) λ 0 √ 2s M 2 µ exp (1 + √ 2µ - µ 2 2 )s dµds + M r-1 εr e √ 2s ds. Notice that if s ≤ r/2, then λ(s, r) = 2( r s -1) ≥ √ 2. It follows that (5.23) max 0<µ≤λ(s,r) (1 + √ 2µ - µ 2 2 )s = 2s ≤ r < √ 2r. Otherwise, r/2 < s < r implies λ(s, r) < √ 2. Hence, max 0<µ≤λ(s,r) (1+ √ 2µ-µ 2 
2 )s is achieved when µ = λ(s, r), which equals

(5.24) 1 + √ 2λ(s, r) - λ(s, r) 2 2 s = 1 + √ 2λ(s, r) -λ(s,r) 2 2 1 + λ(s,r) 2 2 r.
It is bounded by

√ 2r since max z≥0 1+ √ 2z-z 2 /2 1+z 2 /2 = √ 2.
Combing the two cases, we obtain that max ǫr≤s≤r-1;0<µ≤λ(s,r)

e (1+ √ 2µ-µ 2 2 )s ≤ e √ 2r .
This implies that

E e 2σ M - √ 2L(σ M ) ; Ψ(r, λ) ≤ r-1 εr λ(s,r) λ 0 √ 2s M 2 µ e √ 2r dµds + Mre √ 2r ≤ M 2 e √ 2r r-1 εr √ 2s λ(s, r) λ 0 ds + Mre √ 2r .
As

λ 0 = min{1- √ 2/2, 2/(r -1)}, we deduce that E e 2σ M - √ 2L(σ M ) ; Ψ(r, λ) ≤ c 13 M 2 r 2 e √ 2r ,
which completes the proof of (ii) in Lemma 5.1.

Let us turn to prove the upper bound of Θ k .

Proof of (5.14). For any u ∈ N (k) and t > 0, we denote A u (t) := {τ u > t}. Then

{Θ k > t} = ∪ u∈N (k) A u (t).
For any θ ∈ Q ∩ (0, 1), let

a j := √ 2 -jθ, b j := √ 2 -(j -1)θ, for j = 1, . . . , K := K(θ) = ⌊ √ 2 θ ⌋, so that 0 < a j < √ 2 for all j ≤ K. Let I k (a, b) := {u ∈ N (k); ak ≤ X u (k) ≤ bk} for -∞ < a < b < ∞. Given the event Ξ := - √ 2k ≤ L(k) ≤ R(k) ≤ √ 2k , we can write N (k) = I k (-θ, √ 2) ∪ 1≤j≤K I k (-b j , -a j ) , so that {Θ k > t} = u∈N (k) A u (t) = u∈I k (-θ, √ 2) A u (t) ∪ 1≤j≤K u∈I k (-b j ,-a j )
A u (t) .

As a consequence, (5.25)

P Θ k > t ∩ Ξ ≤ P u∈I k (-θ, √ 2) A u (t) ∩ Ξ + K j=1 P u∈I k (-b j ,-a j )
A u (t) ∩ Ξ .

We first estimate

P u∈I k (-θ, √ 2) A u (t) ∩ Ξ . For any particle u ∈ N (k), let σ u M := inf{s > 0; N u (s) = 1 + M}. Recall that L u (t) = min{X v (t + k) -X u (k); v ∈ N (k + s), u < v} for any t > 0. By the branching property, conditioned on F k , {σ u M , L u (σ u M )} u∈N (k) are i.i.d. copies of (σ M , L(σ M )). Similarly, We define Φ u (r, λ) := {σ u M > r -1} ∪ {εr ≤ σ u M ≤ r -1, L u (σ u M ) ≤ -λ(r, σ u M )σ u M } and Ψ u (r, λ) := εr ≤ σ u M ≤ r -1, L u (σ u M ) ≥ -λ(σ u M , r)σ u M .
One immediately observes that (5.26)

P u∈I k (-θ, √ 2) A u (t) ∩ Ξ ≤ P u∈I k (-θ, √ 2) 
Φ u (r, λ)

+ P u∈I k (-θ, √ 2) A u (t) ∩ Φ u (r, λ) c ; Ξ .
Conditioning on F k yields that (5.27)

P u∈I k (-θ, √ 2) Φ u (r, λ) ≤ E u∈I k (-θ, √ 2) 1 Φ u (r,λ) = E u∈I k (-θ, √ 2 
)
1 P Φ(r, λ) .

Clearly,

(5.28)

E u∈I k (-θ, √ 2) 1 ≤ E[N(k)] = e k .
It then follows from (5.19) that (5.29)

P ∪ u∈I k (-θ, √ 2) Φ u (r, λ) ≤ c 12 M 2 re -r+k .
We now choose r = k(1 + ε) and set Λ 0 := P ∪ u∈I k (-θ, √

2) A u (t) ∩ Φ u (r, λ) c ; Ξ . Then for all k large enough, (5.26) becomes (5.30)

P u∈I k (-θ, √ 2) 
A u (t) ∩ Ξ ≤ c 14 M 2 ke -εk + Λ 0 .

It remains to estimate Λ 0 . Since Φ u (r, λ)

c ⊂ {σ u M < εr} ∪ Ψ u (r, λ), we write (5.31) Λ 0 = P u∈I k (-θ, √ 2) A u (t) ∩ Φ u (r, λ) c ; Ξ ≤ Λ 1 + Λ 2 ,
where

Λ 1 := P u∈I k (-θ, √ 2) A u (t) ∩ {σ u M < εr}; Ξ Λ 2 := P u∈I k (-θ, √ 2) 
A u (t) ∩ Ψ u (r, λ); Ξ . T v (y) + εr.

Recall that A u (t) = {τ u > t}. By comparing S u (y) with t, we obtain that for any t 1 ∈ (0, t),

Λ 1 ≤ P u∈I k (-θ, √ 2) 
t 1 ≤ S u (y) ≤ t < τ u ; Ξ (5.33)

+ P u∈I k (-θ, √ 2) S u (y) > t; σ u M < εr + P u∈I k (-θ, √ 2) 
S u (y) < t 1

=: Λ 1a + Λ 1b + Λ 1c .
For δ ∈ (0, 1) and θ ∈ Q ∩ (0, 1), we take y = ( 1+2δ) .

√ 2 + 2)k(1 + θ), t 1 = e k , t = e √ 2y ( 
As {σ u M < εr} implies {N u (εr) > M}, P[ S u (y) > t; σ u M < εr|F k+εr ] is less than P[T (y) > tεr] M . Conditionally on F k+εr , then by (5.28), we get , since r = (1 + ε)k with ǫ ∈ (0, 1/2). By (2.16), Λ 1b ≤ e k × e -M δ 1 y/3 for k large enough. We take M = 6 δ 1 to ensure that Λ 1b ≤ e -k . On the other hand, we observe that 

Set Ξ 1 := R(k + εr) ≤ 2(k + εr) ∩ Ξ. Then, (5.36) Λ 1a ≤ P R(k + εr) > 2(k + εr) + E u∈I k (-θ, √ 2)
1 (τu>t≥ S u (y)≥t 1 ) ; Ξ 1 .

We define Λ 1rest := E u∈I k (-θ, √

2) 1 (τu>t≥ Su (y)≥t 1 ) ; Ξ 1 for convenience. On the one hand, P[R(k + εr) > 2(k + εr)] ≤ e -k because of (2.15). On the other hand, we have

Λ 1rest ≤ E u∈I k (-θ, √ 2) t t 1 1 ( S u (y)∈dr ′ ) P τ u > r ′ ; Ξ 1 F k , F u ∞ .
Since { S u (y) = r ′ } ⊂ {R u (r ′ ) ≥ L u (εr) + m(r ′εr) + y}, the event {τ u > r ′ } conditioned on { S u (y) = r ′ } implies ∪ w∈N (k)\{u} X w (k)+R w (r ′ ) > X u (k)+L u (εr)+m(r ′ -εr)+y . Further,

this set is contained in ∪ w∈N (k)\{u} R w (r ′ ) > m(r ′ ) + X u (k) + L u (εr) + y - √ 2εr -X w (k) . As Ξ 1 guarantees that X u (k) + L u (εr) + y - √ 2εr -X w (k) + ≤ C 2 k, the inequality (2.2)
can be applied to show that εr) ,

E u∈I k (-θ, √ 2) t t 1 1 ( S u (y)∈dr ′ ) P τ u > r ′ ; Ξ 1 F k , F u ∞ ≤ E u∈I k (-θ, √ 2) t t 1 1 ( Su (y)∈dr ′ ) w∈N (k)\{u} c 2 (1 + C 2 k) 2 e - √ 2 Xu(k)+L u (εr)+y- √ 2εr-Xw(k) ≤ c 15 k 2 e - √ 2y+2εr E u∈I k (-θ, √ 2) w∈N (k)\{u} e √ 2(Xw(k)-Xu(k)) E e - √ 2L ( 
where the last inequality follows from the fact that for u ∈ N (k), L u (εr) are independent of F k and are independent copies of L(εr).

Whereas by the estimation of

E u∈N δ (k) w∈N (k)\{u} e √ 2Xw(k) in Section 4, E u∈I k (-θ, √ 2) w∈N (k)\{u} e √ 2(Xw(k)-Xu(k)) = 2 k 0 e 2k-s ds R P B s ∈ dx E e - √ 2B k ; -θk ≤ B k ≤ √ 2k B s = x E e √ 2B k B s = x = 2 k 0 e 3k-2s E e √ 2Bs- √ 2B k ; -θk ≤ B k ≤ √ 2k ds. Because E e √ 2Bs- √ 2B k ; -θk ≤ B k ≤ √ 2k ≤ e √ 2θk E e √ 2Bs = e √ 2θk+s
, we obtain that (5.37)

E u∈I k (-θ, √ 2) w∈N (k)\{u} e √ 2(Xw(k)-Xu(k)) ≤ 2e 3k+ √ 2θk .
Besides, E e - √ 2L(εr) ≤ E v∈N (εr) e - √ 2Xv(εr) = e 2εr . As a result, 

Λ 1rest ≤ c 15 k 2 e - √ 2y+2εr × 2e 3k+ √ 2θk+2εr . Recall that 0 < θ < 1, y = ( √ 2 + 2)k(1 + and that r = k(1 + ε) with k large enough so that r > 1/ε. Hence, Λ 1rest ≤ c 15 k 2 e (1-2 √ 2)k for ε ∈ (0, θ 3 

It remains to estimate Λ

2 = P u∈I k (-θ, √ 2) A u (t) ∩ Ψ u (r, λ); Ξ where Ψ u (r, λ) = εr ≤ σ u M ≤ r -1, L u (σ u M ) ≥ -λ(σ u M , r)σ u M . For any particle u ∈ N (k) satisfying Ψ u (r, λ), define (5.39) S u (y) := min v∈N u (σ u M )
T v (y) + σ u M , for any y > 0.

Comparing S u (y) with t yields that

(5.40) Λ 2 ≤ P u∈I k (-θ, √ 2) t 1 ≤ S u (y) ≤ t < τ u ∩ Ψ u (r, λ); Ξ + P u∈I k (-θ, √ 2) S u (y) > t ∩ Ψ u (r, λ) + P u∈I k (-θ, √ 2) S u (y) < t 1 ∩ Ψ u (r, λ) =: Λ 2a + Λ 2b + Λ 2c .
According to the definition of S u (y), one sees that P[ S u (y) > t; Ψ u (r, λ)] ≤ P[T (y) > tr] M and that P[ S u (y) < t 1+2δ) . For any -∞ < a < b < ∞, by (2.16),

1 ; Ψ u (r, λ)] ≤ 2MP[T (y) < t 1 ]. Recall that r = (1 + ε)k, M = 6/δ 1 , y = ( √ 2 + 2)k(1 + θ), t 1 = e k and t = e √ 2y ( 
(5.41)

E u∈I k (a,b) 1 { S u (y)>t}∩Ψ u (r,λ) ≤ e k × P[T (y) > e √ 2y(1+δ) M ≤ e -k .
Meanwhile, by (2.13),

(5.42)

E u∈I k (a,b) 1 { S u (y)<t 1 }∩Ψ u (r,λ) ≤ e k × 2MP[T (y) < t 1 ] ≤ 2c 5 Me -2k .
Hence, taking a = -θ and b

= √ 2 implies that Λ 2b + Λ 2c ≤ e -k + 2c 5 Me -2k . Let Ξ 2 := {max 0≤r 0 ≤r R(k + r 0 ) ≤ 6k} ∩ Ξ. We get (5.43) Λ 2a ≤ P max 0≤r 0 ≤r R(k + r 0 ) > 6k + E u∈I k (-θ, √ 2) 1 {t 1 ≤ S u (y)≤t<τu}∩Ψ u (r,λ) ; Ξ 2 .
By the many-to-one lemma, for k large enough, (5.44) P max

0≤r 0 ≤r R(k + r 0 ) > 6k ≤ e -k .
For the second term on the right-hand side of (5.43), we need to recount the arguments to estimate Λ 1rest . Let (5.45)

Λ 2rest := E u∈I k (-θ, √ 2) 1 {t 1 ≤ S u (y)≤t<τu}∩Ψ u (r,λ) ; Ξ 2 .
It immediately follows that

(5.46) Λ 2rest ≤ E   u∈I k (-θ, √ 2) t t 1 1 ( S u (y)∈dr ′ ) 1 Ψ u (r,λ) × P {τ u > r ′ } ∩ Ξ 2 F k , F u ∞   .
Comparing τ u with S u (y) tells that

Λ 2rest ≤ E u∈I k (-θ, √ 2) t t 1 1 S u (y)∈dr ′ 1 Ψ u (r,λ) × E 1 Ξ 2 w∈N (k)\{u} 1 R w (r ′ )>m(r ′ )- √ 2σ u M +y+Xu(k)-Xw(k)+L u (σ u M ) F k , F u ∞ . On the event Ξ 2 ∩ Ψ u (r, λ), we have 1 + - √ 2σ u M + y + X u (k) -X w (k) + L u (σ u M ) + ≤ C 3 k.
Applying the inequality (2.2) for R w (r ′ ) yields that In view of (5.41), (5.42) and (5.44),

Λ 2rest ≤ E u∈I k (-θ, √ 2 
(5.53) Λ ′ 2 ≤ e -k + 2c 5 Me -2k + e -k + E u∈I k (-b j ,-a j )

1 {t 1 ≤ S u (y)≤t<τu}∩Ψ u (r,λ) ; Ξ 2 .

We define Λ ′ 2rest := E u∈I k (-b j ,-a j ) 1 {t 1 ≤ S u (y)≤t<τu}∩Ψ u (r,λ) ; Ξ 2 . Thus applying the analogous arguments to the estimation of Λ 2rest gives that This implies the upper bound in Theorem 1.2.

2

 2 It suffices to show that almost surely lim N∋k→∞ log Θ k k = 2 + 2 √ 2, as the sequence {Θ s ; s > 0} is monotone.

2

  )k. Then comparing T u (z) and e ρk for every u ∈ Z a (k) tells us that (5.5) Ω a ≤ P u∈Za(k) {T u (z) < e ρk } + P u∈Za(k) {τ u < e ρk ≤ T u (z)} . It follows from the branching property that the first term of the right-hand side is bounded by E[Z a (k)]P[T (z) < e ρk ], which is e k P[B k ≤ -ak]P[T (z) < e ρk ] by the many-to-one lemma.

For

  any particle u ∈ I k (-θ, √ 2) such that {σ u M < εr}, for any y ≥ 1, we define (5.32) S u (y) := min v∈N u (εr)

( 5 . 2 ) 1 P

 521 34) Λ 1b ≤ E u∈I k (-θ, √ T (y) > tεr M ≤ e k P T (y) > e √ 2y(1+δ) M

1 T

 1 v (y)<e k ≤ e k+εr P T (y) < e k . By (2.13), Λ 1c ≤ e k+εr c 5 y 2 e - √ 2y e k . Thus Λ 1b + Λ 1c ≤ 2e -k for sufficiently large k.

2 √ 2 ) 2 √ 2 )

 2222 ). Going back to (5.36), we get Λ 1a ≤ e -k + c 15 k 2 e (1-k for all k sufficiently large. Consequently, (5.33) becomes (5.38) Λ 1 ≤ e -k + c 15 k 2 e (1-k + 2e -k ≤ c 16 e -εk .

) 1 Ψ 2 (

 12 u (r,λ) × Xw(k)-Xu(k)) E e 2σ M - √ 2L(σ M ) ; Ψ(r, λ) ,by the fact that {σ u M , L u (σ u M )} are i.i.d. and independent of F k . Recall that r = (1 + ε)k with ε ∈ (0, θ/3). It then follows from (5.37) and (5.20) that(5.47) Λ 2rest ≤ C 2 3 k 2 e -(2+2 √ 2)k(1+θ) × 2e 3k+ √ 2θk × c 13 M 2 r 2 e √ 2r ≤ c 17 k 4 M 2 e -( √ 2-1)k .

( 5 .√ 2 (√ 2 ( 2 k 0 e√ 2 (

 522202 54) Λ ′ 2rest ≤ c 21 k 2 e - √ 2y E u∈I k (-b j ,-a j ) w∈N (k)\{u} e Xw(k)-Xu(k)) × E e 2σ M - √ 2L(σ M ) ; Ψ u (r, λ) .Once again, by means of integrating with respect to the last time at which the most recent common ancestor of u and v was alive,E u∈I k (-b j ,-a j ) w∈N (k)\{u} e Xw(k)-Xu(k)) equals 2k-s ds R P B s ∈ dx E e - √ 2B k ; -b j k ≤ B k ≤ -a j k B s = x E e √ 2B k B s = x 2B k ; -b j k ≤ B k ≤ -a j k ds k ∈ dx E e √ 2Bs B k = x .Let (b s (x); 0 ≤ s ≤ k) denote a Brownian bridge from 0 to x of length k. Then E e √ 2Bs B k = x equals E e √ 2bs(x) , which turns out to be exp(s(ks + √ 2x)/k). Note that a j > 0 and that b j = a j + θ. This gives that E u∈I k (-b j ,-a j ) w∈N (k)\{u} e Xw(k)-Xu(k))

2 + 2 θP 2 ≤ C 1

 2221 c 20 e -εk + c 23 M 2 e -θk .Summing over j ∈ {1, • • • , K = ⌊ √ ⌋} ∪ u∈I k (-b j ,-a j ) A u (t); Ξ ≤ C(θ)M 2 e -εθk/2 ,where C(θ) is a positive constant associated with θ (but independent of k, δ and M) and k is large enough.Going back to (5.25), we combine (5.49) and (5.57) to say thatP τ (k) > t ∩ -√ 2k ≤ L(k) ≤ R(k) ≤ √ 2k ≤ c 19 M 2 e -εk/2 + C(θ)M 2 e -εθk/(θ) δ 2 e -εθk/2 , where θ ∈ Q ∩ (0, 1), ε ∈ (0, θ 3 ), δ > 0 and t = exp[k(2 + 2 √ 2)(1 + θ)(1 + 2δ)] and k is sufficiently large.According to the Borel-Cantelli Lemma, we conclude that for any θ ∈ Q ∩ (0, 1) and any θ)(1 + 2δ), almost surely.

  choose a y = δ

	4+2 √ 2y(1+ 1 2 y =: δ 1 y from now on to evaluate P[Σ]. Since Σ 1 ∈ F ay , for y large 2 δ) ≤ e √ 2y(1+δ) -a y , we have P Σ F ay ≤ 1 Σ 1 enough so that 2e √ u∈N (ay) P R u (r) ≤ m(a y + r) + y -X u (a y ), ∀r ≤ e √ 2y(1+δ) -a y F ay
	≤ P R(r) ≤ m(r) + y + 2a y +	√	2a y , ∀r ∈ e √	2y(1+ 1 2 δ) , 2e √	2 δ) 2y(1+ 1	e ay /2
	≤ P R(r) ≤ m(r) +	1 √ 2	log r, ∀r ∈ e √	2y(1+ 1 2 δ) , 2e √	2 δ) 2y(1+ 1	e ay /2

  ′ 2rest ≤ c 22 k 9/2 M 2 e -2θk, and thus for all k sufficiently large,(5.56) Λ ′ 2 ≤ c 23 M 2 e -θk .Consequently, by (5.52),P ∪ u∈I k (-b j ,-a j ) A u (t); Ξ ≤ c 12

	by	√	ke 2k+(1-	a 2 j 2 +	√	2a j )k+	√	2θk . Going back to (5.54) and applying (5.20),
			Λ ′ 2rest ≤ c 21 k 2 e -(2+2 √ ≤ c 22 k 9/2 M 2 e -2θk exp k ( 2)k(1+θ) √ ke 2k+(1-√ 2 + 1)(1 -a 2 a 2 j 2 + √ 2a j )k+ √ 2θk c 13 M 2 r 2 e √ j /2) + √ 2a j -2 2r √	2 ,
	as r = k(1 -(5.55)	a 2 j 2 )(1 + ε) with ε ∈ (0, θ 3 ). Observe that ( √ 2 + 1)(1 -a 2 j /2) + √ 2a j -2 √ 2 = -	√	2 + 1 2	a j -(2 -	√	2)	2	≤ 0.
	We get Λ								
												√	1 2πk	exp -	x 2 2k	-	√	2x +	√	2	s k	x dxds
			≤ 2	0	k	e 3k-2s+s(k-s)/k θk √ 2πk	exp -	a 2 j 2	k +	√	2b j k -	√	2a j s ds,
	which is bounded by is less than 1. One hence sees that E √ k exp 3k -a 2 j 2 k +	√	2b j k since	k 0 exp -2s + s(k -s)/k -√ 2(Xw(k)-Xu(k)) is bounded √ 2a j s ds

u∈I k (-b j ,-a j ) w∈N (k)\{u} e
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Combined with (5.38), Λ 0 ≤ c 16 e -εk + c 18 M 2 e -εk . Going back to (5.30), we conclude that (5.49)

To complete the proof, we still need to evaluate P ∪ u∈I k (-b j ,-a j ) A u (t) ∩ Ξ . Recall that for any particle u ∈ N (k), σ u M = inf{s > 0; N u (s) = 1 + M} and

for any r > 1/ε and λ(s, r) = 2( r s -1) with 0 < s < r. Clearly,

On the one hand, (5.50)

1 P Φ(r, λ) .

29

We now take r = k(1 -

θ ⌋, with θ ∈ Q ∩ (0, 1). Then note that each a j is strictly positive. Thus, by the many-to-one lemma and (5.19), (5.50) becomes that

where the last inequality follows from (2.4). P u∈I k (-b j ,-a j ) Φ u (r, λ) is hence bounded by

On the other hand, recalling that Ψ u (r, λ)

where

A u (t) ∩ Ψ u (r, λ); Ξ .

Furthermore, by an argument similar to the one used in estimating Λ 1 , we have Λ ′ 1 ≤ c 20 e -εk . Thus, (5.52)

{ S u (y) > t} ∩ Ψ u (r, λ) + P u∈I k (-b j ,-a j )

{ S u (y) < t 1 } ∩ Ψ u (r, λ)

+ P max 0≤r 0 ≤r R(k + r 0 ) > 6k + P u∈I k (-b j ,-a j ) t 1 ≤ S u (y) ≤ t < τ u ∩ Ψ u (r, λ); Ξ 2 .