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Nonlinear Identification of Continuous-Time Radio Frequency Power
Amplifier Model

Mourad Djamai, Smail Bachir, Claude Duvanaud and Guillaume Merc̀ere

Abstract— In this paper, we present a three-step identification
procedure for radio frequency Power Amplifier (PA) in the
presence of nonlinear distortion which affect the modulated
signal in the Radiocommunication transmission system. The
proposed procedure uses a grey box model where PA dynamics
are modelled with a MIMO continuous filter and the nonlinear
characteristics are described as general polynomial functions,
approximated by means of Taylor series. Using the baseband
input and output data, model parameters are obtained by
an iterative identification algorithm based on Output Error
method. Initialization and excitation problems are resolved
by an association of a new technique using initial values
extraction with a multi-level binary sequence input exciting
all PA dynamics. Finally, the proposed estimation method is
tested and validated on experimental data.

Index Terms— Parameter estimation, power amplifier, con-
tinuous time domain, identification algorithm, Output Error
technique, initialization problem.

I. I NTRODUCTION

System identification of High Frequency circuits is of great
interest to design complex radiocommunication systems. The
exponential growth of the mobile and wireless applications
has lead to the development of complex modulation tech-
niques as well as spread spectrum system [1][2]. As a
result, non constant envelope signal are used to improve
spectral efficiency. The power amplifier, used to transmit the
modulated signal, becomes very important in mobile commu-
nication systems. This is due to the nonlinear distortions and
dynamical effects which caused the increase of the bit error
rate and generate unwanted harmonics in the transmitted
spectrum signal .

Numerous approaches of modeling PA nonlinearities have
been developed in this research area to characterize the
input to output complex envelope relationship [3][4]. The
model forms used in identification are generally classified
into three methods depending on the physical knowledge
of the system : black box, grey box and white box [5][6].
A black box model is a system where no physical insight
and prior information available. This approach have been
widely used in many research studies to predict the output
of the Nonlinear Power Amplifier such as neural networks
[7][8], Wiener and Volterra series [9][10]. However, this
method suffer from the high number of parameters and
the time consuming in computation for complex system.
On the opposite, white box model is a system where the
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mathematical representation, under some assumptions, is
perfectly known. The main advantages of this model are
that the resulting parameters have physical significance like
gain conversion, damping coefficient and cut-off frequency
in electrical systems [11][12]. For many industrial processes,
there exists some, but incomplete knowledge concerning
the system. This gives a third way of making models of
engineering systems: The grey box modelling. This technique
describes the model using some ideas about the character of
the process that generated the data. For these reasons, the
model considered in this paper is a grey box class described
in continuous-time domain. This structure is similar to
PA discrete-time representation including nonlinear transfer
functions and multivariable continuous filter [3][13]. Thefirst
block is set to a memoryless complex amplitude (AM/AM)
and phase (AM/PM) conversion. Conventionally, a power
series model is used to consider these transfer functions. To
describe PA dynamics, annth MIMO filter is inserted. This
element operates on modulating input and represents a low-
pass equivalent in envelope signals [14]. With this structure,
the electronics engineer can interpret immediately the model
in physical terms.

Model parameters are achieved using an iterative identifi-
cation algorithm based on Output Error method.

During last two decades, there has been a new interest
in Output Error techniques [15][16][17]. An overview of
approaches is given in [18][19][20]. Output Error (OE) meth-
ods are based on iterative minimization of an output error
quadratic criterion by a Non Linear Programming (NLP)
algorithm. This technique requires much more computation
and do not converge to unique optimum. But, OE methods
present very attractive features, because the simulation of the
output model is based only on the knowledge of the input, so
the parameter estimates are unbiased [21][22][23]. Moreover,
OE methods can be used to identify non linear systems. For
these advantages, the OE methods are more appropriate in
microwave systems characterization [11][14]. For PA iden-
tification, the parameters initialization and input excitation
are very important to ensure global convergence. Then, we
propose a new procedure for initialization search based on
estimation of the nonlinear (AM/AM) and (AM/PM) func-
tions decoupled from filter identification. A resulting value
gives a good approximation of model parameters. Associated
with a multi-level input excitation, this technique allowsa
fast convergence to the optimal values. Such an identification
procedure for continuous-time domain in PA modeling does
not seem to have been used previously.



The validation of this PA model is obtained for some
experimental digital modulation techniques. Measured and
estimated output signal are compared. Results show a good
agreement and the possibility to PA characterization using
continuous-time representation.

II. PA M ODEL DESCRIPTION

The nonlinear amplifier model used in this paper is an
extension of the discrete time-model at continuous represen-
tation [3][13][24]. The major disadvantage of the discrete
representation is that the used parameters have no physical
significance, contrary to continuous one where parameters
keep their real aspect [16][25]. This is very important when
advanced PA applications are considered such as lineariza-
tion or real time control.

The nonlinear block presented here operates on baseband
quadrature I/Q time-domain waveforms. The complex low-
pass equivalent (LPE) representation of the communication
signal is used to avoid the high sampling rate required at the
carrier frequency.
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Fig. 1. Radio frequency power amplifier model

As shown in fig. 1, the two-box MIMO model includes a
memoryless nonlinearity prior to annth order Laplace filter.
In this model, the first box is the AM/AM and AM/PM
conversions described PA nonlinearities. The second box is
the frequency response which operates on the two baseband
inputs I/Q.

A. Nonlinear Static functions

To take into account simultaneous gain and phase charac-
teristics, amplifiers are traditionally modeled with a complex
polynomial series [9]. Then, the complex envelope of the
non linear output signal is approximated with the following
baseband input/output relationship:

VNL = V in ·G
(

|V in|
2) (1)

V in andVNL are respectively the complex input and output
voltage translated in baseband and expressed according the
direct and quadratureI/Q signals as:

{

V in = Iin + jQin

VNL = INL + jQNL
(2)

G
(

|V in|
2
)

is the complex gain of the amplifier, dependent
of the magnitude of the inputV in. The complex gain is
expressed with a polynomial function composed by even
term which produce harmonic distortions inside the PA
bandpass:

G
(

|V in|
2) =

P

∑
k=0

c2k+1 · |V in|
2k (3)

where c2k+1 are the complex power series coefficients such
as:

c2k+1 = α2k+1 + j β2k+1 (4)

The previous equations give the relationship between input
and output baseband signals :

{

INL = ∑P
k=0 (α2k+1 Iin −β2k+1 Qin) · |V in|

2k

Q
NL

= ∑P
k=0 (α2k+1 Qin +β2k+1 Iin) · |V in|

2k (5)

The output quadrature signals depend on the both input
quadrature terms and on the instantaneous input power.

B. Continuous filter

The dynamical effect caused by the PA system behavior
may be expressed with a differential equation. As shown in
figure (1), the input to output relationships of thisnth order
filter can be written as:

{

dn

dtn Iout +∑n−1
k=0 ak

dk

dtk
Iout = ∑m

k=0bk
dk

dtk
INL

dn

dtn Qout +∑n−1
k=0 ak

dk

dtk
Qout = ∑m

k=0bk
dk

dtk
QNL

(6)

whereIout(t) andQout(t) are the filter outputs.

The coefficients{ak} and{bk} are real scalars that define the
model. Note that the filter structure is the same on the two
axesI andQ, which gives a decoupled MIMO plant. Thus,
the input-output relation can be expressed in Laplace-domain
with the transfer-functionH(s), as so:

H(s) =
∑m

k=0bk ·sk

sn +∑n−1
k=0 ak sk

(7)

wheres denotes the differential operators = d
dt .

III. PARAMETER IDENTIFICATION OF THE PA MODEL

The problem of system identification is a major field
in control and signal processing [22]. For their simplicity,
the Equation Error (EE) techniques like least squares are
regarded as the most suitable methods for estimating the
coefficients in a regression model. However, there are severe
drawbacks, not acceptable in PA characterization, especially
for the identification of physical parameters, such as the
residual error caused by the output noise and the modeling
errors [12].

Output Error (OE) methods have become a wide-spread tech-
nique for non linear system identification [21][23]. Usually,
for these methods, parameter estimates are found iteratively
using optimization algorithms. The simulation of the output
model is based only on the knowledge of the input, so the
parameter estimation is unbiased [22].



A. Identification algorithm

Parameter identification is based on the definition of
a model. For power amplifier, we consider the previous
mathematical model (Eqs. 1-7) and we define the parameter
vector:

θ =
[

a0 · · · an−1 b0 · · · bm c1 · · · c2P+1

]T
(8)

where[.]T denotes transposition operation.

Assume that we have measuredK values of input vector
(Iin(t),Qin(t)) and output vector(I∗out(t),Q

∗
out(t)) with t = k·

Te and 1/Te is the sampling rate. The identification problem
is then to estimate the values of the parametersθ. Thus, we
define the output prediction errors:

{

εIk = I∗outk − Îoutk(θ̂, Iin,Qin)

εQk = Q∗
outk − Q̂outk(θ̂, Iin,Qin)

(9)

where predicted outputŝIoutk and Q̂outk are obtained by
numerical simulations of the PA model andθ̂ is an estimation
of true parameter vectorθ.
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Fig. 2. PA identification scheme

As a general rule, parameter estimation with OE technique
is based on minimization of a quadratic multivariable crite-
rion defined as :

J =
K

∑
k=1

(εI
2
k + εQ

2
k) = εT

I ε I + εT
QεQ (10)

We obtain the optimal values ofθ by Non Linear Program-
ming techniques. Practically, we use Marquardt’s algorithm
[28] for off-line estimation:

θ̂ i+1 = θ̂ i −{[J′′θθ +λ · I ]−1.J′′θ}θ̂=θ i
(11)

J′θ andJ′′θθ are respectively gradient and hessian such as:

J′θ = −2 ∑K
k=1

(

εT
Ik
·σ Ik,θ

+ εT
Qk

·σQk,θ

)

J′′θθ ≈ 2 ∑K
k=1

(

σ Ik,θ
·σT

Ik,θ
+σQk,θ

·σT
Qk,θ

)

λ is the monitoring parameter,

σ Ik,θ
= ∂ Îout

∂θ an output sensitivity onI axis,

andσQk,θ
=

∂ Q̂out
∂θ an output sensitivity onQ axis.

B. Sensitivity functions

The sensitivity functionsσ are important elements in
the identification procedure. The positive realness of these
functions ensures the stability and the convergence of an
unbiased identification algorithm. In comparison, sensitivity
functions are equivalent to the regressors in the linear case
[12]. Thus, it is necessary to attach a great importance to the
calculation of these functions.

For nonlinear grey-box identification, consider a general
continuous-time state-space model structure :

ẋ(t) = g(x(t),θ,u(t)) (12)

y(t) = f (x(t),θ,u(t)) (13)

whereg and f are nonlinear functions.x(t) is the state vector
(dim(x) = N), u(t) andy(t) are input and output signals, and
t denotes time. Finallyθ is the vector of unknown parameters
(dim(θ) = I).

We consider a SISO non-linear system only to simplify
the equations; there is no restrictive assumption on the
dimensions ofu andy.

In the proposed formulation, it is necessary to distinguish
two kinds of sensitivity functions:

• σy,θ = ∂y
∂θ : vector of output sensitivity functions(I ×1)

used in the NLP algorithm

• σx,θ = ∂x
∂θ : matrix of state sensitivity functions(N× I)

such as:

σx,θ =
[

σx,θ1
· · · σx,θi

· · · σx,θI

]

The sensitivity functionsσx,θi are obtained, for each param-
eterθi , by partial differentiation of equation (12). Thus

∂ ẋ
∂θi

= σ̇x,θi
=

∂g(x,θ,u)

∂x
∂x
∂θi

+
∂g(x,θ,u)

∂θi
(14)

So, σx,θi is the solution of the nonlinear differential system:

σ̇x,θi
=

∂g(x,θ,u)

∂x
σx,θi

+
∂g(x,θ,u)

∂θi
(15)

Finally, we obtain the output sensitivity functions used in
Non Linear Programming algorithm by partial differentiation
of equation (13), we get:

σy,θi =
∂y
∂θi

=

(

∂ f (x,θ,u)

∂x

)T

σx,θi
+

∂ f (x,θ,u)

∂θi
(16)



In the particular case of linear system described by the
following state space model :

{

ẋ = A(θ)x+B(θ)u
y = CT(θ)x+D(θ)u

(17)

we obtain :






σ̇x,θi
= A(θ)σx,θi

+
[

∂A(θ)
∂θi

]

x+
[

∂B(θ)
∂θi

]

u

σy,θi = CT(θ)σx,θi
+

[

∂C(θ)
∂θi

]T
x+

[

∂D(θ)
∂θi

]

u
(18)

All discrete-time models are deduced from the continuous
one by second order serie expansion of the transition matrix.

C. Initialization problems

An inherent problem of iterative search routines is that
only convergence to a local minimum can be guaranteed.
In order to converge to the global minimum, a good initial
parameter estimate is important. Usually, for engineering
process, users have a good knowledge on physical param-
eters, necessary to initialize the iterative algorithm (Eq. 11).
In our case, PA users have not sufficient information on
parameter vectorθ, especially on AM/AM and AM/PM
parameters. It is then essential to define a global strategy
which makes it possible to obtain approximative values of
parameters. So we propose an optimal search method based
on Equation Error techniques to achieve initial values of non
linear and filter parameters.

1) Non linear parameters initialization:

The first step consists in searching approximation of the
complex parametersc2k+1 using the envelope magnitude and
phase distorsions (Eqs. 1-3). Thus, the AM/AM and AM/PM
characteristics are used to optimize a polynomial function
by Least Mean Square (LMS) algorithm [22]. A solution for
the coefficients is obtained by minimizing the mean-squared
error between the measured (I∗out,Q

∗
out) and the modeled

output (Iout,Qout) under low frequency signal such as:

θ̂NL = (φH φ)−1φH V∗
out (19)

where :

(.)H denotes transpose-conjugate transformation

θ̂NL = [c1 c3 · · · c2P+1 ]T is the vector of polynomial
parameters,

V∗
out is the measured output,

φ = [ϕ
1

ϕ
2
· · · ϕ

K
] is the regression matrix,

ϕ
k

= [Vink Vink|Vink|
2 · · · Vink|Vink|

2P ]T is the regression
vector,
andV ink

is a kth sampled input.

Noted that for these estimations, the regression vectorϕ
k

is
not correlated with the measured outputV∗

out .

In practice, the PA characteristics is performed by a sinu-
soidal excitation applied on baseband inputsIin and Qin at
fixed low frequency and high input level. In these conditions,
the PA filtering effects are assumed negligible according to

non linear dynamics. The input-output curves are obtained
by measuring the output gain and phase as a function of
input level.

2) Filter parameters initialization:

The second step is the determination of initial values for
the filter coefficients. They are obtained for an input signal
with low input level and large frequency bandwidth. The
signal distorsion is then negligible, which makes it possible
to take into account only the linear filter effects. Thus, we
define the filter parameter vector:

θ f = [a0 a1 · · · an−1 b0 b1 · · · bm]T (20)

Parameter estimation is performed by iterative Instrumental
Variable based on Reinitilized Partial MomentsRPMmethod
(see also [12][14][17]). Used for continuous filter identifica-
tion, this technique is included in the integral methods class.
The main idea of this class is to avoid the input-output time-
derivatives calculation by performing integrations. In this
class, the particularities of theRPM method1 is the use of a
time-shifting window for the integration and to perform an
output noise filtering.
The main advantage of this estimation method to others is
its relatively insensitivity to the initial conditions andrough
system a priori knowledge.

IV. PA SETUP

The measurement setup is shown in Fig. 3. The power
amplifier is a commercial ZHL-42 from MINI CIRCUITS

manufacturer. Input and output data are obtained from
YOKOGAWA D IGITAL OSCILLOSCOPE with a sampling
period equal to 10 ns.
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Fig. 3. PA setup

1CONTSID MATLAB TOOLBOX including the RPM estimation method
can be downloaded from http://www.cran.uhp-nancy.fr/contsid/. Theivrpm
function allows to obtain model estimation by iterative Instrumental Vari-
able.



Filter identification algorithm needs large frequency band-
width excitation signal to provide appropriate estimation.
Indeed, modulated signals are required to excite both steady-
state (low frequency) and process dynamics (medium to
high frequency). This excitation is performed with a Pseudo
Random Binary Sequence (P.R.B.S) baseband pulse as the
input modulation to the transmitter. All data processing are
carried using MATLAB MATHWORKS then are downloading
to a BASEBAND WAVEFORM GENERATOR . The quadrature
modulator AD8349 and demodulator AD8347 are inserted at
the input and output of the PA. They are standard commercial
units from Analog Devices.

Modulation signalsI andQ are delivered by a TTi 40 MHz
Arbitrary Waveform Generator connected to PC control. The
local oscillator frequency is 900 MHz obtained from Digital
Modulation Signal Generator (ANRITSU MG 3660A).

The identification procedure is performed in three steps :
Initialization of nonlinear parameters, initialization of filter
parameter and global identification of the PA’s model.

A. Experimental results

Nonlinear parametersck are extracted from the in-
put/output transfer function. The AM/AM and AM/PM mea-
sured characteristics are obtained by sweeping the power
level of an input signal at a frequency located at the center
of the PA bandwidth. In our case, we used the 3th order
complex polynomial:

VNL =
(

c1 + c3 · |V in|
2 + c5 · |V in|

4)

·V in

Thus, we define the estimated parameter complex vector:

θNL = [c1 c3 c5 ]T (21)

After running aLMS algorithm (Eq. 19), we obtained :






ĉ1 = 1.222−0.115 j
ĉ3 = −0.0918+0.0299j
ĉ5 = 0.01710−2−0.06210−2 j
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Fig. 4. Comparison of time-domain measurement and estimation

Figure (4) allows a comparison between measuredI and
Q outputs waveforms and their estimations. As can be seen,
even if the amplifier is driven near saturation, theLMS
algorithm converge to the optimum values with a maximum
output estimation error less than 0.008 V.

AM/AM and AM/PM characteristics are given in figure
(5). Thus, we can clearly see that the non linear behavioral
of the amplifier is successfully described by a traditional
third polynomial series.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

Input Amplitude (V)

Input amplitude (V)

Output amplitude (V)

Output phase (rad)

AM/AM characteristic

AM/PM characteristic

0 0.05 0.1 0.15 0.2 0.25 0.3
−3

−2

−1

0

1

2

3

Input amplitude (V)

Measured data

Estimation

 Measured data

 Estimation

Fig. 5. Comparison between the measured and estimated AM/AM and
AM/PM functions

0 2 4 6 8 10 12 14 16 18 20

−0.2

−0.1

0

0.1

0.2

0.3

Time (µs)

M
ag

ni
tu

de
 (

V
)

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

0.3

Time (µs)

M
ag

ni
tu

de
 (

V
)

 Measured data         Estimation

Fig. a

Fig. b

Fig. 6. (a) Input signal. (b) Comparison of time-domain measurement and
estimation

The initial values of the linear filter parameters are
obtained by applying a Pseudo Random Binary Sequence
(PRBS)signal with small amplitude level. The filter form
is achieved using theRPM methodfor different plants. A
quadratic error comparison allows to obtain an appropriate
order. Then, the 3rd order filter are defined in the Laplace
domain as:

H(s) =
b1s+b0

s3 +a2s2 +a1s+a0
(22)



Thus, we define the estimated parameter vector:

θ f = [a0 a1 a2 b0 b1 ]T

The RPM algorithm gives the parameters values:






















â0 = 2.01·1023

â1 = 6.11·1023

â2 = 9.60·107

b̂0 = 1.51·1023

b̂1 = −1.79·1015

For small power, figure (6) shows that the PA dynamic can
be modeled as a 3rd order resonant system.
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As observed in figure (7), the identification residuals
(estimation error) are negligible and dont exceed 0,04 V.
The dynamic behavioral of the PA system can be described
by a MIMO filter. The filter characteristic is represented
in figure (8) by the gain and phase curves. The resonnant
frequency of the filter is around 9.8 MHz.
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B. PA global identification :

The model parameters obtained in the previous section will
be used to initialize the nonlinear identification algorithm.
The unknown system in this case is the global PA model
composed by both:

• non-linear complex polynomial functions.
• 3rd order filter system.

The measurements are performed by an input signal ob-
tained from the adding of some P.R.B.Sequences at different
levels. The aim is to drive the amplifier in its overall level
range (linear and non linear area). Figure (9.a) shows the
input signal applied to perform global PA identification. After
8 iterations, we obtain the following parameters:

θ̂NL =







ĉ1 = 1.181+8.452·10−3 j
ĉ3 = −0.042−0.023 j
ĉ5 = −0.201·10−2 +0.316·10−2 j

θ̂ f =























â0 = 2.01·1023

â1 = 6.11·1015

â2 = 9.65·107

b̂0 = 1.51·1023

b̂1 = −1.79·1015
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Model simulation with the achieved parameters exhibit good
approximation of measured data (fig. 9.b).

C. Model validation

In this section, we validate the PA model by comparing
predicted and measured outputs for different modulation
schemes. As a test signal, we use a QPSK digitally mod-
ulated signal shaped with a raised cosine filter with aRolloff
factor of α = 0.25.

Figures (10.a) and (10.b) compare the simulated model
output (dotted line) with the measured output for an ex-
citation signal different of the one previously used for
identification (solid line). It can be seen that the simulated
output follows the measured one.
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QPSK modulation
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Fig. 11. Measured and estimated output spectrum

To validate the proposed model, figure (11) compares the
measured and simulated output power spectral densities at
specific frequencies.

V. CONCLUSION

A model based on continuous-time representation is de-
scribed which offers a simple way to modeling PA dynamics.
This model is able of accounting the magnitude and phase
amplifier nonlinearities such as the saturation effects.

Test results illustrate the efficiency of this technique for
use in off-line identification. The continuous approach was
found to be accurate in predicting the dynamical response
of the power amplifier. Estimation results show that the
described amplifier acts like a resonant system coupled with
a polynomial series.

The proposed technique is based on continuous time
domain model. The model achieved can be used to develop
a continuous baseband method for the compensation of
nonlinearity of the RF front-end in a wireless transmitter.
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