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DETERMINING THE IMPLIED VOLATILITY IN THE DUPIRE EQUATION FOR VANILLA
EUROPEAN CALL OPTIONS

M. BELLASSOUED, R. BRUMMELHUIS, M. CRISTOFOL, E. SOCCORSI

ABSTRACT. The Black-Scholes model gives vanilla Europen call option prices as a function of the volatility.
We prove Lipschitz stability in the inverse problem of determining the implied volatility, which is a function of
the underlying asset, from a collection of quoted option prices with different strikes.

1. INTRODUCTION AND MAIN RESULT

An option is a contract to buy or sell a specific financial product known as the option’s underlying asset.
Its primary uses are speculation and hedging in the sense that this is a cheap way of either making important
returns by exposing a porfolio to a large amount of risk, or reducing the risk arising from unanticipated
changes in the underlying price. The commonest model of the asset price S at time ¢ is given by the
stochastic differential equation

dS = pSdt + o SdW, (1.1)

where the randomness, which is a feature of asset prices, is contained in the Wiener process W. Here i is a
measure of the average rate of growth of the asset price and the coefficient o, called volatility, measures the
standard deviation of the returns.

The holder of a vanilla European call option, which is the simplest financial option, has the right (but not
the obligation) to buy the underlying asset .S at a prescribed time 7" in the future, known as the expiry date,
for a prescribed amount K, called the exercise or strike price. In an ideal financial market, the price at time
t of this option, v(S, t), is the solution to the celebrated Black-Scholes equation (see [1])

2
% + %S%Q% + (r — q)Sg—; —rv =0. (1.2)
where 7 is the risk-free interest rate and ¢ is the continuous dividend yield. We notice that (1.2) does not
contain the growth parameter i, showing that the value of an option is independent on how rapidly an asset
grows. The only coefficient in the random walk (1.1) governing the asset price that affects the option price
is the volatility o.

In practice, both r and ¢ are known and measurable quantities. We assume in this text that they are
constant, with > 0. In contrast to r and ¢ the volatility ¢ is an unknown and unobservable coefficient of
the above described system. In the general case o depends on .S and ¢ but we suppose in the sequel that o is
a function of S only, fulfilling

0 < Omin < 0(S) < Tpmax < 00, S > 0. (1.3)

Since (1.2) is a backward parabolic equation and the value v(.S,t) should be unique, suitable final and
boundary conditions have to be prescribed in order to make the solution to the Black-Scholes equation
unique. Namely, the final condition of a vanilla European call option is just its payoff at time 7"

v(S,T) = max(S — K,0), S > 0. (1.4)
1
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Further, as S belongs to (0, +00), we need to impose a boundary condition at S = 0. This can be done by
plugging S = 0 in (1.2), getting
v

E(O’t) =rv(0,t), t € (0,T),

and then combining the above equation with the identity v(0,7") = 0, arising from (1.4). This entails
v(0,t) =0, t € (0, 7). (1.5)
It is well known that (1.2) and (1.4)-(1.5) admits a unique solution
v e C°((0,00) x [0,T]) NCL((0,00) x (0,T7).

If S becomes arbitrarily large, then it becomes ever more likely that the option will be exercised, whatever
the magnitude of the strike price is. Thus, as S — oo, the value of the option is determined by the price S
of the asset minus the amount of money M (¢) paid at time ¢ € (0,7") to exercise the option at future time 7.
Since money M (t) in a bank with constant interest rate r grows exponentially according to M'(t) = r M (t),
the value at time ¢ of a payoff K att =T is M(t) = K e~ "(T=1)_ Therefore, we have

lim (U(S,t) _Ke (@ *0) =0, te(0,T).
S—o0

The Black-Scholes model defined by (1.2) and (1.4)-(1.5) gives option prices as a function of o. The
volatility can be estimated from historical data, but this does not accurately predicts the future volatility
required by the model in practice. However, since option prices are quoted in the market, it is commonly
admitted that the volatility is fully determined from the market. In mathematical language this can be
translated by saying that the volatility can be identified from option prices, or that there is a one-to-one
correspondence between the volatility and the option quotes. This volatility coefficient, derived from the
quoted price for a single option, is called the implied volatility.

Having said that, we fix S* > 0, t* € (0,7), and pick a subinterval I* of (0,+oc0). Then the inverse
problem of option pricing is to determine the pair of functions v(.S,t) and o(S) fulfilling (1.2)—(1.5) from
the data

o(S*, 1 K, T,0) = ¢(K), K € I*. (1.6)

The main result of this article, stated below, claims that the implied volatility & — o(K') can be actually
restored stably on any interval I;  I* from the collection of simultaneous option quotes ¢%(K) with
different strikes K € I, provided o is known in (0, +00) \ I*.

Theorem 1.1. Leto; € L>(0, +00), j = 1,2, fulfill (1.3), let v; denote the C((0, 00)x [0, T])NC*((0, 00) x
(0, TY))-solution to (1.2) and (1.4)-(1.5), where o; is substituted for o in (1.2), and let ¢, be the final data
(1.6) associated to vj. Assume that o1 and oo coincide outside some bounded subinterval I* C (0, 00).
Then for any interval 17 o I* there is a constant C' > 0, depending only on 0y,q,, I and I3, such that we
have

HUl - O'QHLQ(I;‘) < C H¢01 - ¢02HH2(IT) :

2. THE DUPIRE EQUATION

In this section we rewrite the inverse boundary value problem introduced in §1 into an equivalent param-
eter identification problem associated to some suitable forward parabolic PDE.

Forall K > 0and T > 0, we notev(S, t; K, T') the C((0, 00) x [0, T]) NC((0,00) x (0,77]) solution to
(1.2) and (1.4)-(1.5). As first observed in [3] and rigorously justified in [2], for S > 0 and ¢ € (0,7) fixed,
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the option price v(S,t; K, T) = u(K,T), as a function of the expiry date 7" and the strike price K, satisfies
the equation dual to (1.2),

2
g—;f — %KQUQ(K)% + (r — q)Kg—;é +qu=0, Te€ (o), Kec/(0o0), (2.1)
with the initial condition
u(K,t) = max(S — K,0), K >0, (2.2)
and the boundary conditions
uw(0,T) = Se™1T=D  lim w(K,T) =0, T € (t,00). (2.3)
K—o0

In light of the inverse problem described in §1 we thus aim to determine o (/K’) from the set of option quotes
{u(K,T;S*t*), K € I}}, for some fixed values of 7" > 0, S* > 0 and t* € (0, 7).
Actually, the following logarithmic substitution

K 1
y=In 5 T=T—t, wly,7)=u(K,T)e?, a(y) = 502(K),

transforms (2.1)—(2.3) into the problem
(0 —Loy)w=0,7>0, yeR,
where
Low = ﬁa(%ay)w = a(y)wyy —(a(y) +7—q) Wy,
with the initial condition
w(y,0) = Smax(1 —€Y,0), y € R,
and the boundary conditions

lim w(r,y) =5, lm w(r,y)=0, 7€ (0,00).

Y—>—00 y—>+00
Therefore, S* > 0 and t* > 0 being arbitrarily fixed, the above mentioned inverse problem may be rephrased
as to whether a(y) = £0°(5*e¥) can be retrieved for y € Q; = {In(K/S*), K € I;} from the knowledge
of {w(y, ), y € 1}, where 7* = T' — ¢* and w is the solution to the system
(0r — L) w =0, yeR, 7€ (0,00),
w(y,0) = S*max(1 — e¥,0), y € R, 2.4

lim w(r,y)=S8*  lim w(r,y) =0, 7€ (0,00).
——00

Yy y—r—+00

3. CARLEMAN ESTIMATE FOR THE DUPIRE EQUATION

In this subsection we recall some parabolic Carleman estimate, which is useful to the proof of Theorem
1.1. To this purpose we first define the set

K
Q= =ln—,Kel”
{y nS*, e }7

fulfilling 2 € ©Q; since I* € I;. Next we pick a non-empty interval wy C ;\(2 together with two subsets
w C wy C wa. (3.1

As shown in Appendix, there exists a function vy € C2(£2;) obeying
o > 01in Q, ¥} # 01in Q1\w and 19 = 0 in Q. (3.2)
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Since 1)o(y) > 0 for all y € €, there is a constant § > 0 such that

Yo(y) > 26, y € . (3.3)
Moreover, as we have 19 = 0 on 0§21, we may find an interval €25 satisfying 2 C Qo C 4 for which
1/}0(3/) < 5, Yy < Ql\QQ. (34)

Put T = 27*, 4(1) = 7(T — 7) and ¥ (y) = Yo(y) + ¢ with ¢ = 2||¢yg|| .. For all A > 0, we define two
weight functions
()
So(yaT) E(T) » Y € Ql, TE (0 T)

and _
e M) _ 20
ny,7)=——F——— y €, 7€(0,T).
£(7)

Finally we introduce the following functional space
HY(Q) = {z € L*(Q), zr, 2, 2y € L*Q)}, Q= x (0,T),
endowed with the norm

HZHHL?(Q) = HZHL?(Q) + HZTHL2(Q) + HZyHL?(Q) + ||Zyy||L2(Q) )
and recall the following parabolic Carleman estimate proved in [5, 6]:

Lemma 3.1. Let a € C?(S2y). Then there exists g > 0 such that for all X\ > \g we may find two constants
s0 > 0 and C > 0 satisfying

/ / sf |zy| + 3071 (7) |2 + s7H(r) |ZT|2> eXNdydr
951

T T
<C </ 10y — Lq) 2 e*Ndydr + 3 / / 3(7) )22 eZSndydT> , (3.5)
0JO 0 Jw

for every s > sq and every z € H'2(Q) obeying z(y,7) = 0 for (y,7) € 9Q1 x (0,T). Here C depends
continuously on )\, and is independent of s.

4. PARABOLIC INTERIOR ESTIMATES

In this section we derive several preliminary PDE estimates which are essential to the analysis of the
inverse problem.
Let w be solution to the initial value problem

(0r — L4(y,0))w =F, forall, yeR, te (0,T), 4.1)
with the initial data
w(y,0) =0, y € R, 4.2)
and boundary condition

Jlim_w(y.m) =0, 7 € (0.7).

Several estimates, required in the derivation of the stability inequality stated in Theorem 1.1, are collected
in a succession of four lemmas.

Lemma 4.1. For each T > 0 there is a constant C = C(T) > 0 such that

Jotr Wi + [ oyt My ds < [ 1PN gey ds
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The proof of this classical result, which is by means of Gronwall Theorem, can be found in [4].

Further we recall from [4][chap.7, Thm 5] the:

Lemma 4.2. Let I C R be a bounded interval, let F € L*(0,T; L*(I)) and let v € H?(I x (0,T)) be
solution to

(0r — Lo(y,0))v=F, yel, te(0,T)
v(y,0) =0, yel,
v(y,7) =0 yedl, te(0,T).
Then it holds true that
||UHH1v2(O,T)><I <C HFHL2(0,T;L2(I)) .
Moreover if F, € L?(0,T; L?(I)) we have in addition

Sup oG g2y < CUIF I go,rc2m) - (4.3)

<7<

Lemma 4.3. Fix J, C R. Then there is a constant C' > 0 such that for every w € HY2(Jy x (0,T))
obeying (4.1)-(4.2) we have:

lwll g2 <0, < CUF L2001 02R)) - (4.4)
Furthermore, if F(y,7) = 0 forall (y,7) € J2 X (0,T) then

HwT,y||L2(J1><(0,T)) <C HF”L?(RX(QT)) ) (4.5)
forany Jy; € Jy such that dist(Ja, R\ J1) > 0.

Proof. Let ¢ be a cutoff function supported in some interval J» 3 J, and fulfilling ¢(y) = 1in J,. Then
v = ¢w is solution to the following system

(87' - Ea(y’a)) v = ¢F + Ql(y,ay)w, RS ‘72, te (OaT)’
v(y,0) =0, y € Jo,
v(y,7) =0, y € dJy, t € (0,T),

where ()1 denotes some first order partial differential operator. By applying Lemma 4.2, we get

HUHHL?(Lx(O,T)) <C <||FHL2(R><(O,T)) + HwHL2(R><(O,T)) + HwaL2(RX(0,T))) )

so (4.4) follows directly from this and Lemma 4.1.
To prove (4.5) we put u = (§w), where £ € C3°(J2) satisfies {(y) = 1 for y € J;. Since {F = 0 the
function w is solution to the system

(aT - ’Ca(y’a)) u= Q2(y,ay)u% Yy e JQ, te (OﬂT)?

U,(y70) :07 Yy € J27

u(y,7) =0 y €0Jz, t€(0,T),
where ()2 is a second order differential operator. Applying Lemma 4.2, we obtain

urll L2 0y < Cllwllz2 o152 () < CINF I L2 @0, »

which proves the result. U
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Lemma 4.4. Let 2 € Q; C R and assume that F(y,7) = 0 for every (y,7) € (R\Q) x (0,T). Then there
is a constant C' > 0 such that

sup w(T, - S F . ,
OStSTH ( )HHQ(Ql) H ||H1(O,T,L2(Q))

for every solution w € H2(Qy x (0,T)) to (4.1)-(4.2).

Proof. Pick Qy 3 Oy such that dist(Q;,R\Q3) > 0, and let ¢ € C5°(Q2) satisfy ¢(y) = 1 for y € .
Then v = ¢w is solution to the system

(67' - Ea(yaa)) U= ¢F + Ql(y,ay)u% RS 925 te (O,T)a
v(y,0) =0, y € Qa,
v(y, ) =0, y € 00, te(0,7T),

for some first order operator )1 which is supported in J; = 22\£2;. As a consequence we have

U COSl PRE C (1Pl o.rz2my + lorall 2oy )

directly from Lemma 4.2. Now the result follows from this and (4.5) since F'(-, 7) vanishes in a neighbor-
hood of J; for each 7 € (0, 7). O

5. STABILITY ESTIMATE FOR THE LINEARIZED INVERSE PROBLEM
As w = w,, — W, is solution to the linearized system
(67' - Eal (y’ay)) w = f(y)a(y’T)a in R x (O?T)a
w(y,0) =0, in R, (5.1)
limy 400 w(y, 7) = 0, on (0,7),

with f = as — a1 and a(y,7) = (Way )yy — (Way )y, by (2.4), we now examine the inverse problem of
determining f from wy,, « 0,7y and w(y, 7*), y € Q.
To this end we first recall from [2] that

— inf T >0, 5.2
oo = inf la(y, 77)| (5.2)
and then establish the following:

Lemma 5.1. There exists a constant C' > 0 such that we have

T
ey < €l Wiy + [ [ fuf dyer 53
w2
for any solution w to (5.1).
Proof. Let ¢ € C§°(£21) be such that ¢(y) = 1 for y € Q. Then z = ¢w, satisfies

(0r — Lay) 2= fy)ar(y,7) + Qrw, in Qy x (0,T),
by (5.1), where Q; is a first order partial differential operator supported in 2;\Q2. Moreover, it holds true
that
2(y, 7)) = Agw(7*,y) + f(y)a(z,7*) inQy, (5.4)
for some second order partial differential operator Ay. Therefore, Lemma 3.1 yields
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T
C/ / 251 <53€_3(7’) |z|2 + 56_1(7') |zy|2 + 8_16(7') |zT|2) dydr
0JO

T T T
<o [ [ s fagar+ [ [ e p@)Pagar+ [ @@y, 55
0 Jw 0JO 0JO

provided s > 0 is large enough.
Further, bearing in mind that 279 = ( for every y € €, we deduce from Cauchy-Schwarz and Young’s
inequalities that

*

[ sletwr R o ayar = [ ([ slety ) ray ) ar
o 0 T \J
/ / 252, 32577|z| dyd7-+/ / 1/2g 1/2ZT) <s3/2z€(7-)*1/2) 2 dydr
Ql Q1

<o [ [ eer@enipar o [T (Lo kv 2120 0) a6
Ql Q1

In light of (5.5) this entails

/Q s|z(y, ™) 2 20T ) dydr < 033/ /623"63(7)\2\2 dydr
1 0 Jw

T T
+ C/ / 2| f(y)|? dydr + C/ / > Q1w |? dydr, (5.7)
0 Ql 0 Ql
upon taking s > 0 sufficiently large .

By substituting the right hand side of (5.4) for z(y, 7*) in (5.7) we thus find out that

/ STW)E laty, ) 107y <€ | s [Azwly, 7)1y
1

+ Cs? // e1073(7) | 2|2 dydr—i—C// e | f(y) ydyd7+c// e 101w, |? dydr, (5.8)
951

for s > 0 large enough.
The next step of the proof is to absorb the third term in the right hand side of (5.8) into its left side. To do
that we first notice that

T T
fofenswtars [ ([T emvun)a =1 [ s
0JO 951 0 1951

since n(y, 7) < n(y, ) forall (y,7) € Q1 x (0,T), as we have taken 7" = 27*. Thus it follows from (5.2)
that

s /Q | (y)]? 7T dy < Cs /Q | Aguw(y, 7)|2 21T dy
1 1

T T
+Cs° / / >3 (7) |w,|* dydr + C / / 2™ |Qyw, |2 dydr.  (5.9)
0 w 0 Ql

Further, taking into account that sup,cq, e2s1(¥: ") < 50 and supy
then yields

e (o 3 (T)eX 1) < 0o, (5.9)
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2 2 * 2 r 2
S/Q |f()]? 27w )y < Cs |lw(, 7) 520y +C’53/0 / |w-|* dydr
w

T
+C// e2n(uT) (wa\QHwT,yy?) dydr, (5.10)
0 J01\Qs

for s sufficiently large. The next step involves noticing that
sup  e21WT) < inf 2w T"),
yeN1\Q2 ye
Namely, putting

2X6 200 e 62@
and my =

o)

we deduce from the two assumptions (3.3)-(3.4) that

in such a way that m = mg — m1 < 0,

n(y, ") >my, y € Qand n(y, ) < ma, y € O\ Q.

Therefore,

T
s /Q F@)2dy < Cs (-, 7) [ 2aay + C5° / / w2 dydr

0 Jw

T
JrceM/o/Q\Q (|wT|2+|wT,y|2) dydr, (5.11)
1 2

for s sufficiently large, whence

T
s 22y < Ol 7)1z, + Cs /0 / w2 dydr + Ce™ | f2a0y,  (5.12)
by (4.5). Now, taking s > 0 large enough in (5.12), we end up getting
T
110y < C My + [ [ foof dyr (5.13)

The remaining part of the proof is to upper bound the last term in the right hand side of (5.13). To do that
we pick £ € C§°(w), where wy is the same as in (3.1), such that {(y) = 1 for y € w. Itis easy to check that
v = £w is solution to

(0r — Lg))v=1(y,0y)w, y€wi, 7€ (0,T),

v(y,0) =0, Y € wi,

v(y,7) =0, y € dwy, 7€ (0,7),
where Q; is a first order differential operator supported in w;\w. Therefore (4.4) entails

HwTHLQ((O,T)Xw) <cC <||w||L2((O,T)><w1) + HwaLQ((O,T)le)) : (5.14)

By arguing as above with x € C§°(w2), where ws is defined in (3.1), and such that x(y) = 1 for y € w;, we
find out that z = yw is solution to following system

(8T - Ea(y?a)) = Qll(y’ay)w, y € w2, T € (OaT)’
2(y,0) =0, Yy € wy, (5.15)
2(y,7) =0, y € dws, T € (0,T),
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where Q) is a first order differential operator supported in wy\w;. Finally, multiplying the differential
equation in (5.15) by Z and integrating by parts, yields

||wy||L2(w1><(0,T)) < Cllwll 2w, x(0,1)) -
This, combined with (5.13) and (5.14), entails the desired result. ]

6. COMPLETION OF THE PROOF OF THEOREM 1.1

The last step of the proof is to get rid of the last integral in the right hand side of (5.3). Namely we
shall prove that [|w|[ 2., 0,y can be majorized by [|w(7*,-)|| y2(q,) up to some positive multiplicative
constant.

Inspired by [8] we start by establishing the:

Lemma 6.1. Let X, Y , Z be three Banach spaces, let A : X — Y be a bounded injective linear operator
with domain P (A), and let K : X — Z be a compact linear operator. Assume that there exists C' > 0 such
that

[fllx < CilAflly +IKfllz, V€ Z(A). (6.1)
Then there exists C > 0 such that

1fllx < ClASflly, Ve P(A). (6.2)

Proof. Given A bounded and injective we argue by contradiction by assuming the opposite to (6.2). Then
there exists a sequence (fy,), in X such that || f,||y = 1 for all n and Af, — 0in Y as n go to infinity.
Since £ : X — Z is compact, there is a subsequence, still denoted by f,,, such that I f,, converges in Z.
Therefore this is a Cauchy sequence in Z, hence, by applying (6.1) to f,, — fy,,, we get that || f,, — fin || x — 0,
as n — 0o, m — 0o. As a consequence (fy ), is a Cauchy sequence in X so f,, — f as n — oo for some
f € X. Since || fn||x = 1 for all n, we necessarily we have ||f||y = 1. Moreover it holds true that
Afn — A(f) = 0as n — oo, which is a contradiction to the fact that A is injective. O

Let us now introduce
X ={feL*R), fly) =0inR\Q}, Y = H* (), Z = L*((0,T) x wo),
and define
A X =Y, A(f) =w(™,-)and K : X — Z, K(f) = wo,1)xws>
where w denotes the unique solution to (5.1), so we can state the:

Lemma 6.2. The operator A is bounded and injective.

Proof. First the boundedness of A follows readily from (4.3). Second w being solution to

(67' — La, (y,@)) w = f(y)Oé(y,T), in R x (O’T)a
w(y,0) =0, in R,

where f = as — a1 and o = (Wqy)yy — (Way )y, We deduce from the identities w(-,7*) = 0 and f = 0
on wy C 9\ that w,(-,7*) = 0 on wy. Arguing in the same way we get that the successive derivatives
of w wrt 7 vanish on wy x {7*}. Since w is solution to some initial value problem with time independent
coefficients, it is time analytic so we necessarily have w = 0 on wg X (0,7*). Therefore f = 0 on 2 by
(5.3), and the proof is complete. O

Lemma 6.3. K is a compact operator.
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Proof. The operator K being bounded from X to H'((0,7T) x ws) as we have

HwHLQ((O,T);Hl(oug)) + HwTHLQ((O,T);LQ(oug)) < Hf”L?(Q)a

by (4.4), the result follows readily from the compactness of the injection H((0,7T) X wy) — Z =
L2((0,T) x wo). O

Finally, by putting Lemmas 5.1, 6.1, 6.2 and 6.3 together, we end up getting that

lar = azll 20y = [fllz2) < CIAWD Iy = ClwT™ ) a2, -
which yields Theorem 1.1.

7. APPENDIX

The existence of a weight function v fulfilling the conditions prescribed by (3.2) for some fixed subset
w of 1 can be checked from [5]. Nevertheless, for the sake of completeness and for the convenience of the
reader, we give in this Appendix an explicit expression of such a function %y in the one-dimensional case
examined in this article.

To this purpose we set for all a € [1/2,1),

a—1/2

fa(z) = px™ + (1 — p)x, = € (0,1), where n is taken so large that «” < 1/2 and p = - (7.1)

—_ an :
Ifa € (0,1/2), put

falx)=1— f1_o(1—2), z € (0,1),
where f1_, is defined by (7.1). For every a € (0, 1), it is not hard to check that the function

Yo (z) = sin(m fu(z)), = € (0,1),
obeys
Yo(x) >0, z € (0,1) and |4} (x)| > 0, z € (0,1) \ {a}.
In light of this, the general case of an open interval 2y = («, 3), where a < 3 are two real numbers, can be
handled by defining

o(x) = Sin(wfa(h_l(:c))), T € ), (7.2)
where h~1 is the inverse function to

h: (0,1)—)91 (73)

y —ya+(1—y)B.
Evidently, the function vy given by (7.2)-(7.3) fulfills (3.2) provided h(a) € w.
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