Stabilization of nonlinear systems subject to uncertainties and actuator saturation
Souad Bezzaoucha, Benoît Marx, Didier Maquin, José Ragot

To cite this version:
Souad Bezzaoucha, Benoît Marx, Didier Maquin, José Ragot. Stabilization of nonlinear systems subject to uncertainties and actuator saturation. American Control Conference, ACC 2013, Jun 2013, Washington, United States. pp.CDROM. hal-00782928

HAL Id: hal-00782928
https://hal.science/hal-00782928
Submitted on 8 Apr 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Stabilization of Nonlinear Systems Subject to Uncertainties and Actuator Saturation

Souad Bezzaoucha, Benoît Marx, Didier Maquin, José Ragot

Abstract—This paper deals with nonlinear system control with input saturation and parametric uncertainties. The considered nonlinear systems are represented by Takagi-Sugeno models. The proposed controller is a parallel distributed compensation state feedback. Stabilization conditions are derived with the Lyapunov method and expressed as an optimization problem under linear matrix inequality (LMI) constraints. The obtained controller gains depend on the saturation limits. The descriptor approach for modeling is also applied to reduce the number of LMI. An academic example is presented with a comparison between the proposed approach and a conventional controller.

Index Terms—Nonlinear system, uncertain system, Takagi-Sugeno model, actuator saturation, linear matrix inequality, descriptor system.

I. INTRODUCTION

In this paper, uncertain nonlinear systems represented by Takagi-Sugeno (T-S) models with actuator saturation constraints are considered. In the existing literature, several approaches are proposed to deal with the saturation problem. One can find the anti-windup controller, a two-step approach in which a nominal linear controller is first constructed by ignoring actuator saturation. Once this controller is designed, usually a so-called anti-windup compensator is added to handle the saturation constraints. A typical anti-windup scheme consists in augmenting the nominal pre-designed linear controller with a compensator based on the discrepancy between unsaturated and saturated control signals fed to the plant (see [7] and [6] for more details).

Actuator saturation is also dealt with by designing low gain control laws, which for a given bound on the initial conditions, avoid the saturation limits ([5], [11] and the references therein).

Another method is proposed in [2] where the T-S modelling approach is used to analyze the domain of attraction of nonlinear systems with actuator saturation. In [9], polytopic models are also used to represent the saturated closed-loop system for the synthesis of linear control systems and several conditions to ensure the local asymptotic stability of the closed-loop system are derived in the form of Bilinear or Linear Matrix Inequalities (BMI) or LMI. However, these polytopic differential inclusions only locally represent the saturated system.

In the present paper, the input saturation is straightforwardly taken into account in the controller design process. For that, the T-S formalism is used to represent the nonlinear behaviour of the saturated actuator and a Parallel Distributed Compensation (PDC) method is used to design a state feedback controller for uncertain nonlinear systems. Stabilization conditions are derived with the Lyapunov method and expressed as LMI. However, it is important to highlight a crucial difference with respect to the previous cited method, in the proposed approach, the T-S model of the saturation is valid in the whole state space and represents the nonlinear actuator behaviour.

The paper is organized as follows: section II introduces the Takagi-Sugeno structure for modelling, some preliminary results and mathematical notations. It is followed by the representation of the nonlinear saturation by a T-S structure in section III. In section IV a state feedback control law depending on the saturation bounds is designed. In section V, the descriptor approach is applied in order to reduce the number of LMI to solve. A numerical example and some simulation results are given in section VI. Conclusions and future works are detailed in section VII.

II. PRELIMINARIES

A. Takagi-Sugeno structure for modeling

The T-S modeling allows to represent the behavior of nonlinear systems by the interpolation of a set of linear submodels. Each submodel contributes to the global behavior of the nonlinear system through a weighting function \(\mu_i(\xi(t)) \) [8]. The T-S structure is given by

\[
\left\{
\begin{array}{ll}
\dot{x}(t) &= \sum_{i=1}^{n} \mu_i(\xi(t))(A_i x(t) + B_i u(t)) \\
y(t) &= \sum_{i=1}^{n} \mu_i(\xi(t))(C_i x(t) + D_i u(t))
\end{array}
\right.
\]

where \(x(t) \in \mathbb{R}^n \) is the system state, \(u(t) \in \mathbb{R}^{n_u} \) is the control input and \(y(t) \in \mathbb{R}^m \) the system output, \(\xi(t) \in \mathbb{R}^q \) is the decision variable assumed to be measurable (as the system output or measurable states) or known (as the system input). The weighting functions \(\mu_i(\xi(t)) \) of the \(n \) submodels satisfy the convex sum property

\[
\sum_{i=1}^{n} \mu_i(\xi(t)) = 1
\]

\[
0 \leq \mu_i(\xi(t)) \leq 1, \quad i = 1, \ldots, n
\]

In the remaining of the paper, the three following lemmas are used.
Lemma 1: Consider two matrices X and Y with appropriate dimensions, Σ and G symmetric positive definite matrices. The following property is verified

$$-X^T \Sigma X - Y^T \Sigma^{-1} Y \leq X^T Y + Y^T X \leq X^T G X + Y^T G^{-1} Y \quad (3)$$

Lemma 2: (Congruence) Consider two matrices X and Y. If X is positive (resp. negative) definite and if Y is a full column rank matrix, then the matrix $X Y X^T$ is positive (resp. negative) definite.

Lemma 3: Consider three matrices X, Y and $\Sigma(t)$ with $\Sigma(t) \Sigma(t) \leq I$. For any positive scalar λ

$$X^T \Sigma(i) Y + Y^T \Sigma^T(i) X \leq \lambda X^T X + \lambda^{-1} Y^T Y \quad (4)$$

B. Mathematical notations

The following notations are used throughout the paper. A bloc diagonal matrix with the square matrices A_1, \ldots, A_n on its diagonal is denoted $\text{diag}(A_1, \ldots, A_n)$. For any matrix, M, as $\mathcal{S}(M)$ is defined by $\mathcal{S}(M) = M + M^T$. The smallest and largest eigenvalues of the matrix M are respectively denoted $\lambda_{\min}(M)$ and $\lambda_{\max}(M)$.

The saturation function for a signal $v(t)$ is defined as

$$\text{sat}(v(t)) := \begin{cases} v(t) & \text{if } v_{\min} \leq v(t) \leq v_{\max} \\ v_{\max} & \text{if } v(t) > v_{\max} \\ v_{\min} & \text{if } v(t) < v_{\min} \end{cases} \quad (5)$$

where v_{\max} and v_{\min} denote the saturation levels.

III. PROBLEM STATEMENT

A. T-S modelling of the control saturation

The main idea of this work is to model the nonlinear actuator saturation using the T-S representation (section II-A). For that, it is proposed to re-write the saturation equation (5) for each component of the control input vector under a particular form.

The j^{th} entry of the saturated control input, denoted $u_{i_{\text{sat}}}(t)$, with the saturation levels $u_{i_{\text{min}}}$ and $u_{i_{\text{max}}}$ is written as

$$u_{i_{\text{sat}}}(t) = \sum_{i=1}^{3} \mu_i^j(u_j(t))(\lambda_i^j u_j(t) + \gamma_i^j), \quad j = 1, \ldots, n_u \quad (6)$$

where $u_j(t)$ is the j^{th} component of $u(t)$, where

$$\begin{cases} \lambda_1^j = 0 \\ \lambda_2^j = 1 \\ \lambda_3^j = 0 \end{cases} \quad \text{and} \quad \begin{cases} \gamma_1^j = u_{i_{\text{min}}} \\ \gamma_2^j = 0 \\ \gamma_3^j = u_{i_{\text{max}}} \end{cases} \quad (7)$$

and the weighting functions are defined

$$\begin{align*}
\mu_1^j(u_j(t)) &= \frac{1 - \text{sign}(u_j(t) - u_{i_{\text{min}}})}{2} \\
\mu_2^j(u_j(t)) &= \frac{\text{sign}(u_j(t) - u_{i_{\text{min}}}) - \text{sign}(u_j(t) - u_{i_{\text{max}}})}{2} \\
\mu_3^j(u_j(t)) &= \frac{1 - \text{sign}(u_j(t) - u_{i_{\text{max}}})}{2}
\end{align*} \quad (8)$$

Then, the control input vector $u(t) \in \mathbb{R}^{n_u}$ subject to actuator saturation is modeled by

$$u_{\text{sat}}(t) = \begin{cases} \sum_{i=1}^{3} \mu_i^j(u_j(t))(\lambda_i^j u_j(t) + \gamma_i^j) \\ \vdots \\ \sum_{i=1}^{3} \mu_i^n(u_n(t))(\lambda_i^n u_n(t) + \gamma_i^n) \end{cases} \quad (9)$$

From (9), one can notice that each input $u_j(t)$ has its own weighting function $\mu_i^j(t)$. In order that all the n_u input vector components have the same weighting functions, based on the convex sum property (2), equation (9) can be written as

$$u_{\text{sat}}(t) = \begin{cases} \sum_{i=1}^{3} \mu_i^1(t)(\lambda_i^1 u_1(t) + \gamma_i^1)(\prod_{i=2}^{n_u} \sum_{j=1}^{3} \mu_j^i(t)) \\ \vdots \\ \sum_{i=1}^{3} \mu_i^{n_u}(t)(\lambda_i^{n_u} u_{n_u}(t) + \gamma_i^{n_u})(\prod_{j=1}^{n_u-1} \sum_{i=1}^{3} \mu_i^j(t)) \end{cases} \quad (10)$$

For n_u inputs, 3^{n_u} submodels are obtained. It is important to note that the actuator saturations $u_{\text{sat}}(t)$ are directly expressed in terms of the control variable $u(t)$ and its bounds $u_{i_{\text{min}}} = \gamma_1^i$ and $u_{i_{\text{max}}} = \gamma_2^i$.

Equation (10) is equivalent to

$$u_{\text{sat}}(t) = \sum_{i=1}^{3^{n_u}} u_{i_{\text{sat}}}(t)\Lambda_i u(t) + \Gamma_i \quad (11)$$

The global weighting functions $\mu_{i_{\text{sat}}}(t)$, the matrices $\Lambda_i \in \mathbb{R}^{n_u \times n_u}$ and vectors $\Gamma_i \in \mathbb{R}^{n_u \times 1}$ are defined as follows

$$\begin{align*}
\mu_{i_{\text{sat}}}(t) &= \prod_{j=1}^{n_u} \mu_i^j(u_j(t)) \\
\Lambda_i &= \text{diag}(\lambda_{\Lambda_{i_{1}}}, \ldots, \lambda_{\Lambda_{i_{n_u}}}) \\
\Gamma_i &= [\gamma_{\Lambda_{i_{1}}}, \ldots, \gamma_{\Lambda_{i_{n_u}}}]^T
\end{align*} \quad (12)$$

where the indexes $\sigma_i^j (i = 1, \ldots, 3^{n_u}$ and $j = 1, \ldots, n_u$), equal to 1, 2 or 3, indicate which partition of the j^{th} input (μ_1^j, μ_2^j or μ_3^j) is involved in the i^{th} submodel.

The relations between the i^{th} submodel and the σ_i^j indices are given by the following equation

$$i = 3^{n_u-1}\sigma_1^1 + 3^{n_u-2}\sigma_2^1 + \ldots + 3\sigma_1^{n_u} - (3^1 + 3^2 + \ldots + 3^{n_u-1})$$

The σ_i^j are such that $((\sigma_i^1 - 1), \ldots, (\sigma_i^{n_u} - 1))$ corresponds to (i-1) in base 3. For more details, see [1].
Using (11), equation (13) can be written as

\[
\dot{x}(t) = \sum_{i=1}^{n} \mu_i(\xi(t))((A_i + \Delta A(t))x(t) + (B_i + \Delta B(t))u_{\text{sat}}(t))
\]

where

\[
\Delta A(t) = A\Sigma_A(t)E_A
\]

\[
\Delta B(t) = B\Sigma_B(t)E_B
\]

with

\[
\Sigma_A^T(t)\Sigma_A(t) \leq I, \ \forall t
\]

\[
\Sigma_B^T(t)\Sigma_B(t) \leq I, \ \forall t
\]

\(I\) being the identity matrix, \(A, B, E_A\) and \(E_B\) matrices of appropriate dimensions.

Using (11), equation (13) can be written as

\[
\dot{x}(t) = \sum_{i=1}^{3^n_u} \sum_{k=1}^{n} \mu_i(\xi(t))\mu^\text{sat}_k(t)((A_i + \Delta A(t))x(t) + (B_i + \Delta B(t))(\Lambda_ku(t) + \Gamma_k))
\]

IV. SATURATED STATE FEEDBACK CONTROL INPUT

The objective is to design a stabilizing time-varying state feedback controller ensuring the stability of the system, even in the presence of control input saturation and uncertainties. The solution is obtained by representing the saturation as a T-S system and by solving an optimization problem under LMI constraints.

A. Nominal control law (without saturation)

In this section, a nonlinear state feedback controller sharing the same weighting functions as those of the T-S model is designed. Since it is the nominal case, the controller gains are synthesized without taking into account the saturation limits.

Let us consider the following unsaturated control adopted for stabilizing the system to the origin

\[
u(t) = -\sum_{j=1}^{n} \mu_j(\xi(t))K_jx(t)
\]

where the matrices \(K_j \in \mathbb{R}^{n_x \times n_x}\) are the controller gains to be determined.

Replacing (19) in equation (13) without input saturation, it becomes

\[
\dot{x}(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} \mu_i(\xi(t))\mu_j(\xi(t))(A_i - B_iK_j + \Delta A(t) - \Delta B(t)K_j)x(t)
\]

In order to study the stability of (20), the following Lyapunov function is defined

\[
V(x(t)) = x^T(t)Px(t)
\]

where \(P \in \mathbb{R}^{n_x}\) is a symmetric positive definite matrix.

To ensure the stability of (20), the conditions to satisfy are the following (see [4] for the proof)

\[
\begin{bmatrix}
S(A_iP_1 - B_iR_j) & P_1E_A^T & 0 & 0 \\
* & -\omega_1I & 0 & 0 \\
* & * & -\omega_1I & 0 \\
* & * & * & -\omega_2I
\end{bmatrix} < 0
\]

with \(P_1 = P^{-1}\), \(\omega_1, \omega_2\) positive scalars. The controller gains \(K_j\) in (19) are computed by: \(K_j = K_jP^{-1}_1\), for \(i, j = 1, \ldots, n\).

B. Controller with saturation constraint

In this section, our objective is to design a time-varying state feedback controller (19) which gains depend on the saturation limits to guarantee the stability of the uncertain system (18) despite of the uncertainties and of the saturated input.

By replacing the control law (19) in the T-S system equation (18), the obtained system is the following

\[
\dot{x}(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n_k} \mu_i(\xi(t))\mu_j(\xi(t))\mu_k^\text{sat}(t)((A_i - B_iA_kK_j)x(t) + (\Delta A(t) - \Delta B(t)A_kK_j)x(t) + B_i\Gamma_k + \Delta B(t)\Gamma_k)
\]

Theorem 1: There exists a time-varying state feedback controller (19) for a saturated input uncertain system (18) ensuring that the system state converges toward an origin-centred ball of radius bounded by \(\beta > 0\), if there exists matrices \(P_1 = P_1^T > 0, R_j, \Sigma_k = \Sigma_k^T > 0, \) and positive scalars \(\sigma_k, \omega_1, \omega_2\) solutions of the following optimization problem

\[
\min_{R_j, R_k, \Sigma_k, \sigma_k, \omega_1, \omega_2} \beta
\]

s.t.

\[
\begin{bmatrix}
Q_{i,j,k} & I \\
I & -\beta I
\end{bmatrix} < 0
\]

with \(Q_{i,j,k}\) defined by (27), for \(i = 1, \ldots, n, j = 1, \ldots, n\) and \(k = 1, \ldots, 3^n_u\) (see next page).

\[\Gamma_k^T B_i^T \Sigma_k B_i \Gamma_k + \sigma_k \Gamma_k^T E_A^T E_B \Gamma_k < \beta\]

The gains of the controller are given by

\[
K_j = R_jP^{-1}_1
\]

Proof: According to state equations (23), the time derivative of the Lyapunov function (21) is given by

\[
\dot{V}(x(t)) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n_k} \mu_i(\xi(t))\mu_j(\xi(t))\mu_k^\text{sat}(t)(x^T(t)P_1 \Gamma_k + \Gamma_k^T B_i^T P x(t) + x^T(t)((A_i - B_iA_kK_j)^T P + P((A_i - B_iA_kK_j)^T + (\Delta A(t) - \Delta B(t)A_kK_j))x(t))
\]

Using Lemma 3, it follows that for \(\Sigma_k = \Sigma_k^T > 0\)

\[
x^T(t)P_1 \Gamma_k + \Gamma_k^T B_i^T P x(t) \leq \Gamma_k^T B_i^T \Sigma_k B_i \Gamma_k + x^T(t)P_1^{-1}P x(t)
\]
Applying Schur's complement, (38) is equivalent to

\[
Q_{ijk} = \begin{pmatrix}
P_i A_i^T + A_i P_i - R_i^T \Lambda_i^T B_i^T - B_i \Lambda_i R_i + \omega_1 A_i A_i^T + \omega_2 B_i B_i^T & I & B_i E_i^T \Lambda_i^T E_i^T \\
* & -\Sigma_k & 0 \\
* & * & -\sigma_k I \\
* & * & * & -\omega_1 I \\
* & * & * & * & -\omega_2 I
\end{pmatrix}
\] (27)

Using Lemma 3 and definition (15), it follows that, for any positive scalar \(\sigma_k \), it holds

\[
x^T(t)P\Delta B(t)\Gamma_k + \Gamma_k^T \Delta B(t)^T P x(t) \leq \\
\sigma_k \Gamma_k^T E_k B_k \Gamma_k + \sigma_k^{-1} x^T(t) O \Delta (t) P \Delta B(t) P x(t)
\] (31)

From (30) and (31), the time derivative of the Lyapunov function (29) is bounded as follows

\[
\dot{V}(x(t)) \leq \sum_{i=1}^{n} \sum_{j=1}^{n} \mu_i(\xi_j) \mu_j(\xi_i) \mu_{ij}(t) (\Gamma_k^T E_k B_k \Gamma_k + \sigma_k \Gamma_k^T E_k B_k \Gamma_k + x^T(t) O \Delta (t) P \Delta B(t) P x(t)) \] (32)

where

\[
O \Delta (t) P \Delta B(t) P x(t) = (A_i - B_i \Lambda_i K_i)^T P + P (A_i - B_i \Lambda_i K_i) + \sigma_k^{-1} P B_i B_i^T P
\]

Applying Lemma 2 with \(Y = P_i \) and the following variable changes

\[
\begin{align}
P_i & = P_i^{-1} \\
R_j & = K_j P_i
\end{align}
\] (34)

the inequality \(O \Delta (t) < 0 \) is equivalent to

\[
P_i A_i^T + A_i P_i - R_i^T \Lambda_i^T B_i^T - B_i \Lambda_i R_i + \Sigma_k^{-1} + \sigma_k^{-1} B_i B_i^T + P_i \Delta A_i^T (t) + \Delta A_i (t) P_i - R_i^T \Lambda_i^T B_i B_i^T (t) - \Delta B_i \Lambda_i R_i < 0
\] (35)

From (14), with Lemma 3, it follows

\[
P_i \Delta A_i^T (t) + \Delta A_i (t) P_i \leq \omega_1^{-1} P_i E_i^T E_i A_i P_i + \omega_2 A_i A_i^T
\]

\[
- R_i^T \Lambda_i^T B_i B_i^T (t) - \Delta B_i \Lambda_i R_i \leq \omega_2^{-1} R_i^T \Lambda_i^T E_i E_i B_i \Lambda_i R_i + \omega_2 B_i B_i^T
\] (37)

where \(\omega_1 \) and \(\omega_2 \) are positive scalars.

From (36) and (37), \(O \Delta (t) < 0 \) is satisfied if

\[
P_i A_i^T + A_i P_i - R_i^T \Lambda_i^T B_i^T - B_i \Lambda_i R_i + \Sigma_k^{-1} + \sigma_k^{-1} B_i B_i^T + \omega_1^{-1} P_i E_i^T E_i A_i P_i + \omega_2 A_i A_i^T + \omega_2^{-1} R_i^T \Lambda_i^T E_i E_i B_i \Lambda_i R_i + \omega_2 B_i B_i^T < 0
\] (38)

Applying Schur's complement, (38) is equivalent to \(Q_{ijk} < 0 \) which is implied by (25).

In order to analyse (32), let us now define

\[
\varepsilon = \min_{i=1,n,j=1,n,k=1:3^{nu}} \lambda_{\min} (-Q_{ijk})
\] (39)

\[
\delta = \max_{i=1,n,k=1:3^{nu}} \Gamma_k^T B_i^T \Sigma_b B_i \Gamma_k + \sigma_k \Gamma_k^T E_k E_k \Gamma_k
\] (40)

Since \(\Sigma_k, \sigma_k > 0 \), from (32), it follows that \(V(t) < -\delta \parallel x \parallel^2 \) + \(\varepsilon \). Then \(V(t) < 0 \) holds if

\[
\begin{cases}
O \Delta (t) < 0 \\
\parallel x \parallel^2 > \varepsilon
\end{cases}
\] (41)

According to Lyapunov theory [10], it means that \(x(t) \) is uniformly bounded and converges to an origin-centred ball of radius \(\sqrt{\frac{\delta}{\varepsilon}} \).

Since \(O \Delta (t) < 0 \) is ensured by (25), the objective is now to minimize the radius \(\sqrt{\frac{\delta}{\varepsilon}} \). Firstly \(\delta \) is bounded by \(\beta \) from the definition (40) and the LMIs (26). From (25), with a Schur complement, it obviously follows that

\[
\begin{cases}
(1/\beta) I - Q_{ijk}, i=1, \ldots, n, j=1, \ldots, n, k=1, \ldots, 3^{nu} \\
\end{cases}
\] (42)

implying that all the eigenvalues of \(-Q_{ijk} \) are larger than \(1/\beta \). As a consequence \(1/\beta < \varepsilon \) holds, and finally the radius is bounded by \(\beta \). The minimal value of \(\beta \) is obtained from (24).

V. SATURATED STATE FEEDBACK CONTROL INPUT: A DESCRIPTOR APPROACH

In this section, in order to reduce the number of LMIs to be solved, the descriptor approach is applied. This approach is well known to avoid the coupling terms between the feedback gains and the Lyapunov matrices. As a consequence, the number of LMIs decreases and relaxed conditions are obtained [3].

The control law given by (19) is written as follows

\[
0.\dot{u}(t) = -\sum_{j=1}^{n} \mu_j(\xi_j(t)) K_j x(t) - u(t)
\] (43)

Let us consider the augmented state vector \(x_a(t) = \begin{pmatrix} x^T(t) & u^T(t) \end{pmatrix}^T \). From equations (18) and (43), it follows

\[
E \dot{x}_a(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} \mu_i(\xi_j(t)) \mu_{ij}(t) (A_i \dot{x}_a(t) + B_i \dot{u}(t))
\] (44)

with

\[
E = \text{diag}(I, 0)
\]

\[
A_i = \begin{pmatrix} \Delta A_i & B_i \Lambda_i \Delta B(t) \Lambda_k \\ -K_i & -I \end{pmatrix}
\]

\[
B_i = \begin{pmatrix} B_i \Gamma_k \\ 0 \end{pmatrix}, B_{ik}(t) = \begin{pmatrix} \Delta B(t) \Gamma_k \\ 0 \end{pmatrix}
\] (48)

Theorem 2: There exists a time-varying state feedback controller (19) for a saturated input uncertain T-S system (18)
ensuring that the system state converges toward an origin-centred ball of radius bounded by β, if there exists matrices $P_i = P_i^T > 0$, $P_2 > 0$, R_i, $\Sigma_k = \Sigma_k^T > 0$, and positive scalars $\lambda_{1k}, \lambda_2, \lambda_3$ solutions of the following optimization problem

$$\min_{P_i, P_2, R_i, \Sigma_k, \lambda_{1k}, \lambda_2, \lambda_3} \beta$$

s.t.

$$\begin{bmatrix} \Xi_{ik} & 1 \\ I & -\beta \mathbf{I} \end{bmatrix} < 0$$

(50)

with Ξ_{ik} defined by (51), for $i = 1, \ldots, n$ and $k = 1, \ldots, 3^n$ (see next page) and

$$\Gamma_k^T \Sigma_k \Gamma_k + \lambda_{1k} \Gamma_k^T E_k E_k \Gamma_k < \beta$$

(52)

The gains of the controller are given by

$$K_i = P_i^{-1} R_i$$

(53)

Proof: Let us consider the following Lyapunov function

$$V(t) = x_a^T(t) E(t) P x_a(t)$$

(54)

with the condition $E(t) P = P(t) E(t) \geq 0$. The matrix P is chosen $P = \text{diag}(P_1, P_2)$, with $P_1 = P_1 > 0$. The time derivative of the Lyapunov function is given by

$$\dot{V}(t) = \sum_{i=1}^{3^n} \sum_{k=1}^{n} \mu_i(\xi(t)) \mu_{ik}^a(t) \left((\beta_{ik}^T(t) P x_a(t) + x_a^T(t) P \beta_{ik}(t) \right) + x_a^T(t) (\lambda_{ik}^a(t) P + P^T \lambda_{ik}(t)) x_a(t)$$

(55)

The main idea for the proof is to separate the constant and the time-varying parts in $\lambda_{ik}(t)$ and $\beta_{ik}(t)$. Then, based on properties (16) and (17), the time-varying part is bounded. Using lemma 1 and 3 with equations (14) and (15), for any symmetric positive definite matrices Σ_k, positive scalars λ_{ik} and positive scalars λ_2 and λ_3, it follows

$$x_a^T(t) P \beta_{ik}(t) \leq \lambda_{ik} \Gamma_k E_k E_k \Gamma_k + \lambda_{ik-1} x_a^T(t) P \beta_{ik}(t) x_a(t)$$

(56)

$$x_a^T(t) \Delta A \Delta A^T(t) P x_a(t) \leq \lambda_{1k} \Gamma_k E_k E_k \Gamma_k + \lambda_{1k-1} x_a^T(t) P \beta_{ik}(t) x_a(t)$$

(57)

$$x_a^T(t) \Delta B \Delta B^T(t) P x_a(t) \leq \lambda_{3k} x_a^T(t) P \beta_{ik}(t) x_a(t)$$

(58)

The time derivative $\dot{V}(t)$ is (55) then bounded by

$$\dot{V}(t) \leq \sum_{i=1}^{3^n} \sum_{k=1}^{n} \mu_i(\xi(t)) \mu_{ik}^a(t) (x_a^T(t) M_{ik} x_a(t)$$

$$+ \Gamma_k^T \Sigma_k \Gamma_k + \sigma^2 \Gamma_k^T E_k E_k \Gamma_k)$$

(60)

with

$$M_{ik} = \begin{bmatrix} -K^T P_2 + P_2 B \Lambda_k \\ -P_2 - P_2 + \omega^2 \Sigma_k E_k \end{bmatrix}$$

(61)

Applying Schur’s complement, $\dot{V}(t) < 0$ holds if $\Xi_{ik} < 0$ and $\| x \|^2 > \frac{\beta}{2}$. $\Xi_{ik} < 0$ is ensured from (50). The minimization of the upper bound value β is done as the previous case. ■

VI. NUMERICAL EXAMPLE

The proposed state feedback controller design for systems with saturated control input is illustrated by the following academic example. Let consider the uncertain nonlinear system (13) with $n = 2$ and

$$A_1 = \begin{pmatrix} -1 & 1 \\ 0 & -0.75 \end{pmatrix}, \quad A_2 = \begin{pmatrix} -0.80 & 0.20 \\ 0 & -1.40 \end{pmatrix}$$

$$E_1 = \begin{pmatrix} 0.1 & 1 \\ 1 & 0.1 \end{pmatrix}, \quad E_A = \begin{pmatrix} 0.2 & 1 \\ 1 & 0.5 \end{pmatrix}$$

$$B_1 = \begin{pmatrix} 2 & 2 \\ 1 & 0 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 0.75 & 0 \\ -0.5 & 0.75 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 0.1 \\ 0.1 & 0 \end{pmatrix}, \quad E_B = \begin{pmatrix} 0.1 & 0.1 \end{pmatrix}$$

(63)

$$\Sigma_A(t) = \Sigma_B(t) = \sigma(t) I$$ with $\sigma(t)$ depicted in Fig. 1.

The input vector is subject to the following actuator saturations

$$u_{1 \max} = u_{2 \max} = 2, \quad u_{1 \min} = u_{2 \min} = -2$$

(64)

The weighting functions are defined as follows

$$\mu_1(x(t)) = \frac{(1 - \tanh(x_1(t) + x_2(t)))}{2}, \quad \mu_2(x(t)) = 1 - \mu_1(x(t))$$

(65)

In order to illustrate the effectiveness of the proposed approach, a so-called nominal controller is computed without taking into account the input saturation, although the saturation acts on the control input. Then a comparison is provided between the nominal closed loop system without saturation, the nominal closed loop system with saturated actuators and the closed loop system with the controller proposed in this paper where the controller design depends on the saturation bounds.

For the considered example, the calculated nominal gains are

$$K_{n1} = \begin{pmatrix} 1.10 & 1.11 \\ 0.93 & 0.94 \end{pmatrix}, \quad K_{n2} = \begin{pmatrix} 1.64 & 1.64 \\ 1.39 & 1.39 \end{pmatrix}$$

(66)

The control gains K_1, K_2 computed from theorem 1 are

$$K_1 = \begin{pmatrix} 9.73 & 8.97 \\ 11.52 & 10.72 \end{pmatrix}, \quad K_2 = \begin{pmatrix} 9.73 & 8.97 \\ 11.52 & 10.72 \end{pmatrix}$$

(67)

Applying the descriptor approach, the controller gains are

$$K_{1d} = \begin{pmatrix} 0.28 & 0.02 \\ 0.062 & 0.42 \end{pmatrix}, \quad K_{2d} = \begin{pmatrix} 0.58 & 0.36 \\ 0.37 & 0.61 \end{pmatrix}$$

(68)

Fig. 1. Uncertainty $\sigma(t)$
An uncertain nonlinear system with saturated control input can be represented by a Takagi-Sugeno model, including the input saturation. This unified representation allows to simultaneously deal with these difficulties and to synthesize a PDC controller which gains depend on the saturation bounds. The solution of this problem is based on the Lyapunov theory and expressed in terms of LMI. The descriptor approach is also proposed, allowing to divide the number of LMI to solve by n, the number of subsystems. It is important to highlight that the main advantage of the proposed approach is the stability assurance of the saturated uncertain nonlinear systems. A numerical example is presented in order to illustrate the proposed approach. The provided example shows that the proposed controller is able to counteract the destabilizing effect of the saturation affecting the control input.

REFERENCES

