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DETERMINING THE IMPLIED VOLATILITY IN THE DUPIRE EQUATION FOR VANILLA

EUROPEAN CALL OPTIONS

M. BELLASSOUED, R. BRUMMELHUIS, M. CRISTOFOL, E. SOCCORSI

ABSTRACT. The Black-Scholes model gives vanilla Europen call option prices as a function of the volatility.
We prove Lipschitz stability in the inverse problem of determining the implied volatility, which is a function of
the underlying asset, from a collection of quoted option prices with different strikes.

1. INTRODUCTION AND MAIN RESULT

An option is a contract to buy or sell a specific financial product known as the option’s underlying asset.
Its primary uses are speculation and hedging in the sense that this is a cheap way of either making important
returns by exposing a porfolio to a large amount of risk, or reducing the risk arising from unanticipated
changes in the underlying price. The commonest model of the asset price S at time t is given by the
stochastic differential equation

dS = µSdt+ σSdW, (1.1)

where the randomness, which is a feature of asset prices, is contained in the Wiener process W . Here µ is a
measure of the average rate of growth of the asset price and the coefficient σ, called volatility, measures the
standard deviation of the returns.

The holder of a vanilla European call option, which is the simplest financial option, has the right (but not
the obligation) to buy the underlying asset S at a prescribed time T in the future, known as the expiry date,
for a prescribed amount K , called the exercise or strike price. In an ideal financial market, the price at time
t of this option, v(S, t), is the solution to the celebrated Black-Scholes equation (see [1])

∂v

∂t
+

1

2
S2σ2

∂2v

∂S2
+ (r − q)S

∂v

∂S
− rv = 0. (1.2)

where r is the risk-free interest rate and q is the continuous dividend yield. We notice that (1.2) does not
contain the growth parameter µ, showing that the value of an option is independent on how rapidly an asset
grows. The only coefficient in the random walk (1.1) governing the asset price that affects the option price
is the volatility σ.

In practice, both r and q are known and measurable quantities. We assume in this text that they are
constant, with r > 0. In contrast to r and q the volatility σ is an unknown and unobservable coefficient of
the above described system. In the general case σ depends on S and t but we suppose in the sequel that σ is
a function of S only, fulfilling

0 < σmin ≤ σ(S) ≤ σmax <∞, S ≥ 0. (1.3)

Since (1.2) is a backward parabolic equation and the value v(S, t) should be unique, suitable final and
boundary conditions have to be prescribed in order to make the solution to the Black-Scholes equation
unique. Namely, the final condition of a vanilla European call option is just its payoff at time T :

v(S, T ) = max(S −K, 0), S ≥ 0. (1.4)
1
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Further, as S belongs to (0,+∞), we need to impose a boundary condition at S = 0. This can be done by
plugging S = 0 in (1.2), getting

∂v

∂t
(0, t) = rv(0, t), t ∈ (0, T ),

and then combining the above equation with the identity v(0, T ) = 0, arising from (1.4). This entails

v(0, t) = 0, t ∈ (0, T ). (1.5)

It is well known that (1.2) and (1.4)-(1.5) admits a unique solution

v ∈ C0((0,∞) × [0, T ]) ∩ C1((0,∞) × (0, T ]).

If S becomes arbitrarily large, then it becomes ever more likely that the option will be exercised, whatever
the magnitude of the strike price is. Thus, as S → ∞, the value of the option is determined by the price S
of the asset minus the amount of money M(t) paid at time t ∈ (0, T ) to exercise the option at future time T .
Since moneyM(t) in a bank with constant interest rate r grows exponentially according toM ′(t) = rM(t),
the value at time t of a payoff K at t = T is M(t) = Ke−r(T−t). Therefore, we have

lim
S→∞

(
v(S, t) −Ke−r(T−t)

)
= 0, t ∈ (0, T ).

The Black-Scholes model defined by (1.2) and (1.4)-(1.5) gives option prices as a function of σ. The
volatility can be estimated from historical data, but this does not accurately predicts the future volatility
required by the model in practice. However, since option prices are quoted in the market, it is commonly
admitted that the volatility is fully determined from the market. In mathematical language this can be
translated by saying that the volatility can be identified from option prices, or that there is a one-to-one
correspondence between the volatility and the option quotes. This volatility coefficient, derived from the
quoted price for a single option, is called the implied volatility.

Having said that, we fix S∗ > 0, t∗ ∈ (0, T ), and pick a subinterval I∗ of (0,+∞). Then the inverse
problem of option pricing is to determine the pair of functions v(S, t) and σ(S) fulfilling (1.2)–(1.5) from
the data

v(S∗, t∗;K,T, σ) ≡ φ∗σ(K), K ∈ I∗. (1.6)

The main result of this article, stated below, claims that the implied volatility K 7→ σ(K) can be actually
restored stably on any interval I1 ⋑ I∗ from the collection of simultaneous option quotes φ∗σ(K) with
different strikes K ∈ I∗1 , provided σ is known in (0,+∞) \ I∗.

Theorem 1.1. Let σj ∈ L∞(0,+∞), j = 1, 2, fulfill (1.3), let vj denote the C((0,∞)×[0, T ])∩C1((0,∞)×
(0, T ])-solution to (1.2) and (1.4)-(1.5), where σj is substituted for σ in (1.2), and let φσj be the final data

(1.6) associated to vj . Assume that σ1 and σ2 coincide outside some bounded subinterval I∗ ⊂ (0,∞).
Then for any interval I∗1 ⋑ I∗ there is a constant C > 0, depending only on σmax, I∗ and I∗1 , such that we

have

‖σ1 − σ2‖L2(I∗
1
) ≤ C ‖φσ1 − φσ2‖H2(I∗

1
) . (1.7)

2. THE DUPIRE EQUATION

In this section we rewrite the inverse boundary value problem introduced in §1 into an equivalent param-
eter identification problem associated to some suitable forward parabolic PDE.

For all K > 0 and T > 0, we notev(S, t;K,T ) the C((0,∞)× [0, T ]) ∩ C1((0,∞)× (0, T ]) solution to
(1.2) and (1.4)-(1.5). As first observed in [3] and rigorously justified in [2], for S > 0 and t ∈ (0, T ) fixed,
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the option price v(S, t;K,T ) ≡ u(K,T ), as a function of the expiry date T and the strike price K , satisfies
the equation dual to (1.2),

∂u

∂T
−

1

2
K2σ2(K)

∂2u

∂K2
+ (r − q)K

∂u

∂K
+ qu = 0, T ∈ (t,∞), K ∈ (0,∞), (2.1)

with the initial condition
u(K, t) = max(S −K, 0), K > 0, (2.2)

and the boundary conditions

u(0, T ) = Se−q(T−t), lim
K→∞

u(K,T ) = 0, T ∈ (t,∞). (2.3)

In light of the inverse problem described in §1 we thus aim to determine σ(K) from the set of option quotes
{u(K,T ;S∗, t∗), K ∈ I∗1}, for some fixed values of T > 0, S∗ > 0 and t∗ ∈ (0, T ).

Actually, the following logarithmic substitution

y = ln
K

S
, τ = T − t, w(y, τ) = u(K,T )eqτ , a(y) =

1

2
σ2(K),

transforms (2.1)–(2.3) into the problem

(∂τ − La)w = 0, τ > 0, y ∈ R,

where
Law = La(y, ∂y)w ≡ a(y)wyy − (a(y) + r − q)wy, (2.4)

with the initial condition
w(y, 0) = Smax(1− ey, 0), y ∈ R,

and the boundary conditions

lim
y→−∞

w(τ, y) = S, lim
y→+∞

w(τ, y) = 0, τ ∈ (0,∞).

Therefore, S∗ > 0 and t∗ > 0 being arbitrarily fixed, the above mentioned inverse problem may be rephrased
as to whether a(y) = 1

2σ
2(S∗ey) can be retrieved for y ∈ Ω1 = {ln(K/S∗), K ∈ I∗1} from the knowledge

of {w(y, τ∗), y ∈ Ω1}, where τ∗ = T − t∗ and w is the solution to the system




(∂τ − La)w = 0, y ∈ R, τ ∈ (0,∞),

w(y, 0) = S∗max(1− ey, 0), y ∈ R,

lim
y→−∞

w(τ, y) = S∗, lim
y→+∞

w(τ, y) = 0, τ ∈ (0,∞).

(2.5)

3. CARLEMAN ESTIMATE FOR THE DUPIRE EQUATION

In this subsection we recall some parabolic Carleman estimate, which is useful to the proof of Theorem
1.1. To this purpose we first define the set

Ω =

{
y = ln

K

S∗
, K ∈ I∗

}
,

fulfilling Ω ⋐ Ω1 since I∗ ⋐ I∗1 . Next we pick a non-empty interval ω2 ⊂ Ω1\Ω together with two subsets

ω ⊂ ω1 ⊂ ω2. (3.1)

As shown in Appendix, there exists a function ψ0 ∈ C2(Ω1) obeying

ψ0 > 0 in Ω1, ψ
′
0 6= 0 in Ω1\ω and ψ0 = 0 in ∂Ω1. (3.2)
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Since ψ0(y) > 0 for all y ∈ Ω, there is a constant δ > 0 such that

ψ0(y) ≥ 2δ, y ∈ Ω. (3.3)

Moreover, as we have ψ0 = 0 on ∂Ω1, we may find an interval Ω2 satisfying Ω ⊂ Ω2 ⊂ Ω1 for which

ψ0(y) ≤ δ, y ∈ Ω1\Ω2. (3.4)

Put T = 2τ∗, ℓ(τ) = τ(T − τ) and ψ(y) = ψ0(y) + ψ with ψ = 2 ‖ψ0‖∞. For all λ > 0, we define two
weight functions

ϕ(y, τ) =
eλψ(y)

ℓ(τ)
, y ∈ Ω1, τ ∈ (0, T ), (3.5)

and

η(y, τ) =
eλψ(y) − e2λψ

ℓ(τ)
, y ∈ Ω1, τ ∈ (0, T ). (3.6)

Finally we introduce the following functional space

H1,2(Q) =
{
z ∈ L2(Q), zτ , zy, zyy ∈ L

2(Q)
}
, Q = Ω1 × (0, T ), (3.7)

endowed with the norm

‖z‖H1,2(Q) = ‖z‖L2(Q) + ‖zτ‖L2(Q) + ‖zy‖L2(Q) + ‖zyy‖L2(Q) ,

and recall the following parabolic Carleman estimate proved in [5, 6]:

Lemma 3.1. Let a ∈ C2(Ω1). Then there exists λ0 > 0 such that for all λ > λ0 we may find two constants

s0 > 0 and C > 0 satisfying

∫ T

0

∫

Ω1

(
sℓ−1(τ) |zy|

2 + s3ℓ−1(τ) |z|2 + s−1ℓ(τ) |zτ |
2
)
e2sηdydτ

≤ C

(∫ T

0

∫

Ω1

|(∂τ − La) z|
2 e2sηdydτ + s3

∫ T

0

∫

ω
ℓ−3(τ) |z|2 e2sηdydτ

)
, (3.8)

for every s ≥ s0 and every z ∈ H1,2(Q) obeying z(y, τ) = 0 for (y, τ) ∈ ∂Ω1 × (0, T ). Here C depends

continuously on λ, and is independent of s.

4. PARABOLIC INTERIOR ESTIMATES

In this section we derive several preliminary PDE estimates which are essential to the analysis of the
inverse problem.

Let w be solution to the initial value problem

(∂τ − La(y, ∂))w = F, for all, y ∈ R, t ∈ (0, T ), (4.1)

with the initial data
w(y, 0) = 0, y ∈ R, (4.2)

and boundary condition
lim

y→±∞
w(y, τ) = 0, τ ∈ (0, T ). (4.3)

Several estimates, required in the derivation of the stability inequality stated in Theorem 1.1, are collected
in a succession of four lemmas.

Lemma 4.1. For each T > 0 there is a constant C = C(T ) > 0 such that

‖w(τ, ·)‖2L2(R) +

∫ τ

0
‖wy(s, ·)‖

2
L2(R) ds ≤ C

∫ τ

0
‖F (s, ·)‖2L2(R) ds. (4.4)
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The proof of this classical result (see [4]) is by means of Gronwall Theorem.
Further we recall from [4][chap.7, Thm 5] the:

Lemma 4.2. Let I ⊂ R be a bounded interval, let F ∈ L2(0, T ;L2(I)) and let v ∈ H1,2(I × (0, T )) be

solution to 



(∂τ − La(y, ∂)) v = F, y ∈ I, t ∈ (0, T )

v(y, 0) = 0, y ∈ I,

v(y, τ) = 0 y ∈ ∂I, t ∈ (0, T ).

(4.5)

Then it holds true that

‖v‖H1,2(0,T )×I ≤ C ‖F‖L2(0,T ;L2(I)) . (4.6)

Moreover if Fτ ∈ L2(0, T ;L2(I)) we have in addition

sup
0≤τ≤T

‖v(·, τ)‖H2(I) ≤ C ‖F‖H1(0,T ;L2(I)) . (4.7)

Lemma 4.3. Fix J2 ⊂ R. Then there is a constant C > 0 such that for every w ∈ H1,2(J2 × (0, T ))
obeying (4.1)-(4.2) we have:

‖w‖H1,2(J2×(0,T )) ≤ C ‖F‖L2(0,T ;L2(R)) . (4.8)

Furthermore, if F (y, τ) = 0 for all (y, τ) ∈ J2 × (0, T ) then

‖wτ,y‖L2(J1×(0,T )) ≤ C ‖F‖L2(R×(0,T )) , (4.9)

for any J1 ⋐ J2 such that dist(J2,R\J1) > 0.

Proof. Let φ be a cutoff function supported in some interval J̃2 ⋑ J2 and fulfilling φ(y) = 1 in J2. Then
v = φw is solution to the following system





(∂τ − La(y, ∂)) v = φF +Q1(y, ∂y)w, y ∈ J̃2, t ∈ (0, T ),

v(y, 0) = 0, y ∈ J̃2,

v(y, τ) = 0, y ∈ ∂J̃2, t ∈ (0, T ),

(4.10)

where Q1 denotes some first order partial differential operator. By applying Lemma 4.2, we get

‖v‖
H1,2(J̃2×(0,T ))

≤ C
(
‖F‖L2(R×(0,T )) + ‖w‖L2(R×(0,T )) + ‖wy‖L2(R×(0,T ))

)
, (4.11)

so (4.8) follows directly from this and Lemma 4.1.
To prove (4.9) we put u = (ξw)y where ξ ∈ C∞

0 (J2) satisfies ξ(y) = 1 for y ∈ J1. Since ξF = 0 the
function u is solution to the system





(∂τ − La(y, ∂)) u = Q2(y, ∂y)w, y ∈ J2, t ∈ (0, T ),

u(y, 0) = 0, y ∈ J2,

u(y, τ) = 0 y ∈ ∂J2, t ∈ (0, T ),

(4.12)

where Q2 is a second order differential operator. Applying Lemma 4.2, we obtain

‖uτ‖L2(J2×(0,T )) ≤ C ‖w‖L2(0,T ;H2(J2))
≤ C ‖F‖L2(R×(0,T )) ,

which proves the result. �
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Lemma 4.4. Let Ω ⋐ Ω1 ⊂ R and assume that F (y, τ) = 0 for every (y, τ) ∈ (R\Ω)× (0, T ). Then there

is a constant C > 0 such that

sup
0≤t≤T

‖w(τ, ·)‖H2(Ω1)
≤ ‖F‖H1(0,T ;L2(Ω)) ,

for every solution w ∈ H1,2(Ω1 × (0, T )) to (4.1)-(4.2).

Proof. Pick Ω2 ⋑ Ω1 such that dist(Ω1,R\Ω2) > 0, and let φ ∈ C∞
0 (Ω2) satisfy φ(y) = 1 for y ∈ Ω1.

Then v = φw is solution to the system




(∂τ −La(y, ∂)) v = φF +Q1(y, ∂y)w, y ∈ Ω2, t ∈ (0, T ),

v(y, 0) = 0, y ∈ Ω2,

v(y, τ) = 0, y ∈ ∂Ω2, t ∈ (0, T ),

(4.13)

for some first order operator Q1 which is supported in J1 = Ω2\Ω1. As a consequence we have

sup
0≤τ≤T

‖v(·, τ)‖H2(Ω2)
≤ C

(
‖F‖H1(0,T ;L2(R)) + ‖wτ,y‖L2((0,T )×J1)

)
,

directly from Lemma 4.2. Now the result follows from this and (4.9) since F (·, τ) vanishes in a neighbor-
hood of J1 for each τ ∈ (0, T ). �

5. STABILITY ESTIMATE FOR THE LINEARIZED INVERSE PROBLEM

As w = wa1 − wa2 is solution to the linearized system




(∂τ − La1(y, ∂y))w = f(y)α(y, τ), in R× (0, T ),

w(y, 0) = 0, in R,

limy→±∞w(y, τ) = 0, on (0, T ),

(5.1)

with f = a2 − a1 and α(y, τ) = (wa2)yy − (wa2)y , we now examine the linearized inverse problem of
determining f from w|ω2×(0,T ) and w(y, τ∗), y ∈ Ω1.

To this end we first recall from [2] that

α0 = inf
y∈Ω

|α(y, τ∗)| > 0, (5.2)

and then establish the following:

Lemma 5.1. There exists a constant C > 0 such that we have

‖f‖2L2(Ω) ≤ C ‖w(·, τ∗)‖2H2(Ω1)
+

∫ T

0

∫

ω2

|w|2 dydτ, (5.3)

for any solution w to (5.1).

Proof. Let φ ∈ C∞
0 (Ω1) be such that φ(y) = 1 for y ∈ Ω2. Then z = φwτ satisfies

(∂τ −La1) z = f(y)ατ (y, τ) +Q1wτ in Ω1 × (0, T ), (5.4)

by (5.1), where Q1 is a first order partial differential operator supported in Ω1\Ω2. Moreover, it holds true
that

z(y, τ∗) = A2w(τ
∗, y) + f(y)α(x, τ∗) inΩ1, (5.5)

for some second order partial differential operator A2. Therefore, Lemma 3.1 yields
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C

∫ T

0

∫

Ω1

e2sη
(
s3ℓ−3(τ) |z|2 + sℓ−1(τ) |zy|

2 + s−1ℓ(τ) |zτ |
2
)
dydτ

≤ s3
∫ T

0

∫

ω
e2sηℓ−3(τ) |z|2 dydτ +

∫ T

0

∫

Ω1

e2sη |f(y)|2 dydτ +

∫ T

0

∫

Ω1

e2sη |Q1wτ |
2 dydτ, (5.6)

provided s > 0 is large enough.
Further, bearing in mind that e2sη(y,0) = 0 for every y ∈ Ω1, we deduce from Cauchy-Schwarz and Young’s
inequalities that

∫

Ω1

s |z(y, τ∗)|2 e2sη(y,τ
∗)dydτ =

∫ τ∗

0

∂

∂τ

(∫

Ω1

s |z(y, τ)|2 e2sηdy

)
dτ

=

∫ τ∗

0

∫

Ω1

2s2ητe
2sη |z|2 dydτ +

∫ τ∗

0

∫

Ω1

2
(
s−1/2ℓ(τ)1/2zτ

)(
s3/2zℓ(τ)−1/2

)
e2sηdydτ

≤ C

∫ τ∗

0

∫

Ω1

s2ℓ−2(τ)e2sη |z|2 dydτ + C

∫ τ∗

0

∫

Ω1

(
1

s
ℓ(τ) |zτ |

2 + s3 |z|2 ℓ−1(τ)

)
e2sηdydτ. (5.7)

In light of (5.6) this entails

∫

Ω1

s |z(y, τ∗)|2 e2sη(y,τ
∗)dydτ ≤ Cs3

∫ τ∗

0

∫

ω
e2sηℓ−3(τ) |z|2 dydτ

+ C

∫ T

0

∫

Ω1

e2sη |f(y)|2 dydτ + C

∫ T

0

∫

Ω1

e2sη |Q1wτ |
2 dydτ, (5.8)

upon taking s > 0 sufficiently large .
By substituting the right hand side of (5.5) for z(y, τ∗) in (5.8) we thus find out that
∫

Ω1

s |f(y)|2 |α(y, τ∗)|2 e2sη(y,τ
∗)dy ≤ C

∫

Ω1

s |A2w(y, τ
∗)|2 e2sη(y,τ

∗)dy

+ Cs3
∫ T

0

∫

ω
e2sηℓ−3(τ) |z|2 dydτ + C

∫ T

0

∫

Ω1

e2sη |f(y)|2 dydτ + C

∫ T

0

∫

Ω1

e2sη |Q1wτ |
2 dydτ, (5.9)

for s > 0 large enough.
The next step of the proof is to absorb the third term in the right hand side of (5.9) into its left side. To do
that we first notice that

∫ T

0

∫

Ω1

e2sη |f(y)|2 dy ≤

∫

Ω1

|f(y)|2
(∫ T

0
e2sη(y,τ

∗)dτ

)
dy = T

∫

Ω1

|f(y)|2 e2sη(y,τ
∗)dy, (5.10)

since η(y, τ) ≤ η(y, τ∗) for all (y, τ) ∈ Ω1 × (0, T ), as we have taken T = 2τ∗. Thus it follows from (5.2)
that

s

∫

Ω1

|f(y)|2 e2sη(y,τ
∗)dy ≤ Cs

∫

Ω1

|A2w(y, τ
∗)|2 e2sη(y,τ

∗)dy

+ Cs3
∫ T

0

∫

ω
e2sηℓ−3(τ) |wτ |

2 dydτ + C

∫ T

0

∫

Ω1

e2sη(y,τ
∗) |Q1wτ |

2 dydτ. (5.11)

Further, taking into account that supy∈Ω1
e2sη(y,τ

∗) <∞ and sup(y,τ)∈Ω1×(0,T ) ℓ
−3(τ)e2sη(y,τ) <∞, (5.11)

then yields
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s

∫

Ω
|f(y)|2 e2sη(y,τ

∗)dy ≤ Cs ‖w(·, τ∗)‖2H2(Ω1)
+ Cs3

∫ T

0

∫

ω
|wτ |

2 dydτ

+ C

∫ T

0

∫

Ω1\Ω2

e2sη(y,τ
∗)
(
|wτ |

2 + |wτ,y|
2
)
dydτ, (5.12)

for s sufficiently large. The next step involves noticing that

sup
y∈Ω1\Ω2

e2sη(y,τ
∗) < inf

y∈Ω
e2sη(y,τ

∗).

Namely, putting

m1 =
e2λδ − e2λψ

ℓ(τ∗)
and m2 =

eλδ − e2λψ

ℓ(τ∗)
in such a way that m = m2 −m1 < 0,

we deduce from the two assumptions (3.3) and (3.4) that

η(y, τ∗) ≥ m1, y ∈ Ω and η(y, τ∗) ≤ m2, y ∈ Ω1\Ω2.

Therefore,

s

∫

Ω
|f(y)|2 dy ≤ Cs ‖w(·, τ∗)‖2H2(Ω1)

+ Cs3
∫ T

0

∫

ω
|wτ |

2 dydτ

+ Ce2ms
∫ T

0

∫

Ω1\Ω2

(
|wτ |

2 + |wτ,y|
2
)
dydτ, (5.13)

for s sufficiently large, whence

s ‖f‖2L2(Ω) ≤ Cs ‖w(·, τ∗)‖2H2(Ω1)
+ Cs

∫ T

0

∫

ω
|wτ |

2 dydτ + Ce2ms ‖f‖2L2(Ω) , (5.14)

by (4.9). Now, taking s > 0 large enough in (5.14), we end up getting

‖f‖2L2(Ω) ≤ C ‖w(·, τ∗)‖2H2(Ω1)
+

∫ T

0

∫

ω
|wτ |

2 dydτ. (5.15)

The remaining part of the proof is to upper bound the last term in the right hand side of (5.15). To do that
we pick ξ ∈ C∞

0 (ω1), where ω1 is the same as in (3.1), such that ξ(y) = 1 for y ∈ ω. It is easy to check that
v = ξw is solution to





(∂τ − La1) v = Q1(y, ∂y)w, y ∈ ω1, τ ∈ (0, T ),

v(y, 0) = 0, y ∈ ω1,

v(y, τ) = 0, y ∈ ∂ω1, τ ∈ (0, T ),

(5.16)

where Q1 is a first order differential operator supported in ω1\ω. Therefore (4.8) entails

‖wτ‖L2((0,T )×ω) ≤ C
(
‖w‖L2((0,T )×ω1)

+ ‖wy‖L2((0,T )×ω1)

)
. (5.17)

By arguing as above with χ ∈ C∞
0 (ω2), where ω2 is defined in (3.1), and such that χ(y) = 1 for y ∈ ω1, we

find out that z = χw is solution to following system




(∂τ − La(y, ∂)) z = Q′
1(y, ∂y)w, y ∈ ω2, τ ∈ (0, T ),

z(y, 0) = 0, y ∈ ω2,

z(y, τ) = 0, y ∈ ∂ω2, τ ∈ (0, T ),

(5.18)
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where Q′
1 is a first order differential operator supported in ω2\ω1. Finally, multiplying the differential

equation in (5.18) by z and integrating by parts, yields

‖wy‖L2(ω1×(0,T )) ≤ C ‖w‖L2(ω2×(0,T )) . (5.19)

This, combined with (5.15) and (5.17), entails the desired result. �

6. COMPLETION OF THE PROOF OF THEOREM 1.1

The last step of the proof is to get rid of the last integral in the right hand side of (5.3). Namely we
shall prove that ‖w‖L2(ω2)×(0,T ) can be majorized by ‖w(τ∗, ·)‖H2(Ω1)

up to some positive multiplicative
constant.

Lemma 6.1. Let X, Y , Z be three Banach spaces, let A : X → Y be a bounded injective linear operator

with domain D(A), and let K : X → Z be a compact linear operator. Assume that there exists C > 0 such

that

‖f‖X ≤ C1 ‖Af‖Y + ‖Kf‖Z , ∀f ∈ D(A). (6.1)

Then there exists C > 0 such that

‖f‖X ≤ C ‖Af‖Y , ∀f ∈ D(A). (6.2)

Proof. Given A bounded and injective we argue by contradiction by assuming the opposite to (6.2). Then
there exists a sequence (fn)n in X such that ‖fn‖X = 1 for all n and Afn → 0 in Y as n go to infinity.
Since K : X → Z is compact, there is a subsequence, still denoted by fn, such that Kfn converges in Z .
Therefore this is a Cauchy sequence inZ , hence, by applying (6.1) to fn−fm, we get that ‖fn − fm‖X → 0,
as n → ∞, m → ∞. As a consequence (fn) is a Cauchy sequence in X so fn → f as n → ∞ for some
f ∈ X. Since ‖fn‖X = 1 for all n, we necessarily we have ‖f‖X = 1. Moreover it holds true that
Afn → A(f) = 0 as n→ ∞, which is a contradiction to the fact that A is injective. �

Let us now introduce

X =
{
f ∈ L2(R), f(y) = 0 in R\Ω

}
, Y = H2(Ω1), Z = L2((0, T ) × ω2),

and define

A : X → Y, A(f) = w(τ∗, ·) and K : X → Z, K(f) = w(0,T )×ω2
,

where w denotes the unique solution to (5.1), so we can state the:

Lemma 6.2. The operator A is bounded and injective.

Proof. First the boundedness of A follows readily from (4.7). Second w being solution to




(∂τ − La1(y, ∂))w = f(y)α(y, τ), in R× (0, T ),

w(y, 0) = 0, in R,
(6.3)

where f = a2 − a1 and α = (wa2)yy − (wa2)y , we deduce from the identities w(·, τ∗) = 0 and f = 0
on ω2 ⊂ Ω1\Ω that wτ (·, τ∗) = 0 on ω2. Arguing in the same way we get that the successive derivatives
of w wrt τ vanish on ω2 × {τ∗}. Since w is solution to some initial value problem with time independent
coefficients, it is time analytic so we necessarily have w = 0 on ω2 × (0, τ∗). Therefore f = 0 on Ω by
(5.3), and the proof is complete. �

Lemma 6.3. K is a compact operator.
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Proof. The operator K being bounded from X to H1((0, T ) × ω2) as we have

‖w‖L2((0,T );H1(ω2))
+ ‖wτ‖L2((0,T );L2(ω2))

≤ ‖f‖L2(Ω) , (6.4)

by (4.8), the result follows readily from the compactness of the injection H1((0, T ) × ω2) →֒ Z =
L2((0, T ) × ω2). �

Finally, by putting Lemmas 5.1, 6.1, 6.2 and 6.3 together, we end up getting that

‖a1 − a2‖L2(Ω) = ‖f‖L2(Ω) ≤ C ‖A(f)‖Y = C ‖w(τ∗, ·)‖H2(Ω1)
,

which yields Theorem 1.1.

7. APPENDIX

The existence of a weight function ψ0 fulfilling the conditions prescribed by (3.2) for some fixed subset
ω of Ω1 can be checked from [5]. Nevertheless, for the sake of completeness and for the convenience of the
reader, we give in this Appendix an explicit expression of such a function ψ0 in the one-dimensional case
examined in this article.

To this purpose we set for all a ∈ [1/2, 1),

fa(x) = µxn + (1− µ)x, x ∈ (0, 1), where n is taken so large that an < 1/2 and µ =
a− 1/2

a− an
. (7.1)

If a ∈ (0, 1/2), put
fa(x) = 1− f1−a(1− x), x ∈ (0, 1), (7.2)

where f1−a is defined by (7.1). For every a ∈ (0, 1), it is not hard to check that the function

ψ0(x) = sin(πfa(x)), x ∈ (0, 1),

obeys
ψ0(x) ≥ 0, x ∈ (0, 1) and |ψ′

0(x)| > 0, x ∈ (0, 1) \ {a}.

In light of this, the general case of an open interval Ω1 = (α, β), where α < β are two real numbers, can be
handled by defining

ψ0(x) = sin(πfa(h
−1(x))), x ∈ Ω1, (7.3)

where h−1 is the inverse function to 



h : (0, 1) −→ Ω1

y −→ yα+ (1− y)β.
(7.4)

Evidently, the function ψ0 given by (7.3)-(7.4) fulfills (3.2) provided a ∈ ω.

REFERENCES

[1] F. Black, M. Scholes. The pricing of options and corporate liabilities, J. Political Econ. 81, 637-659 (1973).
[2] I. Bouchouev, V. Isakov. Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets,

Inv. Probl. 15(3), R95-R116, 1999.
[3] B. Dupire. Pricing with a smile. Risk 7, 18-20, 1994.
[4] L. C. Evans. Partial differential equations, Graduate studies in Mathematics, Amer. Math. Soc., 1998.
[5] A.V. Fursikov, O. Yu. Imanuvilov. Controllability of Evolution Equations, Seoul National University, Seoul, 1996.
[6] O. Yu. Imanuvilov, M.Yamamoto. Lipshitz stability in inverse parabolic problems by Carleman estimate, Inv. Prob. 14, (1998),

1229-1249.
[7] N. V. Krylov. Lectures on elliptic and parabolic equations in Sobolev spaces, Amer. Math. Soc., Providence, RI, 2008.



DETERMINING THE IMPLIED VOLATILITY IN THE DUPIRE EQUATION FOR VANILLA EUROPEAN CALL OPTIONS 11

MOURAD BELLASSOUED, UNIVERSITY OF CARTHAGE, FACULTY OF SCIENCES OF BIZERTE, DEPARTMENT OF MATHE-
MATICS, 7021 JARZOUNA BIZERTE, TUNISIA

E-mail address: mourad.bellassoued@fsb.rnu.tn

RAYMOND BRUMMELHUIS, LMR, EA 4535, UNIVERSITÉ DE REIMS, FRANCE

E-mail address: raymondus.brummelhuis@univ-reims.fr

MICHEL CRISTOFOL, LATP-CNRS, UMR 7353, AIX-MARSEILLE UNIVERSITÉ, FRANCE

E-mail address: cristo@cmi.univ-mrs.fr

ERIC SOCCORSI, CPT-CNRS, UMR 7332, AIX-MARSEILLE UNIVERSITÉ, FRANCE

E-mail address: eric.soccorsi@univ-amu.fr


