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Ensure the safety of development projects of the Rhône is the priority of the Compagnie Nationale du Rhône. That means it is essential to respect the water levels at some set points along the river. To regulate its development projects, the computation of the predictive control is based on measurements at the characteristic points as well as flows at the hydraulic facilities. Thus, when failures of sensors occur or during strong transients (such as stopping or starting the turbines), the regulation process can be disturbed. Following this study, the new solution suggested to detect sensor defaults, to correct the observations and to update the water profiles involved in the calculation of control actions, is based on a data assimilation method (Kalman Filter). This method is optimal because it ensures minimizing the estimation error. But this property is not sufficient for our industrial application. This is why the notions of detectability and convergence have been studied into detail. This study has identified sufficient conditions that ensure the error of the estimate to converge towards a nil average. In order to test and validate such a method, it has been implemented into the industrial test tool called "simulation platform." Examples of usually difficult scenarios simulating a loss of sensor and an unexpected stopping of a turbine are presented in this document. It allows demonstrating the benefits of the presented solution.

RESUME

Assurer la sûreté hydraulique sur les aménagements du Rhône est la priorité pour la Compagnie Nationale du Rhône. Cela signifie qu'il est indispensable de respecter les consignes d'exploitation sur les aménagements. Pour la régulation automatique des aménagements, le calcul de la commande prédictive s'appuie sur les mesures en cote en certains points caractéristiques ainsi que sur les débits aux ouvrages. De ce fait, lors de pannes de capteurs ou bien lors de forts phénomènes transitoires (tels que des arrêts ou démarrages de turbines), la régulation est perturbée. Suite à la présente étude, la solution proposée pour corriger les observations et mettre à jour les lignes d'eau intervenant dans le calcul des commandes, est la mise en place d'une méthode d'assimilation de données de type filtre de Kalman. Cette méthode est optimale dans le sens où elle assure la minimisation de l'erreur d'estimation. Mais cela n'est pas suffisant pour certaines applications industrielles. C'est pourquoi les notions de détectabilité et de convergence ont été approfondies. Cette étude a permis de déterminer des conditions suffisantes qui assurent une erreur de l'estimation convergente vers une moyenne nulle.

Pour tester la mise en place d'une telle méthode, celle-ci a été implémentée sur l'outil de test industriel appelé « plateforme de simulation ». Des exemples de scénarios habituellement difficiles pour les régulations automatiques, telles que la perte de capteur et l'arrêt brutal d'une turbine sont présentés. Ils permettent de démontrer l'apport de la solution proposée.

INTRODUCTION

Créée en 1933, la Compagnie Nationale du Rhône (CNR) détient la concession du Rhône depuis 1934 pour assurer plusieurs missions dont les deux principales sont la production d'hydroélectricité et garantir le bon fonctionnement de la navigation en aval de l'agglomération lyonnaise.

Fonctionnement d'un aménagement hydroélectrique typique

Comme l'illustre la Figure 1, un barrage sur le Rhône naturel détourne, hors période de crue, l'essentiel du débit vers le canal d'amenée2 où sont implantées une centrale et une écluse. Au fur et mesure de son arrivée, l'eau passe par les turbines qui captent l'énergie fournie par la chute d'eau et le débit, puis la transmettent instantanément à l'alternateur qui la convertit en énergie électrique, livrée ensuite aux consommateurs par le réseau haute tension. Les eaux sont restituées au Rhône à l'aval de la centrale via le canal de fuite 3 . Le barrage crée une faible retenue d'eau et laisse s'écouler en permanence un débit minimum en direction du Rhône naturel. 

Régulation des aménagements

La quasi-totalité des aménagements sont régulés de manière automatique par un algorithme appelé commande prédictive avec modèle embarqué. Après un retour d'expérience, on s'aperçoit que la commande prédictive a optimisé la gestion des aménagements, mais il existe tout de même encore aujourd'hui des pistes d'amélioration. Notamment dans les situations où interviennent des erreurs de mesures4 ou des erreurs de structure5 . L'objectif principal des recherches menées est de proposer une méthode capable de détecter, d'estimer et de corriger ces erreurs. Après analyse des avantages et des inconvénients des différentes méthodes d'assimilation de données, nous avons fait le choix de nous intéresser au filtre de Kalman. En effet, la régulation par commande prédictive de la CNR nécessite une méthode de correction des données à caractère stochastique et rapide en temps de calcul. Ce dernier point orienta les recherches vers un filtre de Kalman asymptotique présenté par la suite.

L'hypothèse forte de l'application d'un filtre de Kalman est d'utiliser un modèle linéaire. En premier lieu, ce papier présente donc brièvement comment est obtenu le modèle linéaire à partir du modèle non-linéaire considéré. Puis nous présenterons l'algorithme du filtre de Kalman. Enfin, sachant que le filtre de Kalman n'assure pas obligatoirement une estimation dont l'erreur tend vers zéro. Nous présenterons l'étude de la convergence du filtre et nous verrons que celle-ci est soumise à certaines conditions. Cette étude peut être réalisée a posteriori de la synthèse du filtre de Kalman. Or il serait plus adapté industriellement d'avoir, a priori de la synthèse, l'assurance que le filtre de Kalman est capable de fournir une reconstruction exacte (i.e. dont l'erreur tend vers 0). La notion de détectabilité sera ainsi introduite.

Pour conclure, un exemple illustratif de la qualité de l'estimation faite par le filtre de Kalman dans le cadre d'une erreur de mesure sera présenté.

LE MODÈLE NON-LINÉAIRE

Au début des années 1980, la CNR a décidé de développer son propre logiciel de modélisation 1D de réseaux maillés et de calcul hydraulique des écoulements permanents et transitoires à surface libre. Depuis la création de la régulation par commande prédictive, ce modèle mathématique appelé CRUE est utilisé pour calculer les lignes d'eau nécessaires au calcul de la commande.

CRUE se base sur les équations de Barré de Saint-Venant mono-dimensionnelles. Elles se décomposent en une équation de conservation de la masse aussi appelée équation de continuité et en une équation de conservation de la quantité de mouvement communément appelée équation de la dynamique :

q x Q t S = ∂ ∂ + ∂ ∂ ( ) kqV J = + ∂ ∂ + ∂ ∂ + ∂ ∂ x Z gS x QV) ( t Q β Avec: • Q : débit du bief (m 3 .s -1 )
• q : débit latéral par unité de longueur (m 2 .s -1 ) o q>0 pour un apport d'eau ou q<0 pour un prélèvement d'eau

• S : surface mouillée (m 2 ) • x : abscisse curviligne (m) • t : temps (s) • Z : cote (m NGF) • g : gravité (m.s -2 )
• k : coefficient qui permet de tenir compte de la variation de quantité de mouvement due aux apports latéraux qui ont une vitesse différente de celle de l'écoulement moyen

o k = 0 si q ≥ 0 & k = 1 si q ≤ 0 • J : pente • V : vitesse (m.s -1 )
• β: coefficient adimensionnel de répartition de la vitesse dans la section, dit coefficient de Boussinesq.

MODÈLE LINÉAIRE

Pour la mise en place d'une technique d'assimilation de données de type filtre de Kalman, il est nécessaire d'avoir une représentation du tronçon étudié sous forme de modèle linéaire. Comme la CNR possède une régulation qui calcule les commandes au pas de temps de 100s, le modèle linéaire est choisi discret avec un pas de temps d'échantillonnage de 100s. L'obtention d'un modèle linéaire pour un système hydraulique à surface libre se fait en deux étapes :

La première consiste à discrétiser les équations de Barré de Saint-Venant par le schéma implicite de Preissmann. A l'issu de cette manipulation, on dispose d'un modèle discret non-linéaire.

La seconde étape de la synthèse du modèle linéaire présentée est constituée de la linéarisation des équations de continuité et de la dynamique par développement de Taylor au premier ordre, autour d'un régime de référence (cf. [START_REF] Malaterre | Modélisation, analyse et commande optimale LQG d'un canal d'irrigation[END_REF]).

En ajoutant le vecteur des sorties observées, on obtient un modèle dans l'espace d'état qui permet d'appliquer la méthode d'assimilation de données de type filtre de Kalman.
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: vecteur d'état à l'instant k qui contient les variations des cotes et des débits par rapport à un état de référence de linéarisation pour les sections en travers considérées
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: vecteur de commande, qui correspond par exemple à une position d'ouverture de vanne de barrage ou à un débit d'usine
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Up ℜ ∈ : vecteur des perturbations liées aux apports latéraux tels que les affluents et les casiers
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: matrice de contrôle des perturbations
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: matrice des sorties observées

FILTRE DE KALMAN ET CONVERGENCE DE L'ESTIMATION

Hypothèses et algorithme

Pour rendre plus réaliste le modèle utilisé par la suite, on considère le système linéaire obtenu précédemment auquel on ajoute des bruits stochastiques (blancs, gaussiens et centrés). Les bruits o k ε sont ajoutés au vecteur de sorties observées, afin de représenter les incertitudes sur les observations. Du bruit k η est aussi ajouté sur la partie modélisation car le modèle ne reflète pas parfaitement la réalité. On obtient donc un modèle linéaire stochastique dont l'évolution dynamique est modélisée à l'aide du système dans l'espace d'état :

   + = + + + = + o k k k k k k k k k k k k X C Y Up Bp U B X A X ε η 1
Les équations du filtre de Kalman sont scindées en deux groupes :

• la mise à jour des équations du modèle (aussi appelée étape de prédiction ou étape de propagation). 
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Filtrage stationnaire

On parle de filtrage stationnaire, asymptotique ou permanent lorsque le gain est constant pour la reconstruction d'état optimal des processus linéaires invariants (matrices A , B , C invariantes), perturbés par des bruits de spectres Q et R également invariants. La matrice de covariance invariante b P est calculée à partir de l'équation de Riccati stationnaire :

T b T b T b T b b A CP C CP R C AP Q A AP P 1 ) ( - + - + =
Ainsi a P permet de calculer le gain optimal constant

1 - = R C P K T a

Matrices de covariance

Les équations du filtre de Kalman font appel aux matrices de covariance d'erreur de modèle Q et de mesure R . Ces matrices peuvent être perçues comme des outils de réglage du filtre de Kalman car elles influent sur le calcul du gain, et donc sur la convergence du filtre.

Les erreurs de modélisation proviennent de sources multiples. Elles sont issues du choix du modèle, des erreurs numériques engendrées par le choix de la méthode de résolution. Les erreurs de modélisations sont aussi liées au choix des paramètres utilisés, tels que les erreurs sur les géométries, ou sur les coefficients de frottement, etc. Cette multitude de sources d'erreurs rend le travail d'établissement de la matrice Q très compliqué. On peut envisager de quantifier un certain nombre de ces erreurs via les méthodes de calcul de norme d'opérateurs (cf. [START_REF] Malaterre | Analyse pour le calage de modèles hydrauliques à surface libre : une approche par les théories des systèmes linéaires et de l'automatique[END_REF]).

La matrice de covariance Q est considérée diagonale si les bruits sur le modèle ne sont pas corrélés. Dans la réalité, les erreurs de type géométrique ou hydraulique (coefficients de Strickler) ont un impact sur les états (en cote et en débit) à l'amont et à l'aval. Mais pour simplifier le problème, on considère que les bruits sur les états sont indépendants les uns des autres. Ainsi, Q s'écrit

T Q ηη = .
Les bruits sur les observations o ε représentent les erreurs dues à la précision des mesures (précision du matériel, des méthodes de calcul de la mesure, etc.). La matrice de covariance des erreurs d'observation R est diagonale si les capteurs sont indépendants les uns des autres. En l'absence de corrélation entre les bruits des capteurs, R s'écrit

T o o R ε ε = .

CONVERGENCE ET DÉTECTABILITÉ

8.1 Convergence D'après (cf. [START_REF] Jean-Baptiste | Assimilation de données pour l'estimation de l'état hydraulique d'un aménagement du Rhône équipé de la commande prédictive[END_REF]), il existe deux conditions suffisantes à la convergence du filtre de Kalman : 
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0 ] [ ) ( , , lim 1 1 = Ε ⇒ - ≥ ∀ Ν ∈ ∃ ∞ → - - a k k k k k k Schur A C K A N k N ε
Cette dernière condition revient à rechercher une propriété dépendant du gain K. Nous souhaiterions traduire cette propriété en des conditions sur la paire (Q, R) qui sont nos paramètres de synthèse de ce gain K (via les équations du filtre de Kalman). C'est pourquoi la notion de détectabilité est intéressante.

Détectabilité

Cette propriété dit, par définition, que si les pôles non observables de la paire (A, C) sont stables, alors le système est détectable. Cela est équivalent à dire qu'il existe une matrice de gain K telle que (A-KCA) est Schur et donc que l'estimation réalisée à partir du filtre correspondant serait convergente. Pour un observateur (Luenberger) cette propriété serait suffisante (si l'on est capable de construire ce K), mais pour le filtre de Kalman, nous recherchons une propriété sur la paire (Q, R). Cela permettrait de vérifier la propriété de convergence a priori au lieu d'a posteriori de la synthèse du filtre de Kalman.

Le théorème suivant, rappelé par Larminat, dit que si l'on a :

• une paire (A, C) détectable • une matrice factorisable tel que Q=GG T , telle que (A, G) soit stabilisable • une matrice R définie positive Alors l'équation de Riccati possède une et une seule solution positive et la matrice (A-KCA) est une matrice de stabilité asymptotique.

Cet ensemble de conditions suffit à permettre une synthèse du filtre de Kalman dont on est sûr qu'il sera convergent et donc dont l'erreur d'estimation tendra asymptotiquement (en moyenne) vers 0. La convergence dépend donc de la détectabilité et d'un choix de matrice (Q, R).

TESTS

Pour illustrer les performances de cette méthode d'assimilation de données, nous avons utilisé la plateforme de simulation de la CNR qui permet de rejouer des scenarios réels. L'étude de la détectabilité de la paire (A, C) nous a permis de déterminer une condition nécessaire ainsi qu'une condition suffisante pour la convergence du Filtre. Ces conditions sont intéressantes car elles permettent d'anticiper les propriétés de convergence du Filtre a priori de sa synthèse, à partir, principalement, de l'analyse de la paire (A, C) et de la matrice Q.

Le test sur la plateforme de simulation a révélé que le filtre de Kalman réalise de bonnes estimations dans la mesure où l'on reste dans les tolérances du modèle linéaire. Ces tests ont été réalisés pour divers scénarios, présentés (cf. [START_REF] Jean-Baptiste | Assimilation de données pour l'estimation de l'état hydraulique d'un aménagement du Rhône équipé de la commande prédictive[END_REF]).
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 1 Figure 1 : Aménagement local
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  Pour initialiser le filtre de Kalman, il n'y a pas d'analyse au pas de temps précédent. On considère donc que le terme "d'ébauche" initial b X 0 regroupe les informations a priori sur l'état initial réel du système t X 0 . Si l'état initial est parfaitement connu, alors on impose on considère un état initial "vraisemblable" et on lui associe une matrice

Figure 2 :

 2 Figure 2: Simulation de l'estimation d'une erreur de mesure de 200m 3 s -1 à l'usine amont

  mise à jour des équations des mesures (aussi appelée étape d'estimation ou étape de recalage). Lors de cette seconde étape, le gain k K est calculé. Il permet de déterminer la matrice de covariance d'erreur sur l'état d'analyse a

	k P . Cette étape tient compte des
	observations k Y faites au pas de temps courant et corrige l'estimation faite a priori b k X pour
	fournir une estimation a posteriori a k X . Cette étape est aussi appelée étape de correction.

  condition revient à considérer un état « vrai » initial t X 0 et une erreur d'ébauche b

	0 ε non
	biaisés. Ces hypothèses sont trop fortes et non réalistes. En revanche, la deuxième condition permet
	d'écrire une condition suffisante à la convergence du filtre :

Le canal d'amenée est un canal artificiel construit en parallèle du vieux Rhône pour conduire l'eau à l'usine et à l'écluse.

Le canal de fuite est un canal artificiel créé en parallèle du vieux Rhône pour évacuer l'eau après l'usine.

On appelle erreurs de mesures les pannes de capteurs ou bien les biais sur les mesures effectuées.

On appelle une erreur de structure, la différence entre le modèle et la réalité. Cette erreur existe toujours car il est impossible de modéliser parfaitement les phénomènes réels.