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Nonlinear Identification of Continuous-Time Radio Frequency Power
Amplifier Model

Mourad Djamai, Smail Bachir, Claude Duvanaud and Guillaunerdste

Abstract— In this paper, we present a three-step identification mathematical representation, under some assumptions, is
procedure for radio frequency Power Amplifier (PA) in the  perfectly known. The main advantages of this model are
presence of nonlinear distortion which affect the modulated 5t the resulting parameters have physical significarke li

signal in the Radiocommunication transmission system. The . . d . fficient and cut-off f
proposed procedure uses a grey box model where PA dynamics 92/ CONVErSIion, damping coefncient and cut-oit frequency

are modelled with a MIMO continuous filter and the nonlinear N electrical systems [11][12]. For many industrial proses
characteristics are described as general polynomial functions, there exists some, but incomplete knowledge concerning
approximated by means of Taylor series. Using the baseband the system. This gives a third way of making models of
input and output data, model parameters are obtained by  gngineering systems: The grey box modelling. This tecteiqu
an iterative identification algorithm based on Output Error describes the model using some ideas about the character of
method. Initialization and excitation problems are resolved
by an association of a new technique using initial values the process that generated the data. For these reasons, the
extraction with a multi-level binary sequence input exciting model considered in this paper is a grey box class described
all PA dynamics. Finally, the proposed estimation method is in continuous-time domain. This structure is similar to
tested and validated on experimental data. PA discrete-time representation including nonlinear ¢fan
Index Terms— Parameter estimation, power amplifier, con- functions and multivariable continuous filter [3][13]. Tfiest
tinuous time domain, identification algorithm, Output Error block is set to a memoryless complex amplitude (AM/AM)
technique, initialization problem. and phase (AM/PM) conversion. Conventionally, a power
series model is used to consider these transfer functians. T
describe PA dynamics, am” MIMO filter is inserted. This
System identification of High Frequency circuits is of greaklement operates on modulating input and represents a low-
interest to design complex radiocommunication systems. Tipass equivalent in envelope signals [14]. With this stmegtu
exponential growth of the mobile and wireless applicationghe electronics engineer can interpret immediately theehod
has lead to the development of complex modulation teclin physical terms.
nigues as well as spread spectrum system [1][2]. As a ) _ ) o -~
result, non constant envelope signal are used to improveMOdel parameters are achieved using an iterative identifi-
spectral efficiency. The power amplifier, used to transnt thc@tion algorithm based on Output Error method.

modulated signal, becomes very important in mobile commu- During last two decades, there has been a new interest
nication systems. This is due to the nonlinear distortiorts @ in Qutput Error techniques [15][16][17]. An overview of
dynamical effects which caused the increase of the bit err@bproaches is given in [18][19][20]. Output Error (OE) meth
rate and generate unwanted harmonics in the transmittgéls are based on iterative minimization of an output error
spectrum signal . quadratic criterion by a Non Linear Programming (NLP)

Numerous approaches of modeling PA nonlinearities hagorithm. This technique requires much more computation
been developed in this research area to characterize thed do not converge to unique optimum. But, OE methods
input to output complex envelope relationship [3][4]. Thepresent very attractive features, because the simulafitreo
model forms used in identification are generally classifie@utput model is based only on the knowledge of the input, so
into three methods depending on the physical knowleddgbe parameter estimates are unbiased [21][22][23]. Maeov
of the system : black box, grey box and white box [5][6].OE methods can be used to identify non linear systems. For
A black box model is a system where no physical insighthese advantages, the OE methods are more appropriate in
and prior information available. This approach have beemicrowave systems characterization [11][14]. For PA iden-
widely used in many research studies to predict the outptification, the parameters initialization and input exoda
of the Nonlinear Power Amplifier such as neural network@re very important to ensure global convergence. Then, we
[7][8], Wiener and Volterra series [9][10]. However, thispropose a new procedure for initialization search based on
method suffer from the high number of parameters anéstimation of the nonlinear (AM/AM) and (AM/PM) func-
the time consuming in computation for complex systenmtions decoupled from filter identification. A resulting valu
On the opposite, white box model is a system where thgives a good approximation of model parameters. Associated

with a multi-level input excitation, this technique allovas

S. Bachir, M. Djamai, C. Duvanaud and G. Mere are with laboratory of - fast convergence to the optimal values. Such an identificati
Automatic, Electronic and Electrical Engineering, Univsrof Poitiers, 4 . . AR .
avenue de varsovie 16021 Angénie, France. Email: sbachir@iutang.univ- procedure for continuous-time domain in PA modeling does
poitiers.fr URL: http:/laii.univ-poitiers.fr/ not seem to have been used previously.

I. INTRODUCTION



The validation of this PA model is obtained for some 2 c 2%
experimental digital modulation techniques. Measured and G(M”' >_k2092k+1'|\1'”| ®
estimated output signal are compared. Results show a good ) o
agreement and the possibility to PA characterization usin§n€re Ca1 are the complex power series coefficients such
continuous-time representation. as.

[I. PA MODEL DESCRIPTION Cok1 = O2ks1+ ] Bokra 4)

The nonlinear amplifier model used in this paper is afhe previous equations give the relationship between input
extension of the discrete time-model at continuous represe; g output baseband signals :

tation [3][13][24]. The major disadvantage of the discrete
representation is that the used parameters have no physical Ine = Sk o (@21 lin — Bkt Qin) - [Vin |2
significance, contrary to continuous one where parameters { b 5P (01 Qin + Baxsr i )-|_V- |2k
keep their real aspect [16][25]. This is very important when S 20 (02 B T

advanced PA applications are considered such as lineariza-
tion or real time control. The output quadrature signals depend on the both input

The nonlinear block presented here operates on basebsﬂ%@drature terms and on the instantaneous input power.

guadrature I/Q time-domain waveforms. The complex Iow-B Continuous filter
pass equivalent (LPE) representation of the communication
signal is used to avoid the high sampling rate required at the The dynamical effect caused by the PA system behavior
carrier frequency. may be expressed with a differential equation. As shown in
figure (1), the input to output relationships of tmi$§ order
AMIAM filter can be written as:
Iin NL out
- Vi Vv artesian " n — k K
Qin cgr?vrzrslie:n 7m' JL 7NL' cgnv'erswon QNL |:H0(S) Ho(s):l Q . %IOUI—"_ Zﬂzéakﬁlout = ZEI:O bk%INL
— ou n _ k k
Ji %Qout‘f’ zazgjak%Qout = EE]:O bk%QNL

AM/PM

®)

(6)

Fig. 1. Radio frequency power amplifier model Wherelout(t) and Qout(t) are the filter outputs.

The coefficientdax} and{by} are real scalars that define the
As shown in fig. 1, the two-box MIMO model includes amodel. Note that the filter structure is the same on the two
memoryless nonlinearity prior to ani” order Laplace filter. axesl andQ, which gives a decoupled MIMO plant. Thus,
In this model, the first box is the AM/AM and AM/PM the input-output relation can be expressed in Laplace-doma
conversions described PA nonlinearities. The second boxudth the transfer-functiot(s), as so:
the frequency response which operates on the two baseband
H m
inputs | /Q. H(s) = zkzontjkl S @)

'+ Yo &S

A. Nonlinear Static functions

To take into account simultaneous gain and phase char
teristics, amplifiers are traditionally modeled with a cdexp
polynomial series [9]. Then, the complex envelope of the .
non linear output signal is approximated with the following

Wheres denotes the differential operater= %.

PARAMETER IDENTIFICATION OF THE PA MODEL

baseband input/output relationship: The problem of system identification is a major field
in control and signal processing [22]. For their simplicity
VL =Vin -G (IVinl?) (1) the Equation Error (EE) techniques like least squares are

) ) regarded as the most suitable methods for estimating the

Vi, andVy,_ are respectively the complex input and outpuggefficients in a regression model. However, there are sever
voltage translated in baseband and expressed according figbacks, not acceptable in PA characterization, especia

direct and quadratur/Q signals as: for the identification of physical parameters, such as the

residual error caused by the output noise and the modeling

{ %‘“ - :i” ++JjQQi” (2) errors [12].
\'4 = Inc NL
NG Output Error (OE) methods have become a wide-spread tech-

G(|\lm\2) is the complex gain of the amplifier, dependennique for non linear system identification [21][23]. Uswyall

of the magnitude of the inpu¥;,. The complex gain is for these methods, parameter estimates are found itdgative
expressed with a polynomial function composed by eveusing optimization algorithms. The simulation of the outpu
term which produce harmonic distortions inside the PAnodel is based only on the knowledge of the input, so the
bandpass: parameter estimation is unbiased [22].



A. Identification algorithm J=-23k, (§I( -0y, , +EY, 'Qle)

Parameter identification is based on the definition of
a model. For power amplifier, we consider the prewouQGGNZZk 1(lee lee+Ule —le)
mathematical model (Egs. 1-7) and we define the parametgris the monitoring parameter,
vector:

. Oho = ‘71';%“1 an output sensitivity on axis,
6=ap---an1bo---bmcy - Copiq] (8)

aQ L .
" _ andggy , = =3¢ an output sensitivity o1 axis.
where[.]T denotes transposition operation. ~Qe — 98 P y o
Assume that we have measur&dvalues of input vector g Sensitivity functions

(lin(t), Qin(t)) and output vectoflg,(t), Qsui(t)) with t =k- , i

Te and Y/ Te is the sampling rate. The identification problem hThg se_zfr_18|tl_vlty funct(ljonsg ahre 'mPO_”a”t Elzlement]? ;]n

is then to estimate the values of the parameér$hus, we the identification procedure. _T e positive realness ofdhes
define the output prediction errors: functions ensures the stability and the convergence of an

o unbiased identification algorithm. In comparison, sevisjti
&, = 15, — loug (8, lin, Qin) functions are equivalent to the regressors in the lineag cas
€qq = Qéuy, — Qout (8, lin, Qin) [12]. Thus, it is necessary to attach a great importancedo th
where predicted output£0utk and Qoutk are obtained by

calculation of these functions.
numerical simulations of the PA model afds an estimation
of true parameter vectd.

)

For nonlinear grey-box identification, consider a general
continuous-time state-space model structure :

X(t) =g(x(t), 8, u(t)) (12)
y(t) = T (x(1),,u(t)) (13)
Vodulation @ bemodulation whereg and f are nonlinear functionx(t) is the state vector
i (dim(x) = N), u(t) andy(t) are input and output signals, and
T > - t denotes time. Finallg is the vector of unknown parameters
A ot (dim(8) =1).
9000 < Ly 9000 We consider a SISO non-linear system only to simplify
i the equations; there is no restrictive assumption on the
Qn| = Qout dimensions ol andy.
In the proposed formulation, it is necessary to distinguish
mmmm - PA Model  _ _Z - two kinds of sensitivity functions:
! AM/AM
| _ 9y e :
\ + Oy9 = 55 : Vector of output sensitivity functiond x 1)
: K [ a0 + ~ used in the NLP algorithm
! Li 0 H®s 765 x _ - _
>, > » Oyxp = 55 - Matrix of state sensitivity function®N x )
e ~ such as:
Identification Ox0 = [ Oxe, " Oxg - UOxg }
Algorithm
The sensitivity functions, g are obtained, for each param-
Fig. 2. PA identification scheme eter 6, by partial differentiation of equation (12). Thus
As a general rule, parameter estimation with OE technique 6x =0y = _ 99(%.6,u) ox + 99(x.6,u) (14)
is based on minimization of a quadratic multivariable erite | oX 26 26,
rion defined as :
K So, gy gis the solution of the nonlinear differential system:
I=3 (af+eqf) =& & + &g (10) P
== =R . X,0,u ag(x,6,u
& e _99(x.6,u) g(x,8,u) (15)

) ) ) ax =X,6 a6
We obtain the optimal values &by Non Linear Program-

[28] for off-line estimation: Non Linear Programming algorithm by partial differentisti
of equation (13), we get:

_oy _(ofx8u\' _ 0f(x6.u)
Jp and Jy, are respectively gradient and hessian such as: %6 = 26 ax =x6 06

0i1=0,—{[%e+A-1]""J5}sp (11)
(16)



In the particular case of linear system described by theon linear dynamics. The input-output curves are obtained

following state space model :

x=A(8)x+B(8)u a
y=C'(8)x+D(8)u
we obtain :
Q>_<A,9i :A(Q)ngel + [09_9?) X+ {05_(9?)} u
aD(8) (18)

by measuring the output gain and phase as a function of
input level.

2) Filter parameters initialization:

The second step is the determination of initial values for
the filter coefficients. They are obtained for an input signal
with low input level and large frequency bandwidth. The
signal distorsion is then negligible, which makes it polksib

9c(8
oye =CT(8)a +[ :|)_(+[ }u : . .
Y (8)xq 96, %6 to take into account only the linear filter effects. Thus, we

: . i define the filter parameter vector:
All discrete-time models are deduced from the continuous

one by second order serie expansion of the transition matrix - ap1 bg by - bm]T

C. Initialization problems Parameter estimation is performed by iterative Instrualent
An inherent problem of iterative search routines is thavariable based on Reinitilized Partial MomeRBM method

only convergence to a local minimum can be guaranteegsee also [12][14][17]). Used for continuous filter idermi

In order to converge to the global minimum, a good initiakion, this technique is included in the integral methodssla

parameter estimate is important. Usually, for engineeringhe main idea of this class is to avoid the input-output time-

process, users have a good knowledge on physical paragerivatives calculation by performing integrations. Iristh

eters, necessary to initialize the iterative algorithm.(Eb). class, the particularities of tHePM method is the use of a

In our case, PA users have not sufficient information ofime-shifting window for the integration and to perform an

parameter vectol®, especially on AM/AM and AM/PM output noise filtering.

parameters. It is then essential to define a global strateg¥,e main advantage of this estimation method to others is

which makes it possible to obtain approximative values Qs relatively insensitivity to the initial conditions andugh
parameters. So we propose an optimal search method baggdiem a priori knowledge.

on Equation Error techniques to achieve initial values af no
linear and filter parameters.

B¢ =[a a - (20)

IV. PA SETUP

1) !\lon linear parameters |n|t|§llzat|on: o The measurement setup is shown in Fig. 3. The power
The first step consists in searching approximation of themplifier is a commercial ZHL-42 from Mii CIRCUITS
complex parametersy,, using the envelope magnitude andmanufacturer. Input and output data are obtained from

phase distorsions (Egs. 1-3). Thus, the AM/AM and AM/PMYOKOGAWA DIGITAL OscILLOSCOPEwith a sampling
characteristics are used to optimize a polynomial functioperiod equal to 10 ns.

by Least Mean Square (LMS) algorithm [22]. A solution for
the coefficients is obtained by minimizing the mean-squared
error between the measuretf (, Q;,) and the modeled
output (out, Qout) Under low frequency signal such as:

DATA Acquisition

QNL = (")t Vi (19)

where :
()M denotes transpose-conjugate transformation

Oy =[c G cp.1]T is the vector of polynomial
parameters,

Vit is the measured output,

o=[¢, ¢, -+ ¢,] is the regression matrix,
Qk = [Vink Vink |Vink|2 et
vector,

andV;, is aki sampled input.

Arbitrary Waveform
Generator

Phase
shifter

Vin [Vin /T is the regression

Local Oscillator

Noted that for these estimations, the regression veEIEds

not correlated with the measured outMyj;; -

Fig. 3. PA setup

In practice, the PA characteristics is performed by a sinu-
1CoNTsID MATLAB TOOLBOX including the RPM estimation method

soidal excitation applied on baseband inplisand Q;, at ! !
can be downloaded from http://www.cran.uhp-nancy.frisigid. Theivrpm

fixed IOW freguency and high input level. Ir_' these Condit_ionsfunction allows to obtain model estimation by iterative Instental Vari-
the PA filtering effects are assumed negligible according table.



Filter identification algorithm needs large frequency band Figure (4) allows a comparison between measuread
width excitation signal to provide appropriate estimationQ outputs waveforms and their estimations. As can be seen,
Indeed, modulated signals are required to excite both gteackven if the amplifier is driven near saturation, th#S
state (low frequency) and process dynamics (medium tmgorithm converge to the optimum values with a maximum
high frequency). This excitation is performed with a Pseudoutput estimation error less than 0.008 V.

Random Binary Sequence (P.R.B.S) baseband pulse as thgym/aM and AM/PM characteristics are given in figure
input modulation to the transmitter. All data processing ar(s). Thus, we can clearly see that the non linear behavioral

carried using MTLAB MATHWORKS then are downloading of the amplifier is successfully described by a traditional
to a BASEBAND WAVEFORM GENERATOR. The quadrature third polynomial series.

modulator AD8349 and demodulator AD8347 are inserted at
the input and output of the PA. They are standard comm¢ R N
units from Analog Devices. 02 : -

Modulation signald andQ are delivered by a TiT40 MHz oss- o
Arbitrary Waveform Generator connected to PC control.
local oscillator frequency is 900 MHz obtained from Dig
Modulation Signal Generator (¥RITSUMG 3660A).

The identification procedure is performed in three st > o1 ; : :
Initialization of nonlinear parameters, initializatiori filter
parameter and global identification of the PA's model.

Estimation

0.15
Input amplitude (V)

Output phase (rad) AMIPM characteristic
T

Measured data

Estimation

A. Experimental results

Nonlinear parameterg, are extracted from the i
put/output transfer function. The AM/AM and AM/PM m¢
sured characteristics are obtained by sweeping the | % o4 P
level of an input signal at a frequency located at the c s
of the PA bandwidth. In our case, we used thHe &der

complex polynomial: Fig. 5. Comparison between the measured and estimated AM/AM and
AM/PM functions

Vi = (¢ + G- Vinl? + C5- Vinl*) *Vin

Thus, we define the estimated parameter complex vect Fig.a

O =1[c C5 Cs)" 1)

v)

Magnitude

After running aLMS algorithm (Eqg. 19), we obtained :

@1 == 1222— 0115j T\meo(us)
&; = —0.0918+ 0.0299
€ =0.017102-0.062107?]j

Measured data - = = Estimation

Magnitude (V)

Amplitude (V) | axis
T T T T

Estimaton -

Fig. 6. (@) Input signal. (b) Comparison of time-domain measunt¢raed
_Dzo 0‘05 0‘1 0‘15 0‘2 0‘25 0‘3 0‘35 0‘4 0‘45 05 eStimation

Amplude () Qaxs The initial values of the linear filter parameters are
o obtained by applying a Pseudo Random Binary Sequence

(PRBS)signal with small amplitude level. The filter form

is achieved using th&PM methodfor different plants. A

guadratic error comparison allows to obtain an appropriate

order. Then, the '8 order filter are defined in the Laplace

domain as:

0.2 Estimation |
015
0.1

0.05

-0.05
-0.1
-0.15

-0.2

by s+ bg
Fig. 4. Comparison of time-domain measurement and estimation H(s) = St+apP+tais+ag

(22)



Thus, we define the estimated parameter vector:
6 =1lag a a by by]"

The RPM algorithm gives the parameters values:

4 =2.01-10%
a4 =6.11-10%
a, = 9.60. 107
bp=1.51-10%
by = —1.79-10'

B. PA global identification :

The model parameters obtained in the previous section will
be used to initialize the nonlinear identification algamith
The unknown system in this case is the global PA model
composed by both:

« non-linear complex polynomial functions.
« 39 order filter system.

The measurements are performed by an input signal ob-
tained from the adding of some P.R.B.Sequences at different
levels. The aim is to drive the amplifier in its overall level

For small power, figure (6) shows that the PA dynamic caf@nge (linear and non linear area). Figure (9.a) shows the

be modeled as a®Border resonant system.

Magnitude (V;
0. Magnituc [\

-0.1 L L L L L I I I
0

I
2 4 6 8 10 12 14 16 18
Time (us)

Fig. 7. Identification residuals

As observed in figure (7), the identification residt
(estimation error) are negligible and dont excee@40V.
The dynamic behavioral of the PA system can be desc
by a MIMO filter. The filter characteristic is represen
in figure (8) by the gain and phase curves. The resor

frequency of the filter is around.® MHz.

Bode Diagram

Magnitude (dB)

I
Frequency fadisec) 10

Fig. 8.

Frequency responses of the PA gain and the phase

input signal applied to perform global PA identification téf
8 iterations, we obtain the following parameters:

¢, =1.181+8.452.1073]

By ={ &= —0.042—0.023]
& = —0.201-1072+0.316- 1072
4 =2.01-10%
4 =6.11-10%
6,={ 4 =965 10
bo = 1.51- 10?3
by = —1.79-10'%

Fig. a
T

Magnitude (V)

Time (ps)

Fig. b

T T
02l —— Measured data

)

Magnitude

Fig. 9. (@) Input signal. (b) Comparison of time-domain measuntraed
estimation

Model simulation with the achieved parameters exhibit good
approximation of measured data (fig. 9.b).

C. Model validation

In this section, we validate the PA model by comparing
predicted and measured outputs for different modulation
schemes. As a test signal, we use a QPSK digitally mod-
ulated signal shaped with a raised cosine filter witRaloff
factor of a = 0.25.

Figures (10.a) and (10.b) compare the simulated model
output (dotted line) with the measured output for an ex-
citation signal different of the one previously used for
identification (solid line). It can be seen that the simudate
output follows the measured one.



Fig. a

Magnitude (V)
T T

(4]

T T
—— Measured data 11+ Estimation -

’ (5]

(6]

o
~
IS
o
ok
5
9
I
5
5
8

Time (ps)

Magnitude (V) Fig. b
T T

—— Measured data

(7]

(8]

Time (ps)

Fig. 10. Comparison of 1/Q time-domain measurement and estimédion

QPSK modulation [9]

Measured data
++ Estimation

[20]

[11]

Magnitude (dB)

[12]

[13]

o
Frequency (MHz)

Fig. 11. Measured and estimated output spectrum [14]

To validate the proposed model, figure (11) compares thes)
measured and simulated output power spectral densities at
specific frequencies. [16]

V. CONCLUSION [17]

A model based on continuous-time representation is de-
scribed which offers a simple way to modeling PA dynamic
This model is able of accounting the magnitude and pha:
amplifier nonlinearities such as the saturation effects. [19]

Test results illustrate the efficiency of this technique fopog)
use in off-line identification. The continuous approach was
found to be accurate in predicting the dynamical responé%l]
of the power amplifier. Estimation results show that the
described amplifier acts like a resonant system coupled witge]
a polynomial series. 23]

The proposed technique is based on continuous time
domain model. The model achieved can be used to develgﬁ]
a continuous baseband method for the compensation of
nonlinearity of the RF front-end in a wireless transmitter. [25]
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